JP2011031481A - Fiber-reinforced resin component and method and apparatus for manufacturing the same - Google Patents

Fiber-reinforced resin component and method and apparatus for manufacturing the same Download PDF

Info

Publication number
JP2011031481A
JP2011031481A JP2009179827A JP2009179827A JP2011031481A JP 2011031481 A JP2011031481 A JP 2011031481A JP 2009179827 A JP2009179827 A JP 2009179827A JP 2009179827 A JP2009179827 A JP 2009179827A JP 2011031481 A JP2011031481 A JP 2011031481A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
base material
overlapping
fiber base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009179827A
Other languages
Japanese (ja)
Other versions
JP5427503B2 (en
Inventor
Katsuhiro Usui
勝宏 臼井
Masaaki Yamazaki
真明 山崎
Eisuke Wadahara
英輔 和田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Toray Industries Inc
Original Assignee
Nissan Motor Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Toray Industries Inc filed Critical Nissan Motor Co Ltd
Priority to JP2009179827A priority Critical patent/JP5427503B2/en
Publication of JP2011031481A publication Critical patent/JP2011031481A/en
Application granted granted Critical
Publication of JP5427503B2 publication Critical patent/JP5427503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced resin component, a method, and an apparatus for manufacturing the component which allow reducing the number of assembling processes by reducing the number of parts and a cost reduction due to unnecessity of molds for a reinforcing members. <P>SOLUTION: The fiber-reinforced resin component 1 contains fiber base materials 7-9 arranged in two or more layers and impregnated with a resin. In the fiber-reinforced resin component 1, end parts of the fiber base materials 8 and 9 being adjacent to each other and constituting the same layer are superimposed mutually to form a superimposed part 12, and the superimposed parts 12 of respective layers are superimposed mutually in the laminating direction to form a reinforcing part 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、繊維強化樹脂部品およびその製造方法並びに製造装置に関する。   The present invention relates to a fiber reinforced resin component, a manufacturing method thereof, and a manufacturing apparatus.

近年、例えば車両用の構造部材等において、軽量化のために樹脂が使用されてきており、特に、繊維材により強化されたFRP(繊維強化樹脂)が使用されている。FRP製の構造部材の曲げ剛性を向上させる方法として、例えば、別部品として補強部材を成形して組み合わせる方法が挙げられる(例えば、特許文献1参照)。   In recent years, resins have been used for weight reduction, for example, in structural members for vehicles, and in particular, FRP (fiber reinforced resin) reinforced with a fiber material has been used. As a method for improving the bending rigidity of the structural member made of FRP, for example, there is a method in which a reinforcing member is formed and combined as a separate part (see, for example, Patent Document 1).

特開平2008−68720号公報Japanese Patent Laid-Open No. 2008-68720

しかしながら、補強部材を用いて構造部材の剛性を向上させると、部品数が多くなり、組立工数が増加する。また、補強部材の型を作製する必要があるため、コストが掛かる。   However, if the rigidity of the structural member is improved by using the reinforcing member, the number of parts increases and the number of assembly steps increases. Moreover, since it is necessary to produce the mold | die of a reinforcement member, cost starts.

本発明は、上記の課題を解決するためになされたものであり、部品数を削減して組み立て工数を低減可能であり、補強部材用の型が不要となってコストの削減が可能な繊維強化樹脂部品およびその製造方法並びに製造装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can reduce the number of parts to reduce the number of assembling steps, and the fiber reinforcement that can reduce the cost by eliminating the need for a mold for a reinforcing member. An object of the present invention is to provide a resin component, a manufacturing method thereof, and a manufacturing apparatus.

上記目的を達成する本発明に係る繊維強化樹脂部品は、複数層で配置される繊維基材に樹脂を含浸させた繊維強化樹脂部品である。当該繊維強化樹脂部品は、隣接して同一層を構成する繊維基材の端部同士が互いに重なって重畳部を形成し、各層の前記重畳部が積層方向に重なって形成される補強部を有する。   The fiber-reinforced resin component according to the present invention that achieves the above object is a fiber-reinforced resin component obtained by impregnating a resin into a fiber base material arranged in multiple layers. The fiber reinforced resin component has a reinforcing portion formed by overlapping the end portions of the fiber bases constituting the same layer adjacent to each other to form an overlapping portion, and the overlapping portions of each layer overlapping in the stacking direction. .

上記目的を達成する本発明に係る繊維強化樹脂部品の製造方法は、複数層で配置される繊維基材に樹脂を含浸させた繊維強化樹脂部品の製造方法である。当該製造方法は、隣接して同一層を構成する繊維基材の端部同士を互いに重ねて重畳部を形成しつつ、各層の前記重畳部の少なくとも2つを積層方向に重ねた端部積層部を、当該端部積層部の周囲の繊維基材の少なくとも一部とともに弾性体により加圧した状態で、前記繊維基材に樹脂を含浸させる成形工程を有する。   The manufacturing method of the fiber reinforced resin part which concerns on this invention which achieves the said objective is a manufacturing method of the fiber reinforced resin part which made the fiber base material arrange | positioned by multiple layers impregnate resin. In the manufacturing method, an end laminated portion in which at least two of the overlapping portions of each layer are overlapped in the laminating direction while forming overlapping portions by mutually overlapping end portions of fiber bases that constitute the same layer adjacent to each other. And a molding step of impregnating the fiber base material with a resin in a state where the fiber base material is pressed with an elastic body together with at least a part of the fiber base material around the end laminated portion.

上記目的を達成する本発明に係る繊維強化樹脂部品の製造装置は、複数層で配置される繊維基材に樹脂を含浸させた繊維強化樹脂部品の製造装置である。当該製造装置は、隣接して同一層を構成する繊維基材の端部同士を互いに重ねて重畳部を形成しつつ、各層の前記重畳部の少なくとも2つを積層方向に重ねた端部積層部を、当該端部積層部の周囲の繊維基材の少なくとも一部とともに加圧する弾性体を有する。   An apparatus for manufacturing a fiber reinforced resin part according to the present invention that achieves the above object is an apparatus for manufacturing a fiber reinforced resin part in which a fiber base material arranged in multiple layers is impregnated with a resin. The manufacturing apparatus includes an end stacking unit in which at least two of the overlapping units of each layer are stacked in the stacking direction while forming overlapping units by overlapping the ends of the fiber bases that are adjacent to each other to form the same layer. Is pressed together with at least a part of the fiber base material around the end laminated portion.

上記のように構成した繊維強化樹脂部品によれば、隣接して同一層を構成する繊維基材の端部同士が重なって重畳部を形成し、各層の重畳部が積層方向に重なって補強部を形成しているため、別部材で補強部材を設ける必要がない。したがって、部品数が低減し、組立工数を低減できる。また、補強部材を成形するための他の成形型が不要であるため、設備コストを低減できる。   According to the fiber reinforced resin component configured as described above, the ends of the fiber bases that are adjacent to each other in the same layer overlap to form an overlapping portion, and the overlapping portion of each layer overlaps in the stacking direction. Therefore, it is not necessary to provide a reinforcing member as a separate member. Therefore, the number of parts can be reduced and the number of assembly steps can be reduced. Moreover, since the other shaping | molding die for shape | molding a reinforcement member is unnecessary, installation cost can be reduced.

上記のように構成した繊維強化樹脂部品の製造方法によれば、各層の重畳部を積層方向に重ねた端部積層部を、端部積層部の周囲とともに弾性体により加圧した状態で、繊維基材に樹脂を含浸させるため、弾性体が端部積層部の形状に沿って変形し、端部積層部を形状に沿って加圧できる。このため、別部材ではなく繊維強化樹脂部品と一体となった補強部を有する繊維強化樹脂部品を効果的に製造できる。したがって、繊維強化樹脂部品の部品数を低減でき、組立工数を低減できる。また、補強部材を成形するための他の成形型が不要であるため、設備コストを低減できる。   According to the method for manufacturing a fiber-reinforced resin component configured as described above, the end laminated portion in which the overlapping portions of the respective layers are laminated in the laminating direction is pressed with an elastic body together with the periphery of the end laminated portion. Since the base material is impregnated with the resin, the elastic body is deformed along the shape of the end laminated portion, and the end laminated portion can be pressurized along the shape. For this reason, the fiber reinforced resin component which has the reinforcement part integrated with the fiber reinforced resin component instead of another member can be manufactured effectively. Therefore, the number of fiber-reinforced resin parts can be reduced, and the number of assembly steps can be reduced. Moreover, since the other shaping | molding die for shape | molding a reinforcement member is unnecessary, installation cost can be reduced.

上記のように構成した繊維強化樹脂部品の製造装置によれば、端部積層部を、当該端部積層部の周囲の繊維基材の少なくとも一部とともに加圧する弾性体を有するため、弾性体が端部積層部の形状に沿って変形し、端部積層部を形状に沿って加圧できる。このため、別部材ではなく繊維強化樹脂部品と一体となった補強部を有する繊維強化樹脂部品を効果的に製造できる。したがって、繊維強化樹脂部品の部品数を低減でき、組立工数を低減できる。また、補強部材を成形するための他の成形型が不要であるため、設備コストを低減できる。   According to the apparatus for manufacturing a fiber-reinforced resin component configured as described above, the elastic body is provided with an elastic body that pressurizes the end laminated portion together with at least a part of the fiber base material around the end laminated portion. It can deform | transform along the shape of an edge laminated part, and can pressurize an edge laminated part along a shape. For this reason, the fiber reinforced resin component which has the reinforcement part integrated with the fiber reinforced resin component instead of another member can be manufactured effectively. Therefore, the number of fiber-reinforced resin parts can be reduced, and the number of assembly steps can be reduced. Moreover, since the other shaping | molding die for shape | molding a reinforcement member is unnecessary, installation cost can be reduced.

第1実施形態に係るフロア部品(繊維強化樹脂部品)を示す斜視図である。It is a perspective view which shows the floor component (fiber reinforced resin component) which concerns on 1st Embodiment. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. フロア部品に用いられる繊維基材のカットパターンを示す平面図である。It is a top view which shows the cut pattern of the fiber base material used for floor components. コア材を有する繊維強化樹脂部品の一例を示す断面図である。It is sectional drawing which shows an example of the fiber reinforced resin component which has a core material. 第1実施形態に係るRTM成形型を示す斜視図である。It is a perspective view which shows the RTM shaping | molding die concerning 1st Embodiment. 図5のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 下型の成形面に繊維基材を配置した際を示す断面図である。It is sectional drawing which shows the time of arrange | positioning the fiber base material on the molding surface of a lower mold | type. 成形型を型締めして樹脂を注入した際を示す断面図である。It is sectional drawing which shows the time of clamping a shaping | molding die and inject | pouring resin. 成形型を型締めする際の、補強部が形成される部位の拡大断面図である。It is an expanded sectional view of the site | part in which a reinforcement part is formed when the mold is clamped. 成形型により補強部が形成された際を示す拡大断面図である。It is an expanded sectional view which shows the time of a reinforcement part being formed with the shaping | molding die. 別部品として設けられる比較例としての補強部材を示す断面図である。It is sectional drawing which shows the reinforcement member as a comparative example provided as another component. 第1実施形態の補強部の幅と曲げ剛性の関係を示すグラフである。It is a graph which shows the relationship between the width | variety of the reinforcement part of 1st Embodiment, and bending rigidity. 第2実施形態に係るフロア部品(繊維強化樹脂部品)を示す斜視図である。It is a perspective view which shows the floor component (fiber reinforced resin component) which concerns on 2nd Embodiment. 第2実施形態に係るフロア部品に用いられる繊維基材のカットパターンを示す平面図である。It is a top view which shows the cut pattern of the fiber base material used for the floor component which concerns on 2nd Embodiment. 比較例としての繊維強化樹脂部品を示す断面図である。It is sectional drawing which shows the fiber reinforced resin component as a comparative example.

以下、図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may be different from the actual ratios.

<第1実施形態>
図1は、第1実施形態に係る繊維強化樹脂部品であるフロア部品を示す斜視図、図2は、図1のA−A線に沿う断面図、図3は、繊維強化樹脂部品に用いられる繊維基材のカットパターンを示す平面図である。
<First Embodiment>
1 is a perspective view showing a floor part which is a fiber reinforced resin part according to the first embodiment, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is used for a fiber reinforced resin part. It is a top view which shows the cut pattern of a fiber base material.

図1に示すフロア部品1は、車両のフロントフロア用の部品であり、炭素繊維である繊維基材に樹脂を含浸させた炭素繊維強化プラスチック(CFRP)製の繊維強化樹脂部品である。図中の矢印Dは、車体の前後方向の後方向を表し、矢印Dは車幅方向を示し、矢印Dは車体上下方向の上方向を示す。 A floor part 1 shown in FIG. 1 is a part for a front floor of a vehicle, and is a fiber reinforced plastic part made of carbon fiber reinforced plastic (CFRP) in which a fiber base material that is carbon fiber is impregnated with a resin. Arrow D 1 of the in the figure represents a direction after longitudinal direction of the vehicle body, an arrow D 2 indicates a vehicle width direction, an arrow D 3 indicates the upper direction of the vehicle body vertical direction.

フロア部品1は、車体フロアを構成するフロアパネル2と、車幅方向Dの両端にてフロアパネル2から上方向Dへ立ち上がるシル3と、車幅方向Dの中央部にてフロアパネル2から上方向Dに凸形状で形成されるフロアトンネル4とを有している。シル3およびフロアトンネル4は、前後方向に延在するように形成されている。 Floor parts 1, the floor panel 2 constituting the vehicle body floor, the sill 3 rising from the floor panel 2 to the upward direction D 3 at both ends in the vehicle width direction D 2, the floor panel at the center portion in the vehicle width direction D 2 2 and a floor tunnel 4 formed in a convex shape upward D 3 from. The sill 3 and the floor tunnel 4 are formed so as to extend in the front-rear direction.

フロアパネル2およびシル3には、フロアトンネル4を挟んで車幅方向Dの両側に、車幅方向Dへ延びる補強部5A,5B(以下、5A,5Bを総じて5と称する場合がある。)が形成されている。補強部5は、図2に示すように、フロアパネル2およびシル3の補強部5と異なる部位よりも、繊維基材が多く重なって形成されている。なお、補強部5の詳細については後述する。 The floor panel 2 and sills 3, on both sides in the vehicle width direction D 2 across the floor tunnel 4, the reinforcement portion 5A extending in the vehicle width direction D 2, 5B (hereinafter, 5A, sometimes 5B is referred to as generally 5 .) Is formed. As shown in FIG. 2, the reinforcing portion 5 is formed by overlapping the fiber base material more than the portion different from the reinforcing portion 5 of the floor panel 2 and the sill 3. Details of the reinforcing portion 5 will be described later.

フロア部品1は、図3に示すように、平面状の基材から切り出される第1繊維基材7、第2繊維基材8A,8Bおよび第3繊維基材9A,9Bを用いて、後述するRTM成形型30によって成形される。   As shown in FIG. 3, the floor component 1 will be described later using a first fiber substrate 7, second fiber substrates 8A and 8B, and third fiber substrates 9A and 9B cut out from a planar substrate. Molded by the RTM mold 30.

第1繊維基材7は、主にフロアトンネル4の強化繊維基材を構成する。第2繊維基材8A,8B(以下、8A,8Bを総じて8と称する場合がある。)は、主にフロアパネル2およびシル3の車両前方側の強化繊維基材を構成する。第3繊維基材9A,9B(以下、9A,9Bを総じて9と称する場合がある。)は、主にフロアパネル2およびシル3の車両後方側の強化繊維基材を構成する。積層方向に重なる複数の第1繊維基材7は、全て同じカットパターンの基材である。また、積層方向に重なる複数の第2繊維基材8も、全て同じカットパターンの基材であり、積層方向に重なる複数の第3繊維基材9も、全て同じカットパターンの基材である。   The first fiber base 7 mainly constitutes the reinforcing fiber base of the floor tunnel 4. The second fiber bases 8A and 8B (hereinafter, 8A and 8B may be collectively referred to as 8) mainly constitute the reinforcing fiber bases on the vehicle front side of the floor panel 2 and the sill 3. Third fiber base materials 9A and 9B (hereinafter, 9A and 9B may be collectively referred to as 9) mainly constitute a reinforcing fiber base material on the vehicle rear side of floor panel 2 and sill 3. The plurality of first fiber base materials 7 overlapping in the stacking direction are all base materials having the same cut pattern. In addition, the plurality of second fiber base materials 8 overlapping in the stacking direction are all base materials having the same cut pattern, and the plurality of third fiber base materials 9 overlapping in the stacking direction are all base materials having the same cut pattern.

第2繊維基材8A(8B)および第3繊維基材9A(9B)は、互いに隣接する端部に、互いに重なる重なり端部10,11を有しており、同一層を構成する第2繊維基材8A(8B)および第3繊維基材9A(9B)の重なり端部10,11同士が重なることで重畳部12が形成される。第2繊維基材8A(8B)および第3繊維基材9A(9B)を複数層交互に重ねることで、各層の重畳部12が積層されて補強部5A(5B)が形成されている。各繊維基材の厚さは、0.15〜1.0mm程度であるが、かならずしもこれに限定されない。   The second fiber base material 8A (8B) and the third fiber base material 9A (9B) have overlapping end portions 10 and 11 that overlap each other at adjacent end portions, and the second fibers constituting the same layer. The overlapping portion 12 is formed by overlapping the overlapping end portions 10 and 11 of the substrate 8A (8B) and the third fiber substrate 9A (9B). By superposing a plurality of layers of the second fiber base 8A (8B) and the third fiber base 9A (9B), the overlapping portions 12 of the respective layers are laminated to form the reinforcing portion 5A (5B). Although the thickness of each fiber base material is about 0.15-1.0 mm, it is not necessarily limited to this.

ここで、”同一層”の第2繊維基材8A(8B)および第3繊維基材9A(9B)とは、互いに密接する重なり端部10,11を有する隣接した一組の繊維基材であることを示しており、かならずしも2つの繊維基材が同一平面に存在する必要はなく、2つの繊維基材の積層順が同一である必要もない。   Here, the second fiber substrate 8A (8B) and the third fiber substrate 9A (9B) in the “same layer” are a pair of adjacent fiber substrates having overlapping end portions 10 and 11 that are in close contact with each other. The two fiber base materials do not necessarily exist on the same plane, and the stacking order of the two fiber base materials does not need to be the same.

なお、同一層の第2繊維基材8と第3繊維基材9は、本実施形態では別部材であるが、同一部材であることもありうる。図4は、コア材21を有する繊維強化樹脂部品20の一例を示す断面図である。この例のように、コア材21の周囲を繊維基材22が覆っている場合には、同一の繊維基材22の両側の端部同士が重なることで、補強部23が形成される。コア材21としては、弾性体や発泡材、ハニカム材の使用が可能であり、軽量化のためには発泡材やハニカム材が好ましい。発泡材の材質としては特に限定されず、たとえば、ポリウレタンやアクリル、ポリスチレン、ポリイミド、塩化ビニル、フェノールなどの高分子材料のフォーム材などを使用できる。ハニカム材の材質としては特に限定されず、たとえば、アルミニウム合金、紙、アラミドペーパー等を使用することができる。   In addition, although the 2nd fiber base material 8 and the 3rd fiber base material 9 of the same layer are separate members in this embodiment, they may be the same members. FIG. 4 is a cross-sectional view showing an example of the fiber reinforced resin component 20 having the core material 21. When the fiber base material 22 covers the periphery of the core material 21 as in this example, the end portions on both sides of the same fiber base material 22 are overlapped to form the reinforcing portion 23. As the core material 21, an elastic body, a foam material, and a honeycomb material can be used, and a foam material and a honeycomb material are preferable for weight reduction. The material of the foam material is not particularly limited. For example, a foam material made of a polymer material such as polyurethane, acrylic, polystyrene, polyimide, vinyl chloride, or phenol can be used. The material of the honeycomb material is not particularly limited, and for example, aluminum alloy, paper, aramid paper, or the like can be used.

補強部5における繊維基材の積層枚数は、図2に示すように、補強部5と異なる部位の積層枚数の2倍となるため、補強部5の厚さXが、補強部5と異なる部位の厚さXの約2倍となる。一例として、厚さXは4mmであり、厚さXは2mmである。補強部5におけるVf(繊維体積含有率)は、補強部5と異なる部位のVfよりも高い。繊維強化樹脂のVfが高いと、弾性率が向上するため、補強部5における剛性が高くなり、補強機能が向上する。一例として、補強部5におけるVfは70%であり、補強部5と異なる部位のVfは50%である。なお、Vf(繊維体積含有率)の測定方法は、JIS K 7052で定義されている。 As shown in FIG. 2, the number of laminated fiber bases in the reinforcing portion 5 is twice the number of laminated portions in a portion different from the reinforcing portion 5, and therefore the thickness X 1 of the reinforcing portion 5 is different from that of the reinforcing portion 5. It is about twice the thickness X 2 sites. As an example, the thickness X 1 is 4 mm, the thickness X 2 is 2 mm. Vf (fiber volume content) in the reinforcing part 5 is higher than Vf of a part different from the reinforcing part 5. When the Vf of the fiber reinforced resin is high, the elastic modulus is improved, so that the rigidity in the reinforcing portion 5 is increased and the reinforcing function is improved. As an example, Vf in the reinforcing part 5 is 70%, and Vf of a part different from the reinforcing part 5 is 50%. In addition, the measuring method of Vf (fiber volume content) is defined by JISK7052.

補強部5は、幅Wで形成される。幅Wの値が大きいほど補強部5の剛性が高くなり、補強機能が向上する。   The reinforcing portion 5 is formed with a width W. The larger the value of the width W, the higher the rigidity of the reinforcing portion 5 and the reinforcing function is improved.

繊維基材には炭素繊維が用いられるが、ガラス繊維、アラミド繊維、金属繊維、ボロン繊維、アルミナ繊維、炭化ケイ素高強度合成繊維等を用いることができる。強化繊維基材の形態は特に限定されず、一方向シートや織物等を採用でき、必要に応じて事前に賦形した予備成形体(プリフォーム)の形態で用いる。   Carbon fibers are used as the fiber base material, and glass fibers, aramid fibers, metal fibers, boron fibers, alumina fibers, silicon carbide high-strength synthetic fibers, and the like can be used. The form of the reinforcing fiber base is not particularly limited, and a unidirectional sheet, a woven fabric, or the like can be adopted, and is used in the form of a preform (preform) shaped in advance as necessary.

使用する樹脂としては、粘度が低く強化繊維への含浸が容易な熱硬化性樹脂または熱可塑性樹脂を形成するRIM用(Resin Injection Molding)モノマーなどが好適である。熱硬化性樹脂としては、たとえば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニルエステル樹脂、フェノール樹脂、グアナミン樹脂、また、ビスマレイド・トリアジン樹脂等のポリイミド樹脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタレート樹脂、さらにメラミン樹脂やユリア樹脂やアミノ樹脂等が挙げられる。   As the resin to be used, a thermosetting resin having a low viscosity and easily impregnating the reinforcing fiber or a monomer for RIM (resin injection molding) that forms a thermoplastic resin is preferable. Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, polyvinyl ester resins, phenol resins, guanamine resins, polyimide resins such as bismaleide and triazine resins, furan resins, polyurethane resins, polydiallyl phthalate resins, Examples include melamine resin, urea resin, and amino resin.

また、ナイロン6、ナイロン66、ナイロン11などのポリアミド、またはこれらポリアミドの共重合ポリアミド、また、ポリエチレンテレフタラート、ポリブチレンテレフタラートなどのポリエステル、またはこれらポリエステルの共重合ポリエステル、さらにポリカーボネート、ポリアミドイミド、ポリフェニレンスルファイド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリオレフィンなど、更にまた、ポリエステルエラストマー、ポリアミドエラストマーなどに代表される熱可塑性エラストマー等が挙げられる。   Further, polyamides such as nylon 6, nylon 66 and nylon 11, or copolymer polyamides of these polyamides, polyesters such as polyethylene terephthalate and polybutylene terephthalate, or copolymer polyesters of these polyesters, polycarbonate, polyamideimide, Polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyolefin, and the like, and thermoplastic elastomers typified by polyester elastomers, polyamide elastomers, and the like are also included.

また、上述の熱硬化性樹脂、熱可塑性樹脂、ゴムから選ばれた複数を混合した樹脂を用いることもできる。   Also, a resin in which a plurality selected from the above-mentioned thermosetting resins, thermoplastic resins, and rubbers are mixed can be used.

次に、フロア部品1を成形するためのRTM成形型30(成形装置)について説明する。   Next, the RTM mold 30 (molding apparatus) for molding the floor component 1 will be described.

図5は、本発明の実施形態に係るRTM成形型を示す斜視図、図6は、図5のB−B線に沿う断面図である。   FIG. 5 is a perspective view showing an RTM mold according to the embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along line BB in FIG.

RTM成形型30は、図5、図6に示すように、一方の型としての上型31と、他方の型としての下型32を有し、上型31と下型32の間に、中間部材としての中間板33を有する。この上型31と中間板33によって、樹脂注入流路と基材への注入ポートを形成する。上型31には、外部から樹脂を供給する樹脂注入管35が連結されている。樹脂注入管35は、金属製パイプまたは樹脂製チューブから構成されている。上型31の周辺部は、中間板33と密着するO−リング36が設けられている。   As shown in FIGS. 5 and 6, the RTM mold 30 has an upper mold 31 as one mold and a lower mold 32 as the other mold, and an intermediate between the upper mold 31 and the lower mold 32. It has an intermediate plate 33 as a member. The upper mold 31 and the intermediate plate 33 form a resin injection flow path and an injection port to the base material. A resin injection pipe 35 that supplies resin from the outside is connected to the upper mold 31. The resin injection pipe 35 is composed of a metal pipe or a resin tube. An O-ring 36 that is in close contact with the intermediate plate 33 is provided in the periphery of the upper mold 31.

中間板33の上型側の面には、上型31に設けられる樹脂注入管35と連通する樹脂流路用溝37が加工されている。中間板33の下型側の面には、シリコンゴムからなる弾性シート38(弾性体)が均一の厚さYで設置されている。中間板33および弾性シート38には、各樹脂流路用溝37から下型側の面へ貫通する貫通孔39が複数形成されている。貫通孔39は、成形するフロア部品1の補強部5に対応する領域Lに、他の領域よりも多く設けられている。したがって、成形するフロア部品1の補強部5に対応する領域Lにおける貫通孔39の開口率が、他の領域における貫通孔39の開口率よりも高い。なお、開口率は、弾性シート38の表面積に占める貫通孔39の面積を表している。開口率を高くするためには、貫通孔39の数を増やすだけでなく、貫通孔39の孔径を大きくすることでも実現できる。   On the surface of the intermediate plate 33 on the upper mold side, a resin flow channel groove 37 communicating with the resin injection pipe 35 provided in the upper mold 31 is processed. On the lower mold side surface of the intermediate plate 33, an elastic sheet 38 (elastic body) made of silicon rubber is installed with a uniform thickness Y. The intermediate plate 33 and the elastic sheet 38 are formed with a plurality of through holes 39 penetrating from the respective resin flow channel grooves 37 to the lower mold side surface. The through holes 39 are provided more in the region L corresponding to the reinforcing portion 5 of the floor component 1 to be molded than in other regions. Therefore, the aperture ratio of the through hole 39 in the region L corresponding to the reinforcing portion 5 of the floor component 1 to be molded is higher than the aperture ratio of the through hole 39 in the other regions. The aperture ratio represents the area of the through hole 39 occupying the surface area of the elastic sheet 38. Increasing the aperture ratio can be realized not only by increasing the number of through holes 39 but also by increasing the diameter of the through holes 39.

弾性シート38の厚さYは、例えば4mmである。本実施形態では、後述するように弾性シート38は最大で2mm変形すると想定されるため、圧縮率50%に耐えうるシリコンゴムを適用する。なお、弾性シート38の厚さYは、弾性シート38の材料および硬度、想定される変形量および圧縮率等を考慮して、最適な値に適宜設定されることが好ましい。なお、弾性シート38の硬度は、JIS K 6253で定義される硬度で70〜90mNであることが好ましいが、かならずしもこれに限定されない。   The thickness Y of the elastic sheet 38 is 4 mm, for example. In the present embodiment, as will be described later, the elastic sheet 38 is assumed to be deformed by 2 mm at the maximum, and therefore silicon rubber that can withstand a compression rate of 50% is applied. The thickness Y of the elastic sheet 38 is preferably set to an optimal value in consideration of the material and hardness of the elastic sheet 38, the assumed deformation amount, the compression rate, and the like. In addition, although it is preferable that the hardness of the elastic sheet 38 is 70-90 mN by the hardness defined by JISK6253, it is not necessarily limited to this.

弾性シート38はシリコンゴムに限定されず、フッ素ゴムやエチレンプロピレンゴム等の他のゴム、エラストマー、高分子樹脂等が適用できる。   The elastic sheet 38 is not limited to silicon rubber, and other rubber such as fluorine rubber or ethylene propylene rubber, elastomer, polymer resin, or the like can be applied.

下型32には、余剰樹脂を型外に排出するための樹脂排出管40が連結されている。樹脂排出管40は、金属製パイプまたは樹脂製チューブから構成されている。下型32の周辺部には、中間板33と密着するO−リング41が設けられている。   The lower mold 32 is connected to a resin discharge pipe 40 for discharging excess resin out of the mold. The resin discharge pipe 40 is composed of a metal pipe or a resin tube. An O-ring 41 that is in close contact with the intermediate plate 33 is provided on the periphery of the lower mold 32.

次に、前述のRTM成形型30を用いた、フロア部品1の成形工程(成形方法)について説明する。   Next, a molding process (molding method) of the floor component 1 using the above-described RTM mold 30 will be described.

図7は、下型の成形面に繊維基材を配置した際を示す断面図、図8は、成形型を型締めして樹脂を注入した際を示す断面図である。図9は、成形型を型締めする際の補強部が形成される部位における拡大断面図、図10は、成形型により補強部が形成された際を示す拡大断面図である。   FIG. 7 is a cross-sectional view showing the fiber base disposed on the molding surface of the lower mold, and FIG. 8 is a cross-sectional view showing the resin injected by clamping the mold. FIG. 9 is an enlarged cross-sectional view of a portion where a reinforcing portion is formed when the mold is clamped, and FIG. 10 is an enlarged cross-sectional view showing a case where the reinforcing portion is formed by the forming die.

まず、図7に示すように、下型32の成形面に、第1繊維基材7、第2繊維基材8および第3繊維基材9を事前に賦形した予備成形体50(プリフォーム)を配置する。予備成形体50を事前に賦形するには、一般的な成形型(不図示)を適用できる。この賦形において、予備成形型内に第1繊維基材7、第2繊維基材8および第3繊維基材9を積層した後、予備成形を行うことで、フロア部品1の最終形状へ至る前の予備的形状を予備成形体50に付与する。予備成形体50における第1繊維基材7、第2繊維基材8および第3繊維基材9は、少量の形状保持剤によって形状が保持されている。この形状保持剤には、強化繊維に含浸される樹脂の例として前述した樹脂から適宜選択して適用できる。   First, as shown in FIG. 7, a preform 50 (preform) in which the first fiber substrate 7, the second fiber substrate 8, and the third fiber substrate 9 are preliminarily shaped on the molding surface of the lower mold 32. ). In order to shape the preform 50 in advance, a general mold (not shown) can be applied. In this shaping, after the first fiber base material 7, the second fiber base material 8, and the third fiber base material 9 are laminated in the preforming die, the final shape of the floor component 1 is reached by performing preforming. The previous preliminary shape is applied to the preform 50. The shape of the first fiber base material 7, the second fiber base material 8, and the third fiber base material 9 in the preform 50 is held by a small amount of shape holding agent. The shape-retaining agent can be appropriately selected from the resins described above as examples of the resin impregnated in the reinforcing fiber.

なお、繊維強化樹脂部品の形状次第では、第1繊維基材7、第2繊維基材8および第3繊維基材9を、予備成形することなく、直接、RTM成形型30に配置してもよい。   Depending on the shape of the fiber reinforced resin component, the first fiber base 7, the second fiber base 8, and the third fiber base 9 may be arranged directly on the RTM mold 30 without being preformed. Good.

予備成形体50は、図9に示すように、第2繊維基材8A(8B)および第3繊維基材9A(9B)を交互に複数層重ね、同一層を構成する第2繊維基材8A(8B)および第3繊維基材9A(9B)の重なり端部10,11同士が同一位置で積層された端部積層部51を有している。そして、第2繊維基材8Aと第3繊維基材9Aを積層した積層体と、第2繊維基材8Bと第3繊維基材9Bを積層した積層体との間に、第1繊維基材7を積層した積層体を配置して、各々を形状保持剤で保持している。   As shown in FIG. 9, the preform 50 has a second fiber base 8A (8B) and a third fiber base 9A (9B) alternately stacked in multiple layers to form the same layer. (8B) and the overlap part 10 and 11 of 3rd fiber base material 9A (9B) have the edge part lamination | stacking part 51 laminated | stacked in the same position. And between the laminated body which laminated | stacked 2nd fiber base material 8A and 3rd fiber base material 9A, and the laminated body which laminated | stacked 2nd fiber base material 8B and 3rd fiber base material 9B, the 1st fiber base material The laminated body which laminated | stacked 7 is arrange | positioned, and each is hold | maintained with the shape retention agent.

なお、端部積層部51は、本実施形態では形状保持剤によって積層された状態に保持されているが、繊維基材を予備成形することなしに直接RTM成形型に配置する形態の場合には、複数の繊維基材が、形状保持剤を用いずに単に重ねた状態で配置される場合がある。   In addition, although the edge part lamination | stacking part 51 is hold | maintained in the state laminated | stacked with the shape retention agent in this embodiment, in the case of the form arrange | positioned directly to an RTM shaping | molding die, without preforming a fiber base material. In some cases, a plurality of fiber base materials are simply stacked without using a shape-retaining agent.

次に、図8に示すように、上型31と下型32を型締めし、予備成形体50を中間板33と下型32の間のキャビティ内で押圧する。このとき、図10に示すように、中間板33の下型側の面に弾性シート38が設けられているため、弾性力によって、予備成形体50が押圧される。このとき、端部積層部51における繊維基材の積層枚数が、端部積層部51と異なる部位の積層枚数の2倍であるため、端部積層部51の厚さXが、端部積層部51と異なる部位の厚さXの約2倍となり、端部積層部51と対応する部位において弾性シート38が大きく変形する。これにより、予備成形体50は、端部積層部51において、他の部位よりも強い力を受けることになる。本実施形態では、端部積層部51の厚さXが4mm、端部積層部51と異なる部位の厚さXが2mmであり、弾性シート38の圧縮率は最大で50%である。 Next, as shown in FIG. 8, the upper mold 31 and the lower mold 32 are clamped, and the preform 50 is pressed in the cavity between the intermediate plate 33 and the lower mold 32. At this time, as shown in FIG. 10, since the elastic sheet 38 is provided on the lower mold side surface of the intermediate plate 33, the preform 50 is pressed by the elastic force. At this time, the number of laminated fiber substrates at the end stacking portion 51, since twice the number of the laminated portion that is different from the end stacking portion 51, the thickness X 1 of the end stacking portion 51, the end lamination becomes part 51 about twice the different sites thickness X 2, the elastic sheet 38 greatly deformed at the site corresponding to the end stacking portion 51. As a result, the preform 50 receives a stronger force in the end layered portion 51 than in other parts. In this embodiment, the thickness X 1 is 4mm end lamination portion 51, a thickness X 2 is 2mm site different from the end stacking portion 51, the compression ratio of the elastic sheet 38 is 50% maximum.

この後、樹脂注入管35から樹脂を加圧注入し、O−リング36で密封された上型31と中間板33の間に樹脂を流入させる。流入された樹脂は、まず、中間板33の樹脂流路用溝37に沿って迅速に流動し、広い領域にわたって行き渡る。そして、複数設けられた貫通孔39を通して、複数箇所から実質的にほぼ同時に繊維基材7,8,9に注入され、繊維基材7,8,9の広い領域にわたって樹脂が良好にかつ迅速に含浸されていく。端部積層部51は、端部積層部51と異なる部位よりも厚いために樹脂が含浸し難いが、中間板33および弾性シート38の端部積層部51を押圧する領域Lの開口率が、端部積層部51と異なる部位を押圧する領域における開口率よりも高いため、補強部5へも効果的に樹脂を含浸させることができる。   Thereafter, the resin is injected under pressure from the resin injection tube 35, and the resin flows between the upper mold 31 and the intermediate plate 33 sealed by the O-ring 36. The flowed resin first flows rapidly along the resin flow channel groove 37 of the intermediate plate 33 and spreads over a wide area. And, through the plurality of through holes 39, the fibers are injected into the fiber bases 7, 8, and 9 substantially simultaneously from a plurality of locations, and the resin is satisfactorily and quickly over a wide area of the fiber bases 7, 8, and 9. It is impregnated. Since the end laminated portion 51 is thicker than the portion different from the end laminated portion 51, it is difficult to impregnate the resin, but the opening ratio of the region L that presses the end laminated portion 51 of the intermediate plate 33 and the elastic sheet 38 is Since it is higher than the opening ratio in the area | region which presses a site | part different from the edge laminated part 51, the reinforcement part 5 can be effectively impregnated with resin.

含浸させる際には、弾性シート38によって端部積層部51が他の部位よりも強い圧縮力を受けているため、端部積層部51に樹脂が含浸して形成される補強部5のVfは、他の部位のVfよりも高くなる。一例として、本実施形態では、補強部5のVfは70%となり、補強部5と異なる部位のVfは50%となる。   When the impregnation is performed, the end laminated portion 51 receives a stronger compressive force than the other portions by the elastic sheet 38, and thus the Vf of the reinforcing portion 5 formed by impregnating the end laminated portion 51 with the resin is It becomes higher than Vf of other parts. As an example, in this embodiment, Vf of the reinforcing part 5 is 70%, and Vf of a part different from the reinforcing part 5 is 50%.

O−リング41で密封された下型32と中間板33の間のキャビティ内は、樹脂排出管40より真空吸引される。含浸後の余剰樹脂は、キャビティの周辺に設けたフイルムゲート/ランナー(不図示)に流れ、樹脂排出管40から外部に排出される。予備成形体50の全域に樹脂が含浸した後に、樹脂排出管40を閉鎖し、樹脂圧を保圧しながら加熱硬化させる。   The inside of the cavity between the lower mold 32 and the intermediate plate 33 sealed by the O-ring 41 is sucked by vacuum from the resin discharge pipe 40. The surplus resin after impregnation flows to a film gate / runner (not shown) provided around the cavity and is discharged from the resin discharge pipe 40 to the outside. After the resin is impregnated in the entire area of the preform 50, the resin discharge pipe 40 is closed and cured by heating while maintaining the resin pressure.

この後、成形されたフロア部品1を脱型する。脱型では、上型31を上昇させ、フロア部品1を中間板33と共に下型32より取り出し、中間板33と分離する。中間板33との分離や、フロア部品1に樹脂突起が付着して後加工に手間取る場合には、予め中間板33と強化繊維基材との間に、離型用クロス等を配設しておくとよい。   Thereafter, the molded floor component 1 is removed. In demolding, the upper mold 31 is raised, the floor component 1 is taken out from the lower mold 32 together with the intermediate plate 33, and separated from the intermediate plate 33. When separation from the intermediate plate 33 or resin protrusions adhere to the floor part 1 and time is required for post-processing, a release cloth or the like is previously disposed between the intermediate plate 33 and the reinforcing fiber base. It is good to leave.

次に、本実施形態に係るフロア部品1の補強部5の剛性を計算した結果を示す。   Next, the result of having calculated the rigidity of the reinforcement part 5 of the floor component 1 which concerns on this embodiment is shown.

図11は、別部品として設けられる比較例としての補強部材を示す断面図、図12は、本実施形態の補強部の幅と曲げ剛性の関係を示すグラフである。   FIG. 11 is a cross-sectional view showing a reinforcing member as a comparative example provided as a separate part, and FIG. 12 is a graph showing the relationship between the width of the reinforcing portion and the bending rigidity of this embodiment.

図11に示すように、比較例としての補強部材70は、本実施形態のような補強部5を備えていないフロア部品を補強するために取り付けられる部材であり、フロア部品とは別部材で設けられる。この補強部材70の曲げ剛性Kの計算結果を、図12のグラフに点線で示す。 As shown in FIG. 11, a reinforcing member 70 as a comparative example is a member that is attached to reinforce a floor component that does not include the reinforcing portion 5 as in the present embodiment, and is provided as a separate member from the floor component. It is done. The calculation results of the bending stiffness K 2 of the reinforcing member 70, shown by a dotted line in the graph of FIG. 12.

図12中のドットは、本実施形態に係るフロア部品1の補強部5のみの剛性Kの計算結果を示している。すなわち、図2の幅Wの範囲内の部分の曲げ剛性である。補強部5の厚さXは4mm、補強部5のVfは70%、ヤング率Eは50GPaとして、曲げ剛性Kを算出した。 Dots in FIG. 12 shows the calculation results of the stiffness K 1 of only the reinforcing portion 5 of the floor parts 1 according to this embodiment. That is, the bending rigidity of the portion within the range of the width W in FIG. The thickness X 1 of the reinforcement section 5 4 mm, Vf of the reinforcing portion 5 70%, the Young's modulus E as 50 GPa, to calculate the bending stiffness K 1.

結果として、幅Wが約80mm以上である場合に、補強部5の剛性Kが比較例の補強部材70の剛性Kと同等以上となることが確認された。このように、幅Wを変更することで剛性を変更できるため、車種の性能等によって、望ましい剛性Kを備える幅Wを設定できる。 As a result, when the width W is about 80mm or more, the stiffness K 1 of the reinforcement portion 5 has been confirmed to be a more equal and stiffness K 2 of the reinforcing member 70 in the comparative example. Thus, it is possible to modify the stiffness by changing the width W, the performance of the models, can set the width W with the desired stiffness K 1.

次に、本実施形態の効果について説明する。   Next, the effect of this embodiment will be described.

図15は、比較例としての繊維強化樹脂部品を示す断面図である。比較例としての繊維強化樹脂部品80は、図15に示すように、同一層を構成する繊維基材81,82の端部を突き合わせ、かつ剛性を保つために各層の突き合せ部83をずらしつつ積層している。このような繊維強化樹脂部品80は、剛性を高めるためには別途の補強部材(図11参照)を必要とし、したがって、補強部材を成形するための他の成形型が必要となる。また、各層の繊維基材のカットパターンが全て異なるため、部品数が多くなり、組立工数も多くなる。   FIG. 15 is a cross-sectional view showing a fiber-reinforced resin part as a comparative example. As shown in FIG. 15, the fiber reinforced resin component 80 as a comparative example is abutted against the ends of the fiber bases 81 and 82 constituting the same layer, and the butt 83 of each layer is shifted in order to maintain rigidity. Laminated. Such a fiber reinforced resin component 80 requires a separate reinforcing member (see FIG. 11) in order to increase the rigidity, and therefore requires another mold for molding the reinforcing member. Moreover, since the cut patterns of the fiber base material of each layer are all different, the number of parts increases and the number of assembly steps also increases.

これに対し、本実施形態に係るフロア部品1(繊維強化樹脂部品)は、隣接して同一層を構成する繊維基材8,9の端部同士が重なって重畳部12を形成し、各層の重畳部12が積層方向に重なって補強部5を形成しているため、別部材で補強部材を設ける必要がない。したがって、部品数が低減し、組立工数を低減できる。また、補強部材を成形するための他の成形型が不要であるため、設備コストを低減できる。さらに、各層の重畳部12を積層方向に重ねるためには、上下に重なる繊維基材のカットパターンを同一とすることで容易に実現できる。したがって、カットパターンを減らすことができ、材料の歩留まりを向上させることができる。   On the other hand, in the floor component 1 (fiber reinforced resin component) according to the present embodiment, the end portions of the fiber bases 8 and 9 constituting the same layer adjacent to each other overlap to form the overlapping portion 12, and Since the overlapping portion 12 overlaps in the stacking direction to form the reinforcing portion 5, it is not necessary to provide a reinforcing member as a separate member. Therefore, the number of parts can be reduced and the number of assembly steps can be reduced. Moreover, since the other shaping | molding die for shape | molding a reinforcement member is unnecessary, installation cost can be reduced. Furthermore, in order to overlap the overlapping portions 12 of the respective layers in the stacking direction, it can be easily realized by making the cut patterns of the fiber base material overlapping in the vertical direction the same. Therefore, the cut pattern can be reduced and the yield of the material can be improved.

また、補強部5におけるVf(繊維体積含有率)が、補強部5と異なる部位におけるVfよりも高いため、補強部5の強度がより高い繊維強化樹脂部品を実現できる。   Moreover, since Vf (fiber volume content) in the reinforcement part 5 is higher than Vf in the site | part different from the reinforcement part 5, the fiber reinforced resin component with the higher intensity | strength of the reinforcement part 5 is realizable.

本実施形態に係る維強化樹脂部品の製造方法および製造装置は、各層の重畳部12を積層方向に重ねた端部積層部51を、端部積層部51の周囲とともに弾性体38により加圧した状態で、繊維基材7〜9に樹脂を含浸させるため、弾性体38が端部積層部51の形状に沿って変形し、端部積層部51を形状に沿って加圧できる。このため、別部材ではなく繊維強化樹脂部品と一体となった補強部5を有する繊維強化樹脂部品を効果的に製造できる。したがって、繊維強化樹脂部品の部品数を低減でき、組立工数を低減できる。また、補強部材を成形するための他の成形型が不要であるため、設備コストを低減できる。また、繊維強化樹脂部品に凹凸があっても、弾性体38により狙いの成形圧力を付与することが可能となる。   In the fiber reinforced resin component manufacturing method and manufacturing apparatus according to the present embodiment, the end laminated portion 51 in which the overlapping portions 12 of the respective layers are stacked in the stacking direction is pressed by the elastic body 38 together with the periphery of the end laminated portion 51. In this state, since the fiber base materials 7 to 9 are impregnated with the resin, the elastic body 38 is deformed along the shape of the end laminated portion 51, and the end laminated portion 51 can be pressurized along the shape. For this reason, the fiber reinforced resin component which has the reinforcement part 5 integrated with the fiber reinforced resin component instead of another member can be manufactured effectively. Therefore, the number of fiber-reinforced resin parts can be reduced, and the number of assembly steps can be reduced. Moreover, since the other shaping | molding die for shape | molding a reinforcement member is unnecessary, installation cost can be reduced. Moreover, even if the fiber reinforced resin component has irregularities, it is possible to apply a target molding pressure by the elastic body 38.

また、成形型30の内部に配置される中間板33に固定された弾性シート38により加圧するため、弾性シート38の成形型30内への配置が容易となる。すなわち、弾性体のみを型内に配置する必要がなくなり、工数を削減できる。   Further, since the pressure is applied by the elastic sheet 38 fixed to the intermediate plate 33 arranged inside the mold 30, the elastic sheet 38 can be easily arranged in the mold 30. That is, it is not necessary to arrange only the elastic body in the mold, and the man-hour can be reduced.

また、中間板33および弾性シート38に形成される貫通孔39から樹脂を繊維基材7〜9に流入させるため、繊維基材7〜9の広い範囲へ均一に樹脂を流入させることができる。   Moreover, since resin flows into the fiber base materials 7-9 from the through-hole 39 formed in the intermediate | middle board 33 and the elastic sheet 38, resin can be made to flow uniformly into the wide range of the fiber base materials 7-9.

また、弾性シート38の端部積層部51を押圧する領域Lにおける貫通孔39の開口率が、弾性シート38の端部積層部51と異なる部位を押圧する領域における貫通孔39の開口率よりも高いため、厚みがあり樹脂が含浸し難い端部積層部51へ、効率よく樹脂を含浸させることができる。   Moreover, the opening ratio of the through hole 39 in the region L that presses the end laminated portion 51 of the elastic sheet 38 is larger than the opening ratio of the through hole 39 in the region that presses a portion different from the end laminated portion 51 of the elastic sheet 38. Since it is high, the resin can be efficiently impregnated into the end laminated portion 51 that is thick and difficult to impregnate with resin.

また、厚さが一定の弾性シート38により、端部積層部51および当該端部積層部51の周囲の繊維基材の少なくとも一部を加圧するため、成形品に凹凸があっても狙いの成形圧力を付与することができる。さらに、弾性シート38が端部積層部51の形状に沿って変形するため、補強部5の位置や形状が変更されても、同一の弾性シート38で押圧することができる。   Further, the elastic sheet 38 having a constant thickness pressurizes at least a part of the end layered portion 51 and the fiber substrate around the end layered portion 51, so that even if the molded product has irregularities, the target molding is performed. Pressure can be applied. Furthermore, since the elastic sheet 38 is deformed along the shape of the end laminated portion 51, it can be pressed by the same elastic sheet 38 even if the position or shape of the reinforcing portion 5 is changed.

<第2実施形態>
図13は、第2実施形態に係る繊維強化樹脂部品であるフロア部品を示す斜視図、図14は、第2実施形態に係る繊維強化樹脂部品に用いられる繊維基材のカットパターンを示す平面図である。
Second Embodiment
FIG. 13 is a perspective view showing a floor part which is a fiber reinforced resin part according to the second embodiment, and FIG. 14 is a plan view showing a cut pattern of a fiber base material used in the fiber reinforced resin part according to the second embodiment. It is.

第2実施形態に係るフロア部品60(繊維強化樹脂部品)は、図13に示すように、車両の前後方向に対して傾斜する方向に延びる3つの第1補強部65、第2補強部66および第3補強部67を有している。   As shown in FIG. 13, the floor component 60 (fiber reinforced resin component) according to the second embodiment includes three first reinforcing portions 65, second reinforcing portions 66 extending in a direction inclined with respect to the front-rear direction of the vehicle, and A third reinforcing portion 67 is provided.

フロア部品60は、図14に示すように、平面状の基材から切り出される第1繊維基材61、第2繊維基材62、第3繊維基材63および第4繊維基材64を用いて、第1実施形態で述べたRTM成形型30によって成形される。   As shown in FIG. 14, the floor component 60 uses a first fiber base 61, a second fiber base 62, a third fiber base 63 and a fourth fiber base 64 cut out from a planar base. The RTM mold 30 described in the first embodiment is molded.

第1補強部65は、第1繊維基材61および第2繊維基材62の互いに隣接する重なり端部61A,62A同士が重なることで形成されている。第2補強部66は、第2繊維基材62および第3繊維基材63の互いに隣接する重なり端部62B,63A同士が重なることで形成されている。第3補強部67は、第3繊維基材63および第4繊維基材64の互いに隣接する重なり端部63B,64A同士が重なることで形成されている。   The 1st reinforcement part 65 is formed when the overlapping edge parts 61A and 62A which the 1st fiber base material 61 and the 2nd fiber base material 62 mutually adjoin mutually overlap. The 2nd reinforcement part 66 is formed when the overlapping edge parts 62B and 63A which the 2nd fiber base material 62 and the 3rd fiber base material 63 mutually adjoin mutually overlap. The third reinforcing portion 67 is formed by overlapping the overlapping end portions 63B and 64A of the third fiber base 63 and the fourth fiber base 64 that are adjacent to each other.

このように、補強部65〜67の位置は、第1実施形態と異なる任意に変更することができる。そして、このように補強部65〜67の位置を変更しても、第1実施形態において用いたRTM成形型30を用いてフロア部品60を成形することができる。すなわち、弾性シート38が一定の厚さYで形成されているため、補強部65〜67が設けられる位置および形状が変更されても、弾性シート38が端部積層部の形状に沿って変形できる。これにより、補強部65〜67が設けられる位置および形状が変更されても、同一のRTM成形型30を用いて成形することができ、別途の成形型30を作製する必要がなく、費用の削減が可能である。   As described above, the positions of the reinforcing portions 65 to 67 can be arbitrarily changed from those in the first embodiment. And even if it changes the position of the reinforcement parts 65-67 in this way, the floor component 60 can be shape | molded using the RTM shaping | molding die 30 used in 1st Embodiment. That is, since the elastic sheet 38 is formed with a constant thickness Y, the elastic sheet 38 can be deformed along the shape of the end laminated portion even if the position and shape of the reinforcing portions 65 to 67 are changed. . Thereby, even if the position and shape in which the reinforcement parts 65-67 are provided are changed, it can shape | mold using the same RTM shaping | molding die 30, it is not necessary to produce the separate shaping | molding die 30, and cost reduction Is possible.

なお、本発明は上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、本発明を、フロア部品以外の繊維強化樹脂部品に適用してもよい。また、第1実施形態では、全ての層の重畳部12が重なって補強部5が形成されているが、少なくとも2つの重畳部12が重なっていればよい。また、各繊維基材のカットパターンを、かならずしも同一としなくてもよい。この場合には、補強部の断面形状を、台形や長方形等の任意の形状に設定することができる。また、弾性シート38の厚さYは、かならずしも均一でなくてもよい。また、本発明に係る繊維強化樹脂部品は、かならずしもRTM成形により成形されなくともよく、他の成形方法によって成形されてもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims. For example, the present invention may be applied to fiber reinforced resin parts other than floor parts. Moreover, in 1st Embodiment, although the superimposition part 12 of all the layers overlapped and the reinforcement part 5 was formed, the at least 2 superimposition part 12 should just overlap. Moreover, the cut pattern of each fiber base material does not necessarily have to be the same. In this case, the cross-sectional shape of the reinforcing portion can be set to an arbitrary shape such as a trapezoid or a rectangle. Further, the thickness Y of the elastic sheet 38 is not necessarily uniform. In addition, the fiber reinforced resin component according to the present invention does not necessarily have to be molded by RTM molding, and may be molded by other molding methods.

1 フロア部品(繊維強化樹脂部品)、
5A,5B 補強部、
7 第1繊維基材、
8A,8B 第2繊維基材、
9A,9B 第3繊維基材、
10,11 重なり端部、
12 重畳部、
20 繊維強化樹脂部品、
22 繊維基材、
23 補強部、
30 RTM成形型(成形装置)、
31 上型、
32 下型、
33 中間板、
38 弾性シート(弾性体)、
39 貫通孔、
51 端部積層部、
60 フロア部品(繊維強化樹脂部品)、
61 第1繊維基材、
62 第2繊維基材、
63 第3繊維基材、
64 第4繊維基材、
61A,62A,62B,63A,63B,64A 重なり端部、
65,66,67 補強部、
補強部の剛性、
W 補強部(端部積層部)の幅、
補強部(端部積層部)の厚さ。
1 Floor parts (fiber reinforced plastic parts),
5A, 5B reinforcement part,
7 first fiber substrate,
8A, 8B second fiber substrate,
9A, 9B third fiber substrate,
10,11 Overlapping end,
12 superimposition part,
20 Fiber reinforced plastic parts,
22 Fiber substrate,
23 Reinforcement part,
30 RTM mold (molding device),
31 Upper mold,
32 Lower mold,
33 intermediate plate,
38 Elastic sheet (elastic body),
39 through hole,
51 end laminates,
60 Floor parts (fiber reinforced plastic parts),
61 1st fiber base material,
62 second fiber substrate,
63 third fiber substrate,
64 fourth fiber substrate,
61A, 62A, 62B, 63A, 63B, 64A Overlapping ends,
65, 66, 67 reinforcement part,
K 1 rigidity of the reinforcement,
W Width of reinforcing part (end laminated part),
X 1 reinforcing portion thickness of the (end stacking portion).

Claims (12)

複数層で配置される繊維基材に樹脂を含浸させた繊維強化樹脂部品であって、
隣接して同一層を構成する繊維基材の端部同士が互いに重なって重畳部を形成し、各層の前記重畳部が積層方向に重なって形成される補強部を有する繊維強化樹脂部品。
A fiber reinforced resin component obtained by impregnating a resin into a fiber base material arranged in multiple layers,
A fiber reinforced resin part having a reinforcing part formed by overlapping ends of adjacent fiber bases constituting the same layer to form an overlapping part, and the overlapping part of each layer overlapping in the stacking direction.
前記繊維強化樹脂部品の単位体積に対する繊維基材の体積比率を示す繊維体積含有率は、前記補強部が、前記補強部と異なる部位よりも高い、請求項1に記載の繊維強化樹脂部品。   The fiber reinforced resin part according to claim 1, wherein a fiber volume content ratio indicating a volume ratio of a fiber base material to a unit volume of the fiber reinforced resin part is higher than a part where the reinforcing part is different from the reinforcing part. 複数層で配置される繊維基材に樹脂を含浸させた繊維強化樹脂部品の製造方法であって、
隣接して同一層を構成する繊維基材の端部同士を互いに重ねて重畳部を形成しつつ、各層の前記重畳部の少なくとも2つを積層方向に重ねたことで形成される端部積層部を、当該端部積層部の周囲の繊維基材の少なくとも一部とともに弾性体により加圧した状態で、前記繊維基材に樹脂を含浸させる成形工程を有する繊維強化樹脂部品の製造方法。
A method for producing a fiber reinforced resin component in which a fiber base material arranged in multiple layers is impregnated with a resin,
An end laminated portion formed by overlapping at least two of the overlapping portions of each layer in the laminating direction while forming overlapping portions by mutually overlapping the end portions of the fiber bases that are adjacent and constitute the same layer The fiber reinforced resin part manufacturing method which has a shaping | molding process which makes the said fiber base material impregnate resin in the state pressurized with the elastic body with at least one part of the fiber base material of the circumference | surroundings of the said edge part lamination | stacking part.
前記成形工程では、成形型の内部に配置される中間板に固定された弾性シートにより、前記端部積層部および当該端部積層部の周囲の繊維基材の少なくとも一部を加圧する、請求項3に記載の繊維強化樹脂部品の製造方法。   In the molding step, at least a part of the end laminated portion and the fiber substrate around the end laminated portion are pressed by an elastic sheet fixed to an intermediate plate arranged inside the mold. 4. A method for producing a fiber-reinforced resin part according to item 3. 前記成形工程では、前記中間板および弾性シートに形成される貫通孔から樹脂を前記繊維基材に流入させて、前記繊維基材に樹脂を含浸させる、請求項4に記載の繊維強化樹脂部品の製造方法。   5. The fiber-reinforced resin component according to claim 4, wherein in the molding step, a resin is caused to flow into the fiber base material from a through-hole formed in the intermediate plate and the elastic sheet, and the fiber base material is impregnated with the resin. Production method. 前記弾性シートの前記端部積層部を押圧する領域における貫通孔の開口率が、前記弾性シートの前記端部積層部と異なる部位を押圧する領域における貫通孔の開口率よりも高い、請求項5に記載の繊維強化樹脂部品の製造方法。   The opening ratio of the through-hole in the area | region which presses the said edge part lamination | stacking part of the said elastic sheet is higher than the opening ratio of the through-hole in the area | region which presses a site | part different from the said edge part lamination | stacking part of the said elastic sheet. The manufacturing method of the fiber reinforced resin component as described in 2. 前記成形工程では、厚さが一定の弾性シートにより、前記端部積層部および当該端部積層部の周囲の繊維基材の少なくとも一部を加圧する、請求項4〜6のいずれか1項に記載の繊維強化樹脂部品の製造方法。   In the said formation process, at least one part of the fiber base material of the circumference | surroundings of the said edge part laminated | stacking part and the said edge part laminated | stacking part is pressurized with the elastic sheet with constant thickness. The manufacturing method of the fiber reinforced resin component of description. 複数層で配置される繊維基材に樹脂を含浸させた繊維強化樹脂部品の製造装置であって、
隣接して同一層を構成する繊維基材の端部同士を互いに重ねて重畳部を形成しつつ、各層の前記重畳部の少なくとも2つを積層方向に重ねた端部積層部を、当該端部積層部の周囲の繊維基材の少なくとも一部とともに加圧する弾性体を有する繊維強化樹脂部品の製造装置。
An apparatus for manufacturing a fiber reinforced resin component in which a resin is impregnated with a fiber base material arranged in multiple layers,
While forming the overlapping portion by overlapping the end portions of the fiber bases constituting the same layer adjacent to each other, the end stacked portion in which at least two of the overlapping portions of each layer are stacked in the stacking direction An apparatus for manufacturing a fiber-reinforced resin part having an elastic body that pressurizes together with at least a part of a fiber base material around a laminated portion.
前記弾性体は、成形型の内部に配置される中間板に固定された弾性シートである、請求項8に記載の繊維強化樹脂部品の製造装置。   The said elastic body is a manufacturing apparatus of the fiber reinforced resin component of Claim 8 which is an elastic sheet fixed to the intermediate | middle board arrange | positioned inside a shaping | molding die. 前記中間板および弾性シートは、樹脂を流入させる貫通孔を有する、請求項9に記載の繊維強化樹脂部品の製造装置。   The said intermediate | middle board and an elastic sheet are the manufacturing apparatuses of the fiber reinforced resin component of Claim 9 which has a through-hole into which resin flows in. 前記弾性シートの前記端部積層部を押圧する領域における貫通孔の開口率が、前記弾性シートの前記端部積層部と異なる部位を押圧する領域における貫通孔の開口率よりも高い、請求項10に記載の繊維強化樹脂部品の製造装置。   The opening ratio of the through-hole in the area | region which presses the said edge part lamination | stacking part of the said elastic sheet is higher than the opening ratio of the through-hole in the area | region which presses a site | part different from the said edge part lamination | stacking part of the said elastic sheet. An apparatus for producing fiber-reinforced resin parts as described in 1. 前記弾性シートは、厚さが一定である、請求項8〜11のいずれか1項に記載の繊維強化樹脂部品の製造装置。   The said elastic sheet is a manufacturing apparatus of the fiber reinforced resin component of any one of Claims 8-11 whose thickness is constant.
JP2009179827A 2009-07-31 2009-07-31 FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE Active JP5427503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179827A JP5427503B2 (en) 2009-07-31 2009-07-31 FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179827A JP5427503B2 (en) 2009-07-31 2009-07-31 FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE

Publications (2)

Publication Number Publication Date
JP2011031481A true JP2011031481A (en) 2011-02-17
JP5427503B2 JP5427503B2 (en) 2014-02-26

Family

ID=43761045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179827A Active JP5427503B2 (en) 2009-07-31 2009-07-31 FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE

Country Status (1)

Country Link
JP (1) JP5427503B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172982A1 (en) * 2011-06-16 2012-12-20 東レ株式会社 Method for manufacturing fiber-reinforced plastic
WO2014192601A1 (en) * 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
JP2015030287A (en) * 2013-07-31 2015-02-16 東レ株式会社 Frp structure and manufacturing method therefor
JP2015080940A (en) * 2013-10-24 2015-04-27 川崎重工業株式会社 Molding method and molding tool of fiber-reinforced plastic
WO2015125854A1 (en) * 2014-02-19 2015-08-27 三菱レイヨン株式会社 Fiber-reinforced composite material molding and manufacturing method therefor
EP2894019A4 (en) * 2012-09-10 2016-01-27 Mitsubishi Rayon Co Manufacturing method for article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP2018534190A (en) * 2015-09-15 2018-11-22 ムベア カルボ テック ゲーエムベーハーMubea Carbo Tech Gmbh Car body shell
US10675839B2 (en) 2017-03-27 2020-06-09 Honda Motor Co., Ltd. Fiber reinforced resin product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109811A (en) * 1983-11-18 1985-06-15 Toray Ind Inc Thermal bonding press
JP2001205710A (en) * 2000-01-26 2001-07-31 Daiwa Seiko Inc Unbonded frp joint structural body
JP2001301054A (en) * 2000-04-18 2001-10-30 Kanegafuchi Chem Ind Co Ltd Apparatus for molding endless belt and method for molding endless belt using the same
JP2003014163A (en) * 2001-06-29 2003-01-15 Mitsubishi Heavy Ind Ltd Penstock reinforcing method, penstock reinforcing member, and fiber reinforced resin for reinforcing penstock
JP2007015203A (en) * 2005-07-07 2007-01-25 Toray Ind Inc Base material for preform, preform, and structure of fiber reinforced composite material using these
JP2008068587A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd Molded article made of frp, its molding method, and its molding die
JP2008272959A (en) * 2007-04-26 2008-11-13 Toray Ind Inc Method for manufacturing fiber-reinforced resin
JP2009062483A (en) * 2007-09-07 2009-03-26 Toyota Motor Corp Layered structure of prepreg
JP2009090646A (en) * 2007-09-21 2009-04-30 Toray Ind Inc Resin transfer molding process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109811A (en) * 1983-11-18 1985-06-15 Toray Ind Inc Thermal bonding press
JP2001205710A (en) * 2000-01-26 2001-07-31 Daiwa Seiko Inc Unbonded frp joint structural body
JP2001301054A (en) * 2000-04-18 2001-10-30 Kanegafuchi Chem Ind Co Ltd Apparatus for molding endless belt and method for molding endless belt using the same
JP2003014163A (en) * 2001-06-29 2003-01-15 Mitsubishi Heavy Ind Ltd Penstock reinforcing method, penstock reinforcing member, and fiber reinforced resin for reinforcing penstock
JP2007015203A (en) * 2005-07-07 2007-01-25 Toray Ind Inc Base material for preform, preform, and structure of fiber reinforced composite material using these
JP2008068587A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd Molded article made of frp, its molding method, and its molding die
JP2008272959A (en) * 2007-04-26 2008-11-13 Toray Ind Inc Method for manufacturing fiber-reinforced resin
JP2009062483A (en) * 2007-09-07 2009-03-26 Toyota Motor Corp Layered structure of prepreg
JP2009090646A (en) * 2007-09-21 2009-04-30 Toray Ind Inc Resin transfer molding process

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012172982A1 (en) * 2011-06-16 2015-02-23 東レ株式会社 Manufacturing method of fiber reinforced plastic
US9011747B2 (en) 2011-06-16 2015-04-21 Toray Industries, Inc. Method for manufacturing fiber-reinforced plastic
WO2012172982A1 (en) * 2011-06-16 2012-12-20 東レ株式会社 Method for manufacturing fiber-reinforced plastic
EP2894019A4 (en) * 2012-09-10 2016-01-27 Mitsubishi Rayon Co Manufacturing method for article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
US10315343B2 (en) 2012-09-10 2019-06-11 Mitsubishi Chemical Corporation Manufacturing method for molded article of fiber-reinforced composite material and molded article of fiber-reinforced composite materials
JPWO2014192601A1 (en) * 2013-05-31 2017-02-23 東レ株式会社 Manufacturing method and manufacturing apparatus for fiber reinforced plastic
WO2014192601A1 (en) * 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
US10486375B2 (en) 2013-05-31 2019-11-26 Toray Industries, Inc. Production method and production apparatus for fiber-reinforced plastic
JP2015030287A (en) * 2013-07-31 2015-02-16 東レ株式会社 Frp structure and manufacturing method therefor
JP2015080940A (en) * 2013-10-24 2015-04-27 川崎重工業株式会社 Molding method and molding tool of fiber-reinforced plastic
JP5971409B2 (en) * 2014-02-19 2016-08-17 三菱レイヨン株式会社 Manufacturing method of fiber reinforced composite material molded article
CN106232314A (en) * 2014-02-19 2016-12-14 三菱丽阳株式会社 Fibre reinforced composites products formed and manufacture method thereof
KR101926945B1 (en) 2014-02-19 2019-03-07 미쯔비시 케미컬 주식회사 Fiber-reinforced composite material molding and manufacturing method therefor
KR20160108519A (en) * 2014-02-19 2016-09-19 미쯔비시 레이온 가부시끼가이샤 Fiber-reinforced composite material molding and manufacturing method therefor
WO2015125854A1 (en) * 2014-02-19 2015-08-27 三菱レイヨン株式会社 Fiber-reinforced composite material molding and manufacturing method therefor
US10889074B2 (en) 2014-02-19 2021-01-12 Mitsubishi Chemical Corporation Fiber reinforced composite material molding and manufacturing method therefor
JP2018534190A (en) * 2015-09-15 2018-11-22 ムベア カルボ テック ゲーエムベーハーMubea Carbo Tech Gmbh Car body shell
US10675839B2 (en) 2017-03-27 2020-06-09 Honda Motor Co., Ltd. Fiber reinforced resin product

Also Published As

Publication number Publication date
JP5427503B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5427503B2 (en) FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE
JP4318381B2 (en) Manufacturing method of fuselage structure made of fiber reinforced composite material, and fuselage structure manufactured thereby
CN103237642B (en) RTM forming device, RTM manufacturing process and half form body
JP2007526150A (en) Composite goods
KR20060134105A (en) Rtm molding method and device
WO2018051445A1 (en) Method for molding composite material, and composite material
US20160176460A1 (en) Method for manufacturing vehicle components/structural components from a plastics material
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
JP4370917B2 (en) Manufacturing method of fiber reinforced resin outer plate member
JP4442256B2 (en) RTM molding method
JP6665149B2 (en) Fiber reinforced resin body and method for producing the same
KR101839743B1 (en) Roof of automobile using carbon fiber prepreg and foam core and manufacturing method thereof
JP5786352B2 (en) Manufacturing method of fiber reinforced resin sheet
JP4333204B2 (en) Manufacturing method of fiber reinforced resin member and double-sided mold for molding thereof
JP3590346B2 (en) FRP structure
WO2019069639A1 (en) Fiber-reinforced resin member manufacturing process, fuel tank, and fiber-reinforced resin member
JP2015098173A (en) Method for producing fiber-reinforced resin plate material
JP2007015187A (en) Frp molding
US20040038016A1 (en) Fiber reinforced resin articles and method of manufacturing same
JP6791380B2 (en) Composite material molding method
JP2019077061A (en) Resin structure and method for producing the same
JP5398110B2 (en) Automotive bonnet
JP6786989B2 (en) Composite material molding method
JP5179952B2 (en) Hollow molded product and method for producing hollow molded product
JP2019072891A (en) Resin structure and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150