JP2004057349A - 血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法 - Google Patents

血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法 Download PDF

Info

Publication number
JP2004057349A
JP2004057349A JP2002217964A JP2002217964A JP2004057349A JP 2004057349 A JP2004057349 A JP 2004057349A JP 2002217964 A JP2002217964 A JP 2002217964A JP 2002217964 A JP2002217964 A JP 2002217964A JP 2004057349 A JP2004057349 A JP 2004057349A
Authority
JP
Japan
Prior art keywords
chamber
blood pump
blood
pressure
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217964A
Other languages
English (en)
Inventor
Hideki Wakui
和久井 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2002217964A priority Critical patent/JP2004057349A/ja
Priority to DE10334115A priority patent/DE10334115A1/de
Publication of JP2004057349A publication Critical patent/JP2004057349A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • A61M60/43Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic using vacuum at the blood pump, e.g. to accelerate filling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • A61M60/432Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic with diastole or systole switching by stopping or reversing the blood pump operating at a much higher cyclical speed than the heart beat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Abstract

【課題】血液ポンプの拍出量を算出する際に、血液ポンプの流体駆動室と分離室の気体室に充満する気体の容積の変化を反映させることにより、算出された血液ポンプの拍出量の精度向上を図った血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法を提供すること。
【解決手段】1分間あたりの血液ポンプ10の拍出量を算出する際には、分離室の気体室及び血液ポンプの流体駆動室で構成される第2密封空気室の圧力値変化DPIが最大のときに算出された(S14:Yes)、当該第2密封空気室の容積VASを使用する(S22)。尚、当該第2密封空気室の圧力値変化DPIが最大のときを、当該第2密封空気室の圧力の微分波形が最大値であるときとする(S14:Yes)。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、血液ポンプの拍出量が求められる血液ポンプ駆動装置に関する。
【0002】
【従来の技術】
従来、血液ポンプの拍出量が求められる血液ポンプ駆動装置としては、例えば、特開2002−143297に記載された血液ポンプ駆動装置がある。そこで、特開2002−143297に記載された血液ポンプ駆動装置の概要を図13に基づいて説明する。
【0003】
図13の血液ポンプ駆動装置1は、蓄圧室34と、オイルリザーバ30、オイルポンプ20、分離室50、血液ポンプ10、制御装置40などから構成される。
この点、蓄圧室34には、蓄圧室34の内部の空気圧を測定するための圧力センサ35と、蓄圧室34の内部を大気に開放又は大気から遮断させるための開閉弁36が設けられており、圧力センサ35及び開閉弁36は、いずれも、制御装置40に接続されている。
【0004】
また、オイルリザーバ30は、ダイアフラム31により、空気室33と液体室32に分離されている。尚、空気室33は、チューブを介して、蓄圧室34の内部と連通している。
【0005】
また、オイルポンプ20は、図示しないロータ及びハウジングを有するポンプ室21と、当該ロータを回転させるためのモータ22で構成されており、モータ22は、制御装置40に接続されている。さらに、ポンプ室21には、第2ポート212及び第1ポート211が設けられている。そして、モータ22が正方向・逆方向に交互に回転にすると、ポンプ室21の内部では、第2ポート212より吸入した流体を第1ポート211から吐出する正方向ポンピングと、第1ポート211より吸入した流体を第2ポート212から吐出する逆方向ポンピングとが交互に行われる。尚、ポンプ室21の第2ポート212は、チューブを介して、オイルリザーバ30の液体室32と連通している。また、ポンプ室21の内部に充満する流体は、例えば、非圧縮性の液体のシリコンオイルなどである。
【0006】
また、分離室50は、ダイアフラム51により、空気室52と液体室53に分離されている。さらに、空気室52には、空気室52の内部の空気圧を測定するための圧力センサ55が設けられ、液体室53には、液体室53の内部の圧力を測定するための圧力センサ54が設けられており、圧力センサ55及び圧力センサ54は、いずれも、制御装置40に接続されている。尚、液体室53は、チューブを介して、オイルポンプ20のポンプ室21の第1ポート211と連通している。
【0007】
また、血液ポンプ10は、ダイアフラム11により、血液室12と流体駆動室13に分離されている。さらに、血液室12には、吸入方向への一方向弁14を介して血液吸入ポート15が設けられるとともに、吐出方向への一方向弁16を介して血液吐出ポート17が設けられている。尚、血液室12の血液吸入ポート15は、図示しないチューブにより、生体の心房に接続されるとともに、血液室12の血液吐出ポート17は、図示しないチューブにより、生体の大動脈に接続されている。
【0008】
また、血液ポンプ10の流体駆動室13は、チューブにより、分離室50の空気室52と連通している。さらに、当該チューブには、血液ポンプ10の流体駆動室13と分離室50の空気室52を大気に開放又は大気から遮断させるための開閉弁56が設けられており、開閉弁56は、制御装置40に接続されている。
【0009】
また、制御装置40は、上述したように、圧力センサ35と、開閉弁36、モータ22、圧力センサ54、圧力センサ55、開閉弁56などが接続されたものであり、圧力センサ35と、圧力センサ54、圧力センサ55などからの電気信号に基づいて、開閉弁36と、モータ22、開閉弁56などを制御するものである。これにより、開閉弁36や開閉弁56を開閉したり、オイルポンプ20を正方向ポンピング又は逆方向ポンピングすることができる。
【0010】
そして、図13の血液ポンプ駆動装置1では、オイルポンプ20が逆方向ポンピングすると、ポンプ室21の第1ポート211より吸入した流体が第2ポート212から吐出するので、分離室50のダイアフラム51がポンプ室21側に移動して、分離室50の液体室53の容積が縮小するとともに分離室50の空気室52の容積が拡大する。そのため、分離室50の空気室52と連通する血液ポンプ10の流体駆動室13は、減圧してその容積を縮小しようとし、血液ポンプ10のダイアフラム11の曲率が分離室50側から見て凹の状態から凸の状態に反転する。この曲率の反転によって拍動が生じ、血液ポンプ10の血液室12に、血液吸入ポート15を介して血液が吸い込まれる。
【0011】
一方、図13の血液ポンプ駆動装置1では、オイルポンプ20が正方向ポンピングすると、ポンプ室21の第2ポート212より吸入した流体が第1ポート211から吐出するので、分離室50のダイアフラム51が血液ポンプ10側に移動して、分離室50の液体室53の容積が拡大するとともに分離室50の空気室52の容積が縮小する。そのため、分離室50の空気室52と連通する血液ポンプ10の流体駆動室13は、増圧してその容積を拡大しようとし、血液ポンプ10のダイアフラム11の曲率が分離室50側から見て凸の状態から凹の状態に反転する。この曲率の反転によって拍動が生じ、血液ポンプ10の血液室12から、血液吐出ポート17から血液が吐き出される。
【0012】
従って、図13の血液ポンプ駆動装置1では、逆方向ポンピングと正方向ポンピングをオイルポンプ20が相互に繰り返すことにより、血液ポンプ10による血液の拍動を繰り返すことができる。
【0013】
また、図13の血液ポンプ駆動装置1では、通常、開閉弁36及び開閉弁56は閉じられている。この点、血液ポンプ10を分離室50に接続する前の準備操作においては、蓄圧室34の開閉弁36を開けた後に、オイルポンプ20のモータ22を正方向に回転させて、分離室50のダイアフラム51がストローク終端まで移動した状態を維持させつつ、蓄圧室34の開閉弁36を閉じる。このとき、オイルリザーバ30の空気室33及び蓄圧室34で構成される第1密封空気室の空気圧は、最小圧P35minでかつ大気圧と等しくなり、また、当該第1密封空気室の容積は最大容積V33maxとなる。次に、蓄圧室34の圧力センサ35を介して、予め設定されたPsetに当該第1密封空気室の空気圧が移行・維持されるように、オイルポンプ20のモータ22を逆方向に回転させる。このとき、当該第1密封空気室の容積Vsetは、ポリトロープ変化の式から、次式により表すことができる。
Vset=V33max×(P35min/Pset)^(1/n)
この点、このようにして求められるVsetを適正に設定していれば、分離室50の気体室52の容積も適正にすることができる。そこで、当該第1密封空気室が容積Vsetで空気圧Psetに維持された状態で、血液ポンプ10と分離室50を接続すれば、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気量を適正な状態にした下で、図13の血液ポンプ駆動装置1の駆動を開始することができる。
【0014】
また、図13の血液ポンプ駆動装置1の駆動中は、分離室50の液体室53の圧力センサ54の圧力波形及び分離室50の空気室52の圧力センサ55の圧力波形を制御装置40が比較しており、圧力センサ54の圧力値が圧力センサ55の圧力値を超えているときは、駆動の条件や生体の状態の変化により、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気量が不足しているので、分離室50の空気室52の圧力センサ55の圧力値が負圧になっているタイミングに合わせて、開閉弁56を開けることにより、当該第2密封空気室に大気を吸い込ませる。一方、圧力センサ55の圧力値が圧力センサ54の圧力値を超えているときは、駆動の条件や生体の状態の変化により、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気量が過剰になっているので、分離室50の空気室52の圧力センサ55の圧力値が正圧になっているタイミングに合わせて、開閉弁56を開けることにより、当該第2密封空気室から大気を吐き出させる。これにより、駆動の条件や生体の状態の変化に応じて、当該第2密封空気室の空気量を適正なものにすることができる。
【0015】
また、図13の血液ポンプ駆動装置1の駆動中は、オイルリザーバ30の空気室33及び蓄圧室34で構成される第1密封空気室の空気圧と、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気圧から、言い換えれば、蓄圧室34の圧力センサ35の圧力値P35と分離室50の空気室52の圧力センサ55の圧力値P55から、血液ポンプ10の拍出量を求めることができる。
【0016】
すなわち、上述したように、血液ポンプ10を分離室50に接続する前の準備操作においては、蓄圧室34の開閉弁36を開けた後に、オイルポンプ20のモータ22を正方向に回転させて、分離室50のダイアフラム51がストローク終端まで移動した状態を維持させつつ、蓄圧室34の開閉弁36を閉じており、このとき、オイルリザーバ30の空気室33及び蓄圧室34で構成される第1密封空気室の空気圧は、最小圧P35minでかつ大気圧と等しくなり、また、当該第1密封空気室の容積は最大容積V33maxとなる。
【0017】
従って、当該第1密封空気室の空気圧P35のときの容積V33は、ポリトロープ変化の式から、次式により表すことができる。
V33=V33max×(P35min/P35)^(1/n)
ここで、P35minは大気圧であり、また、V33maxは設計的既知事項であるため、当該第1密封空気室の空気圧P35のときの容積V33を求めることができる。そして、当該第1密封空気室の空気圧P35のときの容積V33は、オイルリザーバ30の液体室32の容積や、分離室50の液体室53の容積、分離室50の空気室52の容積に換算される。
【0018】
また、分離室50の空気室52の容積V52は、設計的既知事項である最小容積V52minに対して、当該第1密封空気室の最大容積V33maxと当該第1密封空気室の空気圧P35のときの容積V33の差をたしたものであるから、次式により表すことができる。
V52=V52min+V33max(1−(P35min/P35)^(1/n))
尚、当該第1密封空気室の空気圧P35は、蓄圧室34の圧力センサ35の圧力値である。
【0019】
一方、血液ポンプ10の流体駆動室13の空気圧を「P55」とし、血液ポンプ10の流体駆動室13及び分離室50の気体室52を連通させるチューブなどの容積を「Vd」(設計的既知事項)として、血液ポンプ10の流体駆動室13の容積V13を求めると、次式により表すことができる。
V13=(V13max+V52min+Vd)×(P55max/P55)^(1/n)−(Vd+V52)
ここで、「V13max」は血液ポンプ10の流体駆動室13の最大容積(設計的既知事項)であり、「P55」は、分離室50の空気室52の圧力センサ55の圧力値である。
【0020】
そして、血液ポンプ10の流体駆動室13の容積V13は、血液ポンプ10の血液室12の容積に換算することができることから、以上より、蓄圧室34の圧力センサ35の圧力値P35と分離室50の空気室52の圧力センサ55の圧力値P55から、血液ポンプ10の拍出量を求めることができる。
尚、図14は、血液ポンプ10の拍出量を求めるまでのフローチャート図である。
【0021】
【発明が解決しようとする課題】
しかしながら、図13の血液ポンプ駆動装置1では、駆動の条件や生体の状態の変化に応じるため、所定のタイミングで開閉弁56を開閉することにより、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気量(V13max+V52min+Vd)を適正なものに変更するにもかかわらず、血液ポンプ10の拍出量を求めるにあたり、当該第2密封空気室の空気量(V13max+V52min+Vd)を一定と仮定して計算しているので、血液ポンプ10の拍出量の精度向上にも一定の限界があった。特に、当該第2密封空気室を構成する血液ポンプ10の流体駆動室13と分離室50の気体室52は、軟質樹脂部品のチューブなどで連通されるとともに、軟質樹脂部品のダイアフラム51,11で区画されており、この点、軟質樹脂部品は圧力と共に変形することから、その影響を考慮する必要がある。
【0022】
そこで、本発明は、上述した問題点を解決するためになされたものであり、血液ポンプの拍出量を算出する際に、血液ポンプの流体駆動室と分離室の気体室に充満する気体の容積の変化を反映させることにより、算出された血液ポンプの拍出量の精度向上を図った血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法を提供することを課題とする。
【0023】
【課題を解決するための手段】
この課題を解決するためになされた請求項1に係る発明は、蓄圧室と、前記蓄圧室に連通する空気室及び液体室がダイアフラムで区画されたオイルリザーバと、前記オイルリザーバの液体室に連通するポンプ室が設けられたオイルポンプと、前記オイルポンプのポンプ室に連通する液体室及び気体室がダイアフラムで区画された分離室と、前記分離室の気体室に連通する流体駆動室及び血液室がダイアフラムで区画された血液ポンプと、を有し、前記血液ポンプの拍出量を算出する血液ポンプ駆動装置において、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときに算出された、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の容積を使用して、前記血液ポンプの拍出量を算出すること、を特徴としている。
【0024】
また、請求項2に係る発明は、請求項1に記載する血液ポンプ駆動装置であって、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときを、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の圧力の微分波形が最大値又は最小値であるときとすること、を特徴としている。
【0025】
また、請求項3に係る発明は、請求項1又は請求項2に記載する血液ポンプ駆動装置であって、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の容積を調節するための開閉弁を備えたこと、を特徴としている。
【0026】
また、請求項4に係る発明は、請求項1乃至請求項3のいずれか一つに記載する血液ポンプ駆動装置であって、前記血液ポンプの血液室から血液が拍出する拍出ポート及び前記血液ポンプの血液室から血液が吸入する吸入ポートのそれぞれに一方向弁を備え、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の陽圧平均値に基づいて算出された血液ポンプ効率を使用して、前記血液ポンプの拍出量を算出すること、を特徴としている。
【0027】
また、請求項5に係る発明は、血液ポンプの拍出量の算出方法であって、請求項1乃至請求項4のいずれか一つに記載する血液ポンプ駆動装置で行われるものであること、を特徴としている。
【0028】
すなわち、このような特徴を有する本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法は、血液ポンプの拍出量を算出する際に、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときに算出された、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を使用するが、この点、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときは、血液ポンプのダイアフラムの移動量が最も小さいときと考えられ、分離室のダイアフラム及び血液ポンプのダイアフラムが軟質樹脂部品であることより、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積が変化しても、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を精度よく算出することができることから、血液ポンプの拍出量を算出する際に、血液ポンプの流体駆動室と分離室の気体室に充満する気体の容積の変化を反映させることにより、算出された血液ポンプの拍出量の精度向上を図ることができる。
【0029】
尚、本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法では、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときを、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力の微分波形が最大値又は最小値であるときとすれば、容易に特定することができる。
【0030】
また、本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法において、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を調節するための開閉弁を備えた場合には、駆動条件や、血液ポンプが血液を吐出する対象の生体の状態の変化に合わせて、開閉弁を介し、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を調節され、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積が変化する機会が多いので、上述した効果が大きい。
【0031】
また、本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法においては、血液ポンプの血液室に血液を吸入した後に血液ポンプの血液室から血液を吐出する拍出動作をスムーズに行うため、通常、血液ポンプの血液室から血液が拍出する拍出ポート及び血液ポンプの血液室から血液が吸入する吸入ポートのそれぞれに一方向弁を備えるが、この点、一方向弁の構造が要因となって、血液ポンプの血液室における血液の逆流・漏れが生じても、血液ポンプの拍出量を算出する際に、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の陽圧平均値に基づいて算出された血液ポンプ効率を使用することにより、その悪影響を排除することができる。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照にして説明する。本実施の形態の血液ポンプ駆動装置の構成は、従来技術の欄で述べた図13の血液ポンプ駆動装置1と同じである。しかし、血液ポンプ10の拍出量を求める方法が異なっているので、以下、この点を詳細に説明する。
【0033】
本実施の形態の血液ポンプ駆動装置1が駆動中は、蓄圧室34の圧力センサ35の圧力波形及び分離室50の空気室52の圧力センサ55の圧力波形は、例えば、図5に示すように測定される。図5において、点線は、分離室50の空気室52の圧力センサ55の圧力波形を示しており、オイルポンプ20により流体が分離室50の液体室53に流されると、分離室50の空気室52の空気が圧縮されて空気圧が上昇して正圧となり、オイルポンプ20により流体がオイルリザーバ30の液体室32に流されると、分離室50の空気室52の空気が膨張されて空気圧が下降して負圧となる。尚、実線は、分離室50の空気室52の圧力センサ55の圧力波形の微分波形を示すものである。一方、一点鎖線は、蓄圧室34の圧力センサ35の圧力波形を示しており、オイルポンプ20により流体が分離室50の液体室53に流されると、オイルリザーバ30の空気室33の空気が膨張されて空気圧が下降して負圧となり、オイルポンプ20により流体がオイルリザーバ30の液体室32に流されると、オイルリザーバ30の空気室33の空気が圧縮されて空気圧が上昇して正圧となる。
【0034】
そして、血液ポンプ10の拍出量を求めるにあたっては、先ず、オイルリザーバ30の液体室32及び、オイルポンプ20のポンプ室21、分離室50の液体室53に充満された流体の移動量(以下、「オイル移動量」という)VOを、蓄圧室34の内部の空気圧が大気圧のときを基準にして、以下の式(1)により求める。
VO=VR−VR×(PA/(PA+PR))^(1/C1) … 式(1)
ここで、「VR」は、オイルリザーバ30の空気室33及び蓄圧室34で構成される第1密封空気室の大気圧における容積(設計的既知事項)である。また、「PA」は、大気圧である。また、「PR」は、蓄圧室34の圧力センサ35の圧力値であって、当該第1密封空気室の空気圧である。また、「C1」は、1より大きくかつ1.4以下の正の定数である。
【0035】
次に、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気量VAを求める。この点、血液ポンプ10のダイアフラム11の移動量は、当該第2密封空気室の圧力上昇率が最大のときには非常に小さいと考えられることから、当該第2密封空気室の圧力上昇率が最大になるタイミングに着目し(図5参照)、その微小期間におけるオイル移動量VOの変化及び、その微小期間における分離室50の空気室52の圧力センサ55の圧力変化などから、以下の式(2)により求める。
VA=C2×(VO2−VO1)/[{(PA+PI2)/(PA+PI1)}^(1/C3)−1] … 式(2)
ここで、「PI」は、分離室50の空気室52の圧力センサ55の圧力値であって、当該第2密封空気室の空気圧である。また、「C2」は、負の定数である。また、「C3」は、1より大きくかつ1.4以下の正の定数である。また、添字の「1」はその微小期間の始点(測定開始時)を意味し、添字の「2」はその微小期間の終点(測定終了時)を意味する。
【0036】
ただし、上式で求められた当該第2密封空気室の空気量VAは、その微小期間の終点(測定終了時)に対応するものであって、当該第2密封空気室の空気圧PI2のときのものであるから、以下の式(3)により、大気圧換算された当該第2密封空気室の空気量VASを求める。
VAS=VA×{(PA+PI2)/PA}^(1/C4) … 式(3)
ここで、「C4」は、1より大きくかつ1.4以下の正の定数である。
【0037】
もっとも、大気圧換算された当該第2密封空気室の空気量VASは、分離室50の空気室52の圧力センサ55の圧力値(当該第2密封空気室の空気圧)の変化(図5の点線)に伴って変動するものであるから、その変動量DVAを以下の式(4)により求める。
DVA=VAS−VAS×{PA/(PA+PI)}^(1/C5)… 式(4)
ここで、「C5」は、1より大きくかつ1.4以下の正の定数である。
【0038】
図6の実線は、大気圧時における当該第2密封空気室の空気量VASを0ccとし、分離室50の空気室52の圧力センサ55の圧力値(当該第2密封空気室の空気圧)の変化(図5の点線)に伴って、当該第2密封空気室の空気量VASがどれだけ変動したかを大気圧換算で示したものであり、上記の変動量DVAの実測値から大気圧換算されたものである。この点、当該第2密封空気室を構成する血液ポンプ10の流体駆動室13と分離室50の気体室52は、軟質樹脂部品のチューブなどで連通されるとともに、軟質樹脂部品のダイアフラム51,11で区画されており、それらの軟質樹脂部品は圧力と共に変形することから、その変形量も含くまれている。そして、当該変形量VTは、以下の式(4の2)で求まる。
VT=C6×PI … 式(4の2)
ここで、「C6」は、定数である。
【0039】
また、図6の点線は、オイル移動量VOであり、分離室50の液体室53に最も流体が流れたときを0ccとして、そのときからオイルリザーバ30の液体室32にどれだけ流体が流れたかを示しており、オイルリザーバ30の空気室33の容積変化を示すものでもある。また、図6の一点鎖線は、オイル移動量VO(図6の点線)に対して、大気圧換算された当該第2密封空気室の空気量VASの変動量DVA(図6の実線)をたしたものであり、血液ポンプ10のダイアフラム11の移動量を意味している。従って、図6の一点鎖線における最大値と最小値の差は、1回の拍動における血液ポンプ10のダイアフラム11の総移動量を意味している。
【0040】
よって、血液ポンプ10のダイアフラム11の移動量VBは、以下の式(5)により求まる。
VB=VO+DVA+VT … 式(5)
そして、1回の拍動で血液ポンプ10が吐出する血液量SVは、図6の一点鎖線で示される波形により、血液ポンプ10のダイアフラム11の総移動量として、以下の式(6)により求まる。
SV=VBmax−VBmin  … 式(6)
ここで、「VBmax」は、血液ポンプ10のダイアフラム11の移動量VBの最大値であり、「VBmin」は、血液ポンプ10のダイアフラム11の移動量VBの最小値である。
【0041】
しかしながら、詳細に検討してみると、血液ポンプ10のダイアフラム11の総移動量の全てが、血液室12の血液吐出ポート17を介して、生体の大動脈に吐き出されるわけではない。なぜなら、血液ポンプ10の血液室12の血液吐出ポート17には一方向弁16が設けられるとともに、血液ポンプ10の血液室12の血液吸入ポート15には一方向弁14が設けられているが、それらの一方向弁14,16は、図11及び図12に示すように、扉構造になっているため、図11の開いた状態から図12の閉じた状態に移行する際には逆流が生じ、また、図12の閉じた状態にあっても、クリアランス101があるために漏れが生じるからである。従って、1回の拍動で血液ポンプ10が吐出する血液量SVを精度よく求めるには、血液ポンプ10のダイアフラム11の総移動量から、血液ポンプ10の血液室12における逆流量及び漏れ量を差し引かなければならない。
【0042】
この点、血液ポンプ10の血液室12における逆流量及び漏れ量の和は、分離室50の空気室52の圧力センサ55の圧力値(当該第2密封空気室の空気圧)の陽圧の平均値にほぼ比例することが実験的に確認されていることから、本実施の形態では、血液ポンプ効率EBという概念を導入し、以下の式(7)により求める。
EB=(SV−C7×MP)/SV  … 式(7)
ここで、「MP」は、分離室50の空気室52の圧力センサ55の圧力値(当該第2密封空気室の空気圧)の陽圧の平均値であり、図7の一点鎖線で示すものである。また、「C7」は、定数である。尚、図7の点線は、分離室50の空気室52の圧力センサ55の圧力値(当該第2密封空気室の空気圧)である。
【0043】
従って、単位時間あたりの血液ポンプ10の拍出量BFは、1回の拍動で血液ポンプ10が吐出する血液量SVに対して、血液ポンプ10の血液室12における逆流量及び漏れ量の和を考慮すれば、以下の式(8)で求められる。
BF=SV×HR×EB … 式(8)
ここで、「HR」は、単位時間あたりの拍動回数である。
【0044】
図10は、1分間あたりの血液ポンプ10の拍出量BFを算出した際の誤差を、血液ポンプ10の血液室12における逆流量及び漏れ量の和を考慮した場合と考慮しない場合、すなわち、血液ポンプ効率EBを使用した場合と使用しない場合で、実験的的に比較した結果である。尚、ここでは、駆動条件として、図9に示すように、分離室50の空気室52の圧力センサ55の圧力値(当該第2密封空気室の空気圧)で示される駆動圧の最高値・最低値を250mmHg・−65mmHgとし、1分間あたりの拍動回数を75回/min、拍出期間と吸引期間の和に対する拍出期間の割合(%‐systole)を30%とした。また、このときの、蓄圧室34の圧力センサ35の圧力波形及び分離室50の空気室52の圧力センサ55の圧力波形を、図8に示す。
【0045】
その比較結果は、図10に示すように、1分間あたりの血液ポンプ10の拍出量BFの実測値が3.88L/minの場合に、血液ポンプ効率EBを使用したときの算出値は3.98L/minとなり、その算出誤差は+2.6%であったが、その一方で、血液ポンプ効率EBを使用しないときの算出値は5.09L/minとなり、その算出誤差は+31.2%であった。従って、1分間あたりの血液ポンプ10の拍出量BFを求めるにあたっては、血液ポンプ効率EBを使用した場合が、血液ポンプ効率EBを使用しない場合と比べて、より精度の高い値を求めることができる。
【0046】
尚、血液ポンプ効率EBは、血液ポンプ10の種類によっては、圧力センサ55の圧力値の陰圧の平均値と相関関係をもつ場合もあるので、その場合には、圧力センサ55の圧力値の陰圧の平均値と相関関係を考慮する必要がある。
【0047】
次に、本実施の形態において、図13の血液ポンプ駆動装置1が1分間あたりの血液ポンプ10の拍出量BFを求めるまでの過程をフローチャートで説明する。図1は、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の大気圧換算された空気量VASを算出するためのフローチャート図である。
【0048】
図1に示すように、先ず、S11において、規定のサンプリング間隔(例えば、2msec)をもって、圧力センサ55の圧力値PI及び、大気圧PAを測定する。ここで、大気圧PAは、制御装置40に備えられた圧力センサで測定する。次に、S12では、規定のサンプリング間隔をもって、上述した式(1)により、オイル移動量VOを算出する。次に、S13では、規定のサンプリング間隔において、圧力センサ55の圧力値PIの圧力値変化DPIを、次式(9)により算出する。
DPI=PI2−PI1  … 式(9)
【0049】
そして、算出された圧力値変化DPIは、S14において、その時点での圧力値変化の最大値DPImaxと比較される。ここで、圧力値変化DPIが最大値DPImaxよりも大きい場合には(S14:Yes)、S15に進んで、最大値DPImaxに圧力値変化DPIを代入する。その後、S16において、上述した式(2)により、血液ポンプ10の流体駆動室13及び分離室50の気体室52で構成される第2密封空気室の空気量VAを算出する。また、S17において、次式(10)により、圧力値変化DPIの算出時における分離室50の気体室52の絶対圧PVAを算出する。
PVA=PA+PI2  … 式(10)
【0050】
さらに、S18において、当該第2密封空気室の空気量VA及び、圧力値変化DPIの算出時における分離室50の気体室52の絶対圧PVAを、それぞれ最新の値に置き換えた後、S19に進む。また、上述したS14において、圧力値変化DPIが最大値DPImaxよりも以下である場合にも(S14:No)、S19に進む。
【0051】
次に、S19では、1回の拍動が終了しているか否かを判断する。ここで、1回の拍動が終了していると判断する場合には(S19:Yes)、S20に進んで、当該第2密封空気室の空気量VA及び、圧力値変化DPIの算出時における分離室50の気体室52の絶対圧PVAを、それぞれ確定する。そして、S21において、1回の拍動が行われている間に開閉弁56が作動したか否かを判断する。ここで、1回の拍動が行われている間に開閉弁56が作動していたと判断する場合には(S21:Yes)、S23に進んで、圧力値変化の最大値DPImaxをリセットし、その後に、S11に戻る。
【0052】
一方、1回の拍動が行われている間に開閉弁56が作動していないと判断する場合には(S21:No)、S22に進んで、上述した式(3)により、大気圧換算された当該第2密封空気室の空気量VASを求め、その後に、S11に戻る。尚、S22では、「PA+PI2」として、S18で求めた絶対圧PVAを使用している。また、上述したS19において、1回の拍動が終了していないと判断する場合には(S19:No)、何もすることなく、S11に戻る。
【0053】
図2は、1回の拍動で血液ポンプ10が吐出する血液量SVを算出するためのフローチャート図である。図2に示すように、先ず、S31において、上述した規定のサンプリング間隔をもって、圧力センサ35の圧力値PR及び、圧力センサ55の圧力値PI、大気圧PAを測定する。ここで、大気圧PAは、制御装置40に備えられた圧力センサで測定する。次に、S32では、規定のサンプリング間隔をもって、上述した式(1)により、オイル移動量VOを算出する。次に、S33では、樹脂製部品の容積変化VTを、上述した式(4の2)により算出する。
【0054】
次に、S34では、大気圧換算された当該第2密封空気室の空気量VAS(図1のS22で算出したものを使用)の変動量DVAを、上述した式(4)により算出する。また、S35では、血液ポンプ10のダイアフラム11の移動量VBを、上述した式(5)により算出する。
【0055】
そして、算出された血液ポンプ10のダイアフラム11の移動量VBは、S35において、その時点での、血液ポンプ10のダイアフラム11の移動量の最大値VBmaxと比較される。ここで、算出された血液ポンプ10のダイアフラム11の移動量VBが最大値VBmaxより大きい場合には(S36:Yes)、S37に進んで、算出された血液ポンプ10のダイアフラム11の移動量VBを最大値VBmaxに置き換えた後に、S38に進む。一方、算出された血液ポンプ10のダイアフラム11の移動量VBが最大値VBmax以下の場合には(S36:No)、何もすることなく、S38に進む。
【0056】
また、算出された血液ポンプ10のダイアフラム11の移動量VBは、S38において、その時点での、血液ポンプ10のダイアフラム11の移動量の最小値VBminと比較される。ここで、算出された血液ポンプ10のダイアフラム11の移動量VBが最小値VBminより小さい場合には(S38:Yes)、S39に進んで、算出された血液ポンプ10のダイアフラム11の移動量VBを最小値VBminに置き換えた後に、S40に進む。一方、算出された血液ポンプ10のダイアフラム11の移動量VBが最小値VBmin以上の場合には(S38:No)、何もすることなく、S40に進む。
【0057】
次に、S40では、1回の拍動が終了しているか否かを判断する。ここで、1回の拍動が終了していると判断する場合には(S40:Yes)、S41に進んで、血液ポンプ10のダイアフラム11の移動量VBの最大値VBmax及び最小値VBminをそれそれ確定する。そして、S42において、1回の拍動で血液ポンプ10が吐出する血液量SVを、上述した式(6)により算出する。その後は、S43において、血液ポンプ10のダイアフラム11の移動量VBの最大値VBmax及び最小値VBminをそれぞれリセットし、S31に戻る。一方、1回の拍動が終了していないと判断する場合には(S40:No)、何もすることなく、S31に戻る。
【0058】
図3は、血液ポンプ効率EBを算出するためのフローチャート図である。図3に示すように、先ず、S51において、上述した規定のサンプリング間隔をもって、圧力センサ55の圧力値PIを測定する。そして、測定された圧力センサ55の圧力値PIは、S52において、陽圧であるか否かが判断される。ここで、測定された圧力センサ55の圧力値PIは陽圧であると判断される場合には(S52:Yes)、S53に進んで、圧力センサ55の圧力値PIを、次式(12)により積算した後(図7参照)、S54に進む。
PIA=PIA+PI … 式(12)
ここで、「PIA」は、圧力センサ55の圧力値PIの積算値である。
一方、測定された圧力センサ55の圧力値PIは陽圧でないと判断される場合には(S52:No)、何もすることなく、S54に進む。
【0059】
次に、S54では、1回の拍動が終了しているか否かを判断する。ここで、1回の拍動が終了していると判断する場合には(S54:Yes)、S55に進んで、圧力センサ55の圧力値PIを確定する。また、S56に進んで、1分間あたりの拍動回数HR及び、拍出期間と吸引期間の和に対する拍出期間の割合(%‐systole)などの設定条件を自動意識する。
【0060】
その後は、S57において、1回の拍動が行われている間に開閉弁56が作動したか否かを判断する。ここで、1回の拍動が行われている間に開閉弁56が作動していたと判断する場合には(S57:Yes)、S58に進んで、積算値PIAをリセットし、その後に、S51に戻る。
【0061】
一方、1回の拍動が行われている間に開閉弁56が作動していないと判断する場合には(S57:No)、S59に進んで、圧力センサ55の圧力値PI(当該第2密封空気室の空気圧)の陽圧の平均値MPを、次式(13)により算出する。
MP=PIA/(60000/HR×SD/100) … 式(13)
ここで、「SD」は、拍出期間と吸引期間の和に対する拍出期間の割合(%‐systole)である。
そして、S60に進んで、血液ポンプ効率EBを、上述した式(7)により算出した後、S58を介して、S51に戻る。
【0062】
図4は、1分間あたりの血液ポンプ10の拍出量BFを算出するためのフローチャート図である。図4に示すように、S71において、1回の拍動が終了しているか否かを判断する。ここで、1回の拍動が終了していないと判断する場合には(S71:Yes)、何もすることなく、S71に戻る。一方、1回の拍動が終了していると判断する場合には(S71:Yes)、S72に進んで、1分間あたりの拍動回数HRなどの設定条件を自動意識する。そして、S73において1分間あたりの血液ポンプ10の拍出量BFを、上述した式(8)により算出した後に(ここでは、SVは図2のS42で算出したもの、EBは図3のS60で算出したものを使用)、S71に戻る。
【0063】
以上詳細に説明したように、本実施の形態の血液ポンプ駆動装置1は、図13に示すように、蓄圧室34と、蓄圧室34に連通する空気室33及び液体室32がダイアフラム31で区画されたオイルリザーバ30と、オイルリザーバ30の液体室32に連通するポンプ室21が設けられたオイルポンプ20と、オイルポンプ20のポンプ室21に連通する液体室53及び気体室52がダイアフラム51で区画された分離室50と、分離室50の気体室52に連通する流体駆動室13及び血液室12がダイアフラム11で区画された血液ポンプ10と、を有し、図1〜図4に示すように、1分間あたりの血液ポンプ10の拍出量BFを算出するものである。
【0064】
そして、本実施の形態では、1分間あたりの血液ポンプ10の拍出量BFを算出する際に(図4のS73)、図1のフローチャートで示すように、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力値変化DPIが最大のときに算出された、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積VASを使用する(図1のS22)。この点、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力値変化DPIが最大のときは(図5参照)、血液ポンプ10のダイアフラム11の移動量が最も小さいときと考えられ、分離室50のダイアフラム51及び血液ポンプ10のダイアフラム11が軟質樹脂部品であることより、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積が変化しても、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積VAS(図1のS22)は、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積として精度よく算出することができることから、1分間あたりの血液ポンプ10の拍出量BFを算出する際に(図4のS73)、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積の変化を反映させることにより、算出された1分間あたりの血液ポンプの拍出量BFの精度向上を図ることができる。
【0065】
尚、本実施の形態では、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力値変化DPIが最大のときを、図5に示すように、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力の微分波形が最大値であるときとしており、容易に特定することができる(図1のS14)。
【0066】
また、本実施の形態では、本実施の形態の血液ポンプ駆動装置1において、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積を調節するための開閉弁56を備えており、従来技術の欄で述べたように、駆動条件や、血液ポンプ10が血液を吐出する対象の生体の状態の変化に合わせて、開閉弁56を介し、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室に充満する空気量を調節され、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の容積が変化する機会が多いので、上述した効果が大きい。
【0067】
また、本実施の形態では、本実施の形態の血液ポンプ駆動装置1において、血液ポンプ10の血液室12に血液を吸入した後に血液ポンプ10の血液室12から血液を吐出する拍出動作をスムーズに行うため、血液ポンプ10の血液室12から血液が拍出する血液拍出ポート17及び、血液ポンプ10の血液室12から血液が吸入する血液吸入ポート15のそれぞれに一方向弁16,14を備える。この点、図11及び図12に示すように、一方向弁16,14の扉構造やクリアランス101が要因となって、血液ポンプ10の血液室12における血液の逆流・漏れが生じることが考えられる。しかし、血液ポンプ10の血液室12における血液の逆流・漏れは、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の陽圧平均値MPにほぼ比例関係にあることが実験的に確認されており、1分間あたりの血液ポンプ10の拍出量BFを算出する際に(図4のS73)、図3に示すように、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の陽圧平均値MPに基づいて算出された血液ポンプ効率EBを使用することにより(図3のS59,S60)、その悪影響を排除することができる(図10参照)。
【0068】
尚、本発明は上記実施の形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、本実施の形態では、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力値変化DPIが最大のときを、図5に示すように、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力の微分波形が最大値であるときとしていたが(図1のS14)、分離室50の気体室52及び血液ポンプ10の流体駆動室13で構成される第2密封空気室の圧力の微分波形が最小値であるときとしても、容易に特定することができる。
【0069】
【発明の効果】
本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法は、血液ポンプの拍出量を算出する際に、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときに算出された、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を使用するが、この点、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときは、血液ポンプのダイアフラムの移動量が最も小さいときと考えられ、分離室のダイアフラム及び血液ポンプのダイアフラムが軟質樹脂部品であることより、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積が変化しても、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を精度よく算出することができることから、血液ポンプの拍出量を算出する際に、血液ポンプの流体駆動室と分離室の気体室に充満する気体の容積の変化を反映させることにより、算出された血液ポンプの拍出量の精度向上を図ることができる。
【0070】
尚、本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法では、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときを、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の圧力の微分波形が最大値又は最小値であるときとすれば、容易に特定することができる。
【0071】
また、本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法において、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を調節するための開閉弁を備えた場合には、駆動条件や、血液ポンプが血液を吐出する対象の生体の状態の変化に合わせて、開閉弁を介し、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積を調節され、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の容積が変化する機会が多いので、上述した効果が大きい。
【0072】
また、本発明の血液ポンプ駆動装置及び、血液ポンプの拍出量の算出方法においては、血液ポンプの血液室に血液を吸入した後に血液ポンプの血液室から血液を吐出する拍出動作をスムーズに行うため、通常、血液ポンプの血液室から血液が拍出する拍出ポート及び血液ポンプの血液室から血液が吸入する吸入ポートのそれぞれに一方向弁を備えるが、この点、一方向弁の構造が要因となって、血液ポンプの血液室における血液の逆流・漏れが生じても、血液ポンプの拍出量を算出する際に、分離室の気体室及び血液ポンプの流体駆動室に充満する気体の陽圧平均値に基づいて算出された血液ポンプ効率を使用することにより、その悪影響を排除することができる。
【図面の簡単な説明】
【図1】第2密封空気室の大気圧換算された空気量を算出するためのフローチャート図である。
【図2】1回の拍動で血液ポンプが吐出する血液量を算出するためのフローチャート図である。
【図3】血液ポンプ効率を算出するためのフローチャート図である。
【図4】1分間あたりの血液ポンプの拍出量を算出するためのフローチャート図である。
【図5】蓄圧室の圧力センサの圧力波形及び分離室の空気室の圧力センサの圧力波形の一例を示した実測波形の図である。
【図6】1回の拍動における血液ポンプのダイアフラムの総移動量などの一例を示した実測波形の図である。
【図7】分離室の空気室の圧力センサの圧力値(第2密封空気室の空気圧)の実測波形の一例から計算された陽圧の平均値を示した図である。
【図8】1分間あたりの血液拍出量を算出した際の誤差を算出するために駆動させた際の、蓄圧室の圧力センサの圧力波形及び分離室の空気室の圧力センサの圧力波形を示した実測波形の図である。
【図9】1分間あたりの血液拍出量を算出した際の誤差を算出するために駆動させた際の駆動条件を示した表である。
【図10】1分間あたりの血液拍出量を算出した際の誤差を比較した表である。
【図11】開いた状態の一方向弁を示した正面図(a)・断面図(b)・背面図(c)である。
【図12】閉じた状態の一方向弁を示した正面図(a)・断面図(b)・背面図(c)である。
【図13】血液ポンプ駆動装置の概要を示した図である。
【図14】従来技術の血液ポンプの拍出量の算出方法を示したフローチャート図である。
【符号の説明】
1 血液ポンプ駆動装置
10 血液ポンプ
11  血液ポンプのダイアフラム
12  血液ポンプの血液室
13  血液ポンプの流体駆動室
14 一方向弁
15 血液吸入ポート
16 一方向弁
17 血液拍出ポート
20 オイルポンプ
21 オイルポンプのポンプ室
30 オイルリザーバ
31 オイルリザーバのダイアフラム
32  オイルリザーバの液体室
33 オイルリザーバの気体室
34 蓄圧室
50 分離室
51 分離室のダイアフラム
52 分離室の気体室
53 分離室の液体室
56 開閉弁
101 一方向弁のクリアランス
BF 1分間あたりの血液ポンプの拍出量
DPI  第2密封空気室の圧力値変化
EB 血液ポンプ効率
MP 第2密封空気室の陽圧平均値
VAS 第2密封空気室の容積

Claims (5)

  1. 蓄圧室と、前記蓄圧室に連通する空気室及び液体室がダイアフラムで区画されたオイルリザーバと、前記オイルリザーバの液体室に連通するポンプ室が設けられたオイルポンプと、前記オイルポンプのポンプ室に連通する液体室及び気体室がダイアフラムで区画された分離室と、前記分離室の気体室に連通する流体駆動室及び血液室がダイアフラムで区画された血液ポンプと、を有し、前記血液ポンプの拍出量を算出する血液ポンプ駆動装置において、
    前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときに算出された、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の容積を使用して、前記血液ポンプの拍出量を算出すること、を特徴とする血液ポンプ駆動装置。
  2. 請求項1に記載する血液ポンプ駆動装置であって、
    前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の圧力変化率が最大のときを、前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の圧力の微分波形が最大値又は最小値であるときとすること、を特徴とする血液ポンプ駆動装置。
  3. 請求項1又は請求項2に記載する血液ポンプ駆動装置であって、
    前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の容積を調節するための開閉弁を備えたこと、を特徴とする血液ポンプ駆動装置。
  4. 請求項1乃至請求項3のいずれか一つに記載する血液ポンプ駆動装置であって、
    前記血液ポンプの血液室から血液が拍出する拍出ポート及び前記血液ポンプの血液室から血液が吸入する吸入ポートのそれぞれに一方向弁を備え、
    前記分離室の気体室及び前記血液ポンプの流体駆動室に充満する気体の陽圧平均値に基づいて算出された血液ポンプ効率を使用して、前記血液ポンプの拍出量を算出すること、を特徴とする血液ポンプ駆動装置。
  5. 請求項1乃至請求項4のいずれか一つに記載する血液ポンプ駆動装置で行われるものであること、を特徴とする血液ポンプの拍出量の算出方法。
JP2002217964A 2002-07-26 2002-07-26 血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法 Pending JP2004057349A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002217964A JP2004057349A (ja) 2002-07-26 2002-07-26 血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法
DE10334115A DE10334115A1 (de) 2002-07-26 2003-07-25 Blutpumpenantriebsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217964A JP2004057349A (ja) 2002-07-26 2002-07-26 血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法

Publications (1)

Publication Number Publication Date
JP2004057349A true JP2004057349A (ja) 2004-02-26

Family

ID=31711483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217964A Pending JP2004057349A (ja) 2002-07-26 2002-07-26 血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法

Country Status (2)

Country Link
JP (1) JP2004057349A (ja)
DE (1) DE10334115A1 (ja)

Also Published As

Publication number Publication date
DE10334115A1 (de) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4378937B2 (ja) ポンプ
EP1369585B1 (en) Pump
US6527698B1 (en) Active left-right flow control in a two chamber cardiac prosthesis
CN103476332B (zh) 流量控制阀及具有流量控制阀的血压信息测定装置
US6540658B1 (en) Left-right flow control algorithm in a two chamber cardiac prosthesis
JPH0450831B2 (ja)
JP5862903B2 (ja) 慣性制御式漏出補償弁を有する膜ポンプ
WO2017108555A1 (en) Breast pump, method and computer program
JP2513243B2 (ja) 血液ポンプ
KR20060097741A (ko) 정변위 펌프의 구동 모터를 제어하는 방법
JP2004232616A (ja) 無脈動ポンプ
JP2004057349A (ja) 血液ポンプ駆動装置及び血液ポンプの拍出量の算出方法
JP4877369B2 (ja) ポンプ
JP2005013502A (ja) 血液ポンプ駆動装置
US20220387780A1 (en) Pump system, control unit and method for operating a pump system
JP2004147721A (ja) 血液ポンプ駆動装置
US10302077B2 (en) Liquid supply system and method for controlling liquid supply system
US6709383B2 (en) Device for driving blood pumps
JPH06237988A (ja) 人工心臓ポンプ装置
JP4399566B2 (ja) 人工ポンプ駆動装置
JPS63145636A (ja) 自動血圧計用カフ圧力制御方法およびカフ圧力制御装置
JP5003700B2 (ja) ポンプ
JP6622144B2 (ja) 液体供給システム、及び液体供給システムの制御方法
JP2004097611A (ja) 血液ポンプ駆動装置
JP3584367B2 (ja) 定液圧供給装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041122