JP2005193587A - Resin transfer molding method - Google Patents

Resin transfer molding method Download PDF

Info

Publication number
JP2005193587A
JP2005193587A JP2004003955A JP2004003955A JP2005193587A JP 2005193587 A JP2005193587 A JP 2005193587A JP 2004003955 A JP2004003955 A JP 2004003955A JP 2004003955 A JP2004003955 A JP 2004003955A JP 2005193587 A JP2005193587 A JP 2005193587A
Authority
JP
Japan
Prior art keywords
resin
molding method
mold
cavity
rtm molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003955A
Other languages
Japanese (ja)
Inventor
Shunei Sekido
俊英 関戸
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004003955A priority Critical patent/JP2005193587A/en
Publication of JP2005193587A publication Critical patent/JP2005193587A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin transfer molding (RTM) method which can easily and stably mold an FRP molding having excellent surface designability by suppressing the occurrence of bubbles in the surface which is hardly achieved in the conventional FRP molding method and excellent mechanical properties and quality by suppressing the occurrence of voids between layers of a reinforcing fiber substrate. <P>SOLUTION: In the RTM method of a fiber-reinforced resin member, the reinforcing fiber substrate which is made into a preform is arranged in the cavity of a mold, the substrate is impregnated with a reactive resin by injecting the resin from a resin injection port while the resin is pressurized, and the resin is heated and cured. The injection velocity of the reactive resin into the cavity is controlled to adjust the ratio (Q/S: cc/min×m<SP>2</SP>) between the flow rate of the resin per unit time (Q: cc/min) and the projected area of the cavity (S: m<SP>2</SP>) to be 60<Q/S<550. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、繊維強化プラスチック(FRP)部材を成形する際に用いるレジン・トランスファー・モールディング法(以下、RTM成形法という。)において、最適な成形条件を設けることによって、表面意匠性の良好なFRP部材を短時間で高効率に成形するRTM成形方法の改良に関する。   In the resin transfer molding method (hereinafter referred to as RTM molding method) used for molding a fiber reinforced plastic (FRP) member, the present invention provides an FRP having a good surface design by providing optimum molding conditions. The present invention relates to an improvement in an RTM molding method for molding a member in a short time with high efficiency.

従来より、軽量化を目的として、連続強化繊維を使ったFRP製自動車部材のRTM成形方法が盛んに研究開発されている。   Conventionally, for the purpose of weight reduction, an RTM molding method for FRP automobile members using continuous reinforcing fibers has been actively researched and developed.

ところで、上記RTM成形法に用いる成形型には、縦割れ型と横割れ型とがあるが、縦割れ型(射出成形型に多い)は、重力の影響で樹脂の流れが一定化し易く、型内の気泡は上昇して抜けやすいことから、成形品の表面品位上問題となるボイドやピットの発生が非常に少ないと言うメリットがある反面、金型内への強化繊維基材のセット、即ち成形型のキャビティ面への基材の乱れ無き配置と型面への固定が難しく、且つ多大の時間を要することから生産性が低いという大きな問題がある。一方、横割れ型、即ち成形型が上下型の構成では、前記の強化繊維基材の型面へのセットは比較的容易で且つセット時間も短時間で出来る利点がある反面、一般的な樹脂の注入方法、即ち0.2〜1.0MPaの圧力で加圧し、格別流速をコントロールしないで樹脂注入した場合は、樹脂が圧力に応じた流速で型内に流入して行き、比較的短時間で型内に樹脂が充填されるが、強化繊維基材が樹脂流れで乱れたり、流速が早くて不均一な流れが生じて成形品の表面にボイドやピットが多数発生することが起きる。   By the way, the mold used for the above RTM molding method includes a vertical crack mold and a horizontal crack mold, but the vertical crack mold (which is often found in injection molds) tends to make the resin flow constant due to the influence of gravity. Since the bubbles inside are easy to rise and escape, there is a merit that there are very few voids and pits that cause problems in the surface quality of the molded product, but on the other hand, a set of reinforcing fiber base in the mold, that is, There is a big problem that productivity is low because it is difficult to dispose the base material on the cavity surface of the mold and to fix it to the mold surface, and it takes a lot of time. On the other hand, when the transverse cracking mold, that is, the upper and lower molds are configured, the above-mentioned reinforcing fiber base can be set on the mold surface relatively easily and has a merit that the setting time can be shortened. Injection method, that is, pressurizing at a pressure of 0.2 to 1.0 MPa, and injecting the resin without controlling the special flow rate, the resin flows into the mold at a flow rate corresponding to the pressure, and it takes a relatively short time. In this case, the resin is filled in the mold, but the reinforcing fiber base material is disturbed by the resin flow, or the flow velocity is high and the non-uniform flow occurs, so that many voids and pits are generated on the surface of the molded product.

このような状況下、従来の技術においては、キャビティ内に樹脂を均一にボイドレスの状態で注入するため、キャビティ内の少なくとも一部位に樹脂拡散媒体を配置し、キャビティ内での部分的な樹脂の流動不良や含浸不良を解消する技術が提案されているが(例えば特許文献1)、樹脂の流動条件が考慮されていないために十分でない。特に、成形時間を短縮したり大面積の成形品を短時間で成形するために、樹脂の吐出圧力が0.5MPa以上の高圧で(従って、高速で)樹脂注入する必要がある場合は、基材(特に、平織物)の織り組織の乱れが生じ易く、また高速で樹脂が型内を流動するため基材の微妙な厚み斑や構成の違いにより流動抵抗が流動領域内でばらつくため、均一な流れを保てないことから、部分的に「流れの先回り」などが生じて大きなボイドが発生することがある。更にまた、実施に該基材部分に樹脂は流れて来てはいるが、流れが速いことから例えば織物の織り目にあった気体が抜ける間が無く滞留してしまい、ピットとして表面に欠点を発生させる場合がある。この様な意匠性に係わる外観品位の低下をもたらす従来の成形条件や成形プロセスでは、成形時間の短縮化のための高速注入を行いながら、高い表面品位を確保することは出来ない。成形品のサイズが大きくなればなるほど、どうしても高速樹脂注入することから、この様な外観品位上の欠点は発生しやすい。   Under such circumstances, in the prior art, in order to uniformly inject the resin into the cavity in a voidless state, a resin diffusion medium is disposed at least partially in the cavity, and the partial resin in the cavity A technique for eliminating the flow failure and impregnation failure has been proposed (for example, Patent Document 1), but it is not sufficient because the flow conditions of the resin are not taken into consideration. In particular, if it is necessary to inject the resin at a high pressure of 0.5 MPa or higher (and hence at a high speed) in order to shorten the molding time or to mold a large-area molded product in a short time, Uniform because the weave structure of the material (especially plain woven fabric) is likely to be disturbed, and the resin flows through the mold at high speed, so the flow resistance varies within the flow region due to subtle thickness irregularities and differences in the composition of the base material. A large flow cannot be maintained, and a large void may occur due to partial “flow ahead”. Furthermore, although the resin flows into the base material portion in practice, the flow is so fast that, for example, the gas suitable for the weaving of the fabric stays without any escape and causes defects on the surface as pits. There is a case to let you. With conventional molding conditions and molding processes that cause a decrease in appearance quality related to such design properties, high surface quality cannot be ensured while performing high-speed injection for shortening the molding time. As the size of the molded product increases, such high-speed resin injection is inevitably caused, so that such defects in appearance quality tend to occur.

この様な意匠性に係わるボイドやピットの発生には、樹脂の流動状態が大きく影響することから、強化繊維基材の密度、つまり目付量も重要な因子にになる。つまり、1層当たりの強化繊維の目付量は樹脂の流動抵抗や気泡の抜け易さに影響を与えるため、樹脂流動条件に応じた適正な目付量を設定する必要がある。この目付の適正化には単に表面品位の面ばかりでなく、プリフォームの作業性や強度利用率等の観点からも設定する必要がある。即ち、目付が大きすぎて基材の剛性が高くなると型面に強化繊維基材が沿い難くて立体形状への賦形が難しくなりプリフォーム化に多大の作業時間が掛かったり、その際に基材乱れを生じてFRP成形品の力学特性が低下する事態を招くことがある。即ち、効率的な生産を行うためには、生産条件(成形サイズ、成形条件など)に合った目付量がある。   Since the flow state of the resin greatly affects the generation of voids and pits related to such design properties, the density of the reinforcing fiber base material, that is, the basis weight, is also an important factor. That is, since the basis weight of the reinforcing fibers per layer affects the flow resistance of the resin and the ease of bubble removal, it is necessary to set an appropriate basis weight according to the resin flow conditions. In order to optimize the basis weight, it is necessary to set not only the surface quality but also the viewpoint of the workability of the preform, the strength utilization rate, and the like. That is, if the basis weight is too large and the rigidity of the base material becomes high, it is difficult for the reinforcing fiber base material to follow the mold surface, making it difficult to form a three-dimensional shape, and it takes a lot of work time to form a preform. There may be a situation in which the mechanical properties of the FRP molded product deteriorate due to material disturbance. That is, in order to carry out efficient production, there is a basis weight suitable for production conditions (molding size, molding conditions, etc.).

また、成形条件の中で、特に温度や樹脂注入圧力も表面品位に与える影響度は大きい。注入する樹脂温度は高いと粘度が下がって流動性が上がり、基材への樹脂含浸性は良いが、粘度上昇率が高くなって急激に流動性が悪化し、成形品が大きい場合は樹脂の流動が途中から減速し、未含浸をもたらす場合がある。どうにか全域に樹脂流動しても、粘度が高くなった領域では、未含浸には至らなくてもボイドやピットが多発することがある。一方、金型温度に斑があったり、成形中に変化したりすると型内に残っていた微小な気泡同士が接触して、ボイドやピットに発展する大きな気泡に成長することがある。   Further, among the molding conditions, the influence of the temperature and the resin injection pressure on the surface quality is particularly great. When the resin temperature to be injected is high, the viscosity decreases and the fluidity increases, and the resin impregnation property to the base material is good, but the viscosity increase rate increases and the fluidity suddenly deteriorates. The flow may slow down from the middle, resulting in unimpregnation. Even if the resin flows somewhere in the whole area, voids and pits may frequently occur in the region where the viscosity is high even if the resin is not impregnated. On the other hand, if the mold temperature is uneven or changes during molding, minute bubbles remaining in the mold may come into contact with each other and grow into large bubbles that develop into voids or pits.

また、圧力も適度であることが必要である。高過ぎてキャビティー内で体積膨張して気泡を発生させたり、低過ぎて残存気泡を小さく圧縮出来ない場合がある。   Also, the pressure needs to be moderate. In some cases, it is too high and causes volume expansion in the cavity to generate bubbles, or it is too low to compress the remaining bubbles to be small.

また、反応性樹脂から硬化過程で反応ガスが生じたり、既に樹脂中に内包していた微細なガス(気泡)が時間と共に成長して大きくなり、ボイドやピットに成長することもあるので、樹脂が基材に含浸した後は出来るだけ早く、速やかに硬化する方がよい。   Also, reactive gas is generated from the reactive resin during the curing process, or fine gas (bubbles) already contained in the resin grows with time and grows into voids and pits. It is better to cure as soon as possible after impregnating the substrate.

該反応性樹脂の材料特性が成形効率に与える影響度は非常に高く、例えば硬化剤の種類によっては樹脂の反応の初期に反応速度が最大となり、時間が経過する従って反応速度が低下し、その為に硬化に要する時間が長くなる場合がある。これに対して、成形型の温度を上昇させて硬化時間を短縮しようとすると、今度は初期の粘度上昇が過大となり、樹脂注入・流動時に粘度が過度に上昇して、果てはゲル化してしまい、成形が途中で停止して未含浸部分を生じる場合もある。   The influence of the material properties of the reactive resin on the molding efficiency is very high. For example, depending on the type of curing agent, the reaction rate becomes maximum at the beginning of the reaction of the resin, and the reaction rate decreases with time. Therefore, the time required for curing may become long. On the other hand, when trying to shorten the curing time by increasing the temperature of the mold, the initial increase in viscosity becomes excessive, the viscosity increases excessively during resin injection and flow, and eventually gels. There is a case where the molding stops in the middle and an unimpregnated portion is generated.

この様に、FRP成形(特に、RTM成形方法)では、成形サイズ(面積)に応じた成形条件や材料特性が存在し、適正な条件で成形しないと品質面、特に表面品位の点で問題を生じ易いと言える。
特開2002−192535号公報
As described above, FRP molding (particularly, RTM molding method) has molding conditions and material characteristics corresponding to the molding size (area). If molding is not performed under appropriate conditions, there is a problem in terms of quality, particularly surface quality. It can be said that it is easy to occur.
JP 2002-192535 A

本発明は、上記従来技術の問題点を解消し、強化繊維基材の型内への配置が容易で、短時間でセットが可能な横割り型(上下型)を用いたRTM成形方法において、ボイドやピットが殆ど生じていない表面意匠性の高い成形品を、効率よく短時間で成形(製造)できるRTM成形方法を提供することにある。   The present invention eliminates the above-mentioned problems of the prior art, and in an RTM molding method using a horizontal split mold (upper and lower molds) that can be easily placed in a mold of a reinforcing fiber base and can be set in a short time. An object of the present invention is to provide an RTM molding method capable of efficiently molding (manufacturing) a molded article having a high surface design with few voids and pits.

本発明は、上記課題を解決するため、成形型のキャビティー内に、プリフォーム化された強化繊維基材を配置し、樹脂注入口から反応性樹脂を加圧しながら注入して前記強化繊維基材に樹脂含浸後、加熱硬化させる繊維強化樹脂部材のRTM成形方法において、前記反応性樹脂の前記キャビティー内への注入速度を、前記反応性樹脂の単位時間流量(Q:CC/min)とキャビティーの投影面積(S:m2)との比(Q/S:CC/min・m2)が、
60<Q/S<550
となる範囲内で注入することを特徴とするRTM成形方法である。
In order to solve the above-mentioned problems, the present invention arranges a preformed reinforcing fiber base in a cavity of a mold, and injects a reactive resin from a resin injection port while pressurizing the reinforcing fiber base. In the RTM molding method of the fiber reinforced resin member that is heat-cured after impregnating the material with resin, the injection rate of the reactive resin into the cavity is defined as a unit time flow rate (Q: CC / min) of the reactive resin. The ratio (Q / S: CC / min · m 2 ) to the projected area (S: m 2 ) of the cavity is
60 <Q / S <550
The RTM molding method is characterized by injecting within the range.

この場合、上記キャビティー内を減圧した状態で、反応性樹脂を加圧しながら、樹脂を注入することが好ましい。また、反応性樹脂の単位時間流量(Q:CC/min)と、キャビティーの投影面積(S:m2)との比(Q/S:CC/min・m2)と、該反応性樹脂の加圧力(P:MPa)との積((Q/S)×P:CC・MPa/min・m2)が、
20≦(Q/S)×P≦400
の範囲内の条件で樹脂を注入することが好ましい。そして、反応性樹脂の加圧力は、0.2〜0.8MPaの範囲内にすることが好ましく、時間と共に変動させるのがより好ましい。加熱温度は60〜160℃の範囲の一定温度下で注入し、3〜30分の範囲内で硬化させることが好ましい。
In this case, it is preferable to inject the resin while pressurizing the reactive resin in a state where the inside of the cavity is decompressed. Further, the ratio (Q / S: CC / min · m 2 ) between the unit flow rate (Q: CC / min) of the reactive resin and the projected area (S: m 2 ) of the cavity, and the reactive resin The product ((Q / S) × P: CC · MPa / min · m 2 ) with the applied pressure (P: MPa) of
20 ≦ (Q / S) × P ≦ 400
It is preferable to inject the resin under the conditions within the above range. And it is preferable to make the pressurizing force of reactive resin into the range of 0.2-0.8 MPa, and it is more preferable to make it fluctuate with time. The heating temperature is preferably injected at a constant temperature in the range of 60 to 160 ° C. and cured within a range of 3 to 30 minutes.

本発明の方法に用いる強化繊維基材の構成繊維は、目付けが150〜500g/m2の範囲内の炭素繊維を用いるのが好ましく、樹脂はアルコールを硬化成分とするエポキシ樹脂を用いるのが好ましい。得られた繊維強化樹脂部材は、その厚みが1mm以上のものである。この得られた成形品は主として自動車の意匠部材に用いることができる。 The constituent fiber of the reinforcing fiber base used in the method of the present invention is preferably a carbon fiber having a basis weight of 150 to 500 g / m 2 , and the resin is preferably an epoxy resin containing alcohol as a curing component. . The obtained fiber reinforced resin member has a thickness of 1 mm or more. The obtained molded product can be mainly used for a design member of an automobile.

本発明のRTM成形方法によれば、従来のRTM成形条件では困難であった意匠面である表面にボイドやピットなどの欠陥が発生することのない成形品を効率よく短時間で安定的に成形出来る。従って、表面品位が良い成形品を高サイクルで量産できる。   According to the RTM molding method of the present invention, a molded product in which defects such as voids and pits are not generated on a surface which is a design surface, which has been difficult under conventional RTM molding conditions, is efficiently and stably molded in a short time. I can do it. Therefore, a molded product having a good surface quality can be mass-produced at a high cycle.

以下、本発明のRTM成形方法の最良の実施形態を説明する。   Hereinafter, the best embodiment of the RTM molding method of the present invention will be described.

本発明のRTM成形方法を実施することによって得られるFRP部材とは、強化繊維により強化されている樹脂を指し、強化繊維としては、例えば炭素繊維、ガラス繊維、アルミナ繊維、金属繊維、窒化珪素繊維などの無機繊維や、ポリアミド系合成繊維、ポリオレフィン系合成繊維、ポリエステル系合成繊維、ポリフェニルスルフォン系合成繊維、ポリベンゾオキサジン系合成繊維、アセテート、アクリロニトリル系合成繊維、モダクリル繊維、ポリ塩化ビニル系合成繊維、ポリ塩化ビニリデン系合成繊維、ポリビニルアルコール系合成繊維、ポリウレタン繊維、ポリクラール繊維、タンパク−アクリロニトリル共重合系繊維、フッ素系繊維、ポリグリコール酸繊維、フェノール繊維、パラ系アラミド繊維などの有機繊維等の中から単種、あるいは複数種選ぶことができる。これら強化繊維は、織布状、不織布状、マット状、短繊維状など各種形態を採りうる。中でも、自動車用外板など意匠部材に適する繊維としては、高強度・高剛性である炭素繊維やガラス繊維が挙げられ、
また、本発明で使用する強化繊維基材とは、例えば樹脂の含浸されていない強化繊維を指し、その形態としては、不織布やマット、ニット材料、チョップ度ファイバーなどの短繊維状の均質形態が好ましい。更、これらとインサート部品との組み合わせ等が挙げられ、その用途により使い分けられる。前記インサート部品とは、例えばスチールやアルミニウムなどの金属板や、金属柱、金属ボルト、ナット、ヒンジなどの接合用の金属、アルミハニカムコア、あるいはポリウレタン、ポリスチレン、ポリイミド、塩化ビニル、フェノール、アクリルなどの高分子材料からなるフォーム材やゴム質材、木質材等が挙げられ、主として、釘が効くことや、ネジが立てられる等の接合を目的としたインサート部品、中空構造で軽量化を目的としたインサート部品、振動時の減衰を目的としたインサート部品などが多く用いられる。
The FRP member obtained by carrying out the RTM molding method of the present invention refers to a resin reinforced with reinforcing fibers. Examples of the reinforcing fibers include carbon fibers, glass fibers, alumina fibers, metal fibers, and silicon nitride fibers. Inorganic fiber such as polyamide synthetic fiber, polyolefin synthetic fiber, polyester synthetic fiber, polyphenylsulfone synthetic fiber, polybenzoxazine synthetic fiber, acetate, acrylonitrile synthetic fiber, modacrylic fiber, polyvinyl chloride synthetic fiber Organic fibers such as fibers, polyvinylidene chloride synthetic fibers, polyvinyl alcohol synthetic fibers, polyurethane fibers, polyclar fibers, protein-acrylonitrile copolymer fibers, fluorine fibers, polyglycolic acid fibers, phenol fibers, para-aramid fibers, etc. A single species, Rui can choose multiple species. These reinforcing fibers can take various forms such as a woven fabric, a nonwoven fabric, a mat, and a short fiber. Among them, as fibers suitable for design members such as automobile outer plates, carbon fibers and glass fibers having high strength and high rigidity can be mentioned.
The reinforcing fiber substrate used in the present invention refers to a reinforcing fiber that is not impregnated with a resin, for example, and its form is a short fiber-like homogeneous form such as a nonwoven fabric, mat, knit material, chop degree fiber, etc. preferable. Furthermore, the combination of these and insert parts etc. are mentioned, and it uses properly by the use. Examples of the insert parts include metal plates such as steel and aluminum, metals for joining such as metal columns, metal bolts, nuts, and hinges, aluminum honeycomb cores, polyurethane, polystyrene, polyimide, vinyl chloride, phenol, acrylic, and the like. Foam materials, rubber materials, wood materials, etc. made of high polymer materials are mainly used for inserts aimed at joining nails and screws etc. Insert parts that are used for the purpose of damping during vibration are often used.

更にまた、本発明の強化繊維には、繊維の一部に次述する樹脂が既に含浸された状態(プリプレグ、セミプレグ、部分含浸プリプレグなど呼ばれる状態)である場合も含まれる。   Furthermore, the reinforcing fiber of the present invention includes a case where a part of the fiber is already impregnated with the resin described below (state called prepreg, semi-preg, partially impregnated prepreg, etc.).

本発明のRTM 成形方法で使用する樹脂としては、粘度が低く強化繊維への含浸が容易な熱硬化性樹脂または熱可塑性樹脂を形成するRIM用(Resin Injection Molding)モノマーなどが好適である。熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニルエステル樹脂、フェノール樹脂、グアナミン樹脂、また、ビスマレイド・トリアジン樹脂等のポリイミド樹脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタレート樹脂、さらにメラニン樹脂やユリア樹脂やアミノ樹脂等が挙げられる。   As the resin used in the RTM molding method of the present invention, a thermosetting resin having a low viscosity and easily impregnating reinforcing fibers or a monomer for RIM (Resin Injection Molding) that forms a thermoplastic resin is suitable. Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, polyvinyl ester resins, phenol resins, guanamine resins, polyimide resins such as bismaleide triazine resins, furan resins, polyurethane resins, polydiallyl phthalate resins, A melanin resin, a urea resin, an amino resin, etc. are mentioned.

また、ナイロン6、ナイロン66、ナイロン11などのポリアミド、またはこれらポリアミドの共重合ポリアミド、また、ポリエチレンテレフタラート、ポリブチレンテレフタラートなどのポリエステル、またはこれらポリエステルの共重合ポリエステル、さらにポリカーボネート、ポリアミドイミド、ポリフェニレンスルファイド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリオレフィンなど、更にまた、ポリエステルエラストマー、ポリアミドエラストマーなどに代表される熱可塑性エラストマー等が挙げられる。   Further, polyamides such as nylon 6, nylon 66 and nylon 11, or copolymer polyamides of these polyamides, polyesters such as polyethylene terephthalate and polybutylene terephthalate, or copolymer polyesters of these polyesters, polycarbonate, polyamideimide, Polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyolefin, and the like, and thermoplastic elastomers typified by polyester elastomers, polyamide elastomers, and the like are also included.

また、上記の熱硬化性樹脂、熱可塑性樹脂、ゴムから選ばれた複数をブレンドした樹脂を用いることもできる。中でも好ましい樹脂として、自動車用外板部材の意匠性に影響を与える成形時の熱収縮を抑える観点から、エポキシ樹脂が挙げられる。   Also, a resin obtained by blending a plurality selected from the above-mentioned thermosetting resins, thermoplastic resins, and rubbers can be used. Among them, an epoxy resin is preferable as a preferable resin from the viewpoint of suppressing thermal shrinkage at the time of molding that affects the design of the automotive outer plate member.

一般的に複合材料用エポキシ樹脂としては、主剤として、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリジシルアミン型エポキシ樹脂が用いられる。一方、硬化剤としては、ジシアンジアミドにジクロロフェニルジメチル尿素を組み合わせた硬化剤系が作業性、物性等のバランスに優れている点で好適に使用されている。しかし、特に限定されるものではなく、ジアミノジフェニルスルホン、芳香族ジアミン、酸無水物ポリアミドなども使用できる。また、樹脂と前述の強化繊維の比率は、重量比率で20:80〜70:30の範囲内が外板として適当な剛性を保持する点で好ましい。その中でもFRP構造体の熱収縮を低減させ、クラックの発生を抑えるという点から、エポキシ樹脂または熱可塑性樹脂やゴム成分などを配合した変性エポキシ樹脂、ナイロン樹脂、ジシクロペンタジエン樹脂がより適している。   Generally, as an epoxy resin for composite materials, a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, or a glycidylamine type epoxy resin is used as a main agent. On the other hand, as a curing agent, a curing agent system in which dichlorophenyldimethylurea is combined with dicyandiamide is preferably used in terms of excellent workability and physical properties. However, it is not particularly limited, and diaminodiphenyl sulfone, aromatic diamine, acid anhydride polyamide and the like can also be used. Further, the ratio of the resin and the above-mentioned reinforcing fiber is preferably in the range of 20:80 to 70:30 in terms of the weight ratio in order to maintain appropriate rigidity as the outer plate. Among them, modified epoxy resin, nylon resin, dicyclopentadiene resin blended with epoxy resin or thermoplastic resin, rubber component, etc. are more suitable from the viewpoint of reducing thermal shrinkage of FRP structure and suppressing generation of cracks. .

次に図面を参照しながら発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the invention will be described with reference to the drawings.

図1は、本発明のRTM成形方法を実施するための成形設備の全体概略図である。成形金型2は上型と下型からなり、金型昇降装置1に取り付けられる。下型に直接強化繊維基材を、または事前に成形型に収まりやすいように強化繊維基材を製品形状に賦形したプリフォーム基材を設置し、上型を閉じる。成形型の材質としてはFRP、鋳鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電鋳、銅電鋳があげられる。量産には、剛性、耐熱性、作業性の面から構造用炭素鋼が好適である。   FIG. 1 is an overall schematic view of a molding facility for carrying out the RTM molding method of the present invention. The molding die 2 includes an upper die and a lower die, and is attached to the die lifting device 1. Place the reinforcing fiber base directly on the lower mold, or the preform base formed into the product shape in advance so that the reinforcing fiber base is easy to fit in the mold, and close the upper mold. Examples of the material of the mold include FRP, cast steel, structural carbon steel, aluminum alloy, zinc alloy, nickel electroforming, and copper electroforming. For mass production, structural carbon steel is suitable in terms of rigidity, heat resistance, and workability.

成形型には任意に複数の樹脂注入口8aに繋がる樹脂注入流路13、排出口8bに繋がる排出路14を設けた。樹脂注入流路13、排出路14は各々カプラを介して注入口8a、排出口8bに接続されている。樹脂注入流路13には樹脂注入装置3が接続されている。樹脂注入装置3は主剤タンク5、硬化剤タンク6にそれぞれ主剤・硬化剤を収容し、それぞれのタンクは加温、真空脱泡できる機構を備えている。樹脂注入時にはそれぞれのタンクから加圧装置12により樹脂を樹脂注入流路13に向かって押し流す。加圧装置12は、シリンジポンプ12a、、12bを用いており、該シリンジを同時に押し出すことで定量性も確保することが2液混合により硬化する樹脂には好ましい。混合ユニット4で混合され、樹脂注入流路13に至る。排出路14は真空ポンプ7aあるいは加圧ポンプ7bへの樹脂の流入を防ぐために、樹脂トラップ15に接続される。   The molding die was arbitrarily provided with a resin injection channel 13 connected to a plurality of resin injection ports 8a and a discharge channel 14 connected to the discharge ports 8b. The resin injection channel 13 and the discharge channel 14 are respectively connected to the injection port 8a and the discharge port 8b via a coupler. A resin injection device 3 is connected to the resin injection flow path 13. The resin injecting device 3 stores a main agent and a curing agent in a main agent tank 5 and a curing agent tank 6, respectively, and each tank has a mechanism capable of heating and vacuum degassing. At the time of resin injection, the resin is pushed from the respective tanks toward the resin injection flow path 13 by the pressurizing device 12. The pressurizing device 12 uses syringe pumps 12a and 12b, and it is preferable for a resin that is cured by two-liquid mixing to ensure quantitativeness by simultaneously extruding the syringes. It is mixed by the mixing unit 4 and reaches the resin injection channel 13. The discharge path 14 is connected to a resin trap 15 in order to prevent the resin from flowing into the vacuum pump 7a or the pressure pump 7b.

なお、注入口8aの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、注入口8aはできるだけ少ないことが好ましい。これは樹脂注入装置3からの注入用流路13を注入口8aに接続する箇所が増えて注入作業が繁雑になることを防ぐためである。   The number and position of the injection ports 8a vary depending on the shape and size of the molding die, the number of molded products that are simultaneously molded in the mold, and the like, but it is preferable that the number of injection ports 8a be as small as possible. This is to prevent the injection work from becoming complicated due to an increase in the number of locations where the injection flow path 13 from the resin injection device 3 is connected to the injection port 8a.

樹脂注入流路13の材料は十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。チューブには口径5〜30mmのものを用い、樹脂の注入圧力に耐えるために1.0MPa以上の耐圧性、樹脂硬化時の温度に耐えるために100℃以上の耐熱性が必要となり、厚みが2mm程度の”テフロン(登録商標)”製チューブが好適である。但し、”テフロン”以外にも、比較的安価なポリエチレンチューブやスチール、アルミ等の金属管であってもよい。   The material of the resin injection flow path 13 needs to ensure sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance). A tube with a diameter of 5 to 30 mm is used. A pressure resistance of 1.0 MPa or more is required to withstand the injection pressure of the resin, and a heat resistance of 100 ° C. or more is required to withstand the temperature during resin curing, and the thickness is 2 mm. A tube made to the extent of “Teflon” is preferred. However, in addition to “Teflon”, a relatively inexpensive polyethylene tube, or a metal tube such as steel or aluminum may be used.

また、排出口8bの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、排出口もできるだけ少ないことが好ましい。   Further, the number and positions of the discharge ports 8b vary depending on the shape and size of the molding die, the number of molded products that are simultaneously molded in the mold, and the like, but it is preferable that the number of discharge ports be as small as possible.

更にまた、排出口8bは、型内に残留する気体が抜けやすいように注入口8aよりも気体が浮動し易い方向である高い位置に設置されることが好ましい。   Furthermore, it is preferable that the discharge port 8b is installed at a high position in a direction in which the gas is more likely to float than the injection port 8a so that the gas remaining in the mold can be easily released.

排出路14の材料は、供給路13と同様に十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。排出路14としてはスチール、アルミ等の金属管、あるいはポリエチレン、”テフロン”等のプラスチック製のチューブが挙げられるが、直径5〜10mm、厚み1〜2mmの”テフロン”製チューブが作業性の面からより好適である。   As for the material of the discharge path 14, it is necessary to take into consideration the securing of a sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance), as with the supply path 13. The discharge path 14 may be a metal tube such as steel or aluminum, or a plastic tube such as polyethylene or “Teflon”, but a “Teflon” tube having a diameter of 5 to 10 mm and a thickness of 1 to 2 mm is easy to work with. Is more preferable.

樹脂注入時の樹脂注入流路13、排出路14の途中に設置する注入バルブ21や排出バルブ22は、バイスグリップ等により、直接作業者により流路を挟むことで全域開閉や口径を変化させることができる。また、バイスグリップのハンドル部分にアクチュエータを設置して自動化することや、またバイスグリップの代わりに電磁バルブやエアーオペレーションバルブを用いる等したバルブ開閉装置を適用することが出来る。そして、このバルブ開閉装置と事前にバルブの開度情報を入力した記憶装置を接続することで、より精度の高い開閉を行うことも好適である。さらに、排出バルブ22は、単なる開閉の2値ではなく、流路の径を変化(ボールバルブの開度調節)させることも可能である。   The injection valve 21 and the discharge valve 22 installed in the middle of the resin injection flow path 13 and the discharge path 14 at the time of resin injection can be opened / closed and the diameter of the entire area can be changed by directly sandwiching the flow path by a worker with a vise grip or the like. Can do. In addition, it is possible to apply a valve opening / closing device that is automated by installing an actuator in the handle portion of the vice grip, or using an electromagnetic valve or an air operation valve instead of the vise grip. It is also preferable to perform more accurate opening / closing by connecting the valve opening / closing device to a storage device in which valve opening information is input in advance. Further, the discharge valve 22 can change the diameter of the flow path (adjustment of the opening degree of the ball valve) instead of simply opening and closing binary values.

樹脂の加圧は、シリンジポンプなどによる加圧方法によれば定量性も得られる。樹脂の注入圧は0.1〜1.0MPaの範囲で用いるのが好ましい。ここで樹脂の注入圧とは、加圧装置12により加圧される最大圧力を指し、図1の注入圧力計31で表示させる圧力を表す。   The pressurization of the resin can also provide quantitativeness by a pressurizing method using a syringe pump or the like. The resin injection pressure is preferably in the range of 0.1 to 1.0 MPa. Here, the injection pressure of the resin refers to the maximum pressure pressurized by the pressurizing device 12, and represents the pressure displayed by the injection pressure gauge 31 of FIG.

最終的に樹脂が型内の基材に完全に含浸され排出路14まで到達したら排出路14を閉じ、その後暫く注入圧で型内を保圧してから注入用流路も閉じて樹脂注入を終了する。成形型は温水循環式の温調機26によって加温されており、これにより樹脂を硬化させる。尚、型内樹脂圧とは、型内圧力計32の圧力を表す。   When the resin in the mold is finally completely impregnated into the mold and reaches the discharge path 14, the discharge path 14 is closed, and after that, the inside of the mold is held for a while with the injection pressure, and then the injection flow path is also closed to complete the resin injection. To do. The mold is heated by a hot water circulation type temperature controller 26, thereby curing the resin. The in-mold resin pressure represents the pressure of the in-mold pressure gauge 32.

上述の様なRTM成形設備(成形システム)によってRTM成形を行い、外観品位に優れ、所定の力学特性を有する高品質のFRP成形品を安定的に得るためには、
強化繊維基材の裁断、積層、プリフォーム化、型へのレイアップなどの事前準備の適正化と共に、樹脂注入、含浸、硬化までの成形条件が非常に重要であり、特に生産性(生産の効率化)を考慮した生産条件を適正に設定する必要がある。
In order to stably obtain a high-quality FRP molded product having excellent appearance quality and predetermined mechanical properties by performing RTM molding with the RTM molding equipment (molding system) as described above,
In addition to optimizing advance preparations such as cutting, laminating, preforming, and laying up the mold, the molding conditions from resin injection, impregnation, and curing are very important. It is necessary to set production conditions appropriately considering efficiency.

その為には、既に指摘しているような「樹脂注入圧力」、「成形温度」や「樹脂流速」、「樹脂の温度特性」等が、反応性樹脂の特性を十分考慮した上で、成形寸法に相応した適正な値に設定される必要がある。特に、本特許では生産効率を考慮して流動性が良い反面、短時間でゲル化し、直ぐに硬化する反応性樹脂材料を対象としているため、高速流動含浸が必要となる。   To that end, the “resin injection pressure”, “molding temperature”, “resin flow rate”, “resin temperature characteristics”, etc., which have already been pointed out, are carefully considered after considering the characteristics of the reactive resin. It is necessary to set an appropriate value corresponding to the dimension. In particular, in this patent, fluidity is good considering production efficiency, but on the other hand, it is intended for a reactive resin material that gels in a short time and hardens immediately, so high-speed fluid impregnation is required.

しかし、樹脂圧力を上げ、流速を早めて注入すると、先に述べたように基材の乱れや表層にボイドやピットが生じやすい。従って、単純に流速を早めては前述のような外観品位に問題を生じるため、被含浸基材に対する適正な樹脂流速、即ち該基材の面積に相応した流量を設定する必要がある。   However, when the resin pressure is increased and the flow rate is increased, the substrate is easily disturbed and voids and pits are likely to be generated on the surface layer as described above. Accordingly, simply increasing the flow rate causes problems in the appearance quality as described above, and therefore it is necessary to set an appropriate resin flow rate for the substrate to be impregnated, that is, a flow rate corresponding to the area of the substrate.

そこで、後述する実施例では、実際の成形対象部材である自動車外板部材の寸法(面積)に対し、樹脂注入流量を可変して外観品位(意匠面の表面品位)を評価してみた。即ち、0.4〜2.4m2の6種類のRTM成形型を用いて、樹脂の注入圧力を変えて注入(吐出)速度を10通り変えて試作成形した。 Accordingly, in the examples described later, the appearance quality (surface quality of the design surface) was evaluated by varying the resin injection flow rate with respect to the dimension (area) of the automobile outer plate member that is the actual molding target member. That is, six types of RTM molds of 0.4 to 2.4 m 2 were used, and prototype molding was performed by changing the injection (discharge) speed by changing the injection pressure of the resin.

用いた基材は、東レ(株)製炭素繊維”トレカ”クロス(CK6243C:T700−12K、目付:300g/m2、面積:1.0m2/ply)を4ply積層し、約110℃に加熱された平面板成形用金型に配置し、金型を密閉した後、一方から圧力が0.5MPaの反応性エポキシ樹脂を加圧注入しながら他方から真空吸引した。樹脂が全体に流動し含浸した後に真空吸引を停止し、樹脂注入圧力で数10秒保圧した後に、所定の時間(約10分間)だけ加熱硬化させて金型より成形品を脱型し、厚さ約1.4mmのCFRP製平板を得た。 The substrate used was a 4ply laminate of carbon fiber “Torayca” cloth (CK6243C: T700-12K, basis weight: 300 g / m 2 , area: 1.0 m 2 / ply) manufactured by Toray Industries, Inc. and heated to about 110 ° C. After being placed in the flat plate molding die and sealing the die, vacuum suction was performed from one side while injecting a reactive epoxy resin having a pressure of 0.5 MPa from one side. After the resin has flowed and impregnated throughout the vacuum, the vacuum suction is stopped, the pressure is maintained at the resin injection pressure for several tens of seconds, and then the resin is heated and cured for a predetermined time (about 10 minutes) to remove the molded product from the mold, A CFRP flat plate having a thickness of about 1.4 mm was obtained.

次の表1は、上記成形品の外観を評価した結果である。   Table 1 below shows the results of evaluating the appearance of the molded product.

Figure 2005193587
Figure 2005193587

なお、表中の枠内下段の数値は、注入樹脂の流量(Q:CC/min)と被成形品の投影面積(S:m2)との比(Q/S)
の値である。また、評価結果は以下の区分で表示している。
The numerical value in the lower part of the frame in the table is the ratio (Q / S) between the flow rate of the injected resin (Q: CC / min) and the projected area (S: m 2 ) of the molded product.
Is the value of Evaluation results are shown in the following categories.

○○:外観上全く欠陥がなく、極めて意匠性に優れる。     ◯: There are no defects in appearance, and the design is extremely excellent.

○ :外観上に問題はなく、製品化が可能な意匠性レベル。      ○: There is no problem in appearance, and the design level that enables commercialization.

△ :表面に微少なボイドやピットが見られるが、研磨すると製品化は可能。      △: Slight voids and pits are seen on the surface, but it can be commercialized when polished.

× :表面のボイドやピットの数量やサイズが修復困難なレベル。      X: The level and quantity of surface voids and pits are difficult to repair.

尚、上記評価用試作に用いた反応性樹脂は、本発明が生産効率化を狙う為に適用対象としている図2に示すような粘度−時間特性を有する高流動性で且つ高速硬化型のエポキシ樹脂である。詳しくは、主剤のエポキシ樹脂が東都化成(株)製”エピトート”YD128の「ビスフェノールAのジグリシジルエーテル」に、3級アミンの「2−メチルイミダゾール」とアルコール類の「グリセリン」と「1,2−エタンジオール」の混合成分をなす。   Note that the reactive resin used in the evaluation prototype is a highly fluid and fast-curing epoxy having a viscosity-time characteristic as shown in FIG. 2, which is an object of application of the present invention to increase production efficiency. Resin. Specifically, the main epoxy resin is “Epitoto” YD128 “diglycidyl ether of bisphenol A” manufactured by Toto Kasei Co., Ltd., “2-methylimidazole” of tertiary amine, “glycerin” of alcohols and “1, This is a mixed component of “2-ethanediol”.

即ち、100℃の環境下で、樹脂流動開始後約8分でゲル化し脱型可能なレベルまで硬化する様な高速硬化樹脂である。   That is, it is a fast curing resin that gels in about 8 minutes after the start of resin flow and cures to a demoldable level in an environment of 100 ° C.

表1より分かるように、製品化可能なレベルである「○〜○○」は、上記Q/S値が
60<Q/S<550
の範囲内であると言える。
As can be seen from Table 1, “Q to XX”, which is a level that can be commercialized, has the above Q / S value.
60 <Q / S <550
It can be said that it is within the range.

更に、表1の条件において、表面品位を評価する因子である上記Q/S値に吐出圧力Pを乗じた結果が表2である。   Furthermore, Table 2 shows the result of multiplying the Q / S value, which is a factor for evaluating the surface quality, by the discharge pressure P under the conditions shown in Table 1.

Figure 2005193587
Figure 2005193587

この表2より判る様に、製品化可能なレベルである「○〜○○」は、上記(Q/S)×Pの値が、
20<(Q/S)×P<400
の範囲内が好ましい。
As can be seen from Table 2, “Q to XX”, which is a level that can be commercialized, has a value of (Q / S) × P described above.
20 <(Q / S) × P <400
Within the range of is preferable.

次に本発明の実施例を前述の図面を参照しながら説明する。   Next, an embodiment of the present invention will be described with reference to the aforementioned drawings.

本発明に係わるRTM成形条件で成形する一例として実施したRTM成形装置の全体図を図1に、成形に用いた樹脂の成形温度における粘度−時間特性について図2に示す。注入口8a、排出口8bをそれぞれ1箇所ずつ有する金属型2(上型、下型とも:長さ2000mm、幅1800mm、高さ500mm)に、東レ(株)製炭素繊維”トレカ”クロス(CO7373B:T300B−3K、目付:192g/m2、面積:2.1m2/ply)を6ply積層(0/90°;3ply、±45°;3ply)し、予め自動車のボンネットフードの形状にプリフォーム化した状態で下型のキャビティ面に配置し、金型昇降機1にて上型を閉じて完全密閉した。上型は金型昇降機1にて2MPaで加圧されている。また、上型、下型とも温調機26によって100℃に一定に加温されている。 An overall view of an RTM molding apparatus implemented as an example of molding under the RTM molding conditions according to the present invention is shown in FIG. 1, and viscosity-time characteristics at the molding temperature of the resin used for molding are shown in FIG. Carbon fiber “Trekka” cloth (CO7373B) manufactured by Toray Industries, Inc. on metal mold 2 (both upper and lower molds: length 2000 mm, width 1800 mm, height 500 mm) each having one inlet 8a and one outlet 8b. : T300B-3K, basis weight: 192 g / m 2 , area: 2.1 m 2 / ply) 6ply laminated (0/90 °; 3ply, ± 45 °; 3ply) and preformed into the shape of the hood of a car in advance The mold was placed on the cavity surface of the lower mold, and the upper mold was closed and completely sealed by the mold elevator 1. The upper mold is pressurized by the mold elevator 1 at 2 MPa. Both the upper mold and the lower mold are heated to 100 ° C. by the temperature controller 26.

注入口8aには樹脂注入用流路13を接続し、排出口8bには排出路14を接続した。注入用流路13、排出路14ともに直径16mm、厚さ2mmの”テフロン”製チューブを使用した。排出路14には樹脂が真空ポンプ7aまで流入するのを防ぐため、途中に樹脂トラップ15を設けた。   A resin injection flow path 13 was connected to the injection port 8a, and a discharge path 14 was connected to the discharge port 8b. A tube made of “Teflon” having a diameter of 16 mm and a thickness of 2 mm was used for both the injection channel 13 and the discharge channel 14. In order to prevent the resin from flowing into the discharge path 14 to the vacuum pump 7a, a resin trap 15 is provided on the way.

型内の密閉を保つため、シール材(O-リング)をキャビティ面の外周に配置している。上型を閉じることで、型の内部が樹脂注入用流路13と排出路14以外に連通していないことが理想的である。しかし、実質的には完全な密閉は困難であり、たとえば、樹脂注入路13に配置される注入バルブ21を閉鎖し、排出バルブ22を開口した状態で真空圧力計(記載略)の圧力をモニターし、ここでは真空ポンプ7a停止後10秒間0.01MPaを保持できた状態であれば成形上問題ないとして密閉の状態を確認した。   In order to keep the inside of the mold sealed, a sealing material (O-ring) is arranged on the outer periphery of the cavity surface. Ideally, the upper mold is closed so that the interior of the mold does not communicate with any place other than the resin injection channel 13 and the discharge channel 14. However, substantially complete sealing is difficult. For example, the pressure of a vacuum pressure gauge (not shown) is monitored with the injection valve 21 disposed in the resin injection path 13 closed and the discharge valve 22 opened. Here, the sealed state was confirmed that there was no problem in molding as long as 0.01 MPa was maintained for 10 seconds after the vacuum pump 7a was stopped.

排出口8bから真空ポンプ7aで排出し、型内圧力を0.01MPa以下となったことを該真空圧力計により確認した後、加圧装置12により樹脂の注入を開始する。加圧装置12は、シリンジポンプ12a、12bを用いており、樹脂注入時にはタンク側への樹脂の逆流を防ぐように構成されている。樹脂は主剤としてエピコート828(油化シェルエポキシ社製、エポキシ樹脂)、硬化剤は東レブレンドのTR−C35H(イミダゾール誘導体)を混合して得た液状エポキシ樹脂を使用した。成形温度100℃におけるこのエポキシ樹脂の粘度−時間特性、詳しくはエポキシ樹脂組成物の粘度変化を樹脂の硬化プロファイル追跡の指標として用いられるキュアインデックス値を図2に示す。グラフよりこの樹脂は約8分でガラス転移点(Tg)が100℃を上回り、脱型が可能な状態に達する。   After discharging from the discharge port 8b with the vacuum pump 7a and confirming that the in-mold pressure has become 0.01 MPa or less by the vacuum pressure gauge, the pressurizing device 12 starts injecting resin. The pressurizing device 12 uses syringe pumps 12a and 12b, and is configured to prevent the backflow of the resin to the tank side when the resin is injected. As the main resin, Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Ltd., epoxy resin) was used as the main agent, and as the curing agent, a liquid epoxy resin obtained by mixing TR-C35H (imidazole derivative) of Toray Blend was used. FIG. 2 shows the viscosity-time characteristics of this epoxy resin at a molding temperature of 100 ° C., specifically, the cure index value in which the viscosity change of the epoxy resin composition is used as an index for tracking the curing profile of the resin. According to the graph, the glass transition point (Tg) exceeds 100 ° C. in about 8 minutes, and the resin can be demolded.

樹脂注入装置3では事前に主剤5、硬化剤6を攪拌しながら40℃で加温し、所定の粘度まで降下させ、かつ真空ポンプ7で脱泡を行った。   In the resin injection device 3, the main agent 5 and the curing agent 6 were heated in advance at 40 ° C. while being stirred, lowered to a predetermined viscosity, and defoamed by the vacuum pump 7.

樹脂注入の初期は樹脂混合ユニット4内の空気、ホース内の空気が入るため型内には流さずに図示しない分岐路から廃棄した。加圧装置のシリンジポンプ12a、12bの吐出条件は200CC/ストロークに設定した。吐出時の注入樹脂圧を0.6MPaに設定すると、樹脂注入流量(Q:CC/min)とキャビティーの投影面積(S:m2)との比(Q/S)は、約200(CC/min・m2)である。 最初の樹脂を廃棄した後、注入用流路13に設置した注入圧力計31によって注入樹脂圧(0.6MPa)を確認して注入バルブ21を開け、型内に樹脂を注入する。注入開始時は、排出路14は開口状態とした。樹脂の強化繊維基材への含浸促進と、気泡を効率的に除去するための操作として排出バルブ22の開閉を3回、バイスグリップを用いて行った。 At the initial stage of resin injection, the air in the resin mixing unit 4 and the air in the hose entered, so that they were discarded from a branch path (not shown) without flowing into the mold. The discharge conditions of the syringe pumps 12a and 12b of the pressurizing apparatus were set to 200 CC / stroke. When the injection resin pressure during discharge is set to 0.6 MPa, the ratio (Q / S) between the resin injection flow rate (Q: CC / min) and the projected area of the cavity (S: m 2 ) is about 200 (CC / Min · m 2 ). After the first resin is discarded, the injection resin pressure (0.6 MPa) is confirmed by an injection pressure gauge 31 installed in the injection flow path 13, the injection valve 21 is opened, and the resin is injected into the mold. At the start of injection, the discharge path 14 was open. Using the vise grip, the impregnation of the reinforced fiber base material with resin and the opening and closing of the discharge valve 22 were performed three times as operations for efficiently removing bubbles.

完全に樹脂注入含浸が終了した後、排出バルブ22を閉鎖し、その後30秒間樹脂圧0.6MPaで保圧したのち、12分間加熱保持した後金型から成形品を取り出した。   After completion of the resin injection impregnation, the discharge valve 22 was closed, and after that, the pressure was maintained at a resin pressure of 0.6 MPa for 30 seconds, and after heating and holding for 12 minutes, the molded product was taken out from the mold.

約2m2のボンネットフードの形状をなす成形品の全域の外観を評価したが、ボイドやピットが全くなく、極めて意匠性に富む良品であった。 The appearance of the entire area of the molded article having the shape of a bonnet hood of about 2 m 2 was evaluated, but it was a good product with no voids or pits and very rich in design.

本発明のRTM成形方法は、主として自動車用外板部材としてのパネル部材をはじめとする意匠部材の製造分野に好適に用いることができる。ここで自動車用外板部材とは、自動車やトラックにおけるドアパネルやフード、ルーフ、トランクリッド、フェンダー、スポイラー、サイドスカート、フロントスカート、マッドガード、ドアインナーパネル等のいわゆるパネル部材であり、他の関連パネル部材としては鉄道車両におけるドア、サイドパネル、内装パネルなどのパネル類、クレーンなどがある。しかし、本発明はこれらにとどまらず自動車分野以外の建設機械のカバー類、建築における仕切板、パーティシャン、ドアパネル、遮蔽板等、スポーツにおけるサーフィンボード、スケートボード、自転車部品などの外側にあって、意匠性が求められる部材の製造分野にも適用することができる。   The RTM molding method of the present invention can be suitably used mainly in the manufacturing field of design members including panel members as outer plate members for automobiles. Here, the automobile outer plate member is a so-called panel member such as a door panel, a hood, a roof, a trunk lid, a fender, a spoiler, a side skirt, a front skirt, a mud guard, and a door inner panel in an automobile or a truck, and other related panels. Examples of members include panels such as doors, side panels, interior panels, and cranes in railway vehicles. However, the present invention is not limited to these, it is on the outside of construction machinery covers other than the automobile field, partition plates in construction, party shavers, door panels, shielding plates, surfboards in sports, skateboards, bicycle parts, etc. The present invention can also be applied to the field of manufacturing members that require design properties.

本発明のRTM成形方法を実施するための成形装置の概略全体図である。It is a general | schematic general view of the shaping | molding apparatus for enforcing the RTM shaping | molding method of this invention. 本発明の実施例での評価用試作に用いた反応性樹脂の特性図である。It is a characteristic view of the reactive resin used for the trial manufacture for evaluation in the Example of this invention.

符号の説明Explanation of symbols

1 金型昇降装置
2 成形金型
3 樹脂注入装置
4 混合ユニット
5 主剤タンク
6 硬化剤タンク
7a 真空ポンプ
7b 加圧ポンプ
8a 注入口
8b 排出口
9 油圧ユニット
10 油圧ポンプ
11 油圧シリンダー
12 加圧装置(シリンジポンプ)
13 樹脂注入流路
14 排出路
15 樹脂トラップ
20 強化繊維基材
21 注入バルブ
22 排出バルブ
24 真空ポンプ
26 金型温調機
31 注入圧力計
32 型内圧力計
DESCRIPTION OF SYMBOLS 1 Mold raising / lowering device 2 Molding die 3 Resin injection device 4 Mixing unit 5 Main agent tank 6 Hardener tank 7a Vacuum pump 7b Pressure pump 8a Inlet 8b Discharge port 9 Hydraulic unit 10 Hydraulic pump 11 Hydraulic cylinder 12 Pressurizing device ( Syringe pump)
DESCRIPTION OF SYMBOLS 13 Resin injection flow path 14 Discharge path 15 Resin trap 20 Reinforcement fiber base material 21 Injection valve 22 Discharge valve 24 Vacuum pump 26 Mold temperature controller 31 Injection pressure gauge 32 In-mold pressure gauge

Claims (10)

成形型のキャビティー内に、プリフォーム化された強化繊維基材を配置し、樹脂注入口から反応性樹脂を加圧しながら注入して前記強化繊維基材に樹脂含浸後、加熱硬化させる繊維強化樹脂部材のRTM成形方法において、前記反応性樹脂の前記キャビティー内への注入速度を、前記反応性樹脂の単位時間流量(Q:CC/min)とキャビティーの投影面積(S:m2)との比(Q/S:CC/min・m2)が、
60<Q/S<550
となる範囲内で注入することを特徴とするRTM成形方法。
Fiber reinforced by placing a preformed reinforcing fiber base in the cavity of the mold, injecting the reactive resin from the resin injection port while applying pressure, impregnating the reinforcing fiber base with resin, and then heat-curing the resin. In the RTM molding method of the resin member, the injection rate of the reactive resin into the cavity is determined by changing the flow rate of the reactive resin per unit time (Q: CC / min) and the projected area of the cavity (S: m 2 ). (Q / S: CC / min · m 2 )
60 <Q / S <550
An RTM molding method characterized by injecting within the range.
キャビティー内を減圧した状態で、反応性樹脂を加圧しながら、樹脂を注入することを特徴とする請求項1に記載のRTM成形方法。    2. The RTM molding method according to claim 1, wherein the resin is injected while pressurizing the reactive resin in a state where the inside of the cavity is decompressed. 反応性樹脂の単位時間流量(Q:CC/min)と、キャビティーの投影面積(S:m2)との比(Q/S:CC/min・m2)と、該反応性樹脂の加圧力(P:MPa)との積((Q/S)×P:CC・MPa/min・m2)が、
20≦(Q/S)×P≦400
の範囲内の条件で樹脂を注入することを特徴とする請求項1または2に記載のRTM成形方法。
The ratio (Q / S: CC / min · m 2 ) between the unit flow rate (Q: CC / min) of the reactive resin and the projected area (S: m 2 ) of the cavity, and the addition of the reactive resin The product ((Q / S) × P: CC · MPa / min · m 2 ) with the pressure (P: MPa)
20 ≦ (Q / S) × P ≦ 400
The RTM molding method according to claim 1 or 2, wherein the resin is injected under a condition within the range.
反応性樹脂の加圧力が、0.2〜0.8MPaの範囲内であることを特徴とする請求項1〜3のいずれかに記載のRTM成形方法。   The RTM molding method according to any one of claims 1 to 3, wherein the pressure of the reactive resin is within a range of 0.2 to 0.8 MPa. 反応性樹脂を、加熱温度が60〜160℃の範囲の一定温度下で、かつ3〜30分の範囲内で硬化させることを特徴とする請求項1〜4のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the reactive resin is cured at a constant temperature in the range of 60 to 160 ° C. and in the range of 3 to 30 minutes. . 強化繊維基材を構成する繊維は、目付けが150〜500g/m2の範囲内の炭素繊維を用いることを特徴とする請求項1〜5のいずれかに記載のRTM成形方法。 Fibers, RTM molding method according to claim 1 having a basis weight which comprises using the carbon fiber in the range of 150~500g / m 2 constituting the reinforcing fiber substrate. 反応性樹脂は、アルコールを硬化成分とするエポキシ樹脂であることを特徴とする請求項1〜6のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the reactive resin is an epoxy resin containing alcohol as a curing component. 反応性樹脂の加圧圧力を、時間と共に変動させることを特徴とする請求項1〜7のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the pressure of the reactive resin is changed with time. 得られる繊維強化樹脂部材の厚みは、1mm以上のものであることを特徴とする請求項1〜8のいずれかに記載のRTM成形方法。   The thickness of the obtained fiber reinforced resin member is 1 mm or more, The RTM shaping | molding method in any one of Claims 1-8 characterized by the above-mentioned. 得られた繊維強化樹脂部材は、自動車の意匠部材であることを特徴とする請求項1〜8のいずれかに記載のRTM成形方法。   9. The RTM molding method according to claim 1, wherein the obtained fiber reinforced resin member is an automobile design member.
JP2004003955A 2004-01-09 2004-01-09 Resin transfer molding method Pending JP2005193587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003955A JP2005193587A (en) 2004-01-09 2004-01-09 Resin transfer molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003955A JP2005193587A (en) 2004-01-09 2004-01-09 Resin transfer molding method

Publications (1)

Publication Number Publication Date
JP2005193587A true JP2005193587A (en) 2005-07-21

Family

ID=34818708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003955A Pending JP2005193587A (en) 2004-01-09 2004-01-09 Resin transfer molding method

Country Status (1)

Country Link
JP (1) JP2005193587A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125844A (en) * 2005-11-07 2007-05-24 Murata Mach Ltd Apparatus for molding frp reinforcing tank
JP2007268941A (en) * 2006-03-31 2007-10-18 Toyota Industries Corp Composite material molding and its manufacturing method
JP2009051208A (en) * 2007-07-31 2009-03-12 Toray Ind Inc Resin injection device for rtm (resin transfer molding), and rtm device and rtm method using the same
JP2010214878A (en) * 2009-03-18 2010-09-30 Fuji Heavy Ind Ltd Apparatus for manufacturing member of fiber-reinforced resin
JP2013508191A (en) * 2009-10-23 2013-03-07 アール−イデア アーベー Method for producing a composite material
JP2013527815A (en) * 2010-04-20 2013-07-04 スネクマ Apparatus for producing casings made of composite material and production method using such an apparatus
JP2014534918A (en) * 2011-11-08 2014-12-25 スネクマ Pressure holding device and associated method for manufacturing composite parts by resin injection
JP2016083780A (en) * 2014-10-22 2016-05-19 日産自動車株式会社 Molding method and molding device for composite material
CN107415117A (en) * 2017-07-24 2017-12-01 临海市锦铮机械有限公司 The glue filling device of resin lens casting machine
KR20180035900A (en) 2015-09-09 2018-04-06 닛산 지도우샤 가부시키가이샤 METHOD FOR MANUFACTURING COMPOSITE MATERIALS
CN108297329A (en) * 2018-01-25 2018-07-20 浙江普利斐特汽车科技有限公司 A kind of automobile-used high resiliency PVC sealing material process equipments
US10105878B2 (en) 2014-10-22 2018-10-23 Nissan Motor Co., Ltd. Composite-material molding method and molding device
US10647068B2 (en) 2014-10-22 2020-05-12 Nissan Motor Co., Ltd. Composite-material molding method and molding device
CN114103179A (en) * 2021-10-26 2022-03-01 湖北三江航天江北机械工程有限公司 RTM (resin transfer molding) method for thermal insulation layer of diffusion section of carbon fiber material spray pipe
CN114589943A (en) * 2022-03-23 2022-06-07 成都飞机工业(集团)有限责任公司 T-shaped rib glue injection mold for resin transfer molding
JP7302753B2 (en) 2021-05-14 2023-07-04 日本精工株式会社 Cage manufacturing method and rolling bearing manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125844A (en) * 2005-11-07 2007-05-24 Murata Mach Ltd Apparatus for molding frp reinforcing tank
JP2007268941A (en) * 2006-03-31 2007-10-18 Toyota Industries Corp Composite material molding and its manufacturing method
JP4736906B2 (en) * 2006-03-31 2011-07-27 株式会社豊田自動織機 COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2009051208A (en) * 2007-07-31 2009-03-12 Toray Ind Inc Resin injection device for rtm (resin transfer molding), and rtm device and rtm method using the same
JP2010214878A (en) * 2009-03-18 2010-09-30 Fuji Heavy Ind Ltd Apparatus for manufacturing member of fiber-reinforced resin
US9556555B2 (en) 2009-10-23 2017-01-31 R-Idea Ab Method for producing a composite material
JP2013508191A (en) * 2009-10-23 2013-03-07 アール−イデア アーベー Method for producing a composite material
JP2013527815A (en) * 2010-04-20 2013-07-04 スネクマ Apparatus for producing casings made of composite material and production method using such an apparatus
US9399315B2 (en) 2010-04-20 2016-07-26 Snecma Device for manufacturing a casing made of a composite material and manufacturing method using such a device
JP2014534918A (en) * 2011-11-08 2014-12-25 スネクマ Pressure holding device and associated method for manufacturing composite parts by resin injection
US10105878B2 (en) 2014-10-22 2018-10-23 Nissan Motor Co., Ltd. Composite-material molding method and molding device
JP2016083780A (en) * 2014-10-22 2016-05-19 日産自動車株式会社 Molding method and molding device for composite material
US10647068B2 (en) 2014-10-22 2020-05-12 Nissan Motor Co., Ltd. Composite-material molding method and molding device
KR20180035900A (en) 2015-09-09 2018-04-06 닛산 지도우샤 가부시키가이샤 METHOD FOR MANUFACTURING COMPOSITE MATERIALS
US10836123B2 (en) 2015-09-09 2020-11-17 Nissan Motor Co., Ltd. Manufacturing method for composite material and manufacturing apparatus for composite material
CN107415117A (en) * 2017-07-24 2017-12-01 临海市锦铮机械有限公司 The glue filling device of resin lens casting machine
CN107415117B (en) * 2017-07-24 2023-09-01 临海市锦铮机械有限公司 Glue injection device of resin lens casting machine
CN108297329A (en) * 2018-01-25 2018-07-20 浙江普利斐特汽车科技有限公司 A kind of automobile-used high resiliency PVC sealing material process equipments
JP7302753B2 (en) 2021-05-14 2023-07-04 日本精工株式会社 Cage manufacturing method and rolling bearing manufacturing method
CN114103179A (en) * 2021-10-26 2022-03-01 湖北三江航天江北机械工程有限公司 RTM (resin transfer molding) method for thermal insulation layer of diffusion section of carbon fiber material spray pipe
CN114589943A (en) * 2022-03-23 2022-06-07 成都飞机工业(集团)有限责任公司 T-shaped rib glue injection mold for resin transfer molding
CN114589943B (en) * 2022-03-23 2023-08-04 成都飞机工业(集团)有限责任公司 T-shaped rib glue injection mold for resin transfer molding

Similar Documents

Publication Publication Date Title
US7943078B2 (en) RTM molding method and device
US9643363B2 (en) Manufacture of a structural composites component
JP2005193587A (en) Resin transfer molding method
US8491988B2 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
US8574484B2 (en) RTM method and method for manufacturing fiber-reinforced resin molded body
WO2010039547A2 (en) Reinforced internal composite structures
JP5440049B2 (en) RTM molding method
EP1829661B1 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP2006095727A (en) Rtm molding machine and rtm molding method
JP4442256B2 (en) RTM molding method
JP2006205546A (en) Demolding apparatus for rtm molding
JP4706244B2 (en) FRP hollow structure molding method
JP4730637B2 (en) RTM molding method
JP4487239B2 (en) Method for manufacturing FRP structure
JP4826176B2 (en) Reinforcing fiber preform and RTM molding method
KR101199412B1 (en) Manufacturing method of a flexible composite bogie frame of a bogie for a railway vehicle using Resin Transfer Moulding
JP4923546B2 (en) Method for producing fiber-reinforced resin molded body
KR102347729B1 (en) RTM Mold Structure for Rapid Impregnation of matrix resin
JP2006159420A (en) Manufacturing method of frp molded product
JP2007090810A (en) Method for manufacturing hollow frp
JP2006036057A (en) Air spoiler for automobile