JPH08316021A - Cooler - Google Patents

Cooler

Info

Publication number
JPH08316021A
JPH08316021A JP11349195A JP11349195A JPH08316021A JP H08316021 A JPH08316021 A JP H08316021A JP 11349195 A JP11349195 A JP 11349195A JP 11349195 A JP11349195 A JP 11349195A JP H08316021 A JPH08316021 A JP H08316021A
Authority
JP
Japan
Prior art keywords
helium
superconducting magnet
supercritical
cooling device
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11349195A
Other languages
Japanese (ja)
Other versions
JP3836171B2 (en
Inventor
Yoshihiro Wachi
良裕 和智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11349195A priority Critical patent/JP3836171B2/en
Publication of JPH08316021A publication Critical patent/JPH08316021A/en
Application granted granted Critical
Publication of JP3836171B2 publication Critical patent/JP3836171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To prevent quenching or excess thermal stress by effectively supplying refrigerant to a superconducting magnet until the magnet is safely stopped even at the time of disabling to circulate the refrigerant owing to the power source failure or the fault of a refrigerant supply unit. CONSTITUTION: A liquid helium reservoir 7 is provided in a heat insulation vessel 15 containing a superconducting magnet 1, an intermediate pressure vessel 16 in which intermediate pressure helium gas is charged is contained in the reservoir 7, a remote operation valve 18a is opened at the time of disabling to circulate refrigerant to supply the helium gas in the vessel 16 to the magnet 1, and hence the magnet can be safely stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超臨界ヘリウムを流路
に流して冷却する強制冷却導体を巻回した強制冷却方式
の超電導マグネットの冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forced cooling type superconducting magnet cooling device in which a forced cooling conductor for flowing supercritical helium in a flow passage for cooling is wound.

【0002】[0002]

【従来の技術】高耐電圧・高磁界・高電流密度が要求さ
れる核融合実験装置(炉)やエネルギ貯蔵装置などの大
型超電導機器には強制冷却方式の超電導マグネットが採
用されている。この大型超電導装置用強制冷却超電導マ
グネットの冷却装置は、図6に示すように超電導マグネ
ット1と、超電導マグネット1に超臨界ヘリウムを循環
する超臨界ヘリウム循環用ポンプ4および熱交換器5
と、これらを接続する超臨界ヘリウム供給管6a、超臨
界ヘリウム戻り管6b、遠隔操作弁18bと、前記超臨
界ヘリウム循環用ポンプ4および熱交換器を収納し、か
つ、液体ヘリウム2を収納した超臨界ヘリウム熱交換器
槽3とで超臨界ヘリウム循環系6を構成しており、超臨
界ヘリウム循環系6は断熱容器15内に収納されてい
る。断熱容器15の外部には、ヘリウム冷凍液化装置1
0と、ここで精製された液体ヘリウム2を貯液する液体
ヘリウム貯槽7と、蒸発ヘリウムガスを回収するため
の、ガスバッグ、回収圧縮機、精製装置などで構成され
た回収精製系11と、ヘリウムガス充填容器12、ヘリ
ウム圧縮機13および弁14、回収配管20、低温高圧
ヘリウム供給ライン21を含む配管類などが配備されて
いる。なお、液体ヘリウム貯槽7の液体ヘリウム2は超
臨界ヘリウム熱交換器槽3に液体ヘリウム移送管9で移
送される。なお超電導マグネット1は図示しない電力供
給源から電流リード8および給電ケーブル8aを介して
励磁される。
2. Description of the Related Art Forced cooling type superconducting magnets are used in large-scale superconducting devices such as nuclear fusion experimental devices (reactors) and energy storage devices that require high withstand voltage, high magnetic field, and high current density. As shown in FIG. 6, a cooling device for a forced cooling superconducting magnet for a large-scale superconducting device includes a superconducting magnet 1, a supercritical helium circulation pump 4 for circulating supercritical helium in the superconducting magnet 1, and a heat exchanger 5.
And a supercritical helium supply pipe 6a, a supercritical helium return pipe 6b, a remote control valve 18b for connecting them, the supercritical helium circulation pump 4 and a heat exchanger, and a liquid helium 2 therein. A supercritical helium circulation system 6 is configured with the supercritical helium heat exchanger tank 3, and the supercritical helium circulation system 6 is housed in a heat insulating container 15. The helium freezing liquefaction device 1 is provided outside the heat insulating container 15.
0, a liquid helium storage tank 7 for storing the liquid helium 2 purified here, a recovery and purification system 11 for recovering the evaporated helium gas, which is composed of a gas bag, a recovery compressor, a purification device, and the like. A helium gas filling container 12, a helium compressor 13, a valve 14, a recovery pipe 20, and pipes including a low temperature and high pressure helium supply line 21 are provided. The liquid helium 2 in the liquid helium storage tank 7 is transferred to the supercritical helium heat exchanger tank 3 through the liquid helium transfer pipe 9. The superconducting magnet 1 is excited by a power supply source (not shown) via the current lead 8 and the power supply cable 8a.

【0003】この様に構成された冷却装置は、長期間安
定に、かつ信頼性高く運転しなければならないため、構
成主要機器の信頼性向上、二重構成化などが必要であ
る。また、これら主要機器への電力供給が停電等の不都
合により停止した場合にも、超電導マグネットに冷媒を
循環できるよう、無停電電源などの対策を講じる必要が
ある。
Since the cooling device thus constructed must be operated stably and reliably for a long period of time, it is necessary to improve the reliability of the major constituent equipment and to make it a double structure. Further, even if the power supply to these main devices is stopped due to a power failure or the like, it is necessary to take measures such as an uninterruptible power supply so that the refrigerant can be circulated through the superconducting magnet.

【0004】[0004]

【発明が解決しようとする課題】従来の冷却装置は、上
述したように構成されているので、停電時などの緊急時
に備え、ヘリウム冷凍液化装置10や超臨界ヘリウム循
環用ポンプ4、バルブ類などの運転や制御用には異なる
種類の複数以上の電力供給源を備えることが望ましい。
しかしながらこれら大型超電導装置のヘリウム冷凍液化
装置10は4.5K温度で数十キロワットから百キロワ
ット相当の冷凍能力が必要であり、従来の冷凍機のエネ
ルギー効率((4.5Kでの冷凍能力)/(室温で必要
な実電気動力))を0.003程度とすると、莫大な電
力供給源が複数以上必要となる。しかも常に運転に使用
するわけではなく、非常用に設けることになる。このた
め一般にはヘリウム冷凍液化装置10用電力供給源は一
つとし、安全運転上、不可欠な遠隔操作弁18bおよび
超臨界ヘリウム循環用ポンプ4などの動作用についての
み無停電電源等の予備電源を設けることになる。
Since the conventional cooling device is configured as described above, the helium refrigeration liquefaction device 10, the supercritical helium circulation pump 4, valves, etc. are prepared for an emergency such as a power failure. It is desirable to provide a plurality of power supply sources of different types for the operation and control of.
However, the helium refrigeration liquefier 10 of these large-scale superconducting devices requires a refrigerating capacity equivalent to several tens of kilowatts to 100 kilowatts at a temperature of 4.5K, and the energy efficiency of the conventional refrigerator ((refrigerating capacity at 4.5K) / If (actual electric power required at room temperature) is set to about 0.003, a huge number of power supply sources are required. Moreover, it is not always used for driving, but it is provided as an emergency. Therefore, generally, the power supply source for the helium refrigeration liquefaction device 10 is one, and a standby power supply such as an uninterruptible power supply is used only for the operation of the remote control valve 18b and the supercritical helium circulation pump 4 which are essential for safe operation. Will be provided.

【0005】しかしながら、これらの基本的に同一形態
(電気)のエネルギーを動作用に使用しているため、主
電源のみならず予備電源にも支障が生じた場合や、電力
供給源と超臨界ヘリウム循環用ポンプ4間の動力ケーブ
ルに断線等の事態が生じた場合、または、ヘリウム冷凍
液化装置10や超臨界ヘリウム循環用ポンプ4等の冷媒
供給装置に機器故障が生じた場合には、超臨界ヘリウム
の循環が不能になり、超電導マグネット1をクエンチ
(常電導転移)することなく運転する事は勿論、停止に
も支障を来す事になる。一般に、超電導マグネット1を
停止する際には、励磁電流を徐々に降下させて、大きな
蓄積エネルギーの放出を抑制している。
However, since these basically the same forms (electricity) of energy are used for operation, when not only the main power source but also the standby power source is disturbed, or the power source and the supercritical helium are used. If a power cable between the circulation pumps 4 is broken, or if a refrigerant supply device such as the helium refrigeration liquefaction device 10 or the supercritical helium circulation pump 4 has a device failure, the supercritical condition will occur. Circulation of helium is disabled, and the superconducting magnet 1 can be operated without being quenched (transition to normal conduction), and it can also be stopped. Generally, when the superconducting magnet 1 is stopped, the exciting current is gradually decreased to suppress the release of large accumulated energy.

【0006】したがって、励磁電流の降下中でも冷媒の
循環が必要である。また、冷媒が喪失すると超電導マグ
ネット1の温度は急激に上昇することになるが、温度の
急激な上昇は大きな熱応力を生じ、超電導マグネット1
の絶縁や構造の健全性を維持できなくなって、再運転が
不可能になる恐れがある。
Therefore, it is necessary to circulate the refrigerant even when the exciting current is falling. Further, when the refrigerant is lost, the temperature of the superconducting magnet 1 will rise rapidly, but the rapid rise in temperature causes a large thermal stress, and the superconducting magnet 1
There is a risk that the insulation and the soundness of the structure will not be maintained, making it impossible to restart.

【0007】そこで本発明は、上記問題を解決するため
になされたもので、その目的は電源喪失や冷媒供給装置
の機器故障時でも、超電導マグネットに冷媒を確実に循
環できる高信頼性の冷却装置を提供することにある。
Therefore, the present invention has been made to solve the above problems, and its purpose is to provide a highly reliable cooling device capable of reliably circulating the refrigerant through the superconducting magnet even when the power supply is lost or the equipment of the refrigerant supply device fails. To provide.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1の発明は、超臨界ヘリウム循環系
で超臨界ヘリウムを循環させて、超電導マグネットを冷
却する冷却装置において、超電導マグネットを収納した
断熱容器内に液体ヘリウム貯槽を設け、この液体ヘリウ
ム貯槽の内部に、ヘリウムガスを充填するための中圧容
器を収納し、中圧容器の一端を遠隔操作弁を介して前記
超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超
電導マグネットに接続したことを特徴とする。
In order to solve the above problems, the invention of claim 1 of the present invention provides a cooling device for cooling superconducting magnets by circulating supercritical helium in a supercritical helium circulation system, A liquid helium storage tank is provided in an insulating container containing a superconducting magnet, a medium pressure container for filling helium gas is stored in the liquid helium storage tank, and one end of the medium pressure container is connected via a remote control valve. The supercritical helium circulation system is characterized in that the other end is connected to a superconducting magnet via a remote control valve.

【0009】請求項2の発明は、超臨界ヘリウム循環系
で超臨界ヘリウムを循環させて、超電導マグネットを冷
却する冷却装置において、超電導マグネットを収納した
断熱容器内に、ヘリウムガスを充填するための中圧容器
を設け、この中圧容器の一端を遠隔操作弁を介して前記
超臨界ヘリウム循環系に、他端を遠隔操作弁を介して超
電導マグネットに接続すると共に、中圧容器内に熱交換
器を配設し、この熱交換器に超臨界ヘリウム循環系から
超臨界ヘリウムを貫流させて、前記中圧容器内のヘリウ
ムガスを冷却するようにしたことを特徴とする。
According to a second aspect of the present invention, in a cooling device for cooling superconducting magnets by circulating supercritical helium in a supercritical helium circulation system, a helium gas is filled in an adiabatic container containing the superconducting magnets. A medium pressure vessel is provided, one end of this medium pressure vessel is connected to the supercritical helium circulation system via a remote control valve, and the other end is connected to a superconducting magnet via a remote control valve, and heat is exchanged in the medium pressure vessel. A heat exchanger is provided, and supercritical helium is allowed to flow through the heat exchanger from the supercritical helium circulation system to cool the helium gas in the medium pressure vessel.

【0010】請求項3の発明は、超臨界ヘリウム循環系
で超臨界ヘリウムを循環させて、超電導マグネットを冷
却する冷却装置において、超電導マグネットを収納した
断熱容器内に収納された、超臨界ヘリウム循環系を構成
する超臨界ヘリウム熱交換器槽の内部に、ヘリウムガス
を充填するための中圧容器を収納し、中圧容器の一端を
遠隔操作弁を介して前記超臨界ヘリウム循環系に、他端
を遠隔操作弁を介して超電導マグネットに接続したこと
を特徴とする。
According to a third aspect of the present invention, in a cooling device for cooling a superconducting magnet by circulating supercritical helium in a supercritical helium circulation system, the supercritical helium circulation housed in an adiabatic container containing the superconducting magnet. Inside the supercritical helium heat exchanger tank constituting the system, a medium pressure container for filling helium gas is stored, and one end of the medium pressure container is connected to the supercritical helium circulation system via a remote control valve, The end is connected to a superconducting magnet via a remote control valve.

【0011】請求項4の発明は、請求項1、請求項2、
請求項3記載のいずれかの冷却装置において、中圧容器
と超電導マグネットの間に、ヘリウムガスの流量を調節
する流量調節手段を装着したことを特徴とする。
The invention of claim 4 is the invention of claim 1, claim 2,
In the cooling device according to any one of claims 3 to 6, a flow rate adjusting means for adjusting the flow rate of the helium gas is mounted between the medium pressure container and the superconducting magnet.

【0012】請求項5の発明は、超臨界ヘリウム循環系
で超臨界ヘリウムを循環させて、超電導マグネットを冷
却する冷却装置において、超電導マグネットを収納した
断熱容器内に、真空減圧した減圧容器を設け、この減圧
容器の一端を遠隔操作弁を介して超電導マグネットに接
続し、他端を真空排気管で回収精製系に接続すると共
に、真空排気管の途中から分岐して遠隔操作弁を介して
排気装置を備えたことを特徴とする。
According to a fifth aspect of the present invention, in a cooling device for cooling superconducting magnets by circulating supercritical helium in a supercritical helium circulation system, a decompressing container that is decompressed in vacuum is provided in a heat insulating container containing the superconducting magnets. , One end of this decompression container is connected to a superconducting magnet via a remote control valve, and the other end is connected to a recovery and purification system with a vacuum exhaust pipe, and it is branched from the middle of the vacuum exhaust pipe and exhausted via a remote control valve. It is characterized by having a device.

【0013】請求項6の発明は、請求項5記載の冷却装
置において、超電導マグネットと減圧容器の間に、ヘリ
ウムガスの流量を調節する流量調節手段を装着したこと
を特徴とする 請求項7の発明は、超臨界ヘリウム循環系で超臨界ヘリ
ウムを循環させて、超電導マグネットを冷却する冷却装
置において、超電導マグネットを収納した断熱容器内
に、液体ヘリウムの加熱手段を備えた液体ヘリウム貯槽
を設け、この液体ヘリウム貯槽の上部と超電導マグネッ
トとを遠隔操作弁を介して接続したことを特徴とする。
According to a sixth aspect of the present invention, in the cooling device according to the fifth aspect, flow rate adjusting means for adjusting the flow rate of the helium gas is mounted between the superconducting magnet and the decompression container. The invention circulates supercritical helium in a supercritical helium circulation system, in a cooling device for cooling a superconducting magnet, in a heat insulating container containing the superconducting magnet, a liquid helium storage tank provided with a heating means for liquid helium, It is characterized in that the upper portion of the liquid helium storage tank and the superconducting magnet are connected via a remote control valve.

【0014】請求項8の発明は、請求項8記載の冷却装
置の液体ヘリウム貯槽を超臨界ヘリウム循環系を構成す
る超臨界ヘリウム熱交換器槽で代用したことを特徴とす
る。請求項9の発明は、請求項4または請求項6記載の
冷却装置において、超電導マグネットあるいは超電導マ
グネットからの出口ヘリウムガスの少なくともいずれか
の温度を検出する温度検出手段と、温度検出手段からの
信号で流量調節手段の開口面積を制御する制御器を具備
したことを特徴とする。
The invention according to claim 8 is characterized in that the liquid helium storage tank of the cooling device according to claim 8 is replaced by a supercritical helium heat exchanger tank constituting a supercritical helium circulation system. According to a ninth aspect of the present invention, in the cooling device according to the fourth or sixth aspect, temperature detecting means for detecting at least one of the temperature of the superconducting magnet and the outlet helium gas from the superconducting magnet, and a signal from the temperature detecting means. It is characterized by comprising a controller for controlling the opening area of the flow rate adjusting means.

【0015】[0015]

【作用】請求項1に対応する冷却装置においては、電源
喪失時や冷媒供給装置の機器故障時等による冷媒循環不
能時に、液体ヘリウム貯槽に収容された液体ヘリウムに
よって冷却された、中圧容器に貯蔵してある10atm 以
下の中圧の低温ヘリウムガスを、遠隔操作弁を介して、
圧力差で超電導マグネットに供給できるので、超電導マ
グネットの冷媒循環が確保されクエンチすることなく停
止できると共に、急激な温度上昇を抑制して超電導マグ
ネットに生じる熱応力を低減できる。
In the cooling device according to the first aspect, the medium pressure container cooled by the liquid helium stored in the liquid helium storage tank is provided when the refrigerant cannot be circulated due to a loss of power, a device failure of the refrigerant supply device, or the like. Stored medium-pressure low temperature helium gas under 10 atm via remote control valve
Since the superconducting magnet can be supplied with a pressure difference, the refrigerant circulation of the superconducting magnet can be secured and the superconducting magnet can be stopped without quenching, and a rapid temperature rise can be suppressed to reduce the thermal stress generated in the superconducting magnet.

【0016】請求項2に対応する冷却装置においては、
中圧容器に貯蔵してある10atm 以下の中圧のヘリウム
ガスを、中圧容器内に設けられた熱交換器に、超臨界ヘ
リウムを運転中に貫流させて冷却しておき、前述の冷媒
循環不能時に、中圧容器に貯蔵してある低温ヘリウムガ
スを、遠隔操作弁を介して、圧力差で超電導マグネット
に供給できる。
In the cooling device corresponding to claim 2,
Medium pressure helium gas of 10 atm or less stored in the medium pressure vessel is cooled by allowing supercritical helium to flow through the heat exchanger provided in the medium pressure vessel during operation and then cooled. When it is not possible, the low temperature helium gas stored in the medium pressure container can be supplied to the superconducting magnet with a pressure difference via the remote control valve.

【0017】請求項3に対応する冷媒装置においては、
前述の冷媒循環不能時に、超臨界ヘリウム熱交換器槽に
収容された液体ヘリウムによって冷却された、中圧容器
に貯蔵してある10atm 以下の中圧の低温ヘリウムガス
を、遠隔操作弁を介して、圧力差で超電導マグネットに
供給できる。
In the refrigerant device according to claim 3,
When the refrigerant cannot be circulated as described above, a medium-pressure low-temperature helium gas of 10 atm or less stored in a medium-pressure container, which is cooled by liquid helium contained in a supercritical helium heat exchanger tank, is supplied via a remote control valve. , It can be supplied to the superconducting magnet by the pressure difference.

【0018】請求項4に対応する冷媒装置においては、
中圧容器と超電導マグネットとの間に設置した流量調節
手段によって、供給流量(供給時間)を適切な値に調整
できる。この為、中圧容器に貯蔵してある中圧の低温ヘ
リウムガスを圧力差で超電導マグネットに供給する場合
に、適切な流量または供給時間を制御して供給できるの
で、より信頼性が向上する。
In the refrigerant device according to claim 4,
The supply flow rate (supply time) can be adjusted to an appropriate value by the flow rate adjusting means installed between the medium pressure container and the superconducting magnet. Therefore, when the medium-pressure low-temperature helium gas stored in the medium-pressure container is supplied to the superconducting magnet with a pressure difference, an appropriate flow rate or supply time can be controlled and supplied, so that the reliability is further improved.

【0019】請求項5に対応する冷却装置においては、
前述の冷媒循環不能時に、あらかじめ排気装置で真空減
圧された減圧容器に、遠隔操作弁を介して超臨界ヘリウ
ム循環ラインおよび低温高圧ヘリウム供給ライン内の低
温ヘリウムガスを吸い込む事によって、超電導マグネッ
トを冷却できる。
In the cooling device corresponding to claim 5,
When the refrigerant cannot be circulated as described above, the superconducting magnet is cooled by sucking the low-temperature helium gas in the supercritical helium circulation line and the low-temperature high-pressure helium supply line through the remote control valve into the decompression container that has been decompressed in advance by the exhaust device. it can.

【0020】請求項6に対応する冷媒装置においては、
超電導マグネットと減圧容器の間に設置した流量調節手
段によって、吸い込み流量(供給時間)を適切な値に調
整できるので、より信頼性が向上する。
In the refrigerant device according to claim 6,
Since the suction flow rate (supply time) can be adjusted to an appropriate value by the flow rate adjusting means installed between the superconducting magnet and the decompression container, the reliability is further improved.

【0021】請求項7または請求項8に対応する冷却装
置においては、前述の冷媒循環不能時に、超電導マグネ
ットに供給する低温ヘリウムガスを、液体ヘリウム貯槽
内に設けた加熱手段により液体ヘリウムを蒸発させて発
生させるものである。さらに気化した際に生じる圧力上
昇を、ヘリウムガスを循環させる駆動力としても利用す
ることができるので、より単純でコンパクトな構成で低
温ヘリウムガスを超電導マグネットに供給できる。
In the cooling device according to the seventh or eighth aspect, when the refrigerant cannot be circulated, the low-temperature helium gas supplied to the superconducting magnet is evaporated by the heating means provided in the liquid helium storage tank. Are generated. Further, since the pressure increase generated when vaporizing can be used also as the driving force for circulating the helium gas, the low temperature helium gas can be supplied to the superconducting magnet with a simpler and more compact structure.

【0022】請求項9に対応する冷媒装置においては、
超電導マグネットあるいは超電導マグネットからの出口
ヘリウムガスの少なくともいずれかの温度を温度検出手
段で検出し、温度変化に対応して超電導マグネットを循
環するヘリウムガスの流量を、流量調節手段で調節する
ようにしたので、中圧容器に貯蔵された低温ヘリウムガ
スを有効に利用できる。したがって、信頼性がより向上
する。
In the refrigerant device according to claim 9,
The temperature of at least one of the superconducting magnet and the outlet helium gas from the superconducting magnet is detected by the temperature detecting means, and the flow rate of the helium gas circulating through the superconducting magnet is adjusted by the flow rate adjusting means in response to the temperature change. Therefore, the low temperature helium gas stored in the medium pressure container can be effectively used. Therefore, the reliability is further improved.

【0023】[0023]

【実施例】以下本発明の各実施例を図面を用いて説明す
る。図1は本発明の冷却装置の第1の実施例を示す系統
構成図である。本冷却装置は、超電導マグネット1に、
超臨界ヘリウムを循環する超臨界ヘリウム循環用ポンプ
4の吐出側に接続され、液体ヘリウム2を収容した超臨
界ヘリウム熱交換器槽3に収納された熱交換器5と、超
電導マグネット1と前記超臨界ヘリウム循環用ポンプ4
とを遠隔操作弁18bを介して接続する超臨界ヘリウム
戻り管6bと、超電導マグネット1と前記熱交換器5と
を遠隔操作弁18bを介して接続する超臨界ヘリウム供
給管6aとで超臨界ヘリウム循環系6を構成している。
また、超臨界ヘリウム循環系6には回収配管20および
低温高圧ヘリウム供給管21が接続されている。さらに
断熱容器15内に液体ヘリウム貯槽7を設け、この液体
ヘリウム貯槽7の内部には中圧ヘリウムガス充填するた
めの中圧容器16が収納され、中圧容器16は逆止弁1
9、遠隔操作弁18aおよび流量調節手段22を介し
て、超臨界ヘリウム循環系6に並列に接続されている。
なお、液体ヘリウム貯槽7内の液体ヘリウム2は超臨界
ヘリウム熱交換器槽3から移送管9aで移送される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram showing a first embodiment of a cooling device of the present invention. This cooling device has a superconducting magnet 1.
A heat exchanger 5 connected to the discharge side of a supercritical helium circulation pump 4 that circulates supercritical helium, and stored in a supercritical helium heat exchanger tank 3 that stores liquid helium 2, a superconducting magnet 1, and the superconducting magnet 1. Critical helium circulation pump 4
And a supercritical helium return pipe 6b for connecting to and via the remote control valve 18b, and a supercritical helium supply pipe 6a for connecting the superconducting magnet 1 and the heat exchanger 5 via the remote control valve 18b. The circulation system 6 is configured.
A collection pipe 20 and a low temperature high pressure helium supply pipe 21 are connected to the supercritical helium circulation system 6. Further, a liquid helium storage tank 7 is provided in the heat insulating container 15, and a medium pressure container 16 for filling the medium pressure helium gas is housed inside the liquid helium storage tank 7.
9, is connected in parallel to the supercritical helium circulation system 6 via the remote control valve 18a and the flow rate adjusting means 22.
The liquid helium 2 in the liquid helium storage tank 7 is transferred from the supercritical helium heat exchanger tank 3 through the transfer pipe 9a.

【0024】さらに、超電導マグネット1あるいは超臨
界ヘリウム戻り管6bを流れる出口ヘリウムガスの温度
を検出する温度検出手段27と、温度検出手段からの信
号で流量調節手段22の開口面積を制御する制御器28
を具備している。
Further, a temperature detecting means 27 for detecting the temperature of the outlet helium gas flowing through the superconducting magnet 1 or the supercritical helium return pipe 6b, and a controller for controlling the opening area of the flow rate adjusting means 22 by a signal from the temperature detecting means. 28
Is provided.

【0025】次に本第1の実施例の作用効果について説
明する。電源喪失や冷媒供給装置の機器故障等による冷
媒循環不能が発生しない定常時は、超臨界ヘリウムは超
臨界ヘリウム循環用ポンプ4により所定の圧力まで昇圧
されたのち、超臨界ヘリウム熱交換器槽3内に設置して
ある熱交換器5で、液体ヘリウム2の蒸発潜熱を利用し
所定の温度まで再冷却され、遠隔操作弁18b、超臨界
ヘリウム供給管6aを介して超電導マグネット1に供給
される。超電導マグネット1で発生する熱を冷却した超
臨界ヘリウムは、超臨界ヘリウム戻り管6b、遠隔操作
弁18bを介して再び超臨界ヘリウム循環用ポンプ4に
戻る。超電導マグネット1の初期冷却あるいは定常冷却
時に冷却配管17b、逆止弁19を介して超臨界ヘリウ
ムが所定の圧力まで中圧容器16に充填される。中圧容
器16は液体ヘリウム貯槽7内の液体ヘリウム2によっ
て常時冷却され、低温中圧状態を保つことができる。一
方、電源喪失や機器故障等による冷媒循環不能が発生し
た場合には、遠隔操作弁18bを閉口し、遠隔操作弁1
8aを開口する。なお、この操作は冷媒循環不能信号を
受けて、ほぼ同等に瞬時に行われる。この遠隔操作弁1
8bの閉口により超電導マグネット1内を所定の圧力、
温度で循環していた超臨界ヘリウムは停止するが、かん
ぱつをいれず回収配管20のラインを介して回収精製系
11に放出される。さらに、中圧容器16に貯蔵してあ
った低温中圧(〜10atm 傍)の低温ヘリウムガスが遠
隔操作弁18aの開口により、低温ヘリウム配管17a
を得て経て超電導マグネット1に供給される。また、超
電導マグネット1と中圧容器16との間に流量調節手段
22、例えばオリフィスや流量調節弁等を装備すること
により供給量を調整できるので、中圧容器16に貯蔵し
てある中圧の低温ヘリウムガスを圧力差で超電導マグネ
ット1に供給する場合に、適切な流量または供給時間を
制御して供給できる。供給量の制御方法としては、中圧
容器16と超電導マグネット1を含めた超臨界ヘリウム
循環系6との体積および圧力の関係から事前に供給量を
計算し、オリフィスや流量調節弁等の流量調節手段22
の開口面積を設定する方法と、温度検出手段27で超電
導マグネット1あるいは超電導マグネット1からの出口
ヘリウムガスの温度を検出し、この温度検出手段22か
らの信号で制御器28を介して流量調節弁等の流量調節
手段22の開口面積を制御する方法がある。
Next, the function and effect of the first embodiment will be described. In a steady state in which the refrigerant cannot be circulated due to a loss of power source or equipment failure of the refrigerant supply device, the supercritical helium is boosted to a predetermined pressure by the supercritical helium circulation pump 4, and then the supercritical helium heat exchanger tank 3 In the heat exchanger 5 installed inside, the latent heat of vaporization of liquid helium 2 is used to recool it to a predetermined temperature, and it is supplied to the superconducting magnet 1 via the remote control valve 18b and the supercritical helium supply pipe 6a. . The supercritical helium that has cooled the heat generated in the superconducting magnet 1 returns to the supercritical helium circulation pump 4 again via the supercritical helium return pipe 6b and the remote control valve 18b. At the time of initial cooling or steady cooling of the superconducting magnet 1, supercritical helium is filled in the medium pressure container 16 through the cooling pipe 17b and the check valve 19 to a predetermined pressure. The medium pressure container 16 is constantly cooled by the liquid helium 2 in the liquid helium storage tank 7, and can maintain a low temperature and medium pressure state. On the other hand, when the refrigerant cannot be circulated due to the loss of power source or equipment failure, the remote control valve 18b is closed and the remote control valve 1
Open 8a. It should be noted that this operation is almost instantaneously performed in response to the refrigerant circulation inability signal. This remote control valve 1
By closing 8b, the inside of the superconducting magnet 1 has a predetermined pressure,
Although the supercritical helium circulated at the temperature is stopped, it is released to the recovery and purification system 11 through the line of the recovery pipe 20 without putting the pallet. Further, the low temperature medium pressure (around 10 atm) low temperature helium gas stored in the medium pressure container 16 is opened by the remote control valve 18a, and the low temperature helium pipe 17a is opened.
After being obtained, it is supplied to the superconducting magnet 1. Further, since the supply amount can be adjusted by equipping the flow control means 22 such as an orifice or a flow control valve between the superconducting magnet 1 and the medium pressure container 16, the medium pressure stored in the medium pressure container 16 can be adjusted. When the low-temperature helium gas is supplied to the superconducting magnet 1 with a pressure difference, it can be supplied by controlling an appropriate flow rate or supply time. As a control method of the supply amount, the supply amount is calculated in advance from the relationship between the volume and pressure of the intermediate pressure container 16 and the supercritical helium circulation system 6 including the superconducting magnet 1, and the flow rate adjustment such as the orifice and the flow control valve is performed. Means 22
And the temperature detecting means 27 detects the temperature of the superconducting magnet 1 or the outlet helium gas from the superconducting magnet 1, and a signal from the temperature detecting means 22 is used to control the flow rate control valve via the controller 28. There is a method of controlling the opening area of the flow rate adjusting means 22 such as.

【0026】この様に、超電導マグネットを循環するヘ
リウムガスの流量を、流量調節手段22で調節するよう
にしたので、中圧容器16に貯蔵された低温ヘリウムガ
スを有効に利用できる。したがって、信頼性がより向上
する。
As described above, since the flow rate of the helium gas circulating through the superconducting magnet is adjusted by the flow rate adjusting means 22, the low temperature helium gas stored in the medium pressure container 16 can be effectively used. Therefore, the reliability is further improved.

【0027】超電導マグネット1を冷却した低温ヘリウ
ムガスは超臨界ヘリウム戻り管6b、回収配管20を介
して回収精製系11に放出される。この動作により超電
導マグネット1を消磁させる間、確実に超臨界ヘリウム
を供給することができる。
The low-temperature helium gas that has cooled the superconducting magnet 1 is discharged to the recovery / purification system 11 through the supercritical helium return pipe 6b and the recovery pipe 20. By this operation, supercritical helium can be surely supplied while the superconducting magnet 1 is demagnetized.

【0028】したがって、超電導マグネットの冷媒循環
が確保されクエンチすることなく、超電導マグネットを
停止できると共に、急激な温度上昇を抑制して超電導マ
グネットに生じる熱応力を低減できる。
Therefore, it is possible to stop the superconducting magnet without quenching by ensuring the circulation of the refrigerant in the superconducting magnet, and to suppress the rapid temperature rise and reduce the thermal stress generated in the superconducting magnet.

【0029】次に本発明の第2の実施例を図2を参照し
て説明する。第1の実施例との相違は、中圧容器16内
の中圧ヘリウムガスの冷却方法である。本実施例では、
中圧容器16内の中圧ヘリウムガスの冷却を超電導マグ
ネット1の冷却に用いられる超臨界ヘリウムを中圧容器
16内の熱交換器5に貫流させる事によって行うように
したもので、定常運転時及び冷媒循環不能時の作用効果
は第1の実施例と同様である。さらに本実施例によれ
ば、液体ヘリウム貯槽7が不要になり、装置構成をコン
パクトにすることができると共に、液体ヘリウム貯槽7
内の液体ヘリウム2の液面制御や供給量の調整等が不要
になるので、冷却装置の制御系が簡素化される。
Next, a second embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment is the method of cooling the medium pressure helium gas in the medium pressure container 16. In this embodiment,
The medium-pressure helium gas in the medium-pressure vessel 16 is cooled by flowing supercritical helium used for cooling the superconducting magnet 1 into the heat exchanger 5 in the medium-pressure vessel 16 during steady operation. Also, the action and effect when the refrigerant circulation is impossible are similar to those of the first embodiment. Further, according to the present embodiment, the liquid helium storage tank 7 is not required, the apparatus configuration can be made compact, and the liquid helium storage tank 7 is also available.
Since the liquid level control of the liquid helium 2 therein and the adjustment of the supply amount are not necessary, the control system of the cooling device is simplified.

【0030】第3の実施例を図3を参照して説明する。
本実施例は、中圧容器16を超臨界ヘリウム熱交換器槽
3内に収納し、液体ヘリウム2で中圧容器16内の中圧
ヘリウムガスを常時冷却するようにしたもので、第2の
実施例と同様の作用効果を有する。
A third embodiment will be described with reference to FIG.
In the present embodiment, the medium pressure vessel 16 is housed in the supercritical helium heat exchanger tank 3, and the medium pressure helium gas in the medium pressure vessel 16 is constantly cooled by the liquid helium 2. It has the same effect as the embodiment.

【0031】第4の実施例を図4を参照して説明する。
主要構成は図1と同様であるが、超電導マグネット1を
収納した断熱容器15内に、真空減圧した減圧容器23
を設け、この減圧容器23の一端を遠隔操作弁18aを
介して超電導マグネット1に接続し、他端を真空排気管
24で逆止弁19を介して回収配管20に接続すると共
に、真空排気管24の途中から分岐して遠隔操作弁18
bを介して排気装置25が装備されている。
A fourth embodiment will be described with reference to FIG.
The main structure is the same as that of FIG. 1, but a depressurized container 23 decompressed in a vacuum is placed in a heat insulating container 15 that houses the superconducting magnet 1.
The decompression container 23 has one end connected to the superconducting magnet 1 via the remote control valve 18a, and the other end connected to the recovery pipe 20 via the check valve 19 by the vacuum exhaust pipe 24 and the vacuum exhaust pipe. Remote control valve 18 branching from the middle of 24
An exhaust device 25 is provided via b.

【0032】次に本実施例の作用効果について説明す
る。減圧容器23は断熱容器15の外に設置された排気
装置25により遠隔操作弁18b、真空排気配管24を
介して常時排気されている。一方、電源喪失や機器故障
等による冷媒循環不能が発生した場合には、連動して排
気装置25の手前に介装された遠隔操作弁18bが閉口
され、同時に回収管20に介装された遠隔操作弁18a
が開放される事によって、超電導マグネット1、超臨界
ヘリウム循環系6内の超臨界ヘリウムは一部回収配管2
0を介して回収精製系11に放出される。次に超電導マ
グネット1と減圧容器23との間に介装された遠隔操作
弁18cを開口し、残りの低温ヘリウムガスを減圧容器
23に接続された冷却配管17を介して減圧容器23内
に吸い込むことにより、一種のジュールトムソン断熱膨
張による効果をも利用して超電導マグネット1を冷却で
きるのでクエンチすることなく消磁できる。また、減圧
容器23に低温ヘリウムガスが充満し、内圧が大気圧近
傍まで上昇すると、逆止弁19が作動し、回収管20を
介して回収精製系11へとヘリウムガスを放出すること
によって、減圧容器23にヘリウムガスが異常に充填さ
れないように構成されている。
Next, the function and effect of this embodiment will be described. The decompression container 23 is constantly evacuated by the exhaust device 25 installed outside the heat insulating container 15 via the remote control valve 18b and the vacuum exhaust pipe 24. On the other hand, when the refrigerant cannot be circulated due to the loss of power supply or equipment failure, the remote control valve 18b provided in front of the exhaust device 25 is closed in conjunction with the remote control valve 18b provided at the same time. Operating valve 18a
Is opened, the superconducting magnet 1 and the supercritical helium in the supercritical helium circulation system 6 are partially recovered by the piping 2
It is released to the recovery purification system 11 via 0. Next, the remote control valve 18c interposed between the superconducting magnet 1 and the decompression container 23 is opened, and the remaining low temperature helium gas is sucked into the decompression container 23 via the cooling pipe 17 connected to the decompression container 23. As a result, the superconducting magnet 1 can be cooled by utilizing the effect of a kind of Joule-Thomson adiabatic expansion, so that the superconducting magnet 1 can be demagnetized without being quenched. Further, when the low pressure helium gas is filled in the decompression container 23 and the internal pressure rises to the vicinity of the atmospheric pressure, the check valve 19 is actuated to release the helium gas to the recovery purification system 11 via the recovery pipe 20, The decompression container 23 is configured so as not to be abnormally filled with helium gas.

【0033】第5の実施例を図5を参照して説明する。
主要構成は図1乃至図4と同様であるが、本実施例にお
いては、第1の実施例乃至第3の実施例の中圧容器16
や第4の実施例の減圧容器23を設置する代わりに、超
臨界ヘリウム熱交換器槽3内の液体ヘリウム2中に加熱
手段26を設けたものである。加熱手段26としては、
例えば電気ヒーターあるいは、室温または高温のガスを
貫流させる熱交換器等液体ヘリウムを蒸発させ得るもの
であればよい。
A fifth embodiment will be described with reference to FIG.
The main configuration is the same as that of FIGS. 1 to 4, but in this embodiment, the medium pressure container 16 of the first to third embodiments is used.
Instead of installing the decompression container 23 of the fourth embodiment, the heating means 26 is provided in the liquid helium 2 in the supercritical helium heat exchanger tank 3. As the heating means 26,
For example, an electric heater or a heat exchanger that allows gas at room temperature or high temperature to flow therethrough may be used as long as it can vaporize liquid helium.

【0034】次に、本実施例図の作用効果について説明
する。電源喪失や機器故障等による冷媒循環不能が発生
した場合には、超電導マグネット1に供給する低温ヘリ
ウムガスを超臨界ヘリウム熱交換器槽3内に設けた加熱
手段28で超臨界ヘリウム熱交換器槽3内の液体ヘリウ
ムを蒸発させて低温ヘリウムガスを発生させるもので、
気化した際に生じる超臨界ヘリウム熱交換器槽3内の圧
力上昇をも利用することができるので、より単純でコン
パクトな構成で低温ヘリウムガスを超電導マグネットに
供給できる。
Next, the function and effect of this embodiment will be described. When the refrigerant cannot be circulated due to power loss or equipment failure, the supercritical helium heat exchanger tank is heated by the heating means 28 provided in the supercritical helium heat exchanger tank 3 for supplying the low temperature helium gas to the superconducting magnet 1. Liquid helium in 3 is vaporized to generate low temperature helium gas.
Since the pressure increase in the supercritical helium heat exchanger tank 3 that occurs when vaporizing can also be used, low-temperature helium gas can be supplied to the superconducting magnet with a simpler and more compact structure.

【0035】なお、加熱手段28を超臨界ヘリウム熱交
換器槽3内に設ける代わりに、断熱容器15内に別の液
体ヘリウム貯槽7を設け、これに加熱手段28を設けて
もよい。
Instead of providing the heating means 28 in the supercritical helium heat exchanger tank 3, another liquid helium storage tank 7 may be provided in the heat insulating container 15 and the heating means 28 may be provided therein.

【0036】さらに、本発明は上記した各実施例にとど
まらず、各実施例を組み合わせて使用する事により、低
温ヘリウムガスの供給量を増やす事ができ、超電導マグ
ネット1の熱負荷が大きい場合や、低温ヘリウムガスの
供給時間を延ばしたい場合等に有効である。
Furthermore, the present invention is not limited to the above-described embodiments, and by using the embodiments in combination, the supply amount of low-temperature helium gas can be increased, and the heat load of the superconducting magnet 1 is large. This is effective when it is desired to extend the supply time of low temperature helium gas.

【0037】また、第1の実施例で説明した流量調節手
段22や、超電導マグネット1あるいは超電導マグネッ
トからの出口ヘリウムガスの少なくともいずれかの温度
を検出する温度検出手段27と、温度検出手段27から
の信号で流量調節手段22の開口面積を制御する制御器
28を具備して、超電導マグネット1への低温ヘリウム
ガスの供給量を制御する構成は他の実施例にも適用でき
る。
Further, from the flow rate adjusting means 22 described in the first embodiment, the temperature detecting means 27 for detecting the temperature of at least one of the superconducting magnet 1 and the outlet helium gas from the superconducting magnet, and the temperature detecting means 27. The configuration in which the controller 28 for controlling the opening area of the flow rate adjusting means 22 by the signal of (1) is provided to control the supply amount of the low temperature helium gas to the superconducting magnet 1 can be applied to other embodiments.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば電
源喪失や冷媒供給装置の機器故障時でも、超電導マグネ
ットに冷媒を確実に供給でき、クエンチや過大な熱応力
の発生を回避して安全に超電導マグネットを停止できる
高信頼性の冷媒装置を提供することができる。
As described above, according to the present invention, the refrigerant can be surely supplied to the superconducting magnet even when the power is lost or the equipment of the refrigerant supply device is broken, and quenching and generation of excessive thermal stress are avoided. It is possible to provide a highly reliable refrigerant device capable of safely stopping the superconducting magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却装置の第1の実施例を示す系統構
成図。
FIG. 1 is a system configuration diagram showing a first embodiment of a cooling device of the present invention.

【図2】本発明の冷却装置の第2の実施例を示す系統構
成図。
FIG. 2 is a system configuration diagram showing a second embodiment of the cooling device of the present invention.

【図3】本発明の冷却装置の第3の実施例を示す系統構
成図。
FIG. 3 is a system configuration diagram showing a third embodiment of the cooling device of the present invention.

【図4】本発明の冷却装置の第4の実施例を示す系統構
成図。
FIG. 4 is a system configuration diagram showing a fourth embodiment of the cooling device of the present invention.

【図5】本発明の冷却装置の第5の実施例を示す系統構
成図。
FIG. 5 is a system configuration diagram showing a fifth embodiment of the cooling device of the present invention.

【図6】従来の冷却装置の一実施例を示す系統構成図。FIG. 6 is a system configuration diagram showing an example of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1…超電導マグネット 2…液体ヘリウム 3…超臨界ヘリウム熱交換器槽 4…超臨界ヘリウム循環ポンプ 5…熱交換器 6…超臨界ヘリウム循環系 6a…超臨界ヘリウム供給管 6b…超臨界ヘリウム戻り管 7…液体ヘリウム貯槽 8…電流リード 9…液体ヘリウム移送管 10…ヘリウム冷凍液化装置 11…回収精製系 14…弁 15…断熱容器 16…中圧容器 17a,17b,17c…低温ヘリウム配管 18a,18b,18c…遠隔操作弁 19…逆止弁 20…回収配管 21…低温高圧ヘリウム配管 22…流量調節手段 23…減圧容器 24…真空排気配管 25…排気装置 26…加熱手段 27…温度検出手段 28…制御器 1 ... Superconducting magnet 2 ... Liquid helium 3 ... Supercritical helium heat exchanger tank 4 ... Supercritical helium circulation pump 5 ... Heat exchanger 6 ... Supercritical helium circulation system 6a ... Supercritical helium supply pipe 6b ... Supercritical helium return pipe 7 ... Liquid helium storage tank 8 ... Current lead 9 ... Liquid helium transfer pipe 10 ... Helium refrigeration liquefier 11 ... Recovery and purification system 14 ... Valve 15 ... Insulation container 16 ... Medium pressure container 17a, 17b, 17c ... Low temperature helium pipe 18a, 18b , 18c ... Remote control valve 19 ... Check valve 20 ... Recovery pipe 21 ... Low temperature / high pressure helium pipe 22 ... Flow rate adjusting means 23 ... Decompression container 24 ... Vacuum exhaust pipe 25 ... Exhaust device 26 ... Heating means 27 ... Temperature detecting means 28 ... Controller

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 超臨界ヘリウム循環系で超臨界ヘリウム
を循環させて、超電導マグネットを冷却する冷却装置に
おいて、超電導マグネットを収納した断熱容器内に液体
ヘリウム貯槽を設け、この液体ヘリウム貯槽の内部に、
ヘリウムガスを充填するための中圧容器を収納し、中圧
容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循
環系に、他端を遠隔操作弁を介して超電導マグネットに
接続したことを特徴とする冷却装置。
1. A cooling device for cooling a superconducting magnet by circulating supercritical helium in a supercritical helium circulation system, wherein a liquid helium storage tank is provided in an adiabatic container containing the superconducting magnet, and the liquid helium storage tank is provided inside the liquid helium storage tank. ,
A medium pressure container for filling helium gas was housed, one end of the medium pressure container was connected to the supercritical helium circulation system via a remote control valve, and the other end was connected to a superconducting magnet via a remote control valve. Characteristic cooling device.
【請求項2】 超臨界ヘリウム循環系で超臨界ヘリウム
を循環させて、超電導マグネットを冷却する冷却装置に
おいて、超電導マグネットを収納した断熱容器内に、ヘ
リウムガスを充填するための中圧容器を設け、この中圧
容器の一端を遠隔操作弁を介して前記超臨界ヘリウム循
環系に、他端を遠隔操作弁を介して超電導マグネットに
接続すると共に、中圧容器内に熱交換器を配設し、この
熱交換器に超臨界ヘリウム循環系から超臨界ヘリウムを
貫流させて、前記中圧容器内のヘリウムガスを冷却する
ようにしたことを特徴とする冷却装置。
2. A cooling device for cooling a superconducting magnet by circulating supercritical helium in a supercritical helium circulation system, wherein a heat insulating container containing the superconducting magnet is provided with a medium pressure container for filling helium gas. , One end of this medium pressure vessel is connected to the supercritical helium circulation system via a remote control valve, and the other end is connected to a superconducting magnet via a remote control valve, and a heat exchanger is arranged in the medium pressure vessel. A cooling device, characterized in that supercritical helium is caused to flow through the heat exchanger from a supercritical helium circulation system to cool the helium gas in the medium pressure vessel.
【請求項3】 超臨界ヘリウム循環系で超臨界ヘリウム
を循環させて、超電導マグネットを冷却する冷却装置に
おいて、超電導マグネットを収納した断熱容器内に収納
された超臨界ヘリウム循環系を構成する超臨界ヘリウム
熱交換器槽の内部に、ヘリウムガスを充填するための中
圧容器を収納し、中圧容器の一端を遠隔操作弁を介して
前記超臨界ヘリウム循環系に、他端を遠隔操作弁を介し
て超電導マグネットに接続したことを特徴とする冷却装
置。
3. A cooling device for cooling a superconducting magnet by circulating supercritical helium in the supercritical helium circulation system, which constitutes a supercritical helium circulation system housed in an adiabatic container containing the superconducting magnet. Inside the helium heat exchanger tank, a medium pressure container for filling helium gas is housed, one end of the medium pressure container is connected to the supercritical helium circulation system via a remote control valve, and the other end is connected to a remote control valve. A cooling device connected to a superconducting magnet via
【請求項4】 中圧容器と超電導マグネットの間に、ヘ
リウムガスの流量を調節する流量調節手段を装着したこ
とを特徴とする請求項1、請求項2、請求項3記載のい
ずれかの冷却装置。
4. The cooling according to claim 1, wherein a flow rate adjusting means for adjusting the flow rate of helium gas is mounted between the medium pressure container and the superconducting magnet. apparatus.
【請求項5】 超臨界ヘリウム循環系で超臨界ヘリウム
を循環させて、超電導マグネットを冷却する冷却装置に
おいて、超電導マグネットを収納した断熱容器内に、真
空減圧した減圧容器を設け、この減圧容器の一端を遠隔
操作弁を介して超電導マグネットに接続し、他端を真空
排気管で回収系に接続すると共に、真空排気管の途中か
ら分岐して遠隔操作弁を介して排気装置を備えたことを
特徴とする冷却装置。
5. A cooling device for cooling a superconducting magnet by circulating supercritical helium in a supercritical helium circulation system, wherein a vacuum-decompressed decompression container is provided in an adiabatic container containing the superconducting magnet. One end was connected to the superconducting magnet via the remote control valve, the other end was connected to the recovery system with the vacuum exhaust pipe, and the exhaust device was provided by branching from the middle of the vacuum exhaust pipe via the remote control valve. Characteristic cooling device.
【請求項6】 超電導マグネットと減圧容器の間に、ヘ
リウムガスの流量を調節する流量調節手段を装着したこ
とを特徴とする請求項5記載の冷却装置。
6. The cooling device according to claim 5, further comprising a flow rate adjusting means for adjusting the flow rate of the helium gas, which is provided between the superconducting magnet and the decompression container.
【請求項7】 超臨界ヘリウム循環系で超臨界ヘリウム
を循環させて、超電導マグネットを冷却する冷却装置に
おいて、超電導マグネットを収納した断熱容器内に、液
体ヘリウムの加熱手段を備えた液体ヘリウム貯槽を設
け、この液体ヘリウム貯槽の上部と超電導マグネットと
を遠隔操作弁を介して接続したことを特徴とする冷却装
置。
7. A cooling device for cooling a superconducting magnet by circulating supercritical helium in a supercritical helium circulation system, wherein a liquid helium storage tank equipped with a heating means for liquid helium is provided in an adiabatic container containing the superconducting magnet. A cooling device, characterized in that an upper part of the liquid helium storage tank is connected to a superconducting magnet via a remote control valve.
【請求項8】 液体ヘリウム貯槽を超臨界ヘリウム循環
系を構成する超臨界ヘリウム熱交換器槽で代用したこと
を特徴とする請求項7記載の冷却装置。
8. The cooling device according to claim 7, wherein the liquid helium storage tank is replaced by a supercritical helium heat exchanger tank constituting a supercritical helium circulation system.
【請求項9】 超電導マグネットあるいは超電導マグネ
ットからの出口ヘリウムガスの少なくともいずれかの温
度を検出する温度検出手段と、温度検出手段からの信号
で流量調節弁の開口面積を制御する制御器を具備したこ
とを特徴とする請求項4または請求項6記載の冷却装
置。
9. A temperature detecting means for detecting the temperature of at least one of a superconducting magnet and an outlet helium gas from the superconducting magnet, and a controller for controlling an opening area of a flow rate control valve by a signal from the temperature detecting means. The cooling device according to claim 4, wherein the cooling device is a cooling device.
JP11349195A 1995-05-12 1995-05-12 Cooling system Expired - Fee Related JP3836171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11349195A JP3836171B2 (en) 1995-05-12 1995-05-12 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11349195A JP3836171B2 (en) 1995-05-12 1995-05-12 Cooling system

Publications (2)

Publication Number Publication Date
JPH08316021A true JPH08316021A (en) 1996-11-29
JP3836171B2 JP3836171B2 (en) 2006-10-18

Family

ID=14613657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11349195A Expired - Fee Related JP3836171B2 (en) 1995-05-12 1995-05-12 Cooling system

Country Status (1)

Country Link
JP (1) JP3836171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490690B (en) * 2011-05-10 2013-11-06 Siemens Plc Methods and apparatus for orderly run-down of superconducting magnets
WO2016035153A1 (en) * 2014-09-03 2016-03-10 三菱電機株式会社 Superconducting magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490690B (en) * 2011-05-10 2013-11-06 Siemens Plc Methods and apparatus for orderly run-down of superconducting magnets
WO2016035153A1 (en) * 2014-09-03 2016-03-10 三菱電機株式会社 Superconducting magnet
CN106663514A (en) * 2014-09-03 2017-05-10 三菱电机株式会社 Superconducting magnet
US9887028B2 (en) 2014-09-03 2018-02-06 Mitsubishi Electric Corporation Superconducting magnet
CN106663514B (en) * 2014-09-03 2018-04-17 三菱电机株式会社 Superconducting magnet

Also Published As

Publication number Publication date
JP3836171B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP5869423B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
US10030919B2 (en) Cooling apparatus for superconductor
US10704809B2 (en) System for warming-up and cooling-down a superconducting magnet
US20020134533A1 (en) System for transmitting electric energy in superconductivity conditions and method for refrigerating in continuous a superconducting cable
JP2006502778A (en) MR device cooling device
JPH08316021A (en) Cooler
Lee et al. Cryogenic refrigeration system for HTS cables
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
KR102337181B1 (en) Cooling system for superconducting machine
JP3725305B2 (en) Superconducting magnet cooling system
US12125634B2 (en) Apparatus and system to maximize heat capacity in cryogenic devices
US20220068530A1 (en) Apparatus and System to Maximize Heat Capacity in Cryogenic Devices
EP1198802B1 (en) System for transmitting electric energy in superconductivity conditions and method for refrigerating in continuous a superconducting cable
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
Rolando et al. Functional analysis and design of the cryogenic system for the HL-LHC IT String test bench at CERN
Soyars et al. Superconducting radio-frequency modules test facility operating experience
RU2767668C1 (en) Cryosystem of an aviation integrated electric power plant based on hts
Hsiao et al. Continuous Operation of a Cryogenic System for a Synchrotron Light Source
JPH0989399A (en) Helium refrigerator
JPH06241594A (en) Supercritical helium cooling system
Claudet The Tore Supra He II cryonenic system
Than Energy Recovery Linac: Cryogenic System
Bernard et al. Back-up systems of the Tore Supra superconducting toroidal magnet refrigeration

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees