JP2004055643A - Superconducting magnet system - Google Patents

Superconducting magnet system Download PDF

Info

Publication number
JP2004055643A
JP2004055643A JP2002208029A JP2002208029A JP2004055643A JP 2004055643 A JP2004055643 A JP 2004055643A JP 2002208029 A JP2002208029 A JP 2002208029A JP 2002208029 A JP2002208029 A JP 2002208029A JP 2004055643 A JP2004055643 A JP 2004055643A
Authority
JP
Japan
Prior art keywords
power supply
power
superconducting coil
superconducting magnet
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002208029A
Other languages
Japanese (ja)
Other versions
JP4414636B2 (en
Inventor
Yukio Mikami
三上 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002208029A priority Critical patent/JP4414636B2/en
Priority to KR1020020064550A priority patent/KR100821378B1/en
Publication of JP2004055643A publication Critical patent/JP2004055643A/en
Application granted granted Critical
Publication of JP4414636B2 publication Critical patent/JP4414636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/003Methods and means for discharging superconductive storage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F2006/001Constructive details of inductive current limiters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting magnet system which can sustain generation of magnetic field for a specified time interval, even if power interruption takes place. <P>SOLUTION: The superconducting magnet system comprises a UPS unit 15, incorporating a battery for backing up the control power supply of components in an exciting power supply section 10 upon occurrence of power interruption; a switch circuit 18 for short-circuiting/open-circuiting the output from the exciting power supply section 10; and an output short-circuiting/releasing circuit 16, being supplied with power from the UPS unit and which short-circuits the switch circuit upon occurrence of power interruption, whereas open-circuits the switch circuit, upon power recovery. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は超伝導磁石装置に関する。
【0002】
【従来の技術】
従来の超伝導磁石装置は、超伝導コイルと、この超伝導コイルに給電するための励磁電源部と、超伝導コイルを冷却するための冷却装置を備えている。図4に従来の常時電源供給タイプの超伝導磁石装置における励磁電源部の一例を示す。超伝導コイル30は、励磁電源部40から電力を供給されて磁場を発生する。励磁電源部40は、商用電源からの電圧を所定の電圧値まで降圧するための変圧部41と、変圧部41からの電圧を整流するための整流部42と、超伝導コイル30への電流を制御するための電流制御部43とから成る。
【0003】
このような励磁電源部40において、停電が発生した場合には、冷却装置は勿論のこと、超伝導コイル30への電力供給が停止し、コイル通電電流は急激に減少する。そのため、超伝導コイル30に交流損失による熱が発生し、超伝導コイル30にクエンチ現象が発生する。このため、コイル温度が急上昇し、停電が復旧したとしても冷却装置によりコイル温度が通電可能な温度に下がるまでの時間(典型的な例で1日)は超伝導コイル30への通電ができなくなってしまう。
【0004】
【発明が解決しようとする課題】
停電対策として、励磁電源部40と冷却装置の全ての電力をまかなう無停電電源(Uninterrup Power System)(以下、UPSと略称する)装置を設置するとなると、大電力容量のUPS装置が必要となり、装置が大型化し高価になるという欠点がある。
【0005】
そこで、本発明の課題は、停電が発生しても所定時間、磁場発生を継続できる超伝導磁石装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の態様による超伝導磁石装置は、励磁電源部から電力を供給される超伝導コイルを冷凍機で冷却するようにした超伝導磁石装置において、バッテリを内蔵して停電発生時に前記励磁電源部における構成要素の制御電源のバックアップを行うUPS装置と、前記励磁電源部の出力を短絡・開放するためのスイッチ回路と、前記UPS装置から電力供給を受けて前記スイッチ回路を、停電発生時には短絡状態にする一方、復電時には開放状態にする出力短絡・解除回路とを備えるように構成される。
【0007】
本超伝導磁石装置の他の態様によれば、前記超伝導コイルが真空断熱容器に収容されて前記冷凍機の冷凍ステージと熱的に結合されていることにより冷却されるものである場合、前記真空断熱容器内には更に、蒸発潜熱により冷却を行う冷却媒体を収容した保冷容器を前記超伝導コイルと熱的に結合させるように配置して停電が発生した際の冷却を行うように構成されても良い。
【0008】
本超伝導磁石装置の更に他の態様においては、前記励磁電源部が電流制御部を含み、この場合、更に、前記スイッチ回路と前記超伝導コイルとの間の電源ラインに設けられて前記超伝導コイルを流れる電流を検出する検出手段と、前記UPS装置から電力供給を受けると共に、前記検出手段で検出された電流値を受けて、前記電流制御部における電流値を前記復電時に検出された電流値に一致させるための復電時電流制御回路とが備えられる。
【0009】
本超伝導磁石装置のより他の態様によれば、上記他の態様と上記更に他の態様の組み合わせ、すなわち、前記超伝導コイルは真空断熱容器に収容されて前記冷凍機の冷凍ステージと熱的に結合されていることにより冷却され、前記真空断熱容器内には更に、蒸発潜熱により冷却を行う冷却媒体を収容した保冷容器を前記超伝導コイルと熱的に結合させるように配置して停電が発生した際の冷却を行うようにし、前記励磁電源部は電流制御部を含み、更に、前記スイッチ回路と前記超伝導コイルとの間の電源ラインに設けられて前記超伝導コイルを流れる電流を検出する検出手段と、前記UPS装置から電力供給を受けると共に、前記検出手段で検出された電流値を受けて、前記電流制御部における電流値を前記復電時に検出された電流値に一致させるための復電時電流制御回路とを備えたことを特徴とする超伝導磁石装置が提供される。
【0010】
なお、上記のいずれの態様においても、前記冷凍機にはGM冷凍機を使用し、前記冷却媒体にはヘリウムを使用することが好ましい。
【0011】
【発明の実施の形態】
図1、図2を参照して、本発明の実施の形態について説明する。はじめに、図2を参照して、本発明が適用される常時電源供給タイプの超伝導磁石装置における超伝導コイル30とその冷却装置20について説明する。
【0012】
冷却装置20は、真空断熱容器21とその内部に配置された熱輻射シールド容器22とを有し、熱輻射シールド容器22内に超伝導コイル30が配置される。真空断熱容器21内の冷却はGM冷凍機23により行われる。つまり、GM冷凍機23の第1段冷凍ステージが熱輻射シールド容器22の一部に熱的に結合され、第2段冷凍ステージが伝熱板24に熱的に結合されている。超伝導コイル30はその巻枠31が伝熱板24に熱的に結合されている。なお、超伝導コイル30や熱輻射シールド容器22の支持構造については図示を省略している。
【0013】
真空断熱容器21内にはまた、熱輻射シールド容器22を通してその中心軸部に真空断熱容器21外と連通する室温空間25が形成され、室温空間25内で超伝導コイル30の発生する強磁場を利用する。
【0014】
真空断熱容器21には更に、伝熱板24上に液体ヘリウムを貯蔵するための保冷容器26を配置している。保冷容器26には、真空断熱容器21外から液体ヘリウムまたはガスヘリウムを供給するための供給管27と、安全弁28用の配管とが接続されている。ガスヘリウムが供給される場合には、超伝導コイル30の初期冷却時に共に冷却されてガスヘリウムが液化される。
【0015】
停電発生により冷却装置が停止した後の真空断熱容器21内への熱侵入分を保冷容器26内の液体ヘリウムの蒸発潜熱で吸収することによって超伝導コイル30の温度上昇を抑えることが可能である。
【0016】
一般に、冷却装置が停止した後の超伝導コイル30への侵入熱量は数W以下である。超伝導コイル30の交流損失による発熱が無いものと仮定すれば、十数分程度以内の停電、冷却装置停止に伴う侵入熱量を吸収するために必要な液体ヘリウムの量は、数リットル程度で十分である。そして、保冷容器26内に収容された液体ヘリウムは、冷却装置が運転されている状態では蒸発することはないので、運転中の定期的な補給は必要無く、停電が終わって復電した後の補給で十分である。
【0017】
次に、図1を参照して、本発明の実施の形態による励磁電源部10について説明する。励磁電源部10は、商用電源からの電圧を所定の電圧値まで降圧するための変圧部11と、変圧部11からの電圧を整流するための整流部12と、超伝導コイル30への電流を制御するための電流制御部13に加えて、以下の構成要素を有する。
【0018】
つまり、励磁電源部10は、超伝導コイル30に流れる電流を検出するための電流計14、バッテリを内蔵し変圧部11に接続されたUPS装置15、UPS装置15に接続された出力短絡・解除回路16及び復電時電流制御回路17、電流制御部13の出力ライン間に接続され出力短絡・解除回路16によって電流制御部13の出力側を短絡するためのスイッチ回路18を有する。
【0019】
UPS装置15は、停電発生時に励磁電源部10内部の各要素を動作させるためのものであるので、バッテリ容量は前に述べたUPS装置の電力容量に比べて十分に小さいもので良い。出力短絡・解除回路16は、停電発生時にはスイッチ回路18をオンとして電流制御部13の出力、言い換えれば超伝導コイル30の入力側を短絡し、復電時にはスイッチ回路18をオフとして電流制御部13の出力側の短絡を解除する。復電時電流制御回路17は、停電中に超伝導コイル30に流れる電流値を電流計14から受け、復電時の電流制御部13における出力電流を、復電時に超伝導コイル30に流れていた電流値に一致させる。
【0020】
以下に、保冷容器26の液体ヘリウム及び励磁電源部10の作用について説明する。
【0021】
通常状態(非停電時)の動作は、以下の通りである。
【0022】
(1)保冷容器26は液体ヘリウムを溜めた状態にある。
【0023】
(2)UPS装置15は通常給電状態にある。
【0024】
(3)出力短絡・解除回路16は、スイッチ回路18を開放状態にしている。
【0025】
一方、停電発生及び停電中の動作は、以下の通りである。
【0026】
(4)UPS装置15は変圧部11の電圧が所定値以下になると、内蔵のバッテリによるバックアップ状態に入る。
【0027】
(5)出力短絡・解除回路16はUPS装置15から供給されるバックアップ電力で稼動し、変圧部11の出力が無くなるとスイッチ回路18を短絡状態にする。
【0028】
(6)停電中は、保冷容器26内の液体ヘリウムの蒸発潜熱によりコイル温度の上昇が抑えられる。
【0029】
(7)復電時電流制御回路17は、励磁電源部10における電流制御部13の出力電流値を、電流計14から得られた電流値に設定するように動作している。
【0030】
復電時の動作は、以下の通りである。
【0031】
(8)停電が復旧すると、復電時電流制御回路17は、励磁電源部10における電流制御部13の出力電流値を、復電時に得られた電流計14からの電流値に設定する。
【0032】
(9)出力短絡・解除回路16は、変圧部11の電圧が回復すると、スイッチ回路18を開放状態にする。これにより、電流制御部13からは復電時に超伝導コイル30に流れていた値と同じ値の電流が超伝導コイル30に流れることになり、通常の状態に戻る。
【0033】
(10)UPS装置15は変圧部11の電圧が回復すると、上記(2)の給電状態にもどる。
【0034】
図3に負帰還型の電流制御部13の基本構成の一例を示す。トランジスタTr1のコレクタが整流部12に接続され、エミッタには電流検出用の抵抗器R1の一端側が接続されている。トランジスタTr1のベースには演算増幅器OP1の出力が接続されている。演算増幅器OP1の反転入力端子には抵抗器R1の一端側が接続されている。抵抗器R1の他端側はスイッチ回路18に至ると共に、抵抗器R2を介して演算増幅器OP1の非反転入力端子に接続されている。抵抗器R2の両端には復電時電流制御回路17からの信号電圧Vが接続されている。なお、本回路は、復電時電流制御回路17と電流制御部13との接続関係の一例を説明するための必要最小限の構成を示したに過ぎない。
【0035】
以上のようにして、本形態の超伝導磁石装置によれば、停電が継続している間もUPS装置15におけるバッテリの許容時間内であれば超伝導コイル30による磁場発生を継続できる。
【0036】
本発明を好ましい実施の形態を例示して説明したが、本発明は上記の実施の形態に制限されるものでは無い。つまり、上記の実施の形態では、電流計14、UPS装置15、出力短絡・解除回路16、復電時電流制御回路17、スイッチ回路18、液体ヘリウムを収容した保冷容器26のすべてを備えた場合である。これは、停電の継続時間が十数分程度あっても対応可能であり、しかも復電時の超伝導コイル30への電流供給を安定にするために必要な構成である。しかしながら、要求される仕様が、数秒というような短時間の停電のみに対応可能であれば良いという場合には、UPS装置15と出力短絡・解除回路16及びスイッチ回路18とを備えるだけで良い。つまり、数秒程度の停電の場合には、スイッチ回路18により超伝導コイル30の電流経路を閉ループにして電流を循環させるようにすれば良い。
【0037】
あるいはまた、復電時の超伝導コイル30への電流供給の安定化を無視できる場合、UPS装置15、出力短絡・解除回路16、スイッチ回路18、液体ヘリウムを収容した保冷容器26だけを備えた構成でも良い。
【0038】
【発明の効果】
本発明による超伝導磁石装置は、停電により励磁電源部への電力供給が無くなり、冷却装置が停止した場合でも、所定の時間内は超伝導コイルによる磁場発生を継続することができる。
【図面の簡単な説明】
【図1】本発明による超伝導磁石装置における励磁電源部の実施の形態を示した構成図である。
【図2】本発明による超伝導磁石装置のうちの超伝導コイルの冷却装置の構成を示した図である。
【図3】図1に示された電流制御部の一例を示した回路図である。
【図4】従来の超伝導磁石装置における励磁電源部の構成を示した図である。
【符号の説明】
18  スイッチ回路
20  冷却装置
21  真空断熱容器
22  熱輻射シールド容器
23  GM冷凍機
24  伝熱板
25  室温空間
26  保冷容器
27  供給管
28  安全弁
30  超伝導コイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superconducting magnet device.
[0002]
[Prior art]
A conventional superconducting magnet device includes a superconducting coil, an excitation power supply unit for supplying power to the superconducting coil, and a cooling device for cooling the superconducting coil. FIG. 4 shows an example of an excitation power supply unit in a conventional superconducting magnet device of a constant power supply type. The superconducting coil 30 is supplied with electric power from the excitation power supply unit 40 to generate a magnetic field. The excitation power supply unit 40 includes a transformer 41 for reducing the voltage from the commercial power supply to a predetermined voltage value, a rectifier 42 for rectifying the voltage from the transformer 41, and a current supplied to the superconducting coil 30. And a current control unit 43 for control.
[0003]
In such an excitation power supply unit 40, when a power failure occurs, the power supply to the superconducting coil 30 as well as the cooling device is stopped, and the coil current decreases rapidly. Therefore, heat due to the AC loss is generated in the superconducting coil 30, and a quench phenomenon occurs in the superconducting coil 30. For this reason, even if the coil temperature rises rapidly and the power failure is restored, power cannot be supplied to the superconducting coil 30 for a time (1 day in a typical example) until the coil temperature falls to a temperature at which the coil can be supplied by the cooling device. Would.
[0004]
[Problems to be solved by the invention]
If an uninterruptible power supply (Uninterrupt Power System) (hereinafter abbreviated as UPS) device that covers all the power of the excitation power supply unit 40 and the cooling device is installed as a countermeasure against power failure, a UPS device with a large power capacity is required. However, there is a disadvantage that the size is increased and the cost is increased.
[0005]
Therefore, an object of the present invention is to provide a superconducting magnet device that can continue to generate a magnetic field for a predetermined time even if a power failure occurs.
[0006]
[Means for Solving the Problems]
A superconducting magnet device according to an aspect of the present invention is a superconducting magnet device in which a superconducting coil to which power is supplied from an excitation power supply unit is cooled by a refrigerator. UPS device for backing up the control power supply of the components in the above, a switch circuit for short-circuiting / opening the output of the excitation power supply unit, and the switch circuit receiving power supply from the UPS device, causing the switch circuit to be in a short-circuit state when a power failure occurs. On the other hand, an output short-circuit / cancellation circuit that is opened when power is restored is provided.
[0007]
According to another aspect of the present superconducting magnet device, when the superconducting coil is housed in a vacuum insulated container and cooled by being thermally coupled to a refrigeration stage of the refrigerator, In the vacuum insulated container, a cooling container containing a cooling medium for cooling by evaporative latent heat is arranged so as to be thermally coupled to the superconducting coil, and is configured to perform cooling when a power failure occurs. May be.
[0008]
In still another aspect of the superconducting magnet device, the excitation power supply unit includes a current control unit, and in this case, the excitation power supply unit is further provided on a power supply line between the switch circuit and the superconducting coil, and Detecting means for detecting a current flowing through the coil; receiving power supplied from the UPS device; receiving a current value detected by the detecting means; and detecting a current value in the current control unit at the time of the power recovery. And a current control circuit at the time of power recovery for matching the value.
[0009]
According to still another aspect of the present superconducting magnet device, a combination of the above other aspect and the still another aspect, that is, the superconducting coil is housed in a vacuum insulated container and is thermally connected to a refrigeration stage of the refrigerator. In the vacuum insulated container, a cooling container containing a cooling medium for cooling by evaporative latent heat is arranged so as to be thermally coupled to the superconducting coil, so that a power failure occurs. In order to perform cooling when it occurs, the excitation power supply unit includes a current control unit, and is further provided on a power supply line between the switch circuit and the superconducting coil to detect a current flowing through the superconducting coil. Receiving the power supply from the UPS device and receiving the current value detected by the detection device, and changing the current value in the current control unit to the current value detected at the time of the power recovery. Superconducting magnet device is provided, characterized in that a power recovery during current control circuit for.
[0010]
In any of the above embodiments, it is preferable to use a GM refrigerator as the refrigerator and use helium as the cooling medium.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. First, a superconducting coil 30 and a cooling device 20 of a superconducting magnet device of a constant power supply type to which the present invention is applied will be described with reference to FIG.
[0012]
The cooling device 20 has a vacuum heat insulating container 21 and a heat radiation shield container 22 disposed therein, and the superconducting coil 30 is disposed in the heat radiation shield container 22. The cooling in the vacuum insulation container 21 is performed by the GM refrigerator 23. That is, the first refrigeration stage of the GM refrigerator 23 is thermally coupled to a part of the heat radiation shield container 22, and the second refrigeration stage is thermally coupled to the heat transfer plate 24. Superconducting coil 30 has its winding frame 31 thermally coupled to heat transfer plate 24. The illustration of the support structure of the superconducting coil 30 and the heat radiation shield container 22 is omitted.
[0013]
A room temperature space 25 communicating with the outside of the vacuum heat insulating container 21 is formed in the center axis portion of the vacuum heat insulating container 21 through the heat radiation shield container 22, and a strong magnetic field generated by the superconducting coil 30 is formed in the room temperature space 25. Use.
[0014]
The vacuum insulation container 21 is further provided with a cooling container 26 for storing liquid helium on the heat transfer plate 24. A supply pipe 27 for supplying liquid helium or gas helium from outside the vacuum insulation container 21 and a pipe for a safety valve 28 are connected to the cold insulation container 26. When gas helium is supplied, the superconducting coil 30 is cooled at the time of initial cooling, and gas helium is liquefied.
[0015]
It is possible to suppress the temperature rise of the superconducting coil 30 by absorbing the heat intrusion into the vacuum insulating container 21 after the cooling device stops due to the power failure by the latent heat of vaporization of the liquid helium in the cooling container 26. .
[0016]
In general, the amount of heat that enters the superconducting coil 30 after the cooling device has stopped is several W or less. Assuming that there is no heat generation due to the AC loss of the superconducting coil 30, the amount of liquid helium necessary to absorb the intrusion heat due to a power failure within about ten minutes and the stop of the cooling device is sufficient to be about several liters. It is. Since the liquid helium contained in the cold storage container 26 does not evaporate while the cooling device is operating, there is no need for periodic replenishment during operation, and after the power outage ends and power is restored. Replenishment is sufficient.
[0017]
Next, an excitation power supply unit 10 according to an embodiment of the present invention will be described with reference to FIG. The excitation power supply unit 10 includes a transformer 11 for stepping down a voltage from a commercial power supply to a predetermined voltage value, a rectifier 12 for rectifying a voltage from the transformer 11, and a current supplied to the superconducting coil 30. It has the following components in addition to the current control unit 13 for controlling.
[0018]
That is, the excitation power supply unit 10 includes an ammeter 14 for detecting a current flowing through the superconducting coil 30, a UPS device 15 having a built-in battery and connected to the transformer unit 11, and an output short circuit / release connected to the UPS device 15. A circuit 16, a power recovery current control circuit 17, and a switch circuit 18 connected between the output lines of the current control unit 13 for short-circuiting the output side of the current control unit 13 by the output short-circuit / release circuit 16.
[0019]
Since the UPS device 15 is used to operate each element inside the excitation power supply unit 10 when a power failure occurs, the battery capacity may be sufficiently smaller than the power capacity of the above-described UPS device. The output short circuit / release circuit 16 turns on the switch circuit 18 when a power failure occurs, short-circuits the output of the current control unit 13, in other words, the input side of the superconducting coil 30, and turns off the switch circuit 18 when power is restored to turn off the current control unit 13. Release the short circuit on the output side of. The power recovery time current control circuit 17 receives a current value flowing through the superconducting coil 30 from the ammeter 14 during a power failure, and outputs an output current from the current control unit 13 during power recovery to the superconducting coil 30 during the power recovery. Current value.
[0020]
Hereinafter, the operation of the liquid helium of the cold storage container 26 and the excitation power supply unit 10 will be described.
[0021]
The operation in the normal state (when there is no power failure) is as follows.
[0022]
(1) The cool container 26 is in a state where liquid helium is stored.
[0023]
(2) The UPS device 15 is in a normal power supply state.
[0024]
(3) The output short circuit / release circuit 16 keeps the switch circuit 18 open.
[0025]
On the other hand, the operation during the power failure and during the power failure is as follows.
[0026]
(4) When the voltage of the transformer 11 becomes equal to or lower than a predetermined value, the UPS device 15 enters a backup state using a built-in battery.
[0027]
(5) The output short circuit / release circuit 16 operates with the backup power supplied from the UPS device 15, and when the output of the transformer 11 is lost, the switch circuit 18 is short-circuited.
[0028]
(6) During a power failure, the rise in coil temperature is suppressed by the latent heat of vaporization of the liquid helium in the cool container 26.
[0029]
(7) The power recovery time current control circuit 17 operates to set the output current value of the current control unit 13 in the excitation power supply unit 10 to the current value obtained from the ammeter 14.
[0030]
The operation at the time of power restoration is as follows.
[0031]
(8) When the power failure is restored, the power recovery time current control circuit 17 sets the output current value of the current control unit 13 in the excitation power supply unit 10 to the current value from the ammeter 14 obtained at the time of power recovery.
[0032]
(9) The output short circuit / release circuit 16 opens the switch circuit 18 when the voltage of the transformer 11 recovers. As a result, a current having the same value as the value flowing through the superconducting coil 30 at the time of power recovery from the current control unit 13 flows through the superconducting coil 30, returning to the normal state.
[0033]
(10) When the voltage of the transformer 11 recovers, the UPS device 15 returns to the power supply state of (2).
[0034]
FIG. 3 shows an example of a basic configuration of the negative feedback type current control unit 13. The collector of the transistor Tr1 is connected to the rectifier 12, and the emitter is connected to one end of a current detecting resistor R1. The output of the operational amplifier OP1 is connected to the base of the transistor Tr1. One end of a resistor R1 is connected to the inverting input terminal of the operational amplifier OP1. The other end of the resistor R1 reaches the switch circuit 18 and is connected to the non-inverting input terminal of the operational amplifier OP1 via the resistor R2. The signal voltage V from the power recovery time current control circuit 17 is connected to both ends of the resistor R2. Note that this circuit merely shows the minimum necessary configuration for explaining an example of the connection relationship between the power recovery current control circuit 17 and the current control unit 13.
[0035]
As described above, according to the superconducting magnet device of the present embodiment, the generation of a magnetic field by the superconducting coil 30 can be continued within the allowable time of the battery in the UPS device 15 while the power failure continues.
[0036]
Although the present invention has been described by way of preferred embodiments, the present invention is not limited to the above embodiments. That is, in the above-described embodiment, the case where all of the ammeter 14, the UPS device 15, the output short-circuit / release circuit 16, the power recovery-time current control circuit 17, the switch circuit 18, and the cold storage container 26 containing liquid helium are provided. It is. This is a configuration that can cope with the duration of the power failure of about ten and several minutes, and is necessary for stabilizing the current supply to the superconducting coil 30 at the time of power recovery. However, if it is sufficient that the required specification can cope with only a short-time power failure such as a few seconds, it is sufficient to provide only the UPS device 15, the output short-circuit / release circuit 16 and the switch circuit 18. That is, in the case of a power failure of about several seconds, the current may be circulated by setting the current path of the superconducting coil 30 to a closed loop by the switch circuit 18.
[0037]
Alternatively, if the stabilization of the current supply to the superconducting coil 30 at the time of power recovery can be ignored, only the UPS device 15, the output short-circuit / release circuit 16, the switch circuit 18, and the cold storage container 26 containing liquid helium are provided. A configuration may be used.
[0038]
【The invention's effect】
The superconducting magnet device according to the present invention can continue to generate a magnetic field by the superconducting coil for a predetermined period of time even when the power supply to the excitation power supply unit is lost due to a power failure and the cooling device stops.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an excitation power supply unit in a superconducting magnet device according to the present invention.
FIG. 2 is a diagram illustrating a configuration of a cooling device for a superconducting coil in the superconducting magnet device according to the present invention.
FIG. 3 is a circuit diagram illustrating an example of a current control unit illustrated in FIG. 1;
FIG. 4 is a diagram showing a configuration of an excitation power supply unit in a conventional superconducting magnet device.
[Explanation of symbols]
18 Switch Circuit 20 Cooling Device 21 Vacuum Insulated Vessel 22 Heat Radiation Shield Vessel 23 GM Refrigerator 24 Heat Transfer Plate 25 Room Temperature Space 26 Cooling Vessel 27 Supply Pipe 28 Safety Valve 30 Superconducting Coil

Claims (5)

励磁電源部から電力を供給される超伝導コイルを冷凍機で冷却するようにした超伝導磁石装置において、
バッテリを内蔵して停電発生時に前記励磁電源部における構成要素の制御電源のバックアップを行うUPS装置と、
前記励磁電源部の出力を短絡・開放するためのスイッチ回路と、
前記UPS装置から電力供給を受けて前記スイッチ回路を、停電発生時には短絡状態にする一方、復電時には開放状態にする出力短絡・解除回路とを備えたことを特徴とする超伝導磁石装置。
In a superconducting magnet device in which a superconducting coil supplied with power from an excitation power supply unit is cooled by a refrigerator,
A UPS device having a built-in battery for backing up a control power supply of components in the excitation power supply unit when a power failure occurs;
A switch circuit for short-circuiting and opening the output of the excitation power supply unit;
A superconducting magnet device, comprising: an output short-circuit / cancellation circuit that receives power supplied from the UPS device and causes the switch circuit to be in a short-circuit state when a power failure occurs, and to be in an open state when power is restored.
請求項1に記載の超伝導磁石装置において、
前記超伝導コイルは真空断熱容器に収容されて前記冷凍機の冷凍ステージと熱的に結合されていることにより冷却され、
前記真空断熱容器内には更に、蒸発潜熱により冷却を行う冷却媒体を収容した保冷容器を前記超伝導コイルと熱的に結合させるように配置して停電が発生した際の冷却を行うことを特徴とする超伝導磁石装置。
The superconducting magnet device according to claim 1,
The superconducting coil is cooled by being housed in a vacuum insulated container and being thermally coupled to a refrigeration stage of the refrigerator,
In the vacuum insulated container, further, a cooling container containing a cooling medium for cooling by latent heat of vaporization is arranged so as to be thermally coupled to the superconducting coil to perform cooling when a power failure occurs. Superconducting magnet device.
請求項1に記載の超伝導磁石装置において、
前記励磁電源部は電流制御部を含み、
更に、前記スイッチ回路と前記超伝導コイルとの間の電源ラインに設けられて前記超伝導コイルを流れる電流を検出する検出手段と、
前記UPS装置から電力供給を受けると共に、前記検出手段で検出された電流値を受けて、前記電流制御部における電流値を前記復電時に検出された電流値に一致させるための復電時電流制御回路とを備えたことを特徴とする超伝導磁石装置。
The superconducting magnet device according to claim 1,
The excitation power supply unit includes a current control unit,
Further, detecting means provided in a power supply line between the switch circuit and the superconducting coil, for detecting a current flowing through the superconducting coil,
Power recovery time current control for receiving the power supply from the UPS device and receiving the current value detected by the detection means so that the current value in the current control unit matches the current value detected at the time of power recovery. A superconducting magnet device comprising a circuit.
請求項1に記載の超伝導磁石装置において、
前記超伝導コイルは真空断熱容器に収容されて前記冷凍機の冷凍ステージと熱的に結合されていることにより冷却され、
前記真空断熱容器内には更に、蒸発潜熱により冷却を行う冷却媒体を収容した保冷容器を前記超伝導コイルと熱的に結合させるように配置して停電が発生した際の冷却を行うようにし、
前記励磁電源部は電流制御部を含み、
更に、前記スイッチ回路と前記超伝導コイルとの間の電源ラインに設けられて前記超伝導コイルを流れる電流を検出する検出手段と、
前記UPS装置から電力供給を受けると共に、前記検出手段で検出された電流値を受けて、前記電流制御部における電流値を前記復電時に検出された電流値に一致させるための復電時電流制御回路とを備えたことを特徴とする超伝導磁石装置。
The superconducting magnet device according to claim 1,
The superconducting coil is cooled by being housed in a vacuum insulated container and being thermally coupled to a refrigeration stage of the refrigerator,
Further, in the vacuum heat insulating container, a cooling container containing a cooling medium for cooling by evaporating latent heat is arranged so as to be thermally coupled to the superconducting coil so as to perform cooling when a power failure occurs,
The excitation power supply unit includes a current control unit,
Further, detecting means provided in a power supply line between the switch circuit and the superconducting coil, for detecting a current flowing through the superconducting coil,
Power recovery time current control for receiving the power supply from the UPS device and receiving the current value detected by the detection means so that the current value in the current control unit matches the current value detected at the time of power recovery. A superconducting magnet device comprising a circuit.
請求項2〜4のいずれかに記載の超伝導磁石装置において、
前記冷凍機はGM冷凍機であり、前記冷却媒体はヘリウムであることを特徴とする超伝導磁石装置。
The superconducting magnet device according to any one of claims 2 to 4,
The said refrigerator is a GM refrigerator, and the said cooling medium is helium, The superconducting magnet apparatus characterized by the above-mentioned.
JP2002208029A 2002-07-17 2002-07-17 Superconducting magnet device Expired - Fee Related JP4414636B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002208029A JP4414636B2 (en) 2002-07-17 2002-07-17 Superconducting magnet device
KR1020020064550A KR100821378B1 (en) 2002-07-17 2002-10-22 Superconductive magnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208029A JP4414636B2 (en) 2002-07-17 2002-07-17 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2004055643A true JP2004055643A (en) 2004-02-19
JP4414636B2 JP4414636B2 (en) 2010-02-10

Family

ID=31932286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208029A Expired - Fee Related JP4414636B2 (en) 2002-07-17 2002-07-17 Superconducting magnet device

Country Status (2)

Country Link
JP (1) JP4414636B2 (en)
KR (1) KR100821378B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055172A (en) * 2009-11-04 2011-05-11 日本超导体技术公司 Excitation source for superconducting magnet and its operating method
JP2011254694A (en) * 2009-11-04 2011-12-15 Japan Superconductor Technology Inc Excitation power supply for superconducting magnet, and operation method thereof
JP2013085411A (en) * 2011-10-12 2013-05-09 Mitsubishi Electric Corp System interconnection power conditioner
JP2013144099A (en) * 2011-12-12 2013-07-25 Toshiba Corp Magnetic resonance imaging apparatus
JP2016211803A (en) * 2015-05-12 2016-12-15 株式会社東芝 Cryogenic container and superconductive magnet device
US20210080527A1 (en) * 2018-01-02 2021-03-18 Institute Of Electrical Engineering, Chinese Academy Of Sciences Magnetic resonance imaging superconducting magnet system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573725B2 (en) * 1990-06-07 1997-01-22 宏七 能登 Instantaneous power failure protection device using superconducting switch
JP2001077434A (en) * 1999-09-01 2001-03-23 Mitsubishi Electric Corp Superconducting magnet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055172A (en) * 2009-11-04 2011-05-11 日本超导体技术公司 Excitation source for superconducting magnet and its operating method
JP2011254694A (en) * 2009-11-04 2011-12-15 Japan Superconductor Technology Inc Excitation power supply for superconducting magnet, and operation method thereof
JP2012257455A (en) * 2009-11-04 2012-12-27 Japan Superconductor Technology Inc Excitation power source for superconducting magnet
CN103560483A (en) * 2009-11-04 2014-02-05 日本超导体技术公司 Excitation power supply for superconducting magnet, and operation method thereof
JP2013085411A (en) * 2011-10-12 2013-05-09 Mitsubishi Electric Corp System interconnection power conditioner
JP2013144099A (en) * 2011-12-12 2013-07-25 Toshiba Corp Magnetic resonance imaging apparatus
JP2016211803A (en) * 2015-05-12 2016-12-15 株式会社東芝 Cryogenic container and superconductive magnet device
US20210080527A1 (en) * 2018-01-02 2021-03-18 Institute Of Electrical Engineering, Chinese Academy Of Sciences Magnetic resonance imaging superconducting magnet system
US11802924B2 (en) * 2018-01-02 2023-10-31 Institute Of Electrical Engineering, Chinese Academy Of Sciences Magnetic resonance imaging superconducting magnet system

Also Published As

Publication number Publication date
KR20040008255A (en) 2004-01-28
KR100821378B1 (en) 2008-04-10
JP4414636B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
TWI223490B (en) Switching power supply unit
KR101625737B1 (en) Magnetic resonance device with a cooling system to cool a superconducting basic magnetic coil, and a method to cool the superconducting basic magnetic coil
JPH10271700A (en) Charger
US20080036975A1 (en) Projector and temperature control method used in the projector
JP4414636B2 (en) Superconducting magnet device
US4763221A (en) Superconducting magnet apparatus with emergency run down unit
US20150111753A1 (en) Superconducting magnet apparatus
RU2360347C1 (en) Device and method of emergency trip control for automatic switch
JPH07235412A (en) Superconducting magnet device
JPH1186912A (en) Method for estimating lifetime of storage battery in low-temperature storage house, and low temperature storage house
JP2010101580A (en) Cryogenic refrigerant recondensing device and superconducting magnet device
JPS589163Y2 (en) Constant temperature warehouse
JP2005124721A (en) Superconductive magnetic resonance imaging equipment
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
JPH05335636A (en) Superconducting magnet device
JP2002190326A (en) Secondary cell device
JPH10189326A (en) Electromagnet device and current supplying device
JP2018179316A (en) Cryogenic device and operation method of cryogenic device
JP3052397B2 (en) Superconducting device, superconducting energy storage device, and method of operating the same
JP3836171B2 (en) Cooling system
JPH0515088A (en) Superconducting power storage device
JPH09151896A (en) Electric fan driving device
JPH05343224A (en) Superconducting magnet circuit
JPH06225438A (en) Load short-circuit protective circuit
JPS5925546A (en) Generator, stator-winding resistance thereof can be kept to approximately zero, and uninterruptible power system generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4414636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees