JPH05343224A - Superconducting magnet circuit - Google Patents

Superconducting magnet circuit

Info

Publication number
JPH05343224A
JPH05343224A JP3524093A JP3524093A JPH05343224A JP H05343224 A JPH05343224 A JP H05343224A JP 3524093 A JP3524093 A JP 3524093A JP 3524093 A JP3524093 A JP 3524093A JP H05343224 A JPH05343224 A JP H05343224A
Authority
JP
Japan
Prior art keywords
permanent current
current switch
switch
superconducting magnet
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3524093A
Other languages
Japanese (ja)
Inventor
Yasutoshi Nakamoto
泰利 中本
Masaharu Matsuda
正治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3524093A priority Critical patent/JPH05343224A/en
Publication of JPH05343224A publication Critical patent/JPH05343224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To improve the stability of a permanent current mode by providing a by-pass circuit having a second permanent current switch in parallel with a permanent current switch, and making the resistance value of the by-pass circuit higher than that of the permanent current switch. CONSTITUTION:An emergency loop is formed by providing a by-pass circuit composed of a permanent current switch 3 and a series circuit of a microresistor 6 and a permanent current switch 7 connected in parallel to the permanent current switch 3, or a by-pass circuit 8 having a semiconductor switch or contactor as a switch connected in parallel to the permanent current switch 3. And permanent current is caused to flow in this emergency loop, when the permanent current switch 7 is quenched. By adopting constitution like this, the permanent current switch 7 is cooled with liquid helium while the permanent current is flowing in the emergency loop, and returns to a superconductive state by itself. Consequently, it becomes possible to keep the superconducting magnet 2 at a permanent current mode always stably, and increase the reliability of the superconducting magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極低温の超電導磁石の励
磁回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exciting circuit for a cryogenic superconducting magnet.

【0002】[0002]

【従来の技術】従来の極低温状態で動作する超電導磁石
の励磁用超電導回路について図4を参照して説明する。
2. Description of the Related Art A conventional superconducting circuit for exciting a superconducting magnet operating in a cryogenic state will be described with reference to FIG.

【0003】一般に超電導磁石装置1は、超電導磁石2
及び永久電流スイッチ3を極低温に冷却するため、内槽
4に液体ヘリウムに浸漬して収容し、この内槽4を更に
液体窒素で冷却している輻射シールド板で被覆して、こ
れらを真空断熱容器である外槽5に収容する構成として
いる。
In general, the superconducting magnet device 1 includes a superconducting magnet 2
In order to cool the permanent current switch 3 to a cryogenic temperature, the inner tank 4 is dipped in liquid helium to be housed therein, and the inner tank 4 is further covered with a radiation shield plate cooled by liquid nitrogen, and these are vacuumed. It is configured to be housed in the outer tub 5 which is a heat insulating container.

【0004】永久電流スイッチ3は、超電導磁石2を永
久電流モードに励磁、又は消磁するために使用されるス
イッチであり、1個又は複数のスイッチにより構成され
ていて、一般に熱式永久電流スイッチが用いられてい
る。
The permanent current switch 3 is a switch used to excite or demagnetize the superconducting magnet 2 in a permanent current mode, and is composed of one or a plurality of switches. It is used.

【0005】[0005]

【発明が解決しようとする課題】この永久電流スイッチ
3が、何らかの要因もしくは外乱によりクエンチした場
合、常電導状態となり超電導磁石の永久電流モードを維
持することが不能となる。
When the permanent current switch 3 is quenched due to some factor or disturbance, it becomes a normal conducting state and it becomes impossible to maintain the persistent current mode of the superconducting magnet.

【0006】そこで、永久電流スイッチがクエンチに到
った場合、速やかにクエンチした永久電流スイッチを自
己復帰させ、超電導磁石の永久電流モードを維持できる
ような永久電流スイッチが望まれている。
Therefore, there is a demand for a permanent current switch that can quickly and automatically recover the quenched permanent current switch when the permanent current switch reaches the quench state, and maintain the persistent current mode of the superconducting magnet.

【0007】[0007]

【課題を解決するための手段】この問題点を解消するた
め、永久電流スイッチ3と並列に、微小抵抗6を連結し
た第二の永久電流スイッチ7からなるバイパス回路、或
いは永久電流スイッチ3と並列に半導体スイッチか、接
触器を第二のスイッチとして備えたバイパス回路を設け
て回避ループを形成し、永久電流スイッチがクエンチし
た時、この回避ループに永久電流が流れるようにする。
In order to solve this problem, a bypass circuit including a second permanent current switch 7 in which a minute resistor 6 is connected in parallel with the permanent current switch 3 or in parallel with the permanent current switch 3 is provided. A bypass circuit having a semiconductor switch or a contactor as a second switch is provided to form an avoidance loop, and a permanent current flows through the avoidance loop when the persistent current switch is quenched.

【0008】[0008]

【作用】このような構成により、永久電流モードに維持
された超電導磁石の永久電流は、通常時(永久電流スイ
ッチONのとき)は永久電流スイッチを流れているが、
永久電流スイッチにクエンチが発生したときは、永久電
流スイッチの電気抵抗が、並列のバイパス回路の電気抵
抗より大きくなり、永久電流はバイパス回路を流れる。
With this structure, the permanent current of the superconducting magnet maintained in the permanent current mode flows through the permanent current switch in the normal state (when the permanent current switch is ON).
When a quench occurs in the persistent current switch, the electrical resistance of the persistent current switch becomes larger than the electrical resistance of the parallel bypass circuit, and the persistent current flows through the bypass circuit.

【0009】永久電流がバイパス回路による回避ループ
に流れている間に、永久電流スイッチは液体ヘリウムで
冷却され、その電気抵抗は零となり、永久電流が再び永
久電流スイッチを流れ、超電導状態に自己復帰する。
While the permanent current is flowing through the bypass loop by the bypass circuit, the permanent current switch is cooled by liquid helium, its electric resistance becomes zero, the permanent current flows through the permanent current switch again, and self-recovers to the superconducting state. To do.

【0010】[0010]

【実施例】本発明を図1に示す実施例に基づき説明す
る。
EXAMPLES The present invention will be described based on the example shown in FIG.

【0011】超電導磁石装置1は、超電導磁石2、及び
1個または複数個のスイッチから形成されている第一の
永久電流スイッチ3を液体ヘリウムに浸漬して内槽4に
収容し、これを液体窒素で冷却した輻射シールド板で被
覆して、真空断熱容器の外槽5収容した構成となってい
る。
In the superconducting magnet device 1, a superconducting magnet 2 and a first permanent current switch 3 formed of one or a plurality of switches are immersed in liquid helium and housed in an inner tank 4, which is then stored in a liquid. It is covered with a radiation shield plate cooled with nitrogen and accommodated in the outer tank 5 of the vacuum heat insulating container.

【0012】このような超電導磁石装置1において、超
電導磁石2を永久電流モードで運転するために接続した
永久電流スイッチ3に対して、この保護回路として微小
抵抗(抵抗値r)6を直列に接続した第二の永久電流ス
イッチ7からなるバイパス回路8を、永久電流スイッチ
3に並列に接続して電流の回避ループを形成する。
In such a superconducting magnet device 1, a minute resistor (resistance value r) 6 is connected in series to the permanent current switch 3 connected to operate the superconducting magnet 2 in the permanent current mode. The bypass circuit 8 including the second persistent current switch 7 is connected in parallel to the persistent current switch 3 to form a current avoidance loop.

【0013】尚、このような永久電流スイッチの適用に
ついては次のようである。
The application of such a persistent current switch is as follows.

【0014】通常、永久電流スイッチを並列使用する場
合には、並列永久電流スイッチの分担電流がバランスす
るように、夫々の永久電流スイッチにはインピーダンス
バランスをとるためのバランス抵抗を入れる。このよう
な場合にはバランス抵抗を流れる電流による電圧降下が
発生し、電流の減衰時定数の低下もしくは発熱などの不
具合がある。しかし本発明の場合の永久電流スイッチで
は、永久電流スイッチONの通常状態では、バランス抵
抗などのない永久電流スイッチに電流が流れるため、電
圧降下、発熱がほとんど生じない。永久電流スイッチの
クエンチという異常事態で始めて電圧降下、発熱発生で
あり、従来のスイッチに比較して有効なシステムといえ
る。
Normally, when the permanent current switches are used in parallel, a balance resistor for impedance balancing is inserted in each of the permanent current switches so that the shared currents of the parallel permanent current switches are balanced. In such a case, a voltage drop occurs due to the current flowing through the balance resistance, which causes a problem such as a decrease in the current decay time constant or heat generation. However, in the case of the permanent current switch of the present invention, when the permanent current switch is in the normal state, current flows through the permanent current switch without a balance resistor, so that voltage drop and heat generation hardly occur. It can be said that this system is more effective than conventional switches, because voltage drop and heat generation occur only in the abnormal situation of quenching of the persistent current switch.

【0015】このような構成により、超電導磁石2の励
磁は次のように行う。
With such a structure, the superconducting magnet 2 is excited as follows.

【0016】永久電流スイッチ3、7を開放(OFF)
しておき、励磁電流を電源9より超電導磁石2に流す。
次いで、永久電流スイッチ3を閉(ON)じて、超電導
磁石2と第一の永久電流スイッチ3による閉回路に永久
電流を流し、永久電流モードを得る。
Open (OFF) the permanent current switches 3 and 7
Exciting current is supplied from the power supply 9 to the superconducting magnet 2.
Next, the permanent current switch 3 is closed (ON), a permanent current is caused to flow in a closed circuit formed by the superconducting magnet 2 and the first permanent current switch 3, and a permanent current mode is obtained.

【0017】永久電流モードになった後バイパス回路8
の第二の永久電流スイッチ(pcs-2,抵抗値
Pcs-2 )7を閉じる。このとき第一の永久電流スイッ
チ3の抵抗値RPcs-1 は零であり、抵抗値rの微小抵抗
6があるバイパス回路8の電気抵抗のほうが高いので、
第一の永久電流スイッチ3を流れる永久電流モードは維
持されたままである。
After entering the permanent current mode, the bypass circuit 8
The second permanent current switch (pcs-2, resistance value R Pcs-2 ) 7 is closed. At this time, the resistance value R Pcs-1 of the first permanent current switch 3 is zero, and the electric resistance of the bypass circuit 8 having the minute resistance 6 of the resistance value r is higher,
The persistent current mode through the first persistent current switch 3 remains maintained.

【0018】この永久電流モード状態に維持された超電
導磁石回路で、第一の永久電流スイッチ( pcs-1) 3
がクエンチすると、その電気抵抗値RPcs-1 がバイパス
回路8の電気抵抗値(r+RPcs-2 )より高くなるの
で、永久電流はバイパス回路8に流れる。このバイパス
回路に永久電流が流れている間に、クエンチした永久電
流スイッチ3が内槽内の液体ヘリウムで冷却され、再び
超電導状態に自己復帰し、永久電流スイッチ3の電気抵
抗は零となりバイパス回路に流れていた永久電流は元の
永久電流スイッチ3の回路を流れる。
In the superconducting magnet circuit maintained in this permanent current mode state, the first permanent current switch (pcs-1) 3
Is quenched, the electric resistance value R Pcs-1 becomes higher than the electric resistance value (r + R Pcs-2 ) of the bypass circuit 8, so that the permanent current flows into the bypass circuit 8. While the permanent current is flowing in this bypass circuit, the quenched permanent current switch 3 is cooled by the liquid helium in the inner tank and again returns to the superconducting state by itself, and the electric resistance of the permanent current switch 3 becomes zero and the bypass circuit The permanent current flowing through the circuit flows through the circuit of the original permanent current switch 3.

【0019】超電導磁石2の消磁は、消磁電流を永久電
流スイッチ3に流し、バイパス回路の永久電流スイッチ
7をOFFし、次いで永久電流スイッチ3をOFFし、
超電導磁石2に消磁電流が流れ、この消磁電流を掃引す
ると超電導磁石2が消磁される。
To demagnetize the superconducting magnet 2, a demagnetizing current is passed through the permanent current switch 3, the permanent current switch 7 of the bypass circuit is turned off, and then the permanent current switch 3 is turned off.
A degaussing current flows through the superconducting magnet 2, and when the degaussing current is swept, the superconducting magnet 2 is degaussed.

【0020】本発明の他の実施例を図2に示す例に基づ
いて説明する。
Another embodiment of the present invention will be described based on the example shown in FIG.

【0021】前記におけるバイパス回路をサイリスタな
どの半導体スイッチ10のみで形成する。
The bypass circuit in the above is formed only by the semiconductor switch 10 such as a thyristor.

【0022】この半導体スイッチ10のON,OFFは外槽5
の外部に設けたスイッチ11で行う。
The ON / OFF of this semiconductor switch 10 is the outer tank 5.
It is performed by the switch 11 provided outside the.

【0023】上記の構成において、永久電流スイッチ3
が超電導状態に維持されている状態で超電導磁石2の励
磁は次のようである。
In the above structure, the permanent current switch 3
Is maintained in the superconducting state, the excitation of the superconducting magnet 2 is as follows.

【0024】先ず、永久電流スイッチ3をOFF にし、励
磁電流を超電導磁石2に流す。
First, the permanent current switch 3 is turned off, and an exciting current is passed through the superconducting magnet 2.

【0025】次に、永久電流スイッチ3をONにすると超
電導磁石2と永久電流スイッチ3の閉ループ内で永久電
流が流れて永久電流モードが実現する。
Next, when the permanent current switch 3 is turned on, a permanent current flows in the closed loop of the superconducting magnet 2 and the permanent current switch 3 to realize the permanent current mode.

【0026】永久電流モードが実現した後、半導体スイ
ッチ10をONにする。この半導体スイッチ10をONにし
ても、永久電流スイッチの電気抵抗は零であるので、依
然として超電導磁石2と永久電流スイッチ3との間に構
成された永久電流モードは維持される。
After the permanent current mode is realized, the semiconductor switch 10 is turned on. Even when the semiconductor switch 10 is turned on, the electric resistance of the permanent current switch is zero, so that the permanent current mode formed between the superconducting magnet 2 and the permanent current switch 3 is still maintained.

【0027】前記永久電流モード状態に維持された回路
に何等かの要因、もしくは外乱により永久電流スイッチ
3がクエンチすると、この永久電流スイッチ3の電気抵
抗が半導体スイッチ10の電気抵抗を上回るので、超電
導磁石2と永久電流スイチ3との閉ループ内に流れてい
る永久電流は保護回路として並列接続された半導体スイ
ッチ10の回避ループに流れる。上記のように半導体ス
イッチ10に永久電流が流れている間に、クエンチした
前記永久電流スイッチ3は、内槽4内の液体ヘリウムで
冷却され、再び超電導状態に自己復帰する。これにより
永久電流スイッチ3の電気抵抗は零となり半導体スイッ
チ10の電気抵抗より再び小さくなるので、半電体スイ
ッチ10に流れていた永久電流は再び永久電流スイッチ
3に流れる。
When the permanent current switch 3 is quenched due to some factor or disturbance to the circuit maintained in the permanent current mode state, the electric resistance of the permanent current switch 3 exceeds the electric resistance of the semiconductor switch 10, so that the superconductivity is increased. The permanent current flowing in the closed loop of the magnet 2 and the permanent current switch 3 flows in the avoidance loop of the semiconductor switch 10 connected in parallel as a protection circuit. While the persistent current is flowing through the semiconductor switch 10 as described above, the quenched persistent current switch 3 is cooled by the liquid helium in the inner tank 4 and returns to the superconducting state again. As a result, the electric resistance of the permanent current switch 3 becomes zero and becomes smaller than the electric resistance of the semiconductor switch 10 again, so that the permanent current flowing through the semi-electric switch 10 again flows through the permanent current switch 3.

【0028】又、超電導磁石2の消磁は、消磁電流を永
久電流スイッチ3に流し、この永久電流スイッチ3をOF
F するとともに半導体スイッチ10もOFF にすると、超
電導磁石2に消磁電流が流れ、この消磁電流を掃引する
と超電導磁石2の消磁が完了する。
To demagnetize the superconducting magnet 2, a demagnetizing current is passed through the permanent current switch 3, and the permanent current switch 3 is OF
When the semiconductor switch 10 is turned off as well as F, a degaussing current flows through the superconducting magnet 2. Sweeping this degaussing current completes the demagnetization of the superconducting magnet 2.

【0029】このように、永久電流スイッチ3がクエン
チしても半導体スイッチ10に励消磁電流を流すことに
より、超電導磁石2を常に永久電流モードの状態に維持
することができる耐クエンチ性、安定性、信頼性の高い
永久電流スイッチを提供することがてきる。
As described above, even if the permanent current switch 3 is quenched, by supplying an exciting / demagnetizing current to the semiconductor switch 10, it is possible to always maintain the superconducting magnet 2 in the permanent current mode state. Quench resistance and stability. , It is possible to provide a highly reliable persistent current switch.

【0030】本発明の更に他の実施例として図3に示す
ものは、前記の半導体スイッチの替わりに接触器12を
使用し、永久電流スイッチ3のクエンチ発生時の回避ル
ープを形成する。
In another embodiment of the present invention, shown in FIG. 3, a contactor 12 is used in place of the above semiconductor switch to form an avoidance loop in the event of a quench of the persistent current switch 3.

【0031】接触器12のON、OFFは、外部に設けた空圧
弁13の開閉により行い、またこの空圧弁13の開閉は
圧縮ガスの入、切による。
The contactor 12 is turned on and off by opening and closing a pneumatic valve 13 provided outside, and the opening and closing of the pneumatic valve 13 is performed by turning on and off a compressed gas.

【0032】上記の構成においても、励消磁時において
永久電流スイッチ3がクエンチしても接触器7に永久電
流が流れるので、前記の実施例と同様の効果を得ること
ができる。
Also in the above configuration, since the permanent current flows through the contactor 7 even when the permanent current switch 3 is quenched during the excitation / demagnetization, the same effect as that of the above embodiment can be obtained.

【0033】[0033]

【発明の効果】本発明により、極低温における超電導磁
石の回路において永久電流スイッチがクエンチしても、
直ちに自己復帰するので、超電導磁石を常に安定して永
久電流モードに維持することができ、超電導磁石の信頼
性が向上する。
According to the present invention, even if the persistent current switch is quenched in the circuit of the superconducting magnet at cryogenic temperature,
Immediate self-recovery allows the superconducting magnet to always be stably maintained in the permanent current mode, thereby improving the reliability of the superconducting magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導磁石回路構成図である。FIG. 1 is a circuit diagram of a superconducting magnet circuit according to the present invention.

【図2】本発明の他の実施例の回路構成図である。FIG. 2 is a circuit configuration diagram of another embodiment of the present invention.

【図3】本発明の更に他の実施例の回路構成図である。FIG. 3 is a circuit configuration diagram of still another embodiment of the present invention.

【図4】従来の超電導磁石回路構成図である。FIG. 4 is a circuit diagram of a conventional superconducting magnet circuit.

【符号の説明】[Explanation of symbols]

2…超電導磁石 3…(第一の)永久電流スイッチ 4…内槽 6…微小抵抗 7…(第二の)永久電流スイッチ 10…半導体スイッチ 12…接触器 2 ... Superconducting magnet 3 ... (First) permanent current switch 4 ... Inner tank 6 ... Micro resistance 7 ... (Second) permanent current switch 10 ... Semiconductor switch 12 ... Contactor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】極低温状態にて、超電導磁石を超電導モー
ドに切替える第一の永久電流スイッチ( pcs-1) を有
する超電導磁石回路において、 前記永久電流スイッチに並列に、第二の永久電流スイッ
チ( pcs-2) を備えたバイパス回路を設け、前記バイ
パス回路の抵抗値が、第一の永久電流スイッチの抵抗値
より大であることを特徴とする超電導磁石回路。
1. A superconducting magnet circuit having a first permanent current switch (pcs-1) for switching a superconducting magnet to a superconducting mode in a cryogenic state, wherein a second permanent current switch is provided in parallel with the permanent current switch. A superconducting magnet circuit, wherein a bypass circuit including (pcs-2) is provided, and the resistance value of the bypass circuit is larger than the resistance value of the first permanent current switch.
【請求項2】前記バイパス回路を第二の永久電流スイッ
チ(抵抗値RPcs-2 )に微小抵抗(抵抗値r)を付加し
て形成し、このバイパス回路の抵抗値(r+RPcs-2
と前記第一の永久電流スイッチの抵抗値(RPcs-1 )と
の大小関係が、通常時(永久電流スイッチONのとき)
は RPcs-1 <(r+RPcs-2 ) であり、第一の永久電流スイッチ( pcs-1) のクエン
チ時は RPcs-1 >(r+RPcs-2 ) であることを特徴とする請求項1記載の超電導磁石回
路。
2. The bypass circuit is formed by adding a minute resistance (resistance value r) to a second permanent current switch (resistance value R Pcs-2 ), and the resistance value (r + R Pcs-2 ) of this bypass circuit.
And the resistance value (R Pcs-1 ) of the first persistent current switch is normal (when the persistent current switch is ON)
Is R Pcs-1 <(r + R Pcs-2 ), and R Pcs-1 > (r + R Pcs-2 ) when the first persistent current switch (pcs-1) is quenched. 1. The superconducting magnet circuit according to 1.
【請求項3】極低温状態にて、超電導磁石を超電導モー
ドに切替える永久電流スイッチを有する超電導磁石回路
において、 前記永久電流スイッチに並列に、スイッチを備えたバイ
パス回路を設けたことを特徴とする超電導磁石回路。
3. A superconducting magnet circuit having a permanent current switch for switching a superconducting magnet to a superconducting mode in a cryogenic state, wherein a bypass circuit having a switch is provided in parallel with the permanent current switch. Superconducting magnet circuit.
JP3524093A 1992-02-25 1993-02-24 Superconducting magnet circuit Pending JPH05343224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3524093A JPH05343224A (en) 1992-02-25 1993-02-24 Superconducting magnet circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-37372 1992-02-25
JP3737292 1992-02-25
JP3524093A JPH05343224A (en) 1992-02-25 1993-02-24 Superconducting magnet circuit

Publications (1)

Publication Number Publication Date
JPH05343224A true JPH05343224A (en) 1993-12-24

Family

ID=26374187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3524093A Pending JPH05343224A (en) 1992-02-25 1993-02-24 Superconducting magnet circuit

Country Status (1)

Country Link
JP (1) JPH05343224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438446A (en) * 2006-05-22 2007-11-28 Siemens Magnet Technology Ltd Redundant arrangements of superconducting switches
EP2191549A2 (en) * 2007-10-11 2010-06-02 Varian, Inc. Superconducting switch operation
JP2017224654A (en) * 2016-06-13 2017-12-21 株式会社東芝 High-temperature superconducting magnet device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438446A (en) * 2006-05-22 2007-11-28 Siemens Magnet Technology Ltd Redundant arrangements of superconducting switches
EP2191549A2 (en) * 2007-10-11 2010-06-02 Varian, Inc. Superconducting switch operation
EP2191549A4 (en) * 2007-10-11 2014-01-22 Agilent Technologies Inc Superconducting switch operation
JP2017224654A (en) * 2016-06-13 2017-12-21 株式会社東芝 High-temperature superconducting magnet device

Similar Documents

Publication Publication Date Title
US8134434B2 (en) Superconducting quick switch
US20070159280A1 (en) Superconducting quick switch
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
US4763221A (en) Superconducting magnet apparatus with emergency run down unit
JPH0851014A (en) Superconducting magnet
US5218505A (en) Superconductor coil system and method of operating the same
JPH05343224A (en) Superconducting magnet circuit
US3176195A (en) Superconducting solenoid
JPS62279608A (en) Split superconducting magnet
JP3117173B2 (en) Superconducting magnet device with refrigerator
JPH06350148A (en) Perpetual current superconducting device
JP2003109816A (en) Protection circuit for superconducting magnet equipment
JPH04106907A (en) Superconducting magnet device
JPS62244110A (en) Superconducting coil device
JP2983323B2 (en) Superconducting magnet device and operating method thereof
JP2768796B2 (en) Superconducting device
JP3310074B2 (en) Superconducting magnet device
JPS58219709A (en) Superconductive device
JPH0515088A (en) Superconducting power storage device
WO2023037792A1 (en) Superconducting magnet device, nmr device, and mri device
JPS6312113A (en) Superconducting magnet equipment
JPH03142907A (en) Superconductive magnet
JPH0465806A (en) Superconducting magnet device
JP3150422B2 (en) Protective resistor for superconducting magnet with circuit switching function