JP3590346B2 - FRP structure - Google Patents

FRP structure Download PDF

Info

Publication number
JP3590346B2
JP3590346B2 JP2000360071A JP2000360071A JP3590346B2 JP 3590346 B2 JP3590346 B2 JP 3590346B2 JP 2000360071 A JP2000360071 A JP 2000360071A JP 2000360071 A JP2000360071 A JP 2000360071A JP 3590346 B2 JP3590346 B2 JP 3590346B2
Authority
JP
Japan
Prior art keywords
core
reinforcing fiber
core material
fiber cloths
frp structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000360071A
Other languages
Japanese (ja)
Other versions
JP2002160302A (en
Inventor
広幸 小山
泰広 土屋
雄一 高野
俊英 関戸
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toyota Motor Corp
Original Assignee
Toray Industries Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toyota Motor Corp filed Critical Toray Industries Inc
Priority to JP2000360071A priority Critical patent/JP3590346B2/en
Publication of JP2002160302A publication Critical patent/JP2002160302A/en
Application granted granted Critical
Publication of JP3590346B2 publication Critical patent/JP3590346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はFRP構造体に関し、更に詳細には軽量化と高い強度を両立させる必要がある運輸機器のフレーム構造に関する。
【0002】
【従来の技術】
FRP構造体の成型方法としては、ハンドレイアップ法やスプレーアップ法など種々の方法があるが、軽飛行機のフレームのように高水準の重量対強度が要求されるものにあっては、フレームの核となる部材にアラミド等の強化繊維布を貼着した後、これを高温下で硬化させるレジントランスファ(またはレジンインジェクション)という手法が採られる。
【0003】
これは始めに硬質ウレタンなどのような軽量で成型し易い部材で芯材を形成し、この芯材の内側と外側に夫々強化繊維布を貼着する。そして、芯材の内部(多くは筒状に形成されている)に膨張収縮可能な中子を入れ、続いて全体を割り型に入れる。次に割り型を加熱しながら割り型内にエポキシ樹脂等のレジンを注入し強化繊維布に含浸させることで極めて強靭なフレームを作るものである。
【0004】
例えば、特開平9−267408号公報にはこのような方法でFRP管を製作する方法が記載されているが、同公報の中でも指摘しているように内圧成型法(レジントランスファ法)には特有の技術的困難性がある。
【0005】
それは、芯材の寸法安定性と、これに一体化する強化繊維布の伸び許容特性が関係している。すなわち、レジントランスファ法では中子の膨張によってフレームを割り型内部に押し付けこれによって十分な密度をもったFRPを得るものであるが、強化繊維布の特性としてその繊維の長手方向にはほとんど伸びが得られない。したがって、型の内部では膨張不足が起きてフレームの外側に不必要に厚い樹脂リッチ層が発生したり、フレーム表面にボイドが残る可能性がある。
【0006】
これを回避するために、強化繊維布を伸び易い方向(フレームの長手方向と繊維とを平行にする)に配置して、中子の膨張を妨げないようにする方法も考えられるが、完成後に必要なフレーム強度という観点から見れば、むしろ強化繊維布は中子の膨張を妨げる方向に沿っている方が望ましく、強度確保との間に矛盾が生じる。
【0007】
このため、強度と品質を両立させることができず、理想的な成型は困難であった。そこで、同公報にはこれを解決するために、中子による加圧前のフレームの外周長Pと割り型内のキャビティの内周長Cとの関係を、P>0.6Cに設定することで安定的な成型を達成する方法が開示されている。
【0008】
【発明が解決しようとする課題】
しかし、前記公報に記載されている方法は、単純な管状の製品を製造するためのものに過ぎないため、軽飛行機や車両のフレームのように、内周長が一定ではなく複雑な形状をもつフレームには適用することができない。
【0009】
なぜならば、フレームと割り型は共に複雑な形状をしており、かつ硬化前(未完成)のフレーム各部分の強度は極めて低いため、中子によって押圧される各部分でフレームの膨張率が異なり成型欠陥が生ずるからである。これを回避するにはフレームの大きさに自由度をもたせればよいが(割り型の内部で自動的に最適な寸法に収まる)、その場合はフレームを分割する必要が生じ、その接合部分の強度を確保することが極めて難しいという問題がある。
【0010】
このような理由から、複雑な形状で強度と軽量化を両立したフレームを得ることは困難であった。
【0011】
本発明はかかる従来の問題点を解決するためになされたもので、複雑な形状でも強度と軽量化を両立させると同時に、成型欠陥がなく品質が安定したFRP構造体を提供することを技術的課題とする。
【0012】
【課題を解決するための手段】
本発明は前述した技術的課題を解決するために以下のように構成されている。
【0013】
すなわち、基礎骨格として複数部材に分割されてなる芯材を設け、この芯材の内側にこれら芯材を展開した形状に夫々形成した強化繊維布を複数層貼着して内側強化層とするとともに、前記芯材の外側に、これら芯材を包む形状に形成した強化繊維布を複数層貼着して外側強化層とし、前記芯材同士の接合面を芯材表面の接線に対して20度から70度の範囲の角度を以て対峙するよう形成する。
【0014】
また前記強化繊維布は芯材同士の接合部の近傍において隣り合う強化繊維布が交互に重なり合うように積層するとともに、この強化繊維布の重合部が芯材1同士の接合部全体をカバーするように、この重合部を階段状にずらして貼着した。
【0015】
ここで、芯材は軽量で成型が容易な硬質ウレタンフォームが好適であるが、軽量なフォーム材であれば他のものでも適用可能である。
【0016】
この芯材を補強する強化繊維布としては、ガラス繊維、炭素繊維が使用できるのは勿論、ポリアラミド繊維等の有機高弾性率繊維を用いることもできる。また、布の織り方としては平織りが好適だが、不織布であってもよい。
【0017】
この強化繊維布に含浸させるべき樹脂としては、熱硬化性、熱可塑性、あるいはこれらの混合樹脂のいずれも使用できるが、一般的には熱硬化性樹脂中でもエポキシ樹脂が好適である。
【0018】
エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ウレタン変性エポキシ樹脂、ブロム化ビスフェノールA型エポキシ樹脂、等が例示できる。これらのエポキシ樹脂は単独または2種以上を併用して使用することができ、さらに液状のものから粘性のあるものまで適宜使用することができる。
【0019】
一般に、エポキシ樹脂には硬化剤が添加されている一液硬化型のものが用いられるが、本発明ではこれに限定されるものではなく、保存性に優れるジシアンジアミド等のグアニジン系のものを用いてもよい。
【0020】
そして、前記隣り合う強化繊維布が交互に重なり合うよう積層する際、隣り合う強化繊維布の縦糸の配向を相互に45度の角度差を以て貼着することが望ましい。このような角度差を以て交互に重ねることで、すべての方向で極めて強い引っ貼り強度が得られる。
【0021】
さらに、その重なり部分は、芯材同士の接合部全体をカバーするよう階段状にずらして貼着する。その理由は、同じ場所で全ての層を重ねると、この重合部だけが盛り上がって中子の圧力が均等にかからなくなるからである。また、かかる貼着構造によれば、芯材同士の接合部においては高い強度が得られるからである。
【0022】
前記したように芯材同士の接合面は、芯材表面の接線に対して20度から70度の範囲、より好ましくは35から55度の範囲の角度を以て対峙するように形成することができるが、45度の角度で接合したときに最も良好な強度が得られた。
【0023】
なお、前記強化繊維布2同士の重合部が、全積層数の途中までの積層工程において、積層毎に一方向にずれるように積層するとともに、全積層数の途中以降の積層工程において、積層毎に逆方向にずれるように積層し、積層部分の断面形状が横V字状となるようにすることができる。すなわち、重なり合う部分を一方向にずらしていくのではなく、積層工程の中間からずらす方向を反転させることでさらに高い接合強度が得られる。
【0024】
【発明の実施の形態】
以下、本発明のFRP構造体を図1から図14に示される実施形態について更に詳細に説明する。
【0025】
本実施形態は図14に示すように、低翼軽飛行機の胴体部のフレーム10に適用したものである。これは図1に示すように、コックピットと主翼取り付け部周辺を模った3分割の硬質ウレタンフォームによって芯材1(1a,1b,1c)が形成されており、これを基礎としてフレーム10を形成するものである。なお、芯材1の分割は左右側面(1a,1b)とルーフ部(1c)の3分割としてある。
【0026】
左右側面(1a,1b)とルーフ部(1c)の相互の接合部分は、図5に示すように、夫々の芯材1表面の接線に対して45度の角度(θ)を以て対峙するよう形成されている。
【0027】
なお、主翼取り付け部周辺に比較して強度を要しない後部胴体はより軽量なサンドイッチコアとなっている。
【0028】
前記芯材1の表面には、その内側に6層の強化繊維布2(2a,2b,2c,2d,2e,2f)が貼着される。この強化繊維布2はカーボン繊維(商品名:T7000S−12K、東レ株式会社製)からなる扁平糸を用いた平織組織の織物であり、その縦糸の配向は第1層から第6層まで、夫々0度:45度:0度:0度:45度:0度の角度(基準角度に対して)となるようになっている。
【0029】
一方、前記芯材1の外側には2層の強化繊維布2(2f、2h)が貼付されている。その配向角は基準角度に対して全て45度となるようになっている。なお、芯材1の内側の強化繊維布2は内側強化層3、外側の強化繊維布2は外側強化層4となる。
【0030】
これら強化繊維布2は、芯材1を展開した形状に予め裁断されており、順次芯材1に積層して貼り付ける。その際、糊材を吹き付けながら強化繊維布2同士を貼り付けてゆく。
【0031】
ここで前記した分割された芯材1の接合部分に着目すると、接合部分の一つはコックピット横のピラー1dの途中にあり(図3)、その部分を拡大したものが図5である。すなわち、芯材1c,1bは斜めに接触しているとともに、この芯材1c,1b同士の接合部全体をカバーするように、強化繊維布2が交互に階段状にずれるよう重合してある。
【0032】
この重合部分の方式によって接合部分の強度が変化するが、図11に基づいて重合方式(ラップ構成)別に説明する。この図においてPのみは基準強度を定めるため一体の強化繊維布2で芯材1を接合したもので、この強度を1とする。
【0033】
Qは接合部分において同じ位置で重ねたものであり、基準強度に比較して62%程度の強度となっている。
【0034】
Rは強化繊維布2を相互に斜めに裁断し、これらを突き合わせたものである。このラップ構成を採ると基準強度に比較して70%の強度が得られた。
【0035】
次に、Sは芯材1同士の接合部全体をカバーするよう階段状にずらして貼着したもので、基準強度に比較して88%の強度が得られた。
【0036】
そしてTでは、全積層数の途中までの積層工程においては、積層毎に一方向にずれるように積層し、全積層数の途中以降の積層工程において、積層毎に逆方向にずれるように積層したものである。すなわち、重なり合う部分を一方向のみにずらしてゆくのではなく、積層工程の中間からずらす方向を反転させることで積層部分の断面形状が図示のように横V字状となるようにした。これによって基準強度に比較して92%という高い接合強度が得られた。
【0037】
上記の実験結果によって、芯材1同士の接合部全体をカバーするよう階段状にずらして貼着したもの(S)と、全積層数の途中までの積層工程においては、積層毎に一方向にずれるように積層し、全積層数の途中以降の積層工程において、積層毎に逆方向にずれるように積層したTが、実用上十分な強度を示すことが明らかとなった。
【0038】
次に、芯材1同士の接合面が芯材1表面の接線に対してどのような角度である場合に良好な結果が得られるかについて図6から図9に基づいて説明する。
【0039】
図6及び図7は、芯材1同士の接合面が芯材1表面の接線に対して法線(直角)方向であるケースである。このような形状とした場合、後述する割り型8内において図6に示すように接合面同士が過不足なく接着したときは強度的な低下は少ない。
【0040】
しかし、図7に示すように接合面間に透き間が生じた場合(相対的に芯材1側の寸法が小さい場合)には、この透き間に強化繊維布2が落ち込んだりエポキシ樹脂9dが浸透する。このように強化繊維布2が落ち込んだ場合には外観上及び強度上の欠陥となり、またエポキシ樹脂9dが必要以上に浸透すると製品重量の増加を招来する。
【0041】
図8及び図9は、前記したように、芯材1同士の接合面を芯材1表面の接線に対して45度の角度を以て対峙するよう形成したものである。
【0042】
このような形状とした場合、寸法に過不足がない場合(図8)には当然問題はなく、また、相対的に芯材1側の寸法が小さい場合でも図7に示すような透き間が生ずることはなく、両者に僅かなズレが生ずるだけで済む(図9)。したがって強化繊維布2が落ち込んだり、エポキシ樹脂が必要以上に浸透するなどのおそれはなく、表面に僅かな凹部が出るだけなので後処理が容易である。
【0043】
一方、相対的に芯材1側の寸法が大きい場合は、表面に僅かな凸部が形成されるだけなので後処理が可能である。ただし、このような凸部が出ると表面研磨の必要が出て強度が低下する虞れがあるので、平均して僅かな凹部が生じるように各部の寸法を設定しておけばよい。
【0044】
次に、本発明のFRP構造体の製造工程につき簡単に説明する。
【0045】
実際の工程では中子7を用い、これに部品を装着してレジントランスファ法によって製造する。
【0046】
中子7はポリエチレン樹脂を用い回転成型により形成された厚さ3mmから5mmの中空の袋である。この中子7には図示しないエアポンプが接続されており、任意に膨らましたり萎めたりすることができるようになっている。
【0047】
この中子7の表面には芯材1が嵌合する凹部が形成されており、ここに芯材1を嵌合してゆく。なお、芯材1には図4に示すように予め内側の強化繊維布2を貼っておき、そのまま芯材1を中子7に装着する(図1)。ここで図10は図4におけるD−D断面図であり、強化繊維布2を交互に貼ることを示している。
【0048】
同様に外側の強化繊維布2(プリフォーム)も交互に貼り付けるようにする(図3)。
【0049】
このようにして、前処理が済んだフレーム10を、図12に示すように割り型8内に装着する。この割り型8は、図13に示すように複数の型から構成したもので、内部はフレーム10の雌型となっている。
【0050】
またこの内部は熱した油9bが循環する油流路8aが形成され、ヒーター9cによって熱せられた油9bがポンプ9aによって油流路8aを循環するようになっている。
【0051】
一方、割り型8の雌型部分前方にはエポキシ樹脂9dがポンプ9eを介して圧入されるようになっている。さらに割り型8の雌型部分後方には真空ポンプ9fが接続されており、雌型内の圧力を抜くことができるようになっている。
【0052】
このような構成になる型8内に装着された芯材1(フレーム10)は十分に型締めがなされた後、真空ポンプ9fを作動させ内部の空気を抜いて減圧する。
【0053】
雌型内にはエポキシ樹脂9dが注入されるが、その際に特に圧力を与える必要はない。樹脂の注入が十分に行われた後、型温を70度で1時間保持し、樹脂の一次硬化を行う。
【0054】
次に、一次硬化したフレーム10を型8から抜き、熱風循環式の硬化炉(図示しない)内に投入し120度で1時間硬化させる(二次硬化)。
【0055】
二次硬化の終了後、図14に示すようにフレーム10を硬化炉から出し、中子7の前端に設けられているバルブ(図示しない)から内部の空気を抜き、中子7を完成したフレーム10内から取り出す。
【0056】
以上のようにして得られた小型航空機用の胴体は、プリフォームを構成する強化繊維の継ぎ手において、強度及び外観品質の低下がきわめて少ないものとすることができ、かつ容易にこれを製造することが可能である。
【0057】
【発明の効果】
本発明によれば、芯材同士の接合面を芯材表面の接線に対して20度から70度の範囲の角度を以て対峙するよう形成し、前記強化繊維布は芯材同士の接合部の近傍において隣り合う強化繊維布が交互に重なり合うよう積層するとともに、その重なり部分は芯材同士の接合部全体をカバーするよう階段状にずらして貼着したので、各部の寸法的な誤差を吸収することができる。
【0058】
したがって、航空機の胴体のような複雑な形状の構造物についても、強度と軽量化を両立しながら成型欠陥がなく品質が安定したFRP構造体とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態であるFRP構造体の製造工程において芯材を中子に装着する段階を示す斜視図である。
【図2】本発明の一実施形態であるFRP構造体の製造工程において芯材に外側強化層を貼着する段階を示す斜視図である。
【図3】本発明の一実施形態であるFRP構造体の製造工程において芯材に外側強化層を貼着した段階を示す斜視図である。
【図4】本発明の一実施形態であるFRP構造体の製造工程において芯材に内側強化層を貼着した段階を示す斜視図である。
【図5】本発明の一実施形態であるFRP構造体の芯材同士の接合面を示す断面図である。
【図6】本発明の一実施形態であるFRP構造体の試作品における芯材同士の接合面を示す断面図である。
【図7】本発明の一実施形態であるFRP構造体の試作品における芯材同士の接合面を示す断面図である。
【図8】本発明の一実施形態であるFRP構造体における芯材同士の接合面を示す断面図である。
【図9】本発明の一実施形態であるFRP構造体における芯材同士の接合面を示す断面図である。
【図10】本発明の一実施形態であるFRP構造体における芯材同士の接合面を示す分解断面図である。
【図11】本発明の一実施形態であるFRP構造体における強化繊維布同士の重合方法別の強度グラフ図である。
【図12】本発明の一実施形態であるFRP構造体のレジントランスファ製法の初期状態を示す斜視図である。
【図13】本発明の一実施形態であるFRP構造体のレジントランスファ製法の中期状態を示す斜視図である。
【図14】本発明の一実施形態であるFRP構造体のレジントランスファ製法の後期状態を示す斜視図である。
【符号の説明】
1 芯材
2 強化繊維布
3 内側強化層
4 外側強化層
7 中子
8 割り型
10 フレーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an FRP structure, and more particularly, to a frame structure of a transportation device that requires both weight reduction and high strength.
[0002]
[Prior art]
There are various methods for molding the FRP structure, such as a hand lay-up method and a spray-up method. However, when a high level of weight-to-strength is required, such as the frame of a light aircraft, A method called resin transfer (or resin injection) is employed in which a reinforcing fiber cloth such as aramid is adhered to a core member and then cured at a high temperature.
[0003]
First, a core material is formed of a lightweight and easily moldable member such as hard urethane, and a reinforcing fiber cloth is adhered to the inside and outside of the core material, respectively. Then, an expandable / contractible core is placed inside the core material (many of which is formed in a cylindrical shape), and then the whole is put into a split mold. Next, a resin, such as an epoxy resin, is injected into the split mold while heating the split mold to impregnate the reinforcing fiber cloth, thereby producing an extremely tough frame.
[0004]
For example, Japanese Unexamined Patent Publication No. 9-267408 discloses a method of manufacturing an FRP tube by such a method, but as pointed out in the same publication, the internal pressure molding method (resin transfer method) is unique. There are technical difficulties.
[0005]
This is related to the dimensional stability of the core material and the elongation-permissive properties of the reinforcing fiber cloth integrated therewith. In other words, in the resin transfer method, the FRP having a sufficient density is obtained by pressing the frame into the split mold by expansion of the core, but as a characteristic of the reinforcing fiber cloth, almost no elongation occurs in the longitudinal direction of the fiber. I can't get it. Therefore, there is a possibility that insufficient expansion occurs inside the mold and an unnecessarily thick resin-rich layer is generated outside the frame, or voids remain on the surface of the frame.
[0006]
In order to avoid this, a method of arranging the reinforcing fiber cloth in an easy-to-extend direction (parallel the longitudinal direction of the frame and the fiber) so as not to hinder the expansion of the core can be considered. From the viewpoint of the required frame strength, it is more preferable that the reinforcing fiber cloth is along the direction that hinders the expansion of the core, and contradiction occurs with securing the strength.
[0007]
For this reason, it was not possible to achieve both strength and quality, and ideal molding was difficult. In order to solve this problem, the gazette discloses that the relationship between the outer peripheral length P of the frame before pressurization by the core and the inner peripheral length C of the cavity in the split mold is set to P> 0.6C. A method for achieving stable molding with the above method is disclosed.
[0008]
[Problems to be solved by the invention]
However, since the method described in the above publication is only for producing a simple tubular product, the inner peripheral length is not constant and has a complicated shape like a frame of a light aircraft or a vehicle. It cannot be applied to frames.
[0009]
Because both the frame and the split mold have complicated shapes, and the strength of each part of the frame before curing (unfinished) is extremely low, the expansion rate of the frame differs at each part pressed by the core. This is because a molding defect occurs. In order to avoid this, the size of the frame should be flexible (it automatically fits within the optimal dimensions inside the split mold), but in that case it is necessary to divide the frame, There is a problem that it is extremely difficult to secure strength.
[0010]
For these reasons, it has been difficult to obtain a frame having a complicated shape that is both strong and lightweight.
[0011]
The present invention has been made to solve such a conventional problem, and it is an object of the present invention to provide an FRP structure having both stable strength and light weight even in a complicated shape and having a stable quality without molding defects. Make it an issue.
[0012]
[Means for Solving the Problems]
The present invention is configured as follows in order to solve the above-described technical problem.
[0013]
That is, a core material divided into a plurality of members is provided as a basic skeleton, and a plurality of reinforcing fiber cloths each formed in a shape obtained by developing these core materials are attached to the inner side of the core material to form an inner reinforcing layer. A plurality of reinforcing fiber cloths formed in a shape wrapping these cores are adhered to the outside of the cores to form an outer reinforcing layer, and a joining surface between the cores is set at 20 degrees with respect to a tangent to the surface of the cores. From each other at an angle in the range of 70 to 70 degrees.
[0014]
In addition, the reinforcing fiber cloth is laminated so that adjacent reinforcing fiber cloths are alternately overlapped in the vicinity of the joint between the core materials, and the overlapped portion of the reinforcing fiber cloth covers the entire joint between the core materials 1. Then, this polymerized portion was stuck in a stepwise manner and adhered.
[0015]
Here, the core material is preferably a rigid urethane foam that is lightweight and easy to mold, but any other lightweight foam material can be used.
[0016]
As the reinforcing fiber cloth for reinforcing the core material, not only glass fiber and carbon fiber can be used, but also organic high modulus fiber such as polyaramid fiber can be used. Further, plain weave is preferable as the weave of the cloth, but non-woven fabric may be used.
[0017]
As the resin to be impregnated into the reinforcing fiber cloth, any of a thermosetting resin, a thermoplastic resin, and a mixed resin thereof can be used. In general, among the thermosetting resins, an epoxy resin is preferable.
[0018]
As the epoxy resin, bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin, urethane modified epoxy resin, brominated bisphenol A type epoxy resin, etc. Can be illustrated. These epoxy resins can be used alone or in combination of two or more, and furthermore, a liquid to a viscous one can be used as appropriate.
[0019]
Generally, a one-part curing type in which a curing agent is added to an epoxy resin is used, but the present invention is not limited to this, and a guanidine-based one such as dicyandiamide having excellent storage stability is used. Is also good.
[0020]
When the adjacent reinforcing fiber cloths are laminated so as to be alternately overlapped with each other, it is preferable that the orientations of the warp yarns of the adjacent reinforcing fiber cloths are stuck at an angle difference of 45 degrees from each other. By alternately overlapping with such an angle difference, an extremely strong adhesive strength can be obtained in all directions.
[0021]
Further, the overlapping portion is staggered and attached so as to cover the entire joint portion between the core materials. The reason for this is that if all the layers are superimposed at the same location, only this overlapped portion rises and the pressure of the core is not evenly applied. Further, according to such a bonding structure, high strength is obtained at the joint between the core materials.
[0022]
As described above, the joint surface between the core materials can be formed so as to face the tangent to the surface of the core material at an angle in the range of 20 to 70 degrees, more preferably in the range of 35 to 55 degrees. , 45 °, the best strength was obtained.
[0023]
In addition, in the laminating step until the middle of the total number of laminations, the superposed portions of the reinforcing fiber cloths 2 are laminated so as to be shifted in one direction for each lamination. Can be stacked so as to be shifted in the opposite direction, so that the cross-sectional shape of the stacked portion becomes a horizontal V-shape. That is, a higher bonding strength can be obtained by reversing the direction in which the overlapping portion is shifted from the middle of the lamination process, instead of shifting the overlapping portion in one direction.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the FRP structure of the present invention will be described in more detail with reference to the embodiments shown in FIGS.
[0025]
As shown in FIG. 14, this embodiment is applied to a frame 10 of a fuselage of a low-wing light aircraft. As shown in FIG. 1, a core material 1 (1a, 1b, 1c) is formed by a three-part hard urethane foam that simulates the vicinity of a cockpit and a main wing mounting portion, and a frame 10 is formed based on the core material. Is what you do. The core 1 is divided into left and right side surfaces (1a, 1b) and a roof (1c).
[0026]
As shown in FIG. 5, the mutually joined portions of the left and right side surfaces (1a, 1b) and the roof portion (1c) are formed so as to face each other at a 45 degree angle (θ) with respect to the tangent line of the surface of the core material 1. Have been.
[0027]
The rear fuselage, which does not require strength as compared with the vicinity of the main wing mounting portion, has a lighter sandwich core.
[0028]
Six layers of reinforcing fiber cloth 2 (2a, 2b, 2c, 2d, 2e, 2f) are adhered to the inner surface of the core material 1. The reinforcing fiber cloth 2 is a plain-woven fabric using flat yarns made of carbon fiber (trade name: T7000S-12K, manufactured by Toray Industries, Inc.), and the warp yarns are oriented from the first layer to the sixth layer. 0 degree: 45 degrees: 0 degrees: 0 degrees: 45 degrees: 0 degrees (relative to the reference angle).
[0029]
On the other hand, two layers of reinforcing fiber cloth 2 (2f, 2h) are attached to the outside of the core material 1. The orientation angles are all 45 degrees with respect to the reference angle. The reinforcing fiber cloth 2 inside the core material 1 becomes the inner reinforcing layer 3, and the outer reinforcing fiber cloth 2 becomes the outer reinforcing layer 4.
[0030]
These reinforcing fiber cloths 2 are cut in advance into a shape in which the core material 1 is developed, and are laminated and attached to the core material 1 sequentially. At that time, the reinforcing fiber cloths 2 are adhered to each other while spraying a paste material.
[0031]
Here, paying attention to the joint portion of the divided core material 1, one of the joint portions is located in the middle of the pillar 1d next to the cockpit (FIG. 3), and FIG. 5 is an enlarged view of the portion. That is, the core members 1c and 1b are obliquely in contact with each other, and the reinforcing fiber cloths 2 are alternately shifted in a stepwise manner so as to cover the entire joint portion between the core members 1c and 1b.
[0032]
The strength of the joining portion changes depending on the type of the overlapping portion, but the description will be given for each overlapping type (wrap configuration) with reference to FIG. In this figure, only P is obtained by joining the core material 1 with the integral reinforcing fiber cloth 2 to determine the reference strength.
[0033]
Q is overlapped at the same position in the joint portion, and has a strength of about 62% compared to the reference strength.
[0034]
R is obtained by cutting the reinforcing fiber cloth 2 obliquely to each other and abutting them. With this wrap configuration, 70% strength was obtained as compared to the reference strength.
[0035]
Next, S was stuck in a stepwise manner so as to cover the entire joint portion between the core materials 1, and a strength of 88% as compared with the reference strength was obtained.
[0036]
Then, at T, in the lamination process up to the middle of the total number of laminations, the layers were laminated so as to be shifted in one direction for each lamination, and in the lamination process after the middle of the total number of laminations, the layers were laminated so as to be shifted in the opposite direction for each lamination. Things. That is, instead of shifting the overlapping portion in only one direction, the direction in which the overlapping portion is shifted from the middle of the stacking process is reversed so that the cross-sectional shape of the stacked portion becomes a horizontal V-shape as illustrated. As a result, a bonding strength as high as 92% as compared with the reference strength was obtained.
[0037]
According to the above experimental results, in the laminating step (S) staggered so as to cover the entire joint portion between the core materials 1 and in the laminating process up to the middle of the total number of laminations, the lamination is performed in one direction for each lamination. It has been clarified that T which is laminated so as to be displaced and laminated so as to be displaced in the opposite direction for each lamination in the laminating step after the middle of the total number of laminations shows practically sufficient strength.
[0038]
Next, a description will be given, with reference to FIGS. 6 to 9, of what angle the joint surface between the cores 1 has with respect to the tangent to the surface of the core 1 to obtain good results.
[0039]
FIGS. 6 and 7 show a case in which the joint surface between the core materials 1 is in a normal (perpendicular) direction to a tangent to the surface of the core material 1. In the case of such a shape, when the joining surfaces are adhered to each other without excess or deficiency as shown in FIG.
[0040]
However, as shown in FIG. 7, when a gap is formed between the joining surfaces (when the dimension of the core 1 is relatively small), the reinforcing fiber cloth 2 falls or the epoxy resin 9d penetrates between the gaps. . When the reinforcing fiber cloth 2 falls in this manner, it causes defects in appearance and strength, and when the epoxy resin 9d permeates more than necessary, the weight of the product increases.
[0041]
FIGS. 8 and 9 show a structure in which the joining surfaces of the core members 1 are opposed to each other at an angle of 45 degrees with respect to the tangent to the surface of the core member 1 as described above.
[0042]
In the case of such a shape, there is naturally no problem if the dimensions are not excessive or insufficient (FIG. 8), and even if the dimensions on the core material 1 side are relatively small, a gap as shown in FIG. 7 is generated. There is no problem, and only a slight deviation occurs between them (FIG. 9). Therefore, there is no danger that the reinforcing fiber cloth 2 will fall or the epoxy resin will penetrate more than necessary, and post-processing is easy because only a slight recess is formed on the surface.
[0043]
On the other hand, when the dimension on the side of the core material 1 is relatively large, only a slight protrusion is formed on the surface, so that post-processing is possible. However, if such projections appear, the surface needs to be polished and the strength may be reduced. Therefore, it is only necessary to set the dimensions of each part so that an average slight recess is generated.
[0044]
Next, the manufacturing process of the FRP structure of the present invention will be briefly described.
[0045]
In an actual process, a core 7 is used, components are mounted on the core 7, and the core 7 is manufactured by a resin transfer method.
[0046]
The core 7 is a hollow bag having a thickness of 3 mm to 5 mm formed by rotational molding using a polyethylene resin. An air pump (not shown) is connected to the core 7 so that the core 7 can be swelled or deflated arbitrarily.
[0047]
The surface of the core 7 is formed with a concave portion into which the core 1 is fitted, and the core 1 is fitted therein. As shown in FIG. 4, the inner reinforcing fiber cloth 2 is attached to the core 1 in advance, and the core 1 is attached to the core 7 as it is (FIG. 1). Here, FIG. 10 is a cross-sectional view taken along the line DD in FIG. 4, and shows that the reinforcing fiber cloths 2 are alternately stuck.
[0048]
Similarly, the outer reinforcing fiber cloths 2 (preforms) are stuck alternately (FIG. 3).
[0049]
Thus, the preprocessed frame 10 is mounted in the split mold 8 as shown in FIG. The split mold 8 is composed of a plurality of molds as shown in FIG.
[0050]
An oil passage 8a through which the heated oil 9b circulates is formed inside the oil passage, and the oil 9b heated by the heater 9c is circulated through the oil passage 8a by the pump 9a.
[0051]
On the other hand, an epoxy resin 9d is press-fitted in front of the female part of the split mold 8 via a pump 9e. Further, a vacuum pump 9f is connected to the rear of the female part of the split die 8, so that the pressure in the female die can be released.
[0052]
After the core material 1 (frame 10) mounted in the mold 8 having such a configuration is sufficiently clamped, the vacuum pump 9f is operated to evacuate the internal air and reduce the pressure.
[0053]
Epoxy resin 9d is injected into the female mold, but it is not necessary to apply pressure at that time. After the resin is sufficiently injected, the mold temperature is maintained at 70 ° C. for 1 hour to perform primary curing of the resin.
[0054]
Next, the primary-cured frame 10 is removed from the mold 8, placed in a hot-air circulation type curing furnace (not shown), and cured at 120 degrees for one hour (secondary curing).
[0055]
After the completion of the secondary curing, the frame 10 is taken out of the curing furnace as shown in FIG. 14, and the internal air is evacuated from a valve (not shown) provided at the front end of the core 7 to complete the core 7. Take out from inside 10.
[0056]
The fuselage for a small aircraft obtained as described above can be manufactured with extremely low strength and appearance quality at the joint of the reinforcing fibers constituting the preform, and can be easily manufactured. Is possible.
[0057]
【The invention's effect】
According to the present invention, the joint surface between the core members is formed so as to face the tangent to the surface of the core member at an angle in the range of 20 ° to 70 °, and the reinforcing fiber cloth is provided near the joint between the core members. In the above, the adjacent reinforcing fiber cloths are laminated so that they are alternately overlapped, and the overlapping part is staggered so as to cover the entire joint between the core materials, so that the dimensional error of each part is absorbed. Can be.
[0058]
Therefore, even for a structure having a complicated shape, such as a fuselage of an aircraft, it is possible to obtain an FRP structure that is stable in quality without molding defects while achieving both strength and weight reduction.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a step of mounting a core material on a core in a manufacturing process of an FRP structure according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a step of attaching an outer reinforcing layer to a core material in a manufacturing process of the FRP structure according to one embodiment of the present invention.
FIG. 3 is a perspective view showing a stage in which an outer reinforcing layer is attached to a core material in a manufacturing process of the FRP structure according to one embodiment of the present invention.
FIG. 4 is a perspective view showing a stage in which an inner reinforcing layer is attached to a core material in a manufacturing process of the FRP structure according to one embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a joint surface between core materials of the FRP structure according to one embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a joint surface between core materials in a prototype of an FRP structure according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a joint surface between core materials in a prototype of an FRP structure according to an embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a joint surface between core materials in an FRP structure according to one embodiment of the present invention.
FIG. 9 is a cross-sectional view showing a joint surface between core materials in an FRP structure according to one embodiment of the present invention.
FIG. 10 is an exploded cross-sectional view showing a joint surface between core materials in an FRP structure according to an embodiment of the present invention.
FIG. 11 is a graph showing the strength of the FRP structure according to one embodiment of the present invention, in which the reinforcing fiber cloths are polymerized with each other.
FIG. 12 is a perspective view showing an initial state of a resin transfer manufacturing method for an FRP structure according to an embodiment of the present invention.
FIG. 13 is a perspective view showing a middle stage of a resin transfer manufacturing method of the FRP structure according to the embodiment of the present invention.
FIG. 14 is a perspective view showing a late state of the resin transfer manufacturing method of the FRP structure according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core material 2 Reinforcing fiber cloth 3 Inner reinforcing layer 4 Outer reinforcing layer 7 Core 8 Split type 10 Frame

Claims (3)

基礎骨格として複数部材に分割されてなる芯材を設け、この芯材の内側にこれら芯材を展開した形状に夫々形成した強化繊維布を複数層貼着して内側強化層とするとともに、前記芯材の外側に、これら芯材を包む形状に形成した強化繊維布を複数層貼着して外側強化層とし、前記芯材同士の接合面を芯材表面の接線に対して20度から70度の範囲の角度を以て対峙するよう形成し、前記強化繊維布は芯材同士の接合部の近傍において隣り合う強化繊維布が交互に重なり合うよう積層するとともに、この強化繊維布の重合部が芯材同士の接合部全体をカバーするように、この重合部を階段状にずらして貼着したことを特徴とするFRP構造体。A core material divided into a plurality of members is provided as a basic skeleton, and a plurality of reinforcing fiber cloths each formed in a shape obtained by developing these core materials are attached to the inner side of the core material to form an inner reinforcing layer, A plurality of reinforcing fiber cloths formed in a shape wrapping the core material are adhered to the outside of the core material to form an outer reinforcing layer, and the joint surface between the core materials is set at 20 to 70 degrees with respect to a tangent to the surface of the core material. The reinforcing fiber cloths are formed so as to face each other at an angle in the range of degrees, and the reinforcing fiber cloths are laminated so that adjacent reinforcing fiber cloths are alternately overlapped in the vicinity of the joint portion between the core materials, and the overlapping portion of the reinforcing fiber cloths is the core material. An FRP structure characterized in that the overlapping portions are staggered and adhered so as to cover the entire joint portion between the FRP structures. 前記芯材同士の接合面を芯材表面の接線に対して35から55度の角度に設定したことを特徴とする請求項1に記載のFRP構造体。2. The FRP structure according to claim 1, wherein a joining surface between the cores is set at an angle of 35 to 55 degrees with respect to a tangent to the surface of the core. 3. 前記強化繊維布同士の重合部が、全積層数の途中までの積層工程において、積層毎に一方向にずれるように積層するとともに、全積層数の途中以降の積層工程において、積層毎に逆方向にずれるように積層し、積層部分の断面形状を横V字状としたことを特徴とする請求項1または2に記載のFRP構造体。In the laminating step until the middle of the total number of laminations, the overlapped portions of the reinforcing fiber cloths are laminated so as to be shifted in one direction for each lamination. 3. The FRP structure according to claim 1, wherein the cross-sectional shape of the laminated portion is a horizontal V-shape.
JP2000360071A 2000-11-27 2000-11-27 FRP structure Expired - Fee Related JP3590346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360071A JP3590346B2 (en) 2000-11-27 2000-11-27 FRP structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360071A JP3590346B2 (en) 2000-11-27 2000-11-27 FRP structure

Publications (2)

Publication Number Publication Date
JP2002160302A JP2002160302A (en) 2002-06-04
JP3590346B2 true JP3590346B2 (en) 2004-11-17

Family

ID=18831726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360071A Expired - Fee Related JP3590346B2 (en) 2000-11-27 2000-11-27 FRP structure

Country Status (1)

Country Link
JP (1) JP3590346B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771209B2 (en) * 2004-07-28 2011-09-14 東レ株式会社 FRP cylinder and manufacturing method thereof
JP4770298B2 (en) * 2005-07-07 2011-09-14 東レ株式会社 Preform base material, preform, and fiber-reinforced composite material structure using the same
JP5036381B2 (en) * 2007-04-17 2012-09-26 トヨタ自動車株式会社 Fiber reinforced composite material
DE102007033120A1 (en) * 2007-07-13 2009-01-15 Evonik Röhm Gmbh Improved butt joints for core materials
US8857128B2 (en) * 2009-05-18 2014-10-14 Apple Inc. Reinforced device housing
JP5800178B2 (en) * 2011-03-24 2015-10-28 三菱レイヨン株式会社 Manufacturing method of prepreg
JP5852273B2 (en) * 2015-01-07 2016-02-03 株式会社Ihi Manufacturing method of fan case
US9731453B2 (en) * 2015-03-04 2017-08-15 The Boeing Company Co-curing process for the joining of composite structures
JP6484378B1 (en) * 2018-09-21 2019-03-13 太平洋工業株式会社 Resin molded product and method for producing resin molded product

Also Published As

Publication number Publication date
JP2002160302A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP4318381B2 (en) Manufacturing method of fuselage structure made of fiber reinforced composite material, and fuselage structure manufactured thereby
EP1400341B1 (en) Co-cured vacuum-assisted resin transfer molding manufacturing method
JP3839080B2 (en) Structure of fiber-reinforced composite material and manufacturing method thereof
US9302759B2 (en) Flexible truss frame and method of making the same
US5455096A (en) Complex composite sandwich structure having a laminate and a foaming ashesive therein and a method for making the same
US20120183408A1 (en) Stiffening sheet for use in a fibre reinforced laminate, fibre reinforced laminate and wind turbine blade, and a method of manufacturing a fibre reinforced laminate
US20140186588A1 (en) Processes to fabricate composite tubular-reinforced panels integrating skin and stringers and the panels thereby fabricated
JP2001293738A (en) Method for manufacturing structure made of composite material and structure made of composite material manufactured thereby
JPH08506534A (en) Composite molding apparatus and molding method for high-pressure co-curing molding of a lightweight honeycomb core composite product having a sloped surface using a low-density, stabilized sloped honeycomb core, and product manufactured thereby
KR101175953B1 (en) a manufacturing method of FRP products, and FRP products
JP3590346B2 (en) FRP structure
JPH1199993A (en) Composite material wing construction and manufacture thereof
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
US6823918B2 (en) Integrally reinforced composite sandwich joint and process for making the same
WO2018074423A1 (en) Fan rotor blade and method of manufacturing same
KR101839743B1 (en) Roof of automobile using carbon fiber prepreg and foam core and manufacturing method thereof
JPH02175135A (en) Production of fiber reinforced resin member
US20040089976A1 (en) Method and apparatus for constructing an integrally stiffened composite drive shaft
JPH06344477A (en) Laminated molded product and production thereof
JP4015584B2 (en) Door and manufacturing method thereof
JP2685549B2 (en) Manufacturing method of fiber reinforced plastic truss structure
US4210694A (en) Laminated composite structural fitting and method of making
JP4459401B2 (en) Composite beam forming method
JP2019077061A (en) Resin structure and method for producing the same
WO2019059260A1 (en) Method for molding composite material blade, composite material blade, and molding die for composite material blade

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees