JP3836171B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP3836171B2
JP3836171B2 JP11349195A JP11349195A JP3836171B2 JP 3836171 B2 JP3836171 B2 JP 3836171B2 JP 11349195 A JP11349195 A JP 11349195A JP 11349195 A JP11349195 A JP 11349195A JP 3836171 B2 JP3836171 B2 JP 3836171B2
Authority
JP
Japan
Prior art keywords
helium
superconducting magnet
supercritical helium
supercritical
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11349195A
Other languages
Japanese (ja)
Other versions
JPH08316021A (en
Inventor
良裕 和智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11349195A priority Critical patent/JP3836171B2/en
Publication of JPH08316021A publication Critical patent/JPH08316021A/en
Application granted granted Critical
Publication of JP3836171B2 publication Critical patent/JP3836171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、超臨界ヘリウムを流路に流して冷却する強制冷却導体を巻回した強制冷却方式の超電導マグネットの冷却装置に関する。
【0002】
【従来の技術】
高耐電圧・高磁界・高電流密度が要求される核融合実験装置(炉)やエネルギ貯蔵装置などの大型超電導機器には強制冷却方式の超電導マグネットが採用されている。この大型超電導装置用強制冷却超電導マグネットの冷却装置は、図6に示すように超電導マグネット1と、超電導マグネット1に超臨界ヘリウムを循環する超臨界ヘリウム循環用ポンプ4および熱交換器5と、これらを接続する超臨界ヘリウム供給管6a、超臨界ヘリウム戻り管6b、遠隔操作弁18bと、前記超臨界ヘリウム循環用ポンプ4および熱交換器を収納し、かつ、液体ヘリウム2を収納した超臨界ヘリウム熱交換器槽3とで超臨界ヘリウム循環系6を構成しており、超臨界ヘリウム循環系6は断熱容器15内に収納されている。断熱容器15の外部には、ヘリウム冷凍液化装置10と、ここで精製された液体ヘリウム2を貯液する液体ヘリウム貯槽7と、蒸発ヘリウムガスを回収するための、ガスバッグ、回収圧縮機、精製装置などで構成された回収精製系11と、ヘリウムガス充填容器12、ヘリウム圧縮機13および弁14、回収配管20、低温高圧ヘリウム供給ライン21を含む配管類などが配備されている。なお、液体ヘリウム貯槽7の液体ヘリウム2は超臨界ヘリウム熱交換器槽3に液体ヘリウム移送管9で移送される。なお超電導マグネット1は図示しない電力供給源から電流リード8および給電ケーブル8aを介して励磁される。
【0003】
この様に構成された冷却装置は、長期間安定に、かつ信頼性高く運転しなければならないため、構成主要機器の信頼性向上、二重構成化などが必要である。また、これら主要機器への電力供給が停電等の不都合により停止した場合にも、超電導マグネットに冷媒を循環できるよう、無停電電源などの対策を講じる必要がある。
【0004】
【発明が解決しようとする課題】
従来の冷却装置は、上述したように構成されているので、停電時などの緊急時に備え、ヘリウム冷凍液化装置10や超臨界ヘリウム循環用ポンプ4、バルブ類などの運転や制御用には異なる種類の複数以上の電力供給源を備えることが望ましい。しかしながらこれら大型超電導装置のヘリウム冷凍液化装置10は4.5K温度で数十キロワットから百キロワット相当の冷凍能力が必要であり、従来の冷凍機のエネルギー効率((4.5Kでの冷凍能力)/(室温で必要な実電気動力))を0.003程度とすると、莫大な電力供給源が複数以上必要となる。しかも常に運転に使用するわけではなく、非常用に設けることになる。このため一般にはヘリウム冷凍液化装置10用電力供給源は一つとし、安全運転上、不可欠な遠隔操作弁18bおよび超臨界ヘリウム循環用ポンプ4などの動作用についてのみ無停電電源等の予備電源を設けることになる。
【0005】
しかしながら、これらの基本的に同一形態(電気)のエネルギーを動作用に使用しているため、主電源のみならず予備電源にも支障が生じた場合や、電力供給源と超臨界ヘリウム循環用ポンプ4間の動力ケーブルに断線等の事態が生じた場合、または、ヘリウム冷凍液化装置10や超臨界ヘリウム循環用ポンプ4等の冷媒供給装置に機器故障が生じた場合には、超臨界ヘリウムの循環が不能になり、超電導マグネット1をクエンチ(常電導転移)することなく運転する事は勿論、停止にも支障を来す事になる。一般に、超電導マグネット1を停止する際には、励磁電流を徐々に降下させて、大きな蓄積エネルギーの放出を抑制している。
【0006】
したがって、励磁電流の降下中でも冷媒の循環が必要である。また、冷媒が喪失すると超電導マグネット1の温度は急激に上昇することになるが、温度の急激な上昇は大きな熱応力を生じ、超電導マグネット1の絶縁や構造の健全性を維持できなくなって、再運転が不可能になる恐れがある。
【0007】
そこで本発明は、上記問題を解決するためになされたもので、その目的は電源喪失や冷媒供給装置の機器故障時でも、超電導マグネットに冷媒を確実に循環できる高信頼性の冷却装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1の発明は、超臨界ヘリウム循環系で超臨界ヘリウムを循環させて、超電導マグネットを冷却する冷却装置において、超電導マグネットを収納した断熱容器内に液体ヘリウム貯槽を設け、この液体ヘリウム貯槽の内部に、超臨界ヘリウムを充填するための中圧容器を収納し、この中圧容器低温中圧状態を保つように常時冷却され、かつ中圧容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超電導マグネットに接続し、冷媒循環不能が発生した場合に、前記超電導マグネット内を循環していた超臨界ヘリウムから蒸発するヘリウムガスを回収する回収配管を介して回収精製系に放出し、かつ前記中圧容器内の超臨界ヘリウムを前記超電導マグネットに供給することを特徴とする。
【0009】
請求項2の発明は、超臨界ヘリウム循環系で超臨界ヘリウムを循環させて、超電導マグネットを冷却する冷却装置において、超電導マグネットを収納した断熱容器内に、超臨界ヘリウムを充填するための中圧容器を設け、この中圧容器低温中圧状態を保つように常時冷却され、かつ中圧容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超電導マグネットに接続すると共に、中圧容器内に熱交換器を配設し、この熱交換器に超臨界ヘリウム循環系から超臨界ヘリウムを貫流させて、前記中圧容器内の超臨界ヘリウムを冷却するように構成し、冷媒循環不能が発生した場合に、前記超電導マグネット内を循環していた超臨界ヘリウムから蒸発するヘリウムガスを回収する回収配管を介して回収精製系に放出し、かつ前記中圧容器内の超臨界ヘリウムを前記超電導マグネットに供給することを特徴とする。
【0010】
請求項3の発明は、超臨界ヘリウム循環系で超臨界ヘリウムを循環させて、超電導マグネットを冷却する冷却装置において、超電導マグネットを収納した断熱容器内に収納された超臨界ヘリウム循環系を構成する超臨界ヘリウム熱交換器槽の内部に、超臨界ヘリウムを充填するための中圧容器を収納し、この中圧容器低温中圧状態を保つように常時冷却され、かつ中圧容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超電導マグネットに接続し、冷媒循環不能が発生した場合に、前記超電導マグネット内を循環していた超臨界ヘリウムから蒸発するヘリウムガスを回収する回収配を介して回収精製系に放出し、かつ前記中圧容器内の超臨界ヘリウムを前記超電導マグネットに供給することを特徴とする。
【0011】
請求項4の発明は、請求項1、請求項2、請求項3記載のいずれかの冷却装置において、中圧容器と超電導マグネットの間に、超臨界ヘリウムの流量を調節する流量調節手段を装着したことを特徴とする。
【0015】
【作用】
請求項1に対応する冷却装置においては、電源喪失時や冷媒供給装置の機器故障時等による冷媒循環不能時に、液体ヘリウム貯槽に収容された液体ヘリウムによって冷却された、中圧容器に貯蔵してある10atm 以下の中圧の超臨界ヘリウムを、遠隔操作弁を介して、圧力差で超電導マグネットに供給できるので、超電導マグネットの冷媒循環が確保されクエンチすることなく停止できると共に、急激な温度上昇を抑制して超電導マグネットに生じる熱応力を低減できる。
【0016】
請求項2に対応する冷却装置においては、中圧容器に貯蔵してある10atm 以下の中圧の超臨界ヘリウムを、中圧容器内に設けられた熱交換器に、超臨界ヘリウムを運転中に貫流させて冷却しておき、前述の冷媒循環不能時に、中圧容器に貯蔵してある超臨界ヘリウムを、遠隔操作弁を介して、圧力差で超電導マグネットに供給できる。
【0017】
請求項3に対応する冷媒装置においては、前述の冷媒循環不能時に、超臨界ヘリウム熱交換器槽に収容された液体ヘリウムによって冷却された、中圧容器に貯蔵してある10atm 以下の中圧の超臨界ヘリウムを、遠隔操作弁を介して、圧力差で超電導マグネットに供給できる。
【0018】
請求項4に対応する冷媒装置においては、中圧容器と超電導マグネットとの間に設置した流量調節手段によって、供給流量(供給時間)を適切な値に調整できる。この為、中圧容器に貯蔵してある中圧の超臨界ヘリウムを圧力差で超電導マグネットに供給する場合に、適切な流量または供給時間を制御して供給できるので、より信頼性が向上する。
【0023】
【実施例】
以下本発明の各実施例を図面を用いて説明する。
図1は本発明の冷却装置の第1の実施例を示す系統構成図である。本冷却装置は、超電導マグネット1に、超臨界ヘリウムを循環する超臨界ヘリウム循環用ポンプ4の吐出側に接続され、液体ヘリウム2を収容した超臨界ヘリウム熱交換器槽3に収納された熱交換器5と、超電導マグネット1と前記超臨界ヘリウム循環用ポンプ4とを遠隔操作弁18bを介して接続する超臨界ヘリウム戻り管6bと、超電導マグネット1と前記熱交換器5とを遠隔操作弁18bを介して接続する超臨界ヘリウム供給管6aとで超臨界ヘリウム循環系6を構成している。また、超臨界ヘリウム循環系6には蒸発ヘリウムガスを回収するための回収配管20および低温高圧ヘリウムを供給する低温高圧ヘリウム供給管21が接続されている。
さらに断熱容器15内に液体ヘリウム貯槽7を設け、この液体ヘリウム貯槽7の内部には超臨界ヘリウムを充填するための中圧容器16が収納され、中圧容器16は逆止弁19、遠隔操作弁18aおよび流量調節手段22を介して、超臨界ヘリウム循環系6に並列に接続されている。
なお、液体ヘリウム貯槽7内の液体ヘリウム2は超臨界ヘリウム熱交換器槽3から移送管9aで移送される。
【0024】
さらに、超電導マグネット1あるいは超臨界ヘリウム戻り管6bを流れる出口超臨界ヘリウムの温度を検出する温度検出手段27と、温度検出手段からの信号で流量調節手段22の開口面積を制御する制御器28を具備している。
【0025】
次に本第1の実施例の作用効果について説明する。電源喪失や冷媒供給装置の機器故障等による冷媒循環不能が発生しない定常時は、超臨界ヘリウムは超臨界ヘリウム循環用ポンプ4により所定の圧力まで昇圧されたのち、超臨界ヘリウム熱交換器槽3内に設置してある熱交換器5で、液体ヘリウム2の蒸発潜熱を利用し所定の温度まで再冷却され、遠隔操作弁18b、超臨界ヘリウム供給管6aを介して超電導マグネット1に供給される。超電導マグネット1で発生する熱を冷却した超臨界ヘリウムは、超臨界ヘリウム戻り管6b、遠隔操作弁18bを介して再び超臨界ヘリウム循環用ポンプ4に戻る。
超電導マグネット1の初期冷却あるいは定常冷却時に冷却配管17b、逆止弁19を介して超臨界ヘリウムが所定の圧力まで中圧容器16に充填される。中圧容器16は液体ヘリウム貯槽7内の液体ヘリウム2によって常時冷却され、低温中圧状態を保つことができる。
一方、電源喪失や機器故障等による冷媒循環不能が発生した場合には、遠隔操作弁18bを閉口し、遠隔操作弁18aを開口する。なお、この操作は冷媒循環不能信号を受けて、ほぼ同等に瞬時に行われる。この遠隔操作弁18bの閉口により超電導マグネット1内を所定の圧力、温度で循環していた超臨界ヘリウムは停止するが、この超臨界ヘリウムが蒸発したヘリウムガスは間髪をいれず回収配管20のラインを介して回収精製系11に放出される。さらに、中圧容器16に貯蔵してあった低温中圧(〜10atm 傍)の超臨界ヘリウムが遠隔操作弁18aの開口により、低温ヘリウム配管17aを経て超電導マグネット1に供給される。
また、超電導マグネット1と中圧容器16との間に流量調節手段22、例えばオリフィスや流量調節弁等を装備することにより超臨界ヘリウムの供給量を調整できるので、中圧容器16に貯蔵してある中圧の超臨界ヘリウムを圧力差で超電導マグネット1に供給する場合に、適切な流量または供給時間を制御して供給できる。供給量の制御方法としては、中圧容器16と超電導マグネット1を含めた超臨界ヘリウム循環系6との体積および圧力の関係から事前に供給量を計算し、オリフィスや流量調節弁等の流量調節手段22の開口面積を設定する方法と、温度検出手段27で超電導マグネット1あるいは超電導マグネット1からの出口側の超臨界ヘリウムの温度を検出し、この温度検出手段22からの信号で制御器28を介して流量調節弁等の流量調節手段22の開口面積を制御する方法がある。
【0026】
この様に、超電導マグネットを循環する超臨界ヘリウムの流量を、流量調節手段22で調節するようにしたので、中圧容器16に貯蔵された超臨界ヘリウムを有効に利用できる。
したがって、信頼性がより向上する。
【0027】
超電導マグネット1を冷却した超臨界ヘリウムから蒸発したヘリウムガスは超臨界ヘリウム戻り管6b、回収配管20を介して回収精製系11に放出される。この動作により超電導マグネット1を消磁させる間、確実に超臨界ヘリウムを供給することができる。
【0028】
したがって、超電導マグネットの冷媒循環が確保されクエンチすることなく、超電導マグネットを停止できると共に、急激な温度上昇を抑制して超電導マグネットに生じる熱応力を低減できる。
【0029】
次に本発明の第2の実施例を図2を参照して説明する。第1の実施例との相違は、中圧容器16内の超臨界ヘリウムの冷却方法である。本実施例では、中圧容器16内の超臨界ヘリウムの冷却を超電導マグネット1の冷却に用いられる超臨界ヘリウムを中圧容器16内の熱交換器5に貫流させる事によって行うようにしたもので、定常運転時及び冷媒循環不能時の作用効果は第1の実施例と同様である。さらに本実施例によれば、液体ヘリウム貯槽7が不要になり、装置構成をコンパクトにすることができると共に、液体ヘリウム貯槽7内の液体ヘリウム2の液面制御や供給量の調整等が不要になるので、冷却装置の制御系が簡素化される。
【0030】
第3の実施例を図3を参照して説明する。本実施例は、中圧容器16を超臨界ヘリウム熱交換器槽3内に収納し、液体ヘリウム2で中圧容器16内の超臨界ヘリウムを常時冷却するようにしたもので、第2の実施例と同様の作用効果を有する。
【0031】
第4の実施例を図4を参照して説明する。
主要構成は図1と同様であるが、超電導マグネット1を収納した断熱容器15内に、真空減圧した減圧容器23を設け、この減圧容器23の一端を遠隔操作弁18aを介して超電導マグネット1に接続し、他端を真空排気管24で逆止弁19を介して回収配管20に接続すると共に、真空排気管24の途中から分岐して遠隔操作弁18bを介して排気装置25が装備されている。
【0032】
次に本実施例の作用効果について説明する。
減圧容器23は断熱容器15の外に設置された排気装置25により遠隔操作弁18b、真空排気配管24を介して常時排気されている。一方、電源喪失や機器故障等による冷媒循環不能が発生した場合には、連動して排気装置25の手前に介装された遠隔操作弁18bが閉口され、同時に回収管20に介装された遠隔操作弁18aが開放される事によって、超電導マグネット1、超臨界ヘリウム循環系6内の超臨界ヘリウムは一部回収配管20を介して回収精製系11に放出される。次に超電導マグネット1と減圧容器23との間に介装された遠隔操作弁18cを開口し、残りの低温ヘリウムガスを減圧容器23に接続された冷却配管17を介して減圧容器23内に吸い込むことにより、一種のジュールトムソン断熱膨張による効果をも利用して超電導マグネット1を冷却できるのでクエンチすることなく消磁できる。また、減圧容器23に低温ヘリウムガスが充満し、内圧が大気圧近傍まで上昇すると、逆止弁19が作動し、回収管20を介して回収精製系11へとヘリウムガスを放出することによって、減圧容器23にヘリウムガスが異常に充填されないように構成されている。
【0033】
第5の実施例を図5を参照して説明する。
主要構成は図1乃至図4と同様であるが、本実施例においては、第1の実施例乃至第3の実施例の中圧容器16や第4の実施例の減圧容器23を設置する代わりに、超臨界ヘリウム熱交換器槽3内の液体ヘリウム2中に加熱手段26を設けたものである。加熱手段26としては、例えば電気ヒーターあるいは、室温または高温のガスを貫流させる熱交換器等液体ヘリウムを蒸発させ得るものであればよい。
【0034】
次に、本実施例図の作用効果について説明する。
電源喪失や機器故障等による冷媒循環不能が発生した場合には、超電導マグネット1に供給する低温ヘリウムガスを超臨界ヘリウム熱交換器槽3内に設けた加熱手段28で超臨界ヘリウム熱交換器槽3内の液体ヘリウムを蒸発させて低温ヘリウムガスを発生させるもので、気化した際に生じる超臨界ヘリウム熱交換器槽3内の圧力上昇をも利用することができるので、より単純でコンパクトな構成で低温ヘリウムガスを超電導マグネットに供給できる。
【0035】
なお、加熱手段28を超臨界ヘリウム熱交換器槽3内に設ける代わりに、断熱容器15内に別の液体ヘリウム貯槽7を設け、これに加熱手段28を設けてもよい。
【0036】
さらに、本発明は上記した各実施例にとどまらず、各実施例を組み合わせて使用する事により、超臨界ヘリウムの供給量を増やす事ができ、超電導マグネット1の熱負荷が大きい場合や、超臨界ヘリウムの供給時間を延ばしたい場合等に有効である。
【0037】
また、第1の実施例で説明した流量調節手段22や、超電導マグネット1あるいは超電導マグネットからの出口側超臨界ヘリウムの少なくともいずれかの温度を検出する温度検出手段27と、温度検出手段27からの信号で流量調節手段22の開口面積を制御する制御器28を具備して、超電導マグネット1への超臨界ヘリウムの供給量を制御する構成は他の実施例にも適用できる。
【0038】
【発明の効果】
以上説明したように、本発明によれば電源喪失や冷媒供給装置の機器故障時でも、液体ヘリウムを低温中圧状態を保つように常時冷却された中圧容器に貯蔵してある超臨界ヘリウムを、遠隔操作弁を介して、圧力差で超電導マグネットに供給できるので、超電導マグネットに超臨界ヘリウムを確実に供給でき、クエンチや過大な熱応力の発生を回避して安全に超電導マグネットを停止できる高信頼性の冷媒装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の冷却装置の第1の実施例を示す系統構成図。
【図2】本発明の冷却装置の第2の実施例を示す系統構成図。
【図3】本発明の冷却装置の第3の実施例を示す系統構成図。
【図4】本発明の冷却装置の第4の実施例を示す系統構成図。
【図5】本発明の冷却装置の第5の実施例を示す系統構成図。
【図6】従来の冷却装置の一実施例を示す系統構成図。
【符号の説明】
1…超電導マグネット
2…液体ヘリウム
3…超臨界ヘリウム熱交換器槽
4…超臨界ヘリウム循環ポンプ
5…熱交換器
6…超臨界ヘリウム循環系
6a…超臨界ヘリウム供給管
6b…超臨界ヘリウム戻り管
7…液体ヘリウム貯槽
8…電流リード
9…液体ヘリウム移送管
10…ヘリウム冷凍液化装置
11…回収精製系
14…弁
15…断熱容器
16…中圧容器
17a,17b,17c…低温ヘリウム配管
18a,18b,18c…遠隔操作弁
19…逆止弁
20…回収配管
21…低温高圧ヘリウム配管
22…流量調節手段
23…減圧容器
24…真空排気配管
25…排気装置
26…加熱手段
27…温度検出手段
28…制御器
[0001]
[Industrial application fields]
The present invention relates to a cooling device for a superconducting magnet of a forced cooling system in which a forced cooling conductor for cooling by flowing supercritical helium in a flow path is wound.
[0002]
[Prior art]
Forced cooling superconducting magnets are used in large-scale superconducting equipment such as fusion experimental devices (reactors) and energy storage devices that require high withstand voltage, high magnetic field, and high current density. The forced cooling superconducting magnet cooling device for a large superconducting device includes a superconducting magnet 1, a supercritical helium circulation pump 4 that circulates supercritical helium in the superconducting magnet 1, and a heat exchanger 5. A supercritical helium supply pipe 6a, a supercritical helium return pipe 6b, a remote control valve 18b, a supercritical helium circulation pump 4 and a heat exchanger, and supercritical helium containing liquid helium 2. The heat exchanger tank 3 constitutes a supercritical helium circulation system 6, and the supercritical helium circulation system 6 is accommodated in a heat insulating container 15. Outside the heat insulation container 15, a helium refrigerating and liquefying device 10, a liquid helium storage tank 7 for storing the purified liquid helium 2, a gas bag for recovering the evaporated helium gas, a recovery compressor, a purification A recovery / purification system 11 composed of an apparatus, a helium gas filling container 12, a helium compressor 13 and a valve 14, a recovery pipe 20, a pipe including a low-temperature high-pressure helium supply line 21, and the like are provided. The liquid helium 2 in the liquid helium storage tank 7 is transferred to the supercritical helium heat exchanger tank 3 by the liquid helium transfer pipe 9. The superconducting magnet 1 is excited from a power supply source (not shown) through a current lead 8 and a power supply cable 8a.
[0003]
Since the cooling device configured in this manner must be operated stably for a long period of time and with high reliability, it is necessary to improve the reliability of the main constituent devices and to make a dual configuration. In addition, even when the power supply to these main devices is stopped due to inconvenience such as a power failure, it is necessary to take measures such as an uninterruptible power supply so that the refrigerant can be circulated through the superconducting magnet.
[0004]
[Problems to be solved by the invention]
Since the conventional cooling device is configured as described above, it is prepared for an emergency such as a power failure, and is different for operation and control of the helium refrigeration device 10, the supercritical helium circulation pump 4, valves, and the like. It is desirable to provide a plurality of power supply sources. However, the helium refrigeration and liquefaction device 10 of these large superconducting devices requires a refrigeration capacity equivalent to several tens of kilowatts to one hundred kilowatts at a temperature of 4.5K, and the energy efficiency ((refrigeration capacity at 4.5K) / If (the actual electric power necessary at room temperature) is about 0.003, a plurality of enormous power supply sources are required. Moreover, it is not always used for driving and is provided for emergency use. For this reason, in general, there is only one power supply source for the helium refrigeration liquefaction apparatus 10, and a standby power supply such as an uninterruptible power supply is provided only for operation of the remote control valve 18b and the supercritical helium circulation pump 4 which are indispensable for safe operation. Will be provided.
[0005]
However, since the energy of these basically same forms (electricity) is used for operation, when trouble occurs not only in the main power supply but also in the standby power supply, the power supply source and the supercritical helium circulation pump When a power cable between the four power cables is disconnected, or when an equipment failure occurs in the refrigerant supply device such as the helium refrigerating / liquefying device 10 or the supercritical helium circulation pump 4, the supercritical helium is circulated. This makes it impossible to operate the superconducting magnet 1 without quenching (normal conducting transition), as well as to stop the operation. In general, when the superconducting magnet 1 is stopped, the exciting current is gradually lowered to suppress the release of large stored energy.
[0006]
Therefore, it is necessary to circulate the refrigerant even when the excitation current is decreasing. In addition, when the refrigerant is lost, the temperature of the superconducting magnet 1 rapidly rises. However, the rapid rise in temperature generates a large thermal stress, and the insulation of the superconducting magnet 1 and the soundness of the structure cannot be maintained. Driving may be impossible.
[0007]
Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to provide a highly reliable cooling device that can reliably circulate the refrigerant to the superconducting magnet even when the power supply is lost or the refrigerant supply device malfunctions. There is.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 of the present invention is a cooling device that circulates supercritical helium in a supercritical helium circulation system and cools the superconducting magnet in a heat insulating container containing the superconducting magnet. A liquid helium storage tank is provided, and an intermediate pressure vessel for filling supercritical helium inside the liquid helium storage tank is housed. The intermediate pressure vessel is constantly cooled to maintain a low temperature and intermediate pressure state, and the intermediate pressure vessel One end of the magnet was connected to the supercritical helium circulation system via a remote control valve, and the other end was connected to the superconducting magnet via a remote control valve, and when the refrigerant could not be circulated, it circulated in the superconducting magnet. releasing the recovery purification system through the recovery pipe for recovering the helium gas evaporating from the supercritical helium, and supplies a supercritical helium in the in vessel to the superconducting magnet And wherein the Rukoto.
[0009]
According to a second aspect of the present invention, there is provided a cooling device for cooling a superconducting magnet by circulating supercritical helium in a supercritical helium circulation system, and an intermediate pressure for filling the supercritical helium in a heat insulating container containing the superconducting magnet. A container is provided, and this medium pressure container is constantly cooled so as to maintain a low temperature and medium pressure state, and one end of the medium pressure container is connected to the supercritical helium circulation system via a remote control valve, and the other end is connected via a remote control valve. A superconducting magnet and a heat exchanger in the medium pressure vessel, and supercritical helium is allowed to flow through the heat exchanger from the supercritical helium circulation system so that the supercritical helium in the medium pressure vessel is passed through. and configured to cool, when the refrigerant circulation impossible occurs, the recovery and purification system from the supercritical helium to the superconducting magnet has been circulated through a recovery pipe for recovering the helium gas evaporating Out, and and supplying supercritical helium in the in vessel to the superconducting magnet.
[0010]
The invention of claim 3 constitutes a supercritical helium circulation system housed in a heat insulating container containing a superconducting magnet in a cooling device for cooling the superconducting magnet by circulating supercritical helium in the supercritical helium circulation system. An intermediate pressure vessel for filling supercritical helium is accommodated inside the supercritical helium heat exchanger tank, and this intermediate pressure vessel is constantly cooled to maintain a low temperature and intermediate pressure state, and one end of the intermediate pressure vessel is connected to the intermediate pressure vessel. Supercritical helium circulated in the superconducting magnet when the other end is connected to the superconducting helium circulation system via a remote control valve and the other end is connected to a superconducting magnet via a remote control valve. and wherein the release in recovery and purification system through the recovery arrangement for recovering helium gas evaporating and supplying supercritical helium in the in vessel to the superconducting magnet from That.
[0011]
According to a fourth aspect of the present invention, in the cooling device according to the first, second, or third aspect, a flow rate adjusting means for adjusting a flow rate of supercritical helium is mounted between the intermediate pressure vessel and the superconducting magnet. It is characterized by that.
[0015]
[Action]
In the cooling device corresponding to claim 1, when the refrigerant cannot be circulated due to loss of power supply or equipment failure of the refrigerant supply device, the cooling device is stored in an intermediate pressure vessel cooled by liquid helium stored in the liquid helium storage tank. Since some supercritical helium with a medium pressure of 10 atm or less can be supplied to the superconducting magnet by a pressure difference via a remote control valve, the refrigerant circulation of the superconducting magnet can be secured and stopped without quenching, and a sudden temperature rise It is possible to suppress the thermal stress generated in the superconducting magnet.
[0016]
In the cooling device corresponding to claim 2, medium pressure supercritical helium stored in the medium pressure vessel is 10 atm or less and the heat exchanger provided in the medium pressure vessel is operated with supercritical helium. The supercritical helium stored in the intermediate pressure vessel can be supplied to the superconducting magnet by a pressure difference via the remote control valve when the refrigerant is not circulating.
[0017]
In the refrigerant device corresponding to claim 3, when the refrigerant cannot be circulated, the medium pressure of 10 atm or less stored in the medium pressure vessel cooled by the liquid helium contained in the supercritical helium heat exchanger tank is stored. Supercritical helium can be supplied to the superconducting magnet with a pressure difference via a remote control valve.
[0018]
In the refrigerant device corresponding to claim 4, the supply flow rate (supply time) can be adjusted to an appropriate value by the flow rate adjusting means installed between the intermediate pressure vessel and the superconducting magnet. For this reason, when medium-pressure supercritical helium stored in the medium-pressure vessel is supplied to the superconducting magnet with a pressure difference, it can be supplied by controlling an appropriate flow rate or supply time, thereby further improving reliability.
[0023]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system configuration diagram showing a first embodiment of the cooling apparatus of the present invention. This cooling device is connected to the superconducting magnet 1 on the discharge side of a supercritical helium circulation pump 4 that circulates supercritical helium, and exchanges heat in a supercritical helium heat exchanger tank 3 containing liquid helium 2. A supercritical helium return pipe 6b for connecting the vessel 5, the superconducting magnet 1 and the supercritical helium circulation pump 4 via a remote control valve 18b, and a remote control valve 18b for the superconducting magnet 1 and the heat exchanger 5. A supercritical helium circulation system 6 is constituted by the supercritical helium supply pipe 6a connected via the. The supercritical helium circulation system 6 is connected to a recovery pipe 20 for recovering evaporated helium gas and a low-temperature high-pressure helium supply pipe 21 for supplying low-temperature high-pressure helium.
Further, a liquid helium storage tank 7 is provided in the heat insulating container 15, and an intermediate pressure container 16 for storing supercritical helium is accommodated in the liquid helium storage tank 7, and the intermediate pressure container 16 includes a check valve 19 and a remote operation. The supercritical helium circulation system 6 is connected in parallel via the valve 18 a and the flow rate adjusting means 22.
The liquid helium 2 in the liquid helium storage tank 7 is transferred from the supercritical helium heat exchanger tank 3 by the transfer pipe 9a.
[0024]
Further, a temperature detecting means 27 for detecting the temperature of the outlet supercritical helium flowing through the superconducting magnet 1 or the supercritical helium return pipe 6b, and a controller 28 for controlling the opening area of the flow rate adjusting means 22 by a signal from the temperature detecting means. It has.
[0025]
Next, the function and effect of the first embodiment will be described. In a steady state in which the inability to circulate the refrigerant due to loss of power supply or equipment failure of the refrigerant supply device does not occur, the supercritical helium is boosted to a predetermined pressure by the supercritical helium circulation pump 4 and then the supercritical helium heat exchanger tank 3 The heat exchanger 5 installed in the inside is recooled to a predetermined temperature using the latent heat of vaporization of the liquid helium 2 and supplied to the superconducting magnet 1 via the remote control valve 18b and the supercritical helium supply pipe 6a. . The supercritical helium that has cooled the heat generated by the superconducting magnet 1 returns to the supercritical helium circulation pump 4 again via the supercritical helium return pipe 6b and the remote control valve 18b.
During the initial cooling or steady cooling of the superconducting magnet 1, supercritical helium is charged into the intermediate pressure vessel 16 through the cooling pipe 17b and the check valve 19 to a predetermined pressure. The intermediate pressure vessel 16 is constantly cooled by the liquid helium 2 in the liquid helium storage tank 7, and can maintain a low temperature and intermediate pressure state.
On the other hand, when the refrigerant cannot be circulated due to power loss or equipment failure, the remote control valve 18b is closed and the remote control valve 18a is opened. In addition, this operation is performed almost instantaneously in response to the refrigerant circulation impossibility signal. Although the supercritical helium circulating in the superconducting magnet 1 at a predetermined pressure and temperature is stopped by closing the remote control valve 18b, the helium gas evaporated from the supercritical helium does not pass through the line, and the line of the recovery pipe 20 is removed. To the recovery and purification system 11. Further, supercritical helium having a low temperature and intermediate pressure (approximately 10 atm) stored in the medium pressure vessel 16 is supplied to the superconducting magnet 1 through the low temperature helium pipe 17a through the opening of the remote control valve 18a.
In addition, since the supply amount of supercritical helium can be adjusted by installing a flow rate adjusting means 22 such as an orifice or a flow rate adjusting valve between the superconducting magnet 1 and the intermediate pressure vessel 16, it is stored in the intermediate pressure vessel 16. When supercritical helium having a certain medium pressure is supplied to the superconducting magnet 1 with a pressure difference, it can be supplied by controlling an appropriate flow rate or supply time. As a control method of the supply amount, the supply amount is calculated in advance from the relationship between the volume and pressure of the medium pressure vessel 16 and the supercritical helium circulation system 6 including the superconducting magnet 1, and the flow rate control such as the orifice and the flow control valve is performed. The method of setting the opening area of the means 22 and the temperature detecting means 27 detect the temperature of the superconducting magnet 1 or the supercritical helium on the outlet side from the superconducting magnet 1, and the controller 28 is controlled by the signal from the temperature detecting means 22. There is a method for controlling the opening area of the flow rate control means 22 such as a flow rate control valve.
[0026]
Thus, since the flow rate of the supercritical helium circulating through the superconducting magnet is adjusted by the flow rate adjusting means 22, the supercritical helium stored in the intermediate pressure vessel 16 can be used effectively.
Therefore, reliability is further improved.
[0027]
The helium gas evaporated from the supercritical helium that has cooled the superconducting magnet 1 is discharged to the recovery and purification system 11 through the supercritical helium return pipe 6b and the recovery pipe 20. With this operation, supercritical helium can be reliably supplied while the superconducting magnet 1 is demagnetized.
[0028]
Therefore, it is possible to stop the superconducting magnet without securing and quenching the refrigerant circulation of the superconducting magnet, and to suppress the rapid temperature rise and reduce the thermal stress generated in the superconducting magnet.
[0029]
Next, a second embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment is the cooling method of the supercritical helium in the intermediate pressure vessel 16. In this embodiment, the supercritical helium in the intermediate pressure vessel 16 is cooled by flowing the supercritical helium used for cooling the superconducting magnet 1 through the heat exchanger 5 in the intermediate pressure vessel 16. The operation and effect during steady operation and when the refrigerant cannot be circulated are the same as in the first embodiment. Furthermore, according to the present embodiment, the liquid helium storage tank 7 is not required, the apparatus configuration can be made compact, and the liquid level control of the liquid helium 2 in the liquid helium storage tank 7 and the adjustment of the supply amount are unnecessary. Therefore, the control system of the cooling device is simplified.
[0030]
A third embodiment will be described with reference to FIG. In this embodiment, the intermediate pressure vessel 16 is accommodated in the supercritical helium heat exchanger tank 3, and the supercritical helium in the intermediate pressure vessel 16 is always cooled with liquid helium 2, which is the second embodiment. It has the same effect as the example.
[0031]
A fourth embodiment will be described with reference to FIG.
Although the main configuration is the same as in FIG. 1, a vacuum container 23 is provided in a heat insulating container 15 containing the superconducting magnet 1, and a decompression container 23 is provided under reduced pressure. One end of the decompression container 23 is connected to the superconducting magnet 1 via a remote control valve 18a. The other end of the vacuum exhaust pipe 24 is connected to the recovery pipe 20 via the check valve 19 and the exhaust pipe 25 is branched from the middle of the vacuum exhaust pipe 24 via the remote control valve 18b. Yes.
[0032]
Next, the function and effect of this embodiment will be described.
The decompression vessel 23 is always evacuated through the remote control valve 18 b and the vacuum exhaust pipe 24 by the exhaust device 25 installed outside the heat insulation vessel 15. On the other hand, when the refrigerant circulation is disabled due to power loss or equipment failure, the remote control valve 18b provided in front of the exhaust device 25 is closed and the remote control valve 18b provided at the same time is connected to the recovery pipe 20. By opening the operation valve 18 a, supercritical helium in the superconducting magnet 1 and the supercritical helium circulation system 6 is partially released to the recovery and purification system 11 through the recovery pipe 20. Next, the remote control valve 18 c interposed between the superconducting magnet 1 and the decompression vessel 23 is opened, and the remaining low-temperature helium gas is sucked into the decompression vessel 23 through the cooling pipe 17 connected to the decompression vessel 23. As a result, the superconducting magnet 1 can be cooled using the effect of a kind of Joule-Thompson adiabatic expansion, so that demagnetization can be achieved without quenching. Further, when the decompression vessel 23 is filled with low-temperature helium gas and the internal pressure rises to near atmospheric pressure, the check valve 19 is activated, and helium gas is released to the recovery and purification system 11 through the recovery pipe 20. The decompression vessel 23 is configured not to be abnormally filled with helium gas.
[0033]
A fifth embodiment will be described with reference to FIG.
The main configuration is the same as in FIGS. 1 to 4, but in this embodiment, instead of installing the intermediate pressure vessel 16 of the first to third embodiments and the decompression vessel 23 of the fourth embodiment. The heating means 26 is provided in the liquid helium 2 in the supercritical helium heat exchanger tank 3. The heating means 26 may be any means that can evaporate liquid helium, such as an electric heater or a heat exchanger that allows a room-temperature or high-temperature gas to flow therethrough.
[0034]
Next, the function and effect of this embodiment will be described.
When the refrigerant circulation becomes impossible due to power loss or equipment failure, the supercritical helium heat exchanger tank is heated by the heating means 28 provided in the supercritical helium heat exchanger tank 3 with the low-temperature helium gas supplied to the superconducting magnet 1. The liquid helium in 3 is evaporated to generate low-temperature helium gas. Since the pressure rise in the supercritical helium heat exchanger tank 3 generated when vaporized can be used, a simpler and more compact configuration is possible. Can supply low-temperature helium gas to the superconducting magnet.
[0035]
Instead of providing the heating means 28 in the supercritical helium heat exchanger tank 3, another liquid helium storage tank 7 may be provided in the heat insulating container 15, and the heating means 28 may be provided there.
[0036]
Furthermore, the present invention is not limited to the embodiments described above, by using a combination of each embodiment, it is possible to increase the supply amount of supercritical helium, or if the heat load of the superconducting magnet 1 is large, supercritical This is effective for extending the supply time of helium .
[0037]
Further, the flow rate adjusting means 22 described in the first embodiment, the temperature detecting means 27 for detecting the temperature of at least one of the superconducting magnet 1 or the supercritical helium on the outlet side from the superconducting magnet, and the temperature detecting means 27 The configuration in which the controller 28 for controlling the opening area of the flow rate adjusting means 22 by the signal and controlling the supply amount of supercritical helium to the superconducting magnet 1 can be applied to other embodiments.
[0038]
【The invention's effect】
As described above, according to the present invention, even when the power supply is lost or the equipment of the refrigerant supply device breaks down, the supercritical helium stored in the medium pressure vessel that is constantly cooled so as to maintain the low temperature and medium pressure state is maintained. The superconducting magnet can be supplied to the superconducting magnet with a pressure difference via a remote control valve, so that supercritical helium can be reliably supplied to the superconducting magnet, and the superconducting magnet can be safely stopped by avoiding quenching and excessive thermal stress. A reliable refrigerant device can be provided.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a first embodiment of a cooling device of the present invention.
FIG. 2 is a system configuration diagram showing a second embodiment of the cooling device of the present invention.
FIG. 3 is a system configuration diagram showing a third embodiment of the cooling device of the present invention.
FIG. 4 is a system configuration diagram showing a fourth embodiment of the cooling device of the present invention.
FIG. 5 is a system configuration diagram showing a fifth embodiment of the cooling device of the present invention.
FIG. 6 is a system configuration diagram showing an example of a conventional cooling device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Superconducting magnet 2 ... Liquid helium 3 ... Supercritical helium heat exchanger tank 4 ... Supercritical helium circulation pump 5 ... Heat exchanger 6 ... Supercritical helium circulation system 6a ... Supercritical helium supply pipe 6b ... Supercritical helium return pipe 7 ... Liquid helium storage tank 8 ... Current lead 9 ... Liquid helium transfer pipe 10 ... Helium refrigerating and liquefying device 11 ... Recovery purification system 14 ... Valve 15 ... Thermal insulation container 16 ... Medium pressure vessels 17a, 17b, 17c ... Low temperature helium piping 18a, 18b , 18c ... Remote control valve 19 ... Check valve 20 ... Recovery pipe 21 ... Low temperature high pressure helium pipe 22 ... Flow rate adjusting means 23 ... Depressurized container 24 ... Vacuum exhaust pipe 25 ... Exhaust device 26 ... Heating means 27 ... Temperature detecting means 28 ... Controller

Claims (4)

超臨界ヘリウム循環系で超臨界ヘリウムを循環させて、超電導マグネットを冷却する冷却装置において、超電導マグネットを収納した断熱容器内に液体ヘリウム貯槽を設け、この液体ヘリウム貯槽の内部に、超臨界ヘリウムを充填するための中圧容器を収納し、この中圧容器低温中圧状態を保つように常時冷却され、かつ中圧容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超電導マグネットに接続し、冷媒循環不能が発生した場合に、前記超電導マグネット内を循環していた超臨界ヘリウムから蒸発するヘリウムガスを回収する回収配管を介して回収精製系に放出し、かつ前記中圧容器内の超臨界ヘリウムを前記超電導マグネットに供給することを特徴とする冷却装置。In a cooling device that circulates supercritical helium in a supercritical helium circulation system and cools the superconducting magnet, a liquid helium storage tank is provided in a heat insulating container containing the superconducting magnet, and supercritical helium is placed inside the liquid helium storage tank. An intermediate-pressure vessel for filling is accommodated, and this intermediate-pressure vessel is constantly cooled so as to maintain a low-temperature and intermediate-pressure state, and one end of the intermediate-pressure vessel is connected to the supercritical helium circulation system via a remote control valve. The end is connected to a superconducting magnet via a remote control valve, and when the refrigerant cannot be circulated, it is recovered and purified via a recovery pipe that recovers helium gas that evaporates from supercritical helium circulating in the superconducting magnet. A cooling device which discharges into a system and supplies supercritical helium in the medium pressure vessel to the superconducting magnet. 超臨界ヘリウム循環系で超臨界ヘリウムを循環させて、超電導マグネットを冷却する冷却装置において、超電導マグネットを収納した断熱容器内に、超臨界ヘリウムを充填するための中圧容器を設け、この中圧容器低温中圧状態を保つように常時冷却され、かつ中圧容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超電導マグネットに接続すると共に、中圧容器内に熱交換器を配設し、この熱交換器に超臨界ヘリウム循環系から超臨界ヘリウムを貫流させて、前記中圧容器内の超臨界ヘリウムを冷却するように構成し、冷媒循環不能が発生した場合に、前記超電導マグネット内を循環していた超臨界ヘリウムから蒸発するヘリウムガスを回収する回収配管を介して回収精製系に放出し、かつ前記中圧容器内の超臨界ヘリウムを前記超電導マグネットに供給することを特徴とする冷却装置。In a cooling device that circulates supercritical helium in a supercritical helium circulation system and cools the superconducting magnet, an intermediate pressure vessel for filling supercritical helium is installed in the heat insulating container containing the superconducting magnet. The vessel is constantly cooled to maintain a low temperature and intermediate pressure state, and one end of the intermediate pressure vessel is connected to the supercritical helium circulation system via a remote control valve, and the other end is connected to a superconducting magnet via a remote control valve. A heat exchanger is disposed in the intermediate pressure vessel, and supercritical helium is allowed to flow through the heat exchanger from the supercritical helium circulation system to cool the supercritical helium in the intermediate pressure vessel, when the refrigerant circulating impossible occurs, released into the recovery purification system from the supercritical helium to the superconducting magnet has been circulated through a recovery pipe for recovering the helium gas evaporating, and the in Cooling device and supplying the supercritical helium in the container to the superconducting magnet. 超臨界ヘリウム循環系で超臨界ヘリウムを循環させて、超電導マグネットを冷却する冷却装置において、超電導マグネットを収納した断熱容器内に収納された超臨界ヘリウム循環系を構成する超臨界ヘリウム熱交換器槽の内部に、超臨界ヘリウムを充填するための中圧容器を収納し、この中圧容器低温中圧状態を保つように常時冷却され、かつ中圧容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超電導マグネットに接続し、冷媒循環不能が発生した場合に、前記超電導マグネット内を循環していた超臨界ヘリウムから蒸発するヘリウムガスを回収する回収配管を介して回収精製系に放出し、かつ前記中圧容器内の超臨界ヘリウムを前記超電導マグネットに供給することを特徴とする冷却装置。A supercritical helium heat exchanger tank that constitutes a supercritical helium circulation system housed in a heat insulating container containing a superconducting magnet in a cooling device that circulates supercritical helium in the supercritical helium circulation system and cools the superconducting magnet. An intermediate pressure vessel for filling supercritical helium is housed inside, and this intermediate pressure vessel is constantly cooled so as to maintain a low temperature and intermediate pressure state, and one end of the intermediate pressure vessel is connected to the above-mentioned via a remote control valve. Connect the other end of the supercritical helium circulation system to a superconducting magnet via a remote control valve, and recover helium gas that evaporates from the supercritical helium circulating in the superconducting magnet when the refrigerant cannot be circulated. A cooling apparatus which discharges to a recovery and purification system through a recovery pipe and supplies supercritical helium in the intermediate pressure vessel to the superconducting magnet. 中圧容器と超電導マグネットの間に、超臨界ヘリウムの流量を調節する流量調節手段を装着したことを特徴とする請求項1、請求項2、請求項3記載のいずれかの冷却装置。4. The cooling device according to claim 1, wherein a flow rate adjusting means for adjusting a flow rate of supercritical helium is mounted between the intermediate pressure vessel and the superconducting magnet.
JP11349195A 1995-05-12 1995-05-12 Cooling system Expired - Fee Related JP3836171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11349195A JP3836171B2 (en) 1995-05-12 1995-05-12 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11349195A JP3836171B2 (en) 1995-05-12 1995-05-12 Cooling system

Publications (2)

Publication Number Publication Date
JPH08316021A JPH08316021A (en) 1996-11-29
JP3836171B2 true JP3836171B2 (en) 2006-10-18

Family

ID=14613657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11349195A Expired - Fee Related JP3836171B2 (en) 1995-05-12 1995-05-12 Cooling system

Country Status (1)

Country Link
JP (1) JP3836171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490690B (en) * 2011-05-10 2013-11-06 Siemens Plc Methods and apparatus for orderly run-down of superconducting magnets
WO2016035153A1 (en) * 2014-09-03 2016-03-10 三菱電機株式会社 Superconducting magnet

Also Published As

Publication number Publication date
JPH08316021A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
JP6349390B2 (en) Device for cooling an object to be cooled with supercooled liquid in a cooling circuit
JP4667778B2 (en) Cryogenic cooling system and method with refrigeration apparatus
EP3069159B1 (en) Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
JP5931181B2 (en) Method and apparatus for ordered rundown of superconducting magnets
US10030919B2 (en) Cooling apparatus for superconductor
US20070248849A1 (en) Method for operation of an energy system, as well as an energy system
JP3836171B2 (en) Cooling system
JP2006502778A (en) MR device cooling device
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
KR102357143B1 (en) Energy storage system using liquid air
KR102337181B1 (en) Cooling system for superconducting machine
JP3725305B2 (en) Superconducting magnet cooling system
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
Rolando et al. Functional analysis and design of the cryogenic system for the HL-LHC IT String test bench at CERN
Hsiao et al. Continuous Operation of a Cryogenic System for a Synchrotron Light Source
US20220068530A1 (en) Apparatus and System to Maximize Heat Capacity in Cryogenic Devices
KR20040008255A (en) Superconductive magnet apparatus
JPH05335636A (en) Superconducting magnet device
JPH09106909A (en) Conductive cooling superconducting magnet
JPH0989399A (en) Helium refrigerator
Soyars et al. Superconducting radio-frequency modules test facility operating experience
RU2767668C1 (en) Cryosystem of an aviation integrated electric power plant based on hts
JPH06241594A (en) Supercritical helium cooling system
Bernard et al. Back-up systems of the Tore Supra superconducting toroidal magnet refrigeration

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees