JP2004055652A - Organic semiconductor element - Google Patents

Organic semiconductor element Download PDF

Info

Publication number
JP2004055652A
JP2004055652A JP2002208210A JP2002208210A JP2004055652A JP 2004055652 A JP2004055652 A JP 2004055652A JP 2002208210 A JP2002208210 A JP 2002208210A JP 2002208210 A JP2002208210 A JP 2002208210A JP 2004055652 A JP2004055652 A JP 2004055652A
Authority
JP
Japan
Prior art keywords
organic semiconductor
film
semiconductor layer
electrode
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002208210A
Other languages
Japanese (ja)
Inventor
Kenichi Nagayama
永山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2002208210A priority Critical patent/JP2004055652A/en
Priority to EP03015098A priority patent/EP1383179A2/en
Priority to CNA031464882A priority patent/CN1476111A/en
Priority to US10/619,565 priority patent/US6992324B2/en
Publication of JP2004055652A publication Critical patent/JP2004055652A/en
Priority to US11/236,513 priority patent/US7038237B2/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic semiconductor element, in which adhesive properties of an electrode, etching properties and a low resistivity are improved. <P>SOLUTION: The organic semiconductor element includes a carrier mobility organic semiconductor layer formed between a pair of electrodes facing each other. At least one of the pair of the electrodes includes a carrier relay layer, brought into contact with the semiconductor layer and having a work function close to the ionization potential of the semiconductor layer, and a conductor film laminated on the relay film and having a lower resistivity than that of the relay film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、キャリア移動性の有機化合物を利用し、かかる有機化合物からなる有機半導体層を備えた有機半導体素子に関する。
【0002】
【従来の技術】
ダイオードや、信号処理に必要なスイッチや増幅機能を行うトランジスタに用いられる半導体には、高いキャリア移動度や、低い暗電流や、低い駆動電圧や、複雑な素子構造など、の性能が要求されるので、シリコンに代表される無機半導体が、半導体素子の主役となっている。
【0003】
有機半導体では、その電気−光変換特性を利用した有機エレクトロルミネセンス装置が開発されている。さらに、有機半導体薄膜に電界を加えるとキャリア密度が増加するので、有機半導体薄膜上に1対の電極を設けその間に電流を流すことが可能になる。例えば、有機半導体薄膜上にソース電極及びドレイン電極を配置し、その間のゲート電極で薄膜の厚さ方向に電圧を印加し、有機半導体薄膜に沿った方向の電流をスイッチングできる。よって、有機トランジスタの研究もなされ、電気信号を利用して、接合界面(金属−有機半導体、有機半導体−有機半導体)にて、有機半導体中のキャリア(電子及び正孔)を制御する情報の伝達、処理及び記録表示などの技術に有機半導体が利用されつつある。
【0004】
図1及び図2は有機半導体薄膜を用いた有機MOS−TFTの構造のボトムコンタクト型及びトップコンタクト型の例を示す。有機MOS−TFTは、基板10上にゲート電極14、ゲート絶縁膜12、ソース電極11及びドレイン電極15、並びに有機半導体層13を備えている。ゲート電極14としてはNi、Crなどが、ゲート絶縁膜12にはSiO、SiNなど金属の酸化物や窒化物などの無機物やPMMAなどの樹脂が、有機半導体層13にはペンタセンなどが、それぞれ用いられている。また、ソース電極11及びドレイン電極15にはPd、Auなどの単層膜が用いられている。
【0005】
【発明が解決しようとする課題】
しかしながら、有機半導体素子のPd又はAu単層膜からなるソース電極及びドレイン電極においては、1)Pd、Auが王水などの非常に強い酸を用いないとウエットエッチングできないので、エッチングの際にゲート電極などの下地を傷めてしまい、電極パターニングが困難である、2)Pd、Au薄膜の下地膜への付着力が弱く素子の信頼性が低い、3)Pd、Auはそのクラーク数が小さく高価である、4)電極材料として一般に用いられるAlなどに比べPdの抵抗率が高い、など問題がいくつかあり、実用化の障害となっている。
【0006】
本発明の解決しようとする課題には、電極の付着性、エッチング性、低抵抗性が向上した有機半導体素子を提供することが一例として挙げられる。
【0007】
【課題を解決するための手段】
請求項1記載の有機半導体素子の発明は、対向する1対の電極の間に成膜されたキャリア移動性の有機半導体層を備えた有機半導体素子であって、前記1対の電極の少なくとも一方は、前記有機半導体層に接触しかつ前記有機半導体層のイオン化ポテンシャル近傍の仕事関数を有するキャリア中継膜と、前記キャリア中継膜に積層されかつ前記キャリア中継膜よりも低い抵抗率を有する伝導体膜と、を含むことを特徴とする。
【0008】
【発明の実施の形態】
本発明による有機半導体素子として有機トランジスタの実施例を図面を参照しつつ説明する。
図3は実施形態のボトムコンタクト型有機トランジスタを示す。有機トランジスタは、ガラスなどの絶縁性の基板10上に形成されたゲート電極14上に形成されたゲート絶縁膜12と、この上に形成されたペンタセンなどのキャリア移動性の有機化合物からなる有機半導体層13と、有機半導体層13と接触するように形成されたソース電極11及びドレイン電極15から構成されている。ソース電極11及びドレイン電極15の各々はキャリア中継膜11a及び15aと、キャリア中継膜に積層された伝導体膜11b及び15bとからなる。ゲート電極14は対向するソース電極11及びドレイン電極15の間の有機半導体層13に電界を印加する。
【0009】
図4は実施形態のトップコンタクト型有機トランジスタを示す。トップコンタクト型素子は、有機半導体層13が先に成膜され、その上にソース電極11及びドレイン電極15が形成されて、キャリア中継膜11a及び15aと伝導体膜11b及び15bの積層順がキャリア中継膜から伝導体膜の順となる以外、図3のボトムコンタクト型と同じ構成を有する。
【0010】
有機半導体層13は電界印加によって正孔又は電子の輸送能力を有する有機化合物からなる。有機半導体層13は、それぞれキャリア輸送能力を有する有機化合物の薄膜からなる多層構造とすることもできる。有機半導体として、キャリア移動度が大きいペンタセンの他に、アントラセン、テトラセンなどの縮合環類も用いられる。
【0011】
ゲート電極14は、ゲート絶縁膜12を介して電界を印加する場合、電極材料として一般に用いられるAl、Cu、Ni、Cr、及びそれらを含む合金などが用いられる。
ソース電極及びドレイン電極11、15の材料には、有機半導体との電荷注入障壁を低くするため、仕事関数が有機半導体のイオン化ポテンシャルに近いことが求められる。例えば、図3に示すように、ソース電極11及びドレイン電極15のそれぞれに、仕事関数が有機半導体のイオン化ポテンシャルに近くなる特性とすべく2種類以上の金属膜からなる積層膜11a及び11b、並びに15a及び15bを用いる。すなわち、ソース電極11は、有機半導体層13に接触しかつそのイオン化ポテンシャル近傍の仕事関数を有するキャリア中継膜11aと、キャリア中継膜11a上に積層されかつキャリア中継膜よりも低い抵抗率を有する伝導体膜11bと、からなる。また、ドレイン電極15も、有機半導体層13に接触しかつそのイオン化ポテンシャル近傍の仕事関数を有するキャリア中継膜15aと、キャリア中継膜15a上に積層されかつキャリア中継膜よりも低い抵抗率を有する伝導体膜15bと、からなる。
【0012】
有機半導体中のキャリア移動のためにキャリア中継膜11a及び15aの仕事関数が有機半導体のイオン化ポテンシャルに近い値である特性は特に重要である。よって、仕事関数が有機半導体のイオン化ポテンシャルに近い材料を少なくとも1つ以上含む金属膜をキャリア中継膜とし、伝導体膜11b及び15bはかかるキャリア中継膜の特性以外を補完するように、これらの積層膜を用いることが好ましい。2種層の金属膜からなる積層膜で特性を十分改善できない場合は、更に特性を改善するために、3種層以上の金属膜からなる積層膜としてもよい。なお、有機半導体層への電荷注入障壁を小さくするために、ソース電極11及びドレイン電極15のキャリア中継膜11a及び15aを有機半導体に接する側に設けるが、1対の電極の少なくとも一方が、有機半導体層に接触しかつ有機半導体層のイオン化ポテンシャル近傍の仕事関数を有するキャリア中継膜と、キャリア中継膜上に積層されかつキャリア中継膜よりも低い抵抗率を有する伝導体膜と、からなる構成としてもよい。
【0013】
キャリア中継膜11a及び15aには仕事関数が有機半導体のイオン化ポテンシャルに近い材料を少なくとも1以上含む金属、合金などの材料を用いる。キャリア中継膜に含まれる材料の仕事関数は、使用する有機半導体のイオン化ポテンシャルを中心とした±1eV以内であることが好ましく、さらに好ましくは±0.5eV以内である。
【0014】
例えば代表的な有機半導体材料であるペンタセン(イオン化ポテンシャル=5.06eV)を用いた場合、キャリア中継膜に含まれる材料の仕事関数は4.56〜5.56eVが好適であり、このような特性を満たす金属の例として、Rh、Ir、Ni、Pd、Pt、Au、As、Se、Teなどが挙げられる。キャリア中継膜にはこれらの金属の単体、もしくはこれらの金属を含む合金を用い得る。
【0015】
伝導体膜11b及び15bとしては、キャリア中継膜より低い比抵抗、微細なパターニング可能なエッチングが良好に行えるエッチング性、付着力の少なくとも一つの特性に優れる金属を用いる。伝導体膜の上に第2、第3、第4、第5金属と、順に金属膜を積層する場合でも、それぞれキャリア中継膜より低い比抵抗、エッチング性、下地(図3の場合、ゲート絶縁膜12)に対し強く膜付着する高い付着力のうち少なくとも一つの特性に優れる金属を用いる。
【0016】
比抵抗が低い金属としては、Al、Cu、Ag、Mo、W、Mg、Znなどが挙げられる。これらの中では、特に比抵抗が低いAl、Cu、Ag又はこれらを含む合金が伝導体膜11b及び15bに好適である。
容易にウエットエッチングが可能であるエッチング性の高い金属としては、りん酸を主成分とする酸に溶解するAl、Cu、Ag、Ni、Moなどや、硝酸セリウムアンモニウムを主成分とする溶液に溶解するCrなどが伝導体膜11b及び15bに好適である。表1に電極材料、その比抵抗及びその使用可能エッチャントの例を示す。
【0017】
【表1】

Figure 2004055652
付着性が高い金属としては、Cr、Mo、Ta、W、Tiなどの高融点金属が伝導体膜11b及び15bに好適である。よって、伝導体膜11b及び15bにはこれらの金属の単体、もしくはこれらの金属を含む合金を用い得る。
【0018】
キャリア中継膜11a及び15aの膜厚が厚すぎると、低抵抗性、エッチング性が損なわれてしまうため、キャリア中継膜の膜厚は1000Å以下が好ましく、さらに好ましくは500Å以下である。一方、キャリア中継膜の膜厚が薄すぎると、有機半導体層への注入障壁を低くする効果がなくなってしまう恐れがあるが、通常ごく薄い膜厚でも効果があり、有機半導体層に接するキャリア中継膜の膜厚は1Å以上、さらに好ましくは10Å以上である。
【0019】
これらソース電極11及びドレイン電極15の成膜方法としては、蒸着法、スパッタ法、CVD法など、任意の方法を用い得る。材料の使用効率、装置の簡便性を考慮するとスパッタ法が好ましい。
成膜した積層膜は所定の形状にパターニングする。パターン方法は任意の方法で構わないが、フォトエッチング法が好ましく用いられる。フォトエッチング法では、先ず、積層膜上にフォトレジストを所定の形状にパターン形成し、溶液によるエッチング(ウエットエッチング)もしくはガスによるエッチング(ドライエッチング)を行う。その後、フォトレジストを除去すれば所望の積層膜パターンが得られる。
【0020】
キャリア中継膜及び伝導体膜のエッチング性が異なる場合、積層膜を各々に最適なエッチング液もしくはエッチングガスを用い、2工程に分けてエッチングする。キャリア中継膜及び伝導体膜のエッチング性に共通性があれば、共通するエッチング液もしくはエッチングガスを用いて、1工程でエッチングできるので、好ましい。
【0021】
本発明を実施する際、ボトムコンタクト型に適用する場合と、トップコンタクト型に適用する際では、伝導体膜の選び方に若干の違いがある。ただし何れの場合にせよ、伝導体膜では比抵抗が低いこと、エッチング性のよいことが共通して必要な特性である。
図3に示すように、ボトムコンタクト型素子に本発明を適用すると、ソース電極11及びドレイン電極15の積層順は伝導体膜からキャリア中継膜の順となる。この場合、ゲート絶縁膜12に対する伝導体膜の付着性が重要となる。一方、図4に示すトップコンタクト型に本発明を適用すると、ソース電極11及びドレイン電極15の積層順は伝導体膜からキャリア中継膜の順となるので、ゲート絶縁膜12に対する伝導体膜の付着性が重要ではないが、キャリア中継膜の付着性が重要となる。
【0022】
有機半導体層のペンタセンは、高い正孔移動度を示すキャリア輸送性材料である。このペンタセン有機半導体層を用いて、図1に示すボトムコンタクト型素子を作成すると、正孔輸送性(p型)素子が実現できる。
有機半導体層におけるキャリアが正孔の場合には正孔が移動できる正孔輸送性材料または両性輸送性材料が有機半導体として必要になり、キャリアが電子の場合には電子が移動できる電子輸送材料または両性輸送性材料が必要になる。正孔輸送材料又は両性輸送材料としては、銅フタロシアニン(copper−phthalocyanine)などが、電子輸送材としてはアルミニウムキノリノール錯体(tris−8−hydoroxyqunoline aluminum)などがある。
【0023】
各積層電極の有機半導体層に接するキャリア中継膜には、キャリア輸送性有機薄膜のイオン化ポテンシャルとほぼ同じ仕事関数を有する金属を選択する。キャリアの移動は接触する材料のエネルギー障壁が異なるとその差を埋める電圧印加の必要があり、抵抗なくキャリアが移動するにはエネルギー障壁が小さいほうがよいからである。イオン化ポテンシャルは真空準位から価電子帯上端の最高被占分子軌道(HOMO)準位へと測定したエネルギーである。キャリア中継膜には金属及び金属酸化物材料が使用できるが、これらについての仕事関数は真空準位(0eV)からフェルミ準位へと測定したエネルギーである。なお、正孔輸送性材料に電界をかけて陽イオン化するのに必要な仕事はイオン化ポテンシャルエネルギー(ionized potential energy)で、電子輸送性材料に電界をかけて陰イオン化するのに必要な仕事は電子親和力(electron affinity energy)である。
【0024】
本実施形態の有機トランジスタで使用するキャリア中継膜材料で仕事関数が大きなものには、例えば、4.51eVを越える金、白金、パラジウム、セレン、ニッケルなどの金属、インジウムすず酸化物(以下、ITOという)、イリジウム亜鉛酸化物、酸化亜鉛やこれらの合金、あるいは、酸化錫、ヨウ化銅などがある。
【0025】
一方、仕事関数が小さなキャリア中継膜材料として、例えば、4.51eV以下の銀、鉛、錫、アルミニウム、カルシウム、インジウム、クロムなどの金属、リチウムなどのアルカリ金属、マグネシウムなどのアルカリ土類金属、またはこれらの合金、あるいは、アルカリ金属化合物、アルカリ土類金属化合物などが用いられる。表2に選択使用され得る物質の仕事関数の例を示す。表のセル中、上は元素記号、下は仕事関数を示す。
【0026】
【表2】
Figure 2004055652
[素子の作製]−ボトムコンタクト型素子と比較のため比較素子とを作製した。全ての実施例及び比較例においてソース電極及びドレイン電極それぞれの積層膜の合計膜厚を2000Åに統一した。
【0027】
[実施例1]−以下のような手順で、図3に示すようなボトムコンタクト型の有機MOS−TFTを作製した。
(1)[ゲート電極の形成]−ガラス基板上にCrを膜厚1000Åでスパッタ法により成膜した。次に東京応化製フォトレジストAZ6112のマスクをCr膜上にパターン形成した。この基板を硝酸セリウムアンモニウムと過塩素酸を含む水溶液中に浸漬し、レジストマスクに覆われていない不要な部分のCrを溶解除去した。最後に基板をアセトン中に浸漬しレジストマスクを除去、所定のゲート電極パターンを基板上に得た。
【0028】
(2)[ゲート絶縁膜の形成]−得られた基板のゲート電極パターン上に、SiOを膜厚1000Åでスパッタ法により成膜した。次に東京応化製フォトレジストAZ6112のマスクをSiO膜上にパターン形成した。この基板をCF4ガスによるドライエッチングにより、レジストマスクに覆われていない不要な部分のSiOを除去した。最後にO2プラズマによりレジストマスクを除去して、SiOゲート絶縁膜の所定パターンを基板上に得た。
【0029】
(3)[ソース電極及びドレイン電極の形成]−得られた基板のゲート絶縁膜パターン上に、日本ゼオン製フォトレジストZPN1100のマスクをパターン形成した。次に伝導体膜としてAlを膜厚1500Åで、続いてキャリア中継膜としてPdを膜厚500Åでスパッタ法により成膜した。更にアセトンでマスクとマスク上の金属膜をリフトオフし、ソース電極及びドレイン電極の所定パターンを得た。ソース電極及びドレイン電極のパターンにより確定されるチャネル長は20μm、チャネル幅は100μmとした。
【0030】
(4)[有機半導体層の形成]−得られた基板の電極パターン上に、ペンタセンを膜厚500Åで、基板を60℃に加熱し、マスクを用いた所定パターンで抵抗加熱蒸着法により有機半導体層を成膜し、有機MOS−TFT素子を完成させた。
[実施例2]−実施例1の(3)で伝導体層としてAlを膜厚1800Åで、キャリア中継膜としてPdの膜厚を200Åとしたこと以外は、実施例1と全く同様にして有機MOS−TFT素子を完成させた。
【0031】
[実施例3]−実施例1の(3)で付着性を向上させる第3金属膜としてCrを膜厚500Åで、続いて伝導体膜としてAlを膜厚1300Åで、更にキャリア中継膜としてPdを膜厚200Åでスパッタ法により成膜し、3層の積層膜からなるソース電極及びドレイン電極としたこと以外は、実施例1と全く同様にして有機MOS−TFT素子を完成させた。
【0032】
[比較例1]−実施例1の(3)でソース電極及びドレイン電極としてPdを膜厚2000Åでスパッタし単層膜で用いたこと以外は、実施例1と全く同様にして有機MOS−TFT素子を完成させた。
[実施例4]−伝導体膜としてAlを膜厚1800Åで、キャリア中継膜としてNiを膜厚200Åとし、素子を作製した。AlとNiはエッチング性に共通点があるため、積層膜はフォトエッチング法でパターニングした。具体的には、実施例1の(3)を以下のようにした以外は、実施例1と全く同様にして有機MOS−TFT素子を完成させた。
【0033】
(3)[ソース電極及びドレイン電極の形成]−得られた基板のゲート絶縁膜パターン上に、伝導体膜としてAlを膜厚1800Åで、続いてキャリア中継膜としてNiを膜厚200Åで、スパッタ法により成膜した。次に東京応化製フォトレジストAZ6112のマスクをAl/Niの積層膜上にパターン形成した。この基板をリン酸、硝酸からなる混酸中に浸漬し、レジストマスクに覆われていない不要な部分のAl/Niを溶解除去した。最後に基板をアセトン中に浸漬しレジストマスクを除去、ソース電極及びドレイン電極の所定パターンを得た。ソース電極及びドレイン電極のパターンにより確定されるチャネル長は20μm、チャネル幅は100μmとした。
【0034】
[比較例2]−実施例1の(3)でソース電極及びドレイン電極としてNiを膜厚2000Åでスパッタし単層膜で用いたこと以外は、実施例3と全く同様にして有機MOS−TFT素子を完成させた。
[実施例5]−以下のような手順で、図4に示すようなトップコンタクト型の有機MOS−TFTを作製した。
【0035】
(1)[ゲート電極の形成]−ガラス基板上にCrを膜厚1000Åでスパッタ法により成膜した。次に東京応化製フォトレジストAZ6112のマスクをCr膜上にパターン形成した。この基板を硝酸セリウムアンモニウムと過塩素酸を含む水溶液中に浸漬し、レジストマスクに覆われていない不要な部分のCrを溶解除去した。最後に基板をアセトン中に浸漬しレジストマスクを除去、所定のゲート電極パターンを得た。
【0036】
(2)[ゲート絶縁膜の形成]−得られた基板のゲート電極パターン上に、SiOを膜厚1000Åでスパッタ法により成膜した。次に東京応化製フォトレジストAZ6112のマスクをSiO膜上にパターン形成した。この基板をCFガスによるドライエッチングにより、レジストマスクに覆われていない不要な部分のSiOを除去した。最後にO2プラズマによりレジストマスクを除去、SiOゲート絶縁膜の所定パターンを得た。
【0037】
(3)[有機半導体層の形成]−得られた基板のゲート絶縁膜パターン上に、ペンタセンを膜厚500Åで、基板を60℃に加熱し、マスクを用いた抵抗加熱蒸着法により有機半導体層を形成した。
(4)[ソース電極及びドレイン電極の形成]−得られた基板の有機半導体層パターン上に、マスクを用いて、キャリア中継膜としてPdを膜厚200Åで、続いて伝導体膜としてAlを膜厚1800Åで、それぞれ抵抗加熱蒸着法により形成し、ソース電極及びドレイン電極の所定パターンを得た。マスクによりパターニングされたソース電極及びドレイン電極のパターンにより確定されるチャネル長は20μm、チャネル幅は100μmとした。以上のようにして、有機MOS−TFT素子を完成させた。
【0038】
[実施例6]−実施例5の(4)でキャリア中継膜であるPdの膜厚を10Åで、伝導体膜であるAlの膜厚を1990Åとしたこと以外は、実施例5と全く同様にして有機MOS−TFTを完成させた。
[比較例3]−実施例5の(4)でソース電極及びドレイン電極としてPdを膜厚2000Åでマスク蒸着し単層膜で用いたこと以外は、実施例5と全く同様にして有機MOS−TFT素子を完成させた。
【0039】
[ソース電極及びドレイン電極の付着性]−上記実施例1〜4並びに比較例1及び2で素子を形成する際、SiOゲート絶縁膜とソース電極及びドレイン電極とのスパッタ成膜のみを行ったサンプルを同時に作製し、下地のSiOゲート絶縁膜に対する膜の付着性を評価した。付着性の評価は以下のように行った。
カッターナイフを用いSiO膜に1mmピッチで水平垂直それぞれ11本の切り込みを入れ、10×10=100個のマス目を作った。
【0040】
マス目上に粘着テープを貼り、上から十分に押さえた。
テープを勢いよく剥がし、剥がれずに残ったマス目の数を数えた。表3に付着性評価の結果を示す。(表3中の積層膜材料の欄は、伝導体膜材料/キャリア中継膜材料を示し、付着性欄にて、100個が満点で、数が大きいほど付着性が高いことになる。)
【0041】
【表3】
Figure 2004055652
何れも、実施例の付着性は比較例に比べ同等以上であることがわかった。特にPd単層膜の場合(比較例1)と比較して、実施例の付着性の向上が著しかった。
【0042】
[ソース電極及びドレイン電極の積層膜の抵抗率]−上記実施例、比較例で素子を形成する際、SiOゲート絶縁膜とソース電極及びドレイン電極のスパッタ形成のみを行ったサンプルを同時に作製し、膜の比抵抗を評価した。比抵抗測定は、厚さ2000Åにおけるシート抵抗(Ω/□)を四探針法にて行った。表3に比抵抗の測定結果を示す。何れも、金属単層膜に比べ、本発明による積層膜の方が低抵抗であることがわかった。
【0043】
[有機MOS−TFT素子の電気特性]−各実施例、比較例で作製した有機MOS−TFTについて、ゲート電極電圧一定のもと、ソース電極11及びドレイン電極15間の電圧を変化させてソース電極及びドレイン電極間の電流を測定した。測定結果を表3、図5、図6及び図7に示す。
表3、図5、図6及び図7に示すように、ソース電極11及びドレイン電極15にAl/Pd積層膜とCr/Al/Pd積層膜を用いた素子は、Pd単層膜を用いた素子に比べほぼ同等な特性を示すことがわかった。また、ソース電極及びドレイン電極にAl/Ni積層膜を用いた素子は、Ni単層膜を用いた素子に比べほぼ同等な特性を示すことがわかった。
【0044】
本発明による素子は、従来の有機半導体に仕事関数が近い金属単体をソース電極及びドレイン電極に用いた素子に比べ素子特性はほぼ同等であるにもかかわらず、ソース電極及びドレイン電極の低抵抗性、付着性の少なくとも1つ以上の特性が向上することがわかった。
図8は他の実施形態のボトムコンタクト型有機トランジスタを示す。本発明をボトムコンタクト型の素子に適用する際、図8のようにソース電極11及びドレイン電極15のキャリア中継膜11a及び15aを極薄の島状の状態にし、伝導体膜11b及び15bをエッチング性のよいものにすれば、ソース電極及びドレイン電極のパターニングを容易に行える。キャリア中継膜11a及び15aが島状になる膜厚は、材料、成膜法により異なるが、200Å以下が好ましい。
【0045】
キャリア中継膜11a及び15aが島状構造である場合、各々伝導体膜/キャリア中継膜からなるソース電極11及びドレイン電極15のエッチングは、伝導体膜のエッチング液又はエッチングガスのみで行える。キャリア中継膜が島状構造であるため、島状キャリア中継膜の隙間からエッチング液(エッチングガス)が浸入し、伝導体膜をエッチングするからである。その結果、キャリア中継膜は下地から浮いた状態となり、剥離してしまう。このように一工程でエッチングが完了する。
【0046】
上記実施例では、本発明をソース電極及びドレイン電極の両電極に適用したが、ソース電極とドレイン電極の何れか一方の電極のみに適用することもでき、3極の有機トランジスタの他に2極の有機ダイオードの電極にも適応でき、さらに図3及び図4に示す以外にも、ソース電極から有機半導体、ドレイン電極の経路で電流を流す、任意の構造の有機半導体素子に適用できる。
【0047】
例えば、上記実施例ではTFT単体の作製における実施例を示したが、本発明によるTFTをLCD、ELなど表示装置の画素の駆動に用いることもできる。具体的には、少なくとも本発明による有機トランジスタを1つ以上、コンデンサなど必要な素子、画素電極などを共通の基板上に作製すれば、本発明による有機MOS−TFTを用いたアクティブ駆動型の表示装置を実現できる。例として、図9は本発明をTFT−LCD表示装置に適用した場合の表示装置の基板構造を示す。表示装置において、キャリア中継膜11a及び伝導体膜11bからなるソース電極11がLCDの画素電極20に接続され、有機半導体層13が保護膜21で被覆されている。
【0048】
さらに、図10に示すように、本発明を有機トランジスタとして縦型構造のSIT(静電誘導形トランジスタ)に適用できる。積層膜厚方向の電流をスイッチングできるSITは、各々がキャリア中継膜及び伝導体膜の積層膜からなるソース電極11及びドレイン電極15のキャリア中継膜11a及び15aで有機半導体層13を挟み、有機半導体層13の厚さ方向の中間に包埋された多孔性のゲート電極14を有した3端子構造を有する。そのゲート電極14に電圧を印加したとき、ゲート電極周りの有機半導体に生じる空乏層によってドレイン及びソース間の電流を制御できる。
【0049】
またさらに、図11に示すように、有機トランジスタは、互いに積層されたゲート電極14、ソース電極11及びドレイン電極15から構成されていればよく、図3とは逆の順序すなわち、基板10上に、伝導体膜11b及び15b並びにキャリア中継膜11a及び15aからなるソース電極11及びドレイン電極15を形成し、有機半導体層13、ゲート絶縁膜12、並びにゲート電極14の順で積層して形成されてもよい。
【0050】
同様に、図12に示すように、有機トランジスタは、有機半導体層13を挟んで、伝導体膜11b及び15b並びにキャリア中継膜11a及び15aからなるソース電極11及びドレイン電極15を形成し、ゲート絶縁膜12を介してゲート電極14を離間させるように形成されてもよい。
このように本実施形態による有機半導体素子においては、キャリア移動にかかわる電極を、有機半導体のイオン化ポテンシャルに近い仕事関数を持つキャリア中継膜とキャリア中継膜よりも付着性、エッチング性、抵抗の低さのうち少なくとも一つの特性が優れた少なくとも1つの伝導体膜とからなる積層膜で構成したことにより、有機半導体への電荷の注入は障壁の小さいキャリア中継膜から行われるので、金属単体層を用いた場合と同等で素子特性がよく、さらに、金属単体層で電極を形成した場合に比べ、付着性、エッチング性、比抵抗の低さのうち少なくとも一つの特性に優れる有機半導体が実現できる。よって、電極材料の組み合わせの多様化を改善できる。
【図面の簡単な説明】
【図1】有機トランジスタを示す断面図。
【図2】有機トランジスタを示す断面図。
【図3】本発明による実施形態の有機トランジスタを示す断面図。
【図4】本発明による他の実施形態の有機トランジスタを示す断面図。
【図5】本発明による有機トランジスタのソースドレイン電極間電流電圧特性を示すグラフ。
【図6】本発明による有機トランジスタのソースドレイン電極間電流電圧特性を示すグラフ。
【図7】本発明による有機トランジスタのソースドレイン電極間電流電圧特性を示すグラフ。
【図8】本発明による他の実施形態の有機トランジスタを示す断面図。
【図9】本発明による他の実施形態の有機トランジスタ発明をTFT−LCD表示装置に適用した場合の表示装置の基板構造を示す断面図。
【図10】本発明による他の実施形態の有機トランジスタを示す断面図。
【図11】本発明による他の実施形態の有機トランジスタを示す断面図。
【図12】本発明による他の実施形態の有機トランジスタを示す断面図。
【符号の説明】
10 基板
11 ソース電極
11a キャリア中継膜
11b 伝導体膜
12 ゲート絶縁膜
13 有機半導体層
14 ゲート電極
15 ドレイン電極
15a キャリア中継膜
15b 伝導体膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic semiconductor device using an organic compound having carrier mobility and including an organic semiconductor layer made of such an organic compound.
[0002]
[Prior art]
Semiconductors used for diodes and transistors for performing switches and amplification functions required for signal processing require performance such as high carrier mobility, low dark current, low drive voltage, and complicated element structures. Therefore, an inorganic semiconductor represented by silicon plays a leading role in a semiconductor element.
[0003]
With respect to organic semiconductors, organic electroluminescent devices utilizing their electro-optical conversion characteristics have been developed. Further, when an electric field is applied to the organic semiconductor thin film, the carrier density increases, so that it becomes possible to provide a pair of electrodes on the organic semiconductor thin film and allow a current to flow between them. For example, a source electrode and a drain electrode are arranged on an organic semiconductor thin film, and a voltage is applied in a thickness direction of the thin film by a gate electrode between the source electrode and the drain electrode, so that a current along the organic semiconductor thin film can be switched. Therefore, research on organic transistors has also been conducted, and transmission of information for controlling carriers (electrons and holes) in an organic semiconductor at a junction interface (metal-organic semiconductor, organic semiconductor-organic semiconductor) using electric signals. Organic semiconductors are being used for technologies such as processing, recording and display.
[0004]
1 and 2 show examples of a bottom contact type and a top contact type of an organic MOS-TFT structure using an organic semiconductor thin film. The organic MOS-TFT includes a gate electrode 14, a gate insulating film 12, a source electrode 11 and a drain electrode 15, and an organic semiconductor layer 13 on a substrate 10. The gate electrode 14 is made of Ni, Cr, or the like, and the gate insulating film 12 is made of SiO. 2 Inorganic substances such as metal oxides and nitrides such as SiN and resins such as PMMA, and pentacene and the like for the organic semiconductor layer 13 are used. In addition, a single layer film of Pd, Au, or the like is used for the source electrode 11 and the drain electrode 15.
[0005]
[Problems to be solved by the invention]
However, in the case of a source electrode and a drain electrode composed of a Pd or Au single layer film of an organic semiconductor element, 1) Pd and Au cannot be wet-etched unless a very strong acid such as aqua regia is used. Electrode patterning is difficult due to damage to the base such as electrodes. 2) Adhesion of Pd and Au thin films to the base film is weak and device reliability is low. 3) Pd and Au have small Clark numbers and are expensive. 4) Pd has a higher resistivity than Al or the like generally used as an electrode material, which is an obstacle to practical application.
[0006]
One of the problems to be solved by the present invention is to provide an organic semiconductor element having improved electrode adhesion, etching properties, and low resistance.
[0007]
[Means for Solving the Problems]
The invention of an organic semiconductor device according to claim 1 is an organic semiconductor device comprising a carrier-movable organic semiconductor layer formed between a pair of opposed electrodes, wherein at least one of the pair of electrodes is provided. A carrier relay film in contact with the organic semiconductor layer and having a work function near the ionization potential of the organic semiconductor layer, and a conductor film laminated on the carrier relay film and having a lower resistivity than the carrier relay film And characterized in that:
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an organic transistor as an organic semiconductor device according to the present invention will be described with reference to the drawings.
FIG. 3 shows a bottom-contact type organic transistor according to the embodiment. The organic transistor is an organic semiconductor comprising a gate insulating film 12 formed on a gate electrode 14 formed on an insulating substrate 10 such as glass, and a carrier-mobile organic compound such as pentacene formed thereon. It comprises a layer 13, a source electrode 11 and a drain electrode 15 formed so as to be in contact with the organic semiconductor layer 13. Each of the source electrode 11 and the drain electrode 15 is composed of carrier relay films 11a and 15a, and conductor films 11b and 15b laminated on the carrier relay films. The gate electrode 14 applies an electric field to the organic semiconductor layer 13 between the opposed source electrode 11 and drain electrode 15.
[0009]
FIG. 4 shows a top-contact type organic transistor of the embodiment. In the top contact type element, the organic semiconductor layer 13 is formed first, the source electrode 11 and the drain electrode 15 are formed thereon, and the carrier relay films 11a and 15a and the conductor films 11b and 15b are stacked in the order of carrier. It has the same configuration as the bottom contact type of FIG. 3 except that the order is from the relay film to the conductor film.
[0010]
The organic semiconductor layer 13 is made of an organic compound having a hole or electron transport ability by applying an electric field. The organic semiconductor layer 13 may have a multilayer structure composed of a thin film of an organic compound having a carrier transporting ability. As an organic semiconductor, condensed rings such as anthracene and tetracene are used in addition to pentacene having high carrier mobility.
[0011]
When an electric field is applied to the gate electrode 14 through the gate insulating film 12, Al, Cu, Ni, Cr generally used as an electrode material, an alloy containing them, or the like is used.
The material of the source and drain electrodes 11 and 15 is required to have a work function close to the ionization potential of the organic semiconductor in order to lower the charge injection barrier with the organic semiconductor. For example, as shown in FIG. 3, each of the source electrode 11 and the drain electrode 15 has laminated films 11a and 11b made of two or more types of metal films so that the work function is close to the ionization potential of the organic semiconductor, and 15a and 15b are used. In other words, the source electrode 11 is in contact with the organic semiconductor layer 13 and has a work function near the ionization potential of the carrier relay film 11a, and a conductive film laminated on the carrier relay film 11a and having a lower resistivity than the carrier relay film. And a body film 11b. Also, the drain electrode 15 is in contact with the organic semiconductor layer 13 and has a work function near the ionization potential of the carrier relay film 15a, and a conductive film laminated on the carrier relay film 15a and having a lower resistivity than the carrier relay film. And a body film 15b.
[0012]
It is particularly important that the work function of the carrier relay films 11a and 15a is close to the ionization potential of the organic semiconductor due to carrier movement in the organic semiconductor. Therefore, a metal film containing at least one material having a work function close to the ionization potential of the organic semiconductor is used as the carrier relay film, and the conductor films 11b and 15b are stacked so as to complement characteristics other than the characteristics of the carrier relay film. Preferably, a membrane is used. If the characteristics cannot be sufficiently improved with a laminated film composed of two types of metal films, a laminated film composed of three or more types of metal films may be used in order to further improve the characteristics. Note that, in order to reduce the barrier against charge injection into the organic semiconductor layer, the carrier relay films 11a and 15a of the source electrode 11 and the drain electrode 15 are provided on the side in contact with the organic semiconductor. A carrier relay film that is in contact with the semiconductor layer and has a work function near the ionization potential of the organic semiconductor layer, and a conductor film that is stacked on the carrier relay film and has a lower resistivity than the carrier relay film. Is also good.
[0013]
For the carrier relay films 11a and 15a, a material such as a metal or an alloy containing at least one material having a work function close to the ionization potential of the organic semiconductor is used. The work function of the material contained in the carrier relay film is preferably within ± 1 eV around the ionization potential of the organic semiconductor used, and more preferably within ± 0.5 eV.
[0014]
For example, when pentacene (ionization potential = 5.06 eV), which is a typical organic semiconductor material, is used, the work function of the material included in the carrier relay film is preferably 4.56 to 5.56 eV. Examples of metals satisfying the conditions include Rh, Ir, Ni, Pd, Pt, Au, As, Se, and Te. A simple substance of these metals or an alloy containing these metals can be used for the carrier relay film.
[0015]
As the conductor films 11b and 15b, use is made of a metal which has at least one of the following properties: specific resistance lower than that of the carrier relay film; Even when the second, third, fourth, and fifth metal films are sequentially laminated on the conductor film, the specific resistance, the etching property, and the base (lower than the gate insulating film in FIG. A metal excellent in at least one of the high adhesive forces that strongly adheres to the film 12) is used.
[0016]
Examples of the metal having a low specific resistance include Al, Cu, Ag, Mo, W, Mg, and Zn. Among these, Al, Cu, Ag, or an alloy containing them, which has particularly low specific resistance, is suitable for the conductor films 11b and 15b.
Metals with high etching properties that can be easily wet-etched include Al, Cu, Ag, Ni, Mo, etc., which dissolve in acids containing phosphoric acid as a main component, and metals that dissolve in cerium ammonium nitrate as a main component. Cr or the like is suitable for the conductor films 11b and 15b. Table 1 shows examples of electrode materials, their specific resistances, and their usable etchants.
[0017]
[Table 1]
Figure 2004055652
As the metal having high adhesiveness, a high melting point metal such as Cr, Mo, Ta, W, and Ti is suitable for the conductor films 11b and 15b. Therefore, the conductor films 11b and 15b may be made of a simple substance of these metals or an alloy containing these metals.
[0018]
If the thickness of the carrier relay films 11a and 15a is too large, low resistance and etching properties are impaired. Therefore, the thickness of the carrier relay film is preferably 1000 ° or less, more preferably 500 ° or less. On the other hand, if the thickness of the carrier relay film is too thin, the effect of lowering the injection barrier into the organic semiconductor layer may be lost. The thickness of the film is 1 ° or more, more preferably 10 ° or more.
[0019]
As a method of forming the source electrode 11 and the drain electrode 15, any method such as an evaporation method, a sputtering method, and a CVD method can be used. The sputtering method is preferable in consideration of the material use efficiency and the simplicity of the apparatus.
The formed laminated film is patterned into a predetermined shape. The patterning method may be any method, but a photo-etching method is preferably used. In the photo-etching method, first, a photoresist is patterned into a predetermined shape on a laminated film, and etching with a solution (wet etching) or etching with a gas (dry etching) is performed. After that, if the photoresist is removed, a desired laminated film pattern can be obtained.
[0020]
When the etching properties of the carrier relay film and the conductor film are different, the laminated film is etched in two steps by using an optimum etching solution or etching gas. It is preferable that the carrier relay film and the conductor film have a common etching property because they can be etched in one step using a common etching solution or etching gas.
[0021]
When the present invention is implemented, there is a slight difference in the method of selecting a conductor film between the case of applying to the bottom contact type and the case of applying to the top contact type. However, in any case, the conductor film must have low specific resistance and good etching properties.
As shown in FIG. 3, when the present invention is applied to the bottom contact type device, the stacking order of the source electrode 11 and the drain electrode 15 is from the conductor film to the carrier relay film. In this case, the adhesion of the conductor film to the gate insulating film 12 is important. On the other hand, when the present invention is applied to the top contact type shown in FIG. 4, the order of lamination of the source electrode 11 and the drain electrode 15 is from the conductor film to the carrier relay film. Although the property is not important, the adhesion of the carrier relay film is important.
[0022]
Pentacene of the organic semiconductor layer is a carrier-transporting material exhibiting high hole mobility. When the bottom contact type element shown in FIG. 1 is formed using this pentacene organic semiconductor layer, a hole transporting (p-type) element can be realized.
When the carrier in the organic semiconductor layer is a hole, a hole transporting material or an amphoteric transporting material capable of moving holes is required as an organic semiconductor, and when the carrier is an electron, an electron transporting material capable of moving electrons or An amphoteric transportable material is required. Examples of the hole transporting material or amphoteric transporting material include copper phthalocyanine and the like, and examples of the electron transporting material include aluminum quinolinol complex (tris-8-hydroxyquinoline aluminum).
[0023]
For the carrier relay film in contact with the organic semiconductor layer of each laminated electrode, a metal having a work function substantially equal to the ionization potential of the carrier transporting organic thin film is selected. If carriers have different energy barriers to move, it is necessary to apply a voltage to fill the difference, and the smaller the energy barrier is, the better the carriers move without resistance. The ionization potential is the energy measured from the vacuum level to the highest occupied molecular orbital (HOMO) level at the top of the valence band. Metal and metal oxide materials can be used for the carrier relay film, and the work function of these materials is the energy measured from the vacuum level (0 eV) to the Fermi level. The work required to apply an electric field to the hole transporting material to cationize is ionized potential energy, and the work required to apply an electric field to the electron transporting material to anionize is electron. Affinity (electron affinity energy).
[0024]
The carrier relay film material having a large work function used in the organic transistor of the present embodiment includes, for example, metals such as gold, platinum, palladium, selenium, and nickel exceeding 4.51 eV, and indium tin oxide (hereinafter, ITO) Iridium zinc oxide, zinc oxide and alloys thereof, or tin oxide and copper iodide.
[0025]
On the other hand, as a carrier relay film material having a small work function, for example, metals such as silver, lead, tin, aluminum, calcium, indium and chromium of 4.51 eV or less, alkali metals such as lithium, alkaline earth metals such as magnesium, Alternatively, an alloy thereof, an alkali metal compound, an alkaline earth metal compound, or the like is used. Table 2 shows examples of work functions of substances that can be selectively used. In the cells of the table, the upper part shows the element symbol and the lower part shows the work function.
[0026]
[Table 2]
Figure 2004055652
[Production of Element]-A comparative element was produced for comparison with a bottom contact type element. In all of the examples and comparative examples, the total thickness of the stacked films of the source electrode and the drain electrode was unified to 2000 °.
[0027]
Example 1 A bottom-contact type organic MOS-TFT as shown in FIG. 3 was manufactured by the following procedure.
(1) [Formation of gate electrode]-A Cr film was formed on a glass substrate to a thickness of 1000 mm by a sputtering method. Next, a mask of a photoresist AZ6112 manufactured by Tokyo Ohka was patterned on the Cr film. This substrate was immersed in an aqueous solution containing cerium ammonium nitrate and perchloric acid to dissolve and remove unnecessary portions of Cr not covered with the resist mask. Finally, the substrate was immersed in acetone to remove the resist mask, and a predetermined gate electrode pattern was obtained on the substrate.
[0028]
(2) [Formation of gate insulating film]-SiO 2 was formed on the gate electrode pattern of the obtained substrate. 2 Was formed to a thickness of 1000 ° by a sputtering method. Next, the mask of the photoresist AZ6112 manufactured by Tokyo Ohka was changed to SiO 2 2 A pattern was formed on the film. Unnecessary portions of the substrate which are not covered with the resist mask are subjected to dry etching using CF4 gas. 2 Was removed. Finally, the resist mask is removed by O2 plasma and SiO 2 is removed. 2 A predetermined pattern of the gate insulating film was obtained on the substrate.
[0029]
(3) [Formation of source electrode and drain electrode]-A mask of a photoresist ZPN1100 manufactured by Zeon Corporation was pattern-formed on the gate insulating film pattern of the obtained substrate. Next, an Al film having a thickness of 1500 ° was formed as a conductor film, and a Pd film having a thickness of 500 ° was formed as a carrier relay film by sputtering. Further, the mask and the metal film on the mask were lifted off with acetone to obtain predetermined patterns of a source electrode and a drain electrode. The channel length determined by the pattern of the source electrode and the drain electrode was 20 μm, and the channel width was 100 μm.
[0030]
(4) [Formation of organic semiconductor layer] -On the electrode pattern of the obtained substrate, pentacene was heated to 60 ° C. with a film thickness of 500 ° C., and the organic semiconductor was formed by a resistance heating evaporation method in a predetermined pattern using a mask. Layers were formed to complete an organic MOS-TFT device.
[Example 2]-The organic layer was formed in exactly the same manner as in Example 1 except that the thickness of the conductor layer was changed to 1800 伝 導 and the thickness of the carrier relay film was changed to 200Å in (3) of Example 1. The MOS-TFT device was completed.
[0031]
[Embodiment 3]-The third metal film for improving the adhesion in the embodiment (3) is made of Cr with a thickness of 500 °, followed by Al as a conductor film with a thickness of 1300 °, and Pd as a carrier relay film. Was formed in a thickness of 200 ° by a sputtering method, and an organic MOS-TFT device was completed in exactly the same manner as in Example 1 except that the source electrode and the drain electrode were formed of a three-layered film.
[0032]
[Comparative Example 1]-Organic MOS-TFT was performed in exactly the same manner as in Example 1 except that Pd was used as a source electrode and a drain electrode in a thickness of 2000 ° and used as a single layer film in (3) of Example 1. The device was completed.
[Example 4]-An element was manufactured by forming Al as a conductor film with a thickness of 1800Å and Ni as a carrier relay film with a thickness of 200Å. Since Al and Ni have a common etching property, the laminated film was patterned by photoetching. Specifically, an organic MOS-TFT device was completed in exactly the same manner as in Example 1 except that (3) of Example 1 was changed as follows.
[0033]
(3) [Formation of source electrode and drain electrode]-Sputtering Al on the gate insulating film pattern of the obtained substrate at a thickness of 1800 と し て as a conductor film, followed by Ni at a thickness of 200Å as a carrier relay film. The film was formed by the method. Next, a mask of a photoresist AZ6112 manufactured by Tokyo Ohka was patterned on the Al / Ni laminated film. This substrate was immersed in a mixed acid composed of phosphoric acid and nitric acid to dissolve and remove unnecessary portions of Al / Ni not covered with the resist mask. Finally, the substrate was immersed in acetone to remove the resist mask, and a predetermined pattern of a source electrode and a drain electrode was obtained. The channel length determined by the pattern of the source electrode and the drain electrode was 20 μm, and the channel width was 100 μm.
[0034]
[Comparative Example 2]-Organic MOS-TFT was performed in exactly the same manner as in Example 3 except that Ni was sputtered to a thickness of 2000 ° as a source electrode and a drain electrode and used as a single layer film in (3) of Example 1. The device was completed.
Example 5 A top-contact type organic MOS-TFT as shown in FIG. 4 was manufactured by the following procedure.
[0035]
(1) [Formation of gate electrode]-A Cr film was formed on a glass substrate to a thickness of 1000 mm by a sputtering method. Next, a mask of a photoresist AZ6112 manufactured by Tokyo Ohka was patterned on the Cr film. This substrate was immersed in an aqueous solution containing cerium ammonium nitrate and perchloric acid to dissolve and remove unnecessary portions of Cr not covered with the resist mask. Finally, the substrate was immersed in acetone to remove the resist mask, thereby obtaining a predetermined gate electrode pattern.
[0036]
(2) [Formation of gate insulating film]-SiO 2 was formed on the gate electrode pattern of the obtained substrate. 2 Was formed to a thickness of 1000 ° by a sputtering method. Next, the mask of the photoresist AZ6112 manufactured by Tokyo Ohka was changed to SiO 2 2 A pattern was formed on the film. Unnecessary portions of the substrate which are not covered with the resist mask are subjected to dry etching using CF gas. 2 Was removed. Finally, the resist mask is removed by O2 plasma, SiO 2 2 A predetermined pattern of the gate insulating film was obtained.
[0037]
(3) [Formation of organic semiconductor layer]-On the gate insulating film pattern of the obtained substrate, pentacene is heated to a temperature of 60 ° C at a thickness of 500 ° C, and the organic semiconductor layer is formed by resistance heating evaporation using a mask. Was formed.
(4) [Formation of source electrode and drain electrode] -Pd having a thickness of 200 mm as a carrier relay film and a film of Al as a conductor film were formed on the organic semiconductor layer pattern of the obtained substrate using a mask. Each was formed by a resistance heating evaporation method at a thickness of 1800 ° to obtain a predetermined pattern of a source electrode and a drain electrode. The channel length determined by the pattern of the source electrode and the drain electrode patterned by the mask was 20 μm, and the channel width was 100 μm. As described above, the organic MOS-TFT device was completed.
[0038]
[Example 6]-Exactly the same as Example 5 except that in (4) of Example 5, the thickness of Pd as the carrier relay film was set to 10 ° and the thickness of Al as the conductor film was set to 1990 °. Thus, an organic MOS-TFT was completed.
[Comparative Example 3]-An organic MOS transistor was manufactured in exactly the same manner as in Example 5 except that Pd was used as a source electrode and a drain electrode in a thickness of 2000 mm and used as a single layer film in (4) of Example 5- The TFT element was completed.
[0039]
[Adhesiveness of Source Electrode and Drain Electrode] When forming devices in Examples 1 to 4 and Comparative Examples 1 and 2, the SiO 2 A sample in which only a gate insulating film and a source electrode and a drain electrode were formed by sputtering was simultaneously produced, and a SiO 2 underlayer was formed. 2 The adhesion of the film to the gate insulating film was evaluated. The evaluation of adhesion was performed as follows.
SiO using a cutter knife 2 Eleven horizontal and vertical cuts were made in the film at a pitch of 1 mm to make 10 × 10 = 100 squares.
[0040]
Adhesive tape was stuck on the cells and pressed down from above.
The tape was vigorously peeled off, and the number of squares remaining without peeling was counted. Table 3 shows the results of the adhesion evaluation. (In the column of the laminated film material in Table 3, the conductor film material / the carrier relay film material is shown. In the adhesiveness column, 100 is a perfect score, and the larger the number, the higher the adhesiveness.)
[0041]
[Table 3]
Figure 2004055652
In each case, it was found that the adhesiveness of the example was equal to or higher than that of the comparative example. In particular, as compared with the case of the Pd single layer film (Comparative Example 1), the improvement of the adhesion of the example was remarkable.
[0042]
[Resistance of Stacked Film of Source Electrode and Drain Electrode] In forming an element in the above Examples and Comparative Examples, 2 A sample in which only the gate insulating film and the source electrode and the drain electrode were formed by sputtering was simultaneously manufactured, and the specific resistance of the film was evaluated. The specific resistance was measured by a four-probe method using a sheet resistance (Ω / □) at a thickness of 2000 mm. Table 3 shows the measurement results of the specific resistance. In each case, it was found that the laminated film according to the present invention had lower resistance than the metal single layer film.
[0043]
[Electrical characteristics of organic MOS-TFT element]-With respect to the organic MOS-TFT manufactured in each of Examples and Comparative Examples, the voltage between the source electrode 11 and the drain electrode 15 was changed while the gate electrode voltage was constant. And the current between the drain electrodes was measured. The measurement results are shown in Table 3, FIG. 5, FIG. 6, and FIG.
As shown in Table 3, FIG. 5, FIG. 6, and FIG. 7, the element using the Al / Pd laminated film and the Cr / Al / Pd laminated film for the source electrode 11 and the drain electrode 15 used the Pd single layer film. It was found that the device exhibited almost the same characteristics as the device. In addition, it was found that the element using the Al / Ni laminated film for the source electrode and the drain electrode exhibited almost the same characteristics as the element using the Ni single layer film.
[0044]
The device according to the present invention has low resistance of the source electrode and the drain electrode, although the device characteristics are almost the same as those of a device using a single metal having a work function close to that of a conventional organic semiconductor for the source electrode and the drain electrode. It has been found that at least one or more of the adhesive properties are improved.
FIG. 8 shows a bottom-contact type organic transistor according to another embodiment. When the present invention is applied to a bottom contact type device, the carrier relay films 11a and 15a of the source electrode 11 and the drain electrode 15 are made into an extremely thin island shape as shown in FIG. 8, and the conductor films 11b and 15b are etched. With good properties, patterning of the source electrode and the drain electrode can be easily performed. The film thickness at which the carrier relay films 11a and 15a become island-shaped differs depending on the material and the film forming method, but is preferably 200 ° or less.
[0045]
When the carrier relay films 11a and 15a have an island structure, the etching of the source electrode 11 and the drain electrode 15 each composed of a conductor film / carrier relay film can be performed using only an etching solution or an etching gas for the conductor film. This is because, since the carrier relay film has an island structure, an etching solution (etching gas) intrudes from a gap between the island carrier relay films and etches the conductor film. As a result, the carrier relay film floats from the base and peels off. Thus, the etching is completed in one step.
[0046]
In the above embodiment, the present invention is applied to both the source electrode and the drain electrode. However, the present invention can be applied to only one of the source electrode and the drain electrode. 3 and 4, and can be applied to an organic semiconductor element having an arbitrary structure in which a current flows from a source electrode to an organic semiconductor and a drain electrode.
[0047]
For example, in the above embodiment, the embodiment in which a TFT alone is manufactured is shown. However, the TFT according to the present invention can be used for driving pixels of a display device such as an LCD and an EL. Specifically, if at least one or more organic transistors according to the present invention, necessary elements such as capacitors, pixel electrodes, and the like are manufactured on a common substrate, an active drive type display using an organic MOS-TFT according to the present invention can be obtained. The device can be realized. As an example, FIG. 9 shows a substrate structure of a display device when the present invention is applied to a TFT-LCD display device. In the display device, a source electrode 11 composed of a carrier relay film 11a and a conductor film 11b is connected to a pixel electrode 20 of an LCD, and an organic semiconductor layer 13 is covered with a protective film 21.
[0048]
Further, as shown in FIG. 10, the present invention can be applied to a vertical structure SIT (static induction transistor) as an organic transistor. The SIT capable of switching the current in the thickness direction of the laminated film includes an organic semiconductor layer 13 sandwiched between carrier relay films 11a and 15a of a source electrode 11 and a drain electrode 15 each composed of a laminated film of a carrier relay film and a conductor film. It has a three-terminal structure having a porous gate electrode 14 embedded in the middle of the layer 13 in the thickness direction. When a voltage is applied to the gate electrode 14, a current between the drain and the source can be controlled by a depletion layer generated in the organic semiconductor around the gate electrode.
[0049]
Further, as shown in FIG. 11, the organic transistor only needs to be composed of the gate electrode 14, the source electrode 11 and the drain electrode 15 stacked on each other, and the order is opposite to that of FIG. The source electrode 11 and the drain electrode 15 are formed of the conductor films 11b and 15b and the carrier relay films 11a and 15a, and are formed by stacking the organic semiconductor layer 13, the gate insulating film 12, and the gate electrode 14 in this order. Is also good.
[0050]
Similarly, as shown in FIG. 12, in the organic transistor, the source electrode 11 and the drain electrode 15 including the conductor films 11b and 15b and the carrier relay films 11a and 15a are formed with the organic semiconductor layer 13 interposed therebetween. The gate electrode 14 may be formed so as to be separated from the gate electrode 14 via the film 12.
As described above, in the organic semiconductor device according to the present embodiment, the electrodes involved in carrier transfer are provided with a carrier relay film having a work function close to the ionization potential of the organic semiconductor and a lower adhesion, etching property, and lower resistance than the carrier relay film. The charge injection into the organic semiconductor is performed from the carrier relay film having a small barrier by using a laminated film composed of at least one conductive film having at least one of the excellent characteristics. As a result, it is possible to realize an organic semiconductor which is excellent in element characteristics as in the case of the above, and which is excellent in at least one of adhesion, etching, and low specific resistance as compared with the case where an electrode is formed of a single metal layer. Therefore, diversification of combinations of electrode materials can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an organic transistor.
FIG. 2 is a cross-sectional view illustrating an organic transistor.
FIG. 3 is a sectional view showing an organic transistor according to an embodiment of the present invention.
FIG. 4 is a sectional view showing an organic transistor according to another embodiment of the present invention.
FIG. 5 is a graph showing current-voltage characteristics between source and drain electrodes of an organic transistor according to the present invention.
FIG. 6 is a graph showing current-voltage characteristics between source and drain electrodes of an organic transistor according to the present invention.
FIG. 7 is a graph showing current-voltage characteristics between source and drain electrodes of an organic transistor according to the present invention.
FIG. 8 is a sectional view showing an organic transistor according to another embodiment of the present invention.
FIG. 9 is a cross-sectional view showing a substrate structure of a display device when an organic transistor invention of another embodiment according to the present invention is applied to a TFT-LCD display device.
FIG. 10 is a sectional view showing an organic transistor according to another embodiment of the present invention.
FIG. 11 is a sectional view showing an organic transistor according to another embodiment of the present invention.
FIG. 12 is a sectional view showing an organic transistor according to another embodiment of the present invention.
[Explanation of symbols]
10 Substrate
11 Source electrode
11a Carrier relay film
11b Conductor film
12 Gate insulating film
13 Organic semiconductor layer
14 Gate electrode
15 Drain electrode
15a Carrier relay film
15b Conductor film

Claims (13)

対向する1対の電極の間に成膜されたキャリア移動性の有機半導体層を備えた有機半導体素子であって、前記1対の電極の少なくとも一方は、前記有機半導体層に接触しかつ前記有機半導体層のイオン化ポテンシャル近傍の仕事関数を有するキャリア中継膜と、前記キャリア中継膜に積層されかつ前記キャリア中継膜よりも低い抵抗率を有する伝導体膜と、を含むことを特徴とする有機半導体素子。An organic semiconductor device comprising a carrier-movable organic semiconductor layer formed between a pair of opposed electrodes, wherein at least one of the pair of electrodes is in contact with the organic semiconductor layer and the organic An organic semiconductor device, comprising: a carrier relay film having a work function near the ionization potential of a semiconductor layer; and a conductor film laminated on the carrier relay film and having a lower resistivity than the carrier relay film. . 前記キャリア中継膜は、前記有機半導体層のイオン化ポテンシャルを中心とした−1eV〜+1eVの範囲内の仕事関数を有することを特徴とする請求項1記載の有機半導体素子。2. The organic semiconductor device according to claim 1, wherein the carrier relay film has a work function in a range of −1 eV to +1 eV around an ionization potential of the organic semiconductor layer. 3. 前記キャリア中継膜は、前記有機半導体層のイオン化ポテンシャルを中心とした−0.5eV〜+0.5eVの範囲内の仕事関数を有することを特徴とする請求項2記載の有機半導体素子。3. The organic semiconductor device according to claim 2, wherein the carrier relay film has a work function in a range of -0.5 eV to +0.5 eV centered on an ionization potential of the organic semiconductor layer. 前記キャリア中継膜は1000Å以下の膜厚を有することを特徴とする請求項1〜3のいずれか1記載の有機半導体素子。The organic semiconductor device according to claim 1, wherein the carrier relay film has a thickness of 1000 ° or less. 前記キャリア中継膜は500Å以下の膜厚を有することを特徴とする請求項4記載の有機半導体素子。The organic semiconductor device according to claim 4, wherein the carrier relay film has a thickness of 500 ° or less. 前記キャリア中継膜は島状に離散して形成されたことを特徴とする請求項1〜5のいずれか1記載の有機半導体素子。The organic semiconductor device according to any one of claims 1 to 5, wherein the carrier relay film is formed discretely in an island shape. 前記1対の電極はソース電極及びドレイン電極であり、前記有機半導体層は前記ソース電極及びドレイン電極の間にチャネルを形成できるように積層され、さらに、前記ソース電極及びドレイン電極の間の前記有機半導体層に電界を印加せしめるゲート電極を備えたことを特徴とする請求項1〜6のいずれか1記載の有機半導体素子。The pair of electrodes is a source electrode and a drain electrode, the organic semiconductor layer is stacked so that a channel can be formed between the source electrode and the drain electrode, and the organic semiconductor layer is further formed between the source electrode and the drain electrode. The organic semiconductor device according to any one of claims 1 to 6, further comprising a gate electrode for applying an electric field to the semiconductor layer. 前記ゲート電極を前記ソース電極及びドレイン電極から電気的に絶縁するゲート絶縁膜を備えたことを特徴とする請求項7記載の有機半導体素子。The organic semiconductor device according to claim 7, further comprising a gate insulating film that electrically insulates the gate electrode from the source electrode and the drain electrode. 前記ソース電極及びドレイン電極は共に前記有機半導体層の片側面に配置されたことを特徴とする請求項7記載の有機半導体素子。The organic semiconductor device according to claim 7, wherein both the source electrode and the drain electrode are disposed on one side of the organic semiconductor layer. 前記ソース電極及びドレイン電極はそれぞれ前記有機半導体層を挟んで両側に配置されたことを特徴とする請求項7記載の有機半導体素子。The organic semiconductor device according to claim 7, wherein the source electrode and the drain electrode are arranged on both sides of the organic semiconductor layer. 前記ゲート絶縁膜が前記伝導体膜に接触する場合、前記伝導体膜は、前記キャリア中継膜より前記ゲート絶縁膜に対して付着力が強い材料であることを特徴とする請求項8〜10のいずれか1記載の有機半導体素子。The method according to claim 8, wherein when the gate insulating film contacts the conductor film, the conductor film is a material having a stronger adhesive force to the gate insulating film than the carrier relay film. The organic semiconductor device according to any one of the above items. 前記1対の電極はソース電極及びドレイン電極であり、前記有機半導体層は前記ソース電極及びドレイン電極の間に挟持されるように膜厚方向に積層され、かつ、前記有機半導体層に包埋されたゲート電極を備えたことを特徴とする請求項1〜6のいずれか1記載の有機半導体素子。The pair of electrodes are a source electrode and a drain electrode, and the organic semiconductor layer is stacked in a film thickness direction so as to be sandwiched between the source electrode and the drain electrode, and is embedded in the organic semiconductor layer. The organic semiconductor device according to any one of claims 1 to 6, further comprising a gate electrode. 前記有機半導体層に包埋されたゲート電極は、格子状、櫛状又は簾状の形状を備えたことを特徴とする請求項12記載の有機半導体素子。13. The organic semiconductor device according to claim 12, wherein the gate electrode embedded in the organic semiconductor layer has a lattice shape, a comb shape, or a blind shape.
JP2002208210A 2002-07-17 2002-07-17 Organic semiconductor element Abandoned JP2004055652A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002208210A JP2004055652A (en) 2002-07-17 2002-07-17 Organic semiconductor element
EP03015098A EP1383179A2 (en) 2002-07-17 2003-07-03 Organic semiconductor device
CNA031464882A CN1476111A (en) 2002-07-17 2003-07-16 Organic semiconductor device
US10/619,565 US6992324B2 (en) 2002-07-17 2003-07-16 Organic semiconductor device
US11/236,513 US7038237B2 (en) 2002-07-17 2005-09-28 Organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208210A JP2004055652A (en) 2002-07-17 2002-07-17 Organic semiconductor element

Publications (1)

Publication Number Publication Date
JP2004055652A true JP2004055652A (en) 2004-02-19

Family

ID=31932420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208210A Abandoned JP2004055652A (en) 2002-07-17 2002-07-17 Organic semiconductor element

Country Status (1)

Country Link
JP (1) JP2004055652A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294785A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor device
JP2006147613A (en) * 2004-11-16 2006-06-08 Sony Corp Semiconductor device and its manufacturing method
JP2006190998A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Organic field effect transistor and semiconductor device
JP2007019291A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Organic semiconductor device
JP2007173812A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Thin-film transistor backplane circuit, and method of manufacturing same
KR100839301B1 (en) 2007-01-11 2008-06-17 엘지전자 주식회사 Organic thin film transistor and manufacturing method thereof
JP2009004396A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Organic thin film transistor array and manufacturing method thereof
JPWO2008059817A1 (en) * 2006-11-14 2010-03-04 出光興産株式会社 Organic thin film transistor and organic thin film light emitting transistor
WO2010146645A1 (en) * 2009-06-15 2010-12-23 パイオニア株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2011249498A (en) * 2010-05-26 2011-12-08 Sony Corp Thin film transistor, method for manufacturing the same, and electronic apparatus
JP2012038924A (en) * 2010-08-06 2012-02-23 Sony Corp Semiconductor device, display device, and electronic equipment
KR101182263B1 (en) 2005-04-22 2012-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electrode for organic transistor, organic transistor, and semiconductor device
JP2012234923A (en) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd Manufacturing method of thin film transistor substrate and thin film transistor substrate of top gate structure
US8324612B2 (en) 2004-06-17 2012-12-04 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and flat panel display having the same
KR101227021B1 (en) * 2004-12-06 2013-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic field-effect transistor and semiconductor device including the same
JP2013115099A (en) * 2011-11-25 2013-06-10 Sony Corp Transistor, display device and electronic apparatus
JP5337490B2 (en) * 2006-11-14 2013-11-06 出光興産株式会社 Organic thin film transistor and organic thin film light emitting transistor
WO2014068916A1 (en) * 2012-10-29 2014-05-08 シャープ株式会社 Thin film transistor
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
JP2017208500A (en) * 2016-05-20 2017-11-24 株式会社デンソー Organic transistor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294785A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor device
US8324612B2 (en) 2004-06-17 2012-12-04 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and flat panel display having the same
JP2006147613A (en) * 2004-11-16 2006-06-08 Sony Corp Semiconductor device and its manufacturing method
JP4706236B2 (en) * 2004-11-16 2011-06-22 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2006190998A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Organic field effect transistor and semiconductor device
US8569742B2 (en) 2004-12-06 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Organic field-effect transistor and semiconductor device including the same
KR101227021B1 (en) * 2004-12-06 2013-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic field-effect transistor and semiconductor device including the same
KR101182263B1 (en) 2005-04-22 2012-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electrode for organic transistor, organic transistor, and semiconductor device
JP2007019291A (en) * 2005-07-08 2007-01-25 National Institute Of Advanced Industrial & Technology Organic semiconductor device
JP2007173812A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Thin-film transistor backplane circuit, and method of manufacturing same
JP5337490B2 (en) * 2006-11-14 2013-11-06 出光興産株式会社 Organic thin film transistor and organic thin film light emitting transistor
JPWO2008059817A1 (en) * 2006-11-14 2010-03-04 出光興産株式会社 Organic thin film transistor and organic thin film light emitting transistor
KR100839301B1 (en) 2007-01-11 2008-06-17 엘지전자 주식회사 Organic thin film transistor and manufacturing method thereof
JP2009004396A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Organic thin film transistor array and manufacturing method thereof
WO2010146645A1 (en) * 2009-06-15 2010-12-23 パイオニア株式会社 Semiconductor device and method for manufacturing semiconductor device
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
JP2011249498A (en) * 2010-05-26 2011-12-08 Sony Corp Thin film transistor, method for manufacturing the same, and electronic apparatus
JP2012038924A (en) * 2010-08-06 2012-02-23 Sony Corp Semiconductor device, display device, and electronic equipment
JP2012234923A (en) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd Manufacturing method of thin film transistor substrate and thin film transistor substrate of top gate structure
JP2013115099A (en) * 2011-11-25 2013-06-10 Sony Corp Transistor, display device and electronic apparatus
WO2014068916A1 (en) * 2012-10-29 2014-05-08 シャープ株式会社 Thin film transistor
JP2017208500A (en) * 2016-05-20 2017-11-24 株式会社デンソー Organic transistor

Similar Documents

Publication Publication Date Title
US7038237B2 (en) Organic semiconductor device
JP2004055652A (en) Organic semiconductor element
US10109647B2 (en) MOTFT with un-patterned etch-stop
TWI335079B (en) Transistor device
EP1398840A2 (en) Organic semiconductor device
JP2004055654A (en) Organic semiconductor element
JP2015103438A5 (en)
JP2010123595A (en) Thin film transistor and display
JP2005532690A (en) Integrated circuit having field effect transistor and manufacturing method
JP4723787B2 (en) FIELD EFFECT TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
KR20120048597A (en) Semiconductor device, liquid crystal display device equipped with semiconductor device, and process for production of semiconductor device
TW200913336A (en) Semiconductor device, manufacturing method thereof and image display device
US7342245B2 (en) Organic semiconductor device
TW201138102A (en) Transistor and method of favricating the same
KR20140144388A (en) Thin film transistor array panel
CN111129104A (en) Display panel and display panel manufacturing method
JP5477750B2 (en) Organic field effect transistor
CN102290440A (en) Transistor and manufacturing method thereof
JP2004055653A (en) Organic semiconductor device
JP2006147613A (en) Semiconductor device and its manufacturing method
JP7115610B1 (en) Thin film transistor and method for manufacturing thin film transistor
TW201234577A (en) Organic thin film transistor having high charge implant characteristics
JP2010205932A (en) Field effect transistor
WO2019106896A1 (en) Thin film transistor
JP4364586B2 (en) Organic field effect transistor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070803