JP3052397B2 - Superconducting device, superconducting energy storage device, and method of operating the same - Google Patents

Superconducting device, superconducting energy storage device, and method of operating the same

Info

Publication number
JP3052397B2
JP3052397B2 JP3047856A JP4785691A JP3052397B2 JP 3052397 B2 JP3052397 B2 JP 3052397B2 JP 3047856 A JP3047856 A JP 3047856A JP 4785691 A JP4785691 A JP 4785691A JP 3052397 B2 JP3052397 B2 JP 3052397B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
permanent current
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3047856A
Other languages
Japanese (ja)
Other versions
JPH04211105A (en
Inventor
幸雄 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3047856A priority Critical patent/JP3052397B2/en
Publication of JPH04211105A publication Critical patent/JPH04211105A/en
Application granted granted Critical
Publication of JP3052397B2 publication Critical patent/JP3052397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導装置、並びに超電
導エネルギー貯蔵装置、及びその運転方法に係り、特
に、超電導コイルに設定エネルギーを貯蔵した後、この
超電導コイルと並列接続されている永久電流スイッチを
閉じ、超電導コイルに永久電流を流し続けるようにした
ものに好適な超電導装置、並びに超電導エネルギー貯蔵
装置、及びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device, a superconducting energy storage device, and a method of operating the same, and more particularly, to a permanent current switch connected to a superconducting coil in parallel after storing set energy in the superconducting coil. The present invention relates to a superconducting device, a superconducting energy storage device, and a method for operating the superconducting energy device, in which a permanent current is continuously supplied to a superconducting coil.

【0002】[0002]

【従来の技術】超電導になるには、温度,磁界,電流の
3条件が、それぞれ臨界温度,臨界磁界,臨界電流以下
になることが必須である。
2. Description of the Related Art In order to become superconducting, it is essential that the three conditions of temperature, magnetic field, and current become lower than critical temperature, critical magnetic field, and critical current, respectively.

【0003】永久電流スイッチに関する従来技術は、上
記3条件のうち、温度や磁界を主に制御して、永久電流
スイッチの開路,閉路操作を行っているのが通常であ
る。また、永久電流スイッチには機械式もあり、これ
は、超電導線を機械的に接触させたり、切り離したりし
て、閉路,開路を操作するものである。但し、この方式
は、接触抵抗が大きいという問題があり、現在は余り開
発が進められていない。
In the prior art relating to the permanent current switch, the operation of opening and closing the permanent current switch is usually performed by mainly controlling the temperature and the magnetic field among the above three conditions. Further, there is also a mechanical type of permanent current switch, which operates a closed circuit and an open circuit by mechanically contacting or separating a superconducting wire. However, this method has a problem that the contact resistance is large, and its development has not been promoted at present.

【0004】一方、系統安定化用の超電導エネルギー貯
蔵装置に適用すべき永久電流スイッチとしては、系統擾
乱現象が数秒以下であるから、高速開閉機能が要求され
る。従って、現状技術の永久電流スイッチでは対応不可
の為、室温領域に永久電流スイッチを模擬したサイリス
タスイッチを設置し、該サイリスタスイッチに高速開閉
機能を委ねていた。
On the other hand, a permanent current switch to be applied to a superconducting energy storage device for system stabilization is required to have a high-speed opening / closing function because the system disturbance phenomenon is several seconds or less. Therefore, a thyristor switch that simulates a permanent current switch is installed in a room temperature region, and a high-speed opening / closing function is entrusted to the thyristor switch because the current-state permanent current switch cannot be used.

【0005】尚、此種装置に関連するものとしては、特
開昭62−93987 号公報が挙げられる。又、熱式スイッチ
に関しては、特開昭59−111381号公報に開示がある。
Japanese Patent Application Laid-Open No. 62-93987 discloses a device related to this type of device. Japanese Patent Application Laid-Open No. Sho 59-111381 discloses a thermal switch.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術では、熱
式の場合でも、磁界式の場合でも、永久電流スイッチの
開閉速度が数十秒と遅く、数秒以下で現象が終ってしま
う系統擾乱の安定化に使う超電導エネルギー貯蔵装置に
適用するのは、本質的に困難であった。この為、系統安
定化用の超電導エネルギー貯蔵装置では、サイリスタ等
による半導体スイッチを用いて開閉速度の高速化を図っ
ていたが、系統擾乱がない,所謂,エネルギー貯蔵期間
には、上記半導体スイッチの順方向電圧降下により、徐
々に貯蔵エネルギーが減衰して行ってしまうと云う、背
反する問題があった。
In the above-mentioned prior art, the switching speed of the permanent current switch is as slow as several tens of seconds in both the thermal type and the magnetic field type. It has been inherently difficult to apply to a superconducting energy storage device used for stabilization. For this reason, in the superconducting energy storage device for system stabilization, the opening and closing speed has been increased by using a semiconductor switch such as a thyristor. However, during the so-called energy storage period, there is no system disturbance. There is a contradictory problem that the stored energy is gradually attenuated due to the forward voltage drop.

【0007】本発明は上述の点に鑑みなされたもので、
その目的とするところは、極めて高速に永久電流スイッ
チを開路することのできる超電導装置、瞬時に系統擾乱
に対応できることは勿論、貯蔵エネルギーの損失が殆ん
どなく、極めて効率の高い超電導エネルギー貯蔵装置、
及びその運転方法を提供するにある。
[0007] The present invention has been made in view of the above points,
The purpose is a superconducting device that can open a permanent current switch at a very high speed, a superconducting energy storage device that can respond instantaneously to system disturbances, has little storage energy loss, and has an extremely high efficiency. ,
And an operation method thereof.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、超電導コイルと並列に、臨界電流値以上の
通電で開路動作する電流式永久電流スイッチを設けた超
電導装置、励磁用電源により超電導コイルに設定エネル
ギーが貯蔵された時点で、該超電導コイルに永久電流を
流すために閉路された永久電流スイッチが臨界電流値以
上の通電で開路動作する機能を少なくとも備えている超
電導エネルギー貯蔵装置、励磁用電源により超電導コイ
ルに設定エネルギーが貯蔵された時点で該超電導コイル
に永久電流を流すために閉路される熱式、又は磁界式永
久電流スイッチと直列に、臨界電流値以上の通電で開路
動作する電流式永久電流スイッチを接続した超電導エネ
ルギー貯蔵装置、励磁用電源により前記超電導コイルに
設定エネルギーが貯蔵された時点で該超電導コイルに永
久電流を流すために閉路される永久電流スイッチは、熱
的、又は磁気的に開閉制御される特性と、臨界電流値以
上の通電で開路され、過渡熱時定数で閉路される特性と
を有している超電導エネルギー貯蔵装置、超電導コイル
と並列接続されている永久電流スイッチを開路した状態
で電力系統に接続されている励磁用電源で励磁して前記
超電導コイルにエネルギーを貯蔵し、この貯蔵エネルギ
ーが設定値になった時点で前記永久電流スイッチを閉路
すると共に、前記励磁用電源を停止させて前記超電導コ
イルに永久電流を流し続け、該超電導コイルに永久電流
が流れている状態で前記電力系統から系統安定化のため
の運転指令があった場合に、前記永久電流スイッチへ臨
界電流値以上の電流を通電して開路操作を行い、次に再
閉路されるまでの時間だけ前記励磁用電源の系統側に前
記超電導コイルの貯蔵エネルギーを取り出すようにした
超電導エネルギー貯蔵装置の運転方法としたものであ
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a superconducting device provided with a current-type permanent current switch which operates in parallel with a superconducting coil and is operated by applying a current higher than a critical current value. A superconducting energy storage device having at least a function that, when the set energy is stored in the superconducting coil, the permanent current switch closed for flowing a permanent current to the superconducting coil opens when a current equal to or more than the critical current value is applied. When the set energy is stored in the superconducting coil by the excitation power supply, it is closed in order to apply a permanent current to the superconducting coil, and is opened in series with a thermal or magnetic field type permanent current switch by applying a current equal to or greater than the critical current value. A superconducting energy storage device connected to an operating current-type permanent current switch, and a set energy is supplied to the superconducting coil by a power supply for excitation. The permanent current switch, which is closed to allow a permanent current to flow through the superconducting coil at the time of storage, is thermally or magnetically controlled to open and close, and is opened when a current equal to or higher than the critical current value is applied. A superconducting energy storage device having a characteristic of being closed by a constant, a superconducting coil which is excited by an exciting power supply connected to a power system in a state where a permanent current switch connected in parallel with a superconducting coil is opened. When the stored energy reaches a set value, the permanent current switch is closed, the excitation power supply is stopped, and a permanent current is continuously supplied to the superconducting coil, and a permanent current is supplied to the superconducting coil. When there is an operation command for system stabilization from the power system in a state where the power is flowing, a current equal to or more than the critical current value is supplied to the permanent current switch to open the circuit. Perform work, it is then obtained by a method of operating time only superconducting energy storage apparatus that retrieve the stored energy of the superconducting coil to the system side of the excitation power supply until it is re-closed.

【0009】[0009]

【作用】励磁用電源は、超電導コイルの貯蔵エネルギー
を出し入れするのに用いる。この場合、超電導コイルに
最初にエネルギーを充電する際には、従来方式による熱
式、又は磁界式永久電流スイッチを開路しておく。超電
導コイルに設定エネルギーが貯蔵された時点で、熱式、
又は磁界式永久電流スイッチを閉路操作し、前記励磁用
電源を停止させる。この操作により、超電導コイルには
永久電流が流れ続け、所謂,超電導エネルギー貯蔵装置
によるエネルギー貯蔵状態となる。この状態で、電力系
統より超電導エネルギー貯蔵装置へ系統安定化のための
運転指令が出された場合は、励磁用電源と並列接続され
たパルス電源を駆動して、本発明に係る電流式永久電流
スイッチへ臨界電流値以上の電流を通電し、高速に開路
操作を行う。この操作により、超電導コイルと励磁用電
源は、電気的に接続状態となり、超電導エネルギー貯蔵
装置と電力系統間で、エネルギーの出し入れが可能とな
る。但し、系統安定化運転は数秒以下で良いため、電流
式永久電流スイッチの再閉路のタイミングも、この時間
程度で良く、これは、電流式永久電流スイッチの過渡熱
時定数を予め、そのオーダーになる様設計しておく事に
より可能である。電流式永久電流スイッチが再閉路すれ
ば、超電導コイルによるエネルギー貯蔵状態が再現する
事になる。また、超電導エネルギー貯蔵装置を停止させ
る場合は、熱式、又は磁界式永久電流スイッチを開路す
る事によりなされる。
The power supply for excitation is used to take in and out the stored energy of the superconducting coil. In this case, when charging the superconducting coil with energy for the first time, the conventional thermal or magnetic field type permanent current switch is opened. When the set energy is stored in the superconducting coil, thermal,
Alternatively, the magnetic field type permanent current switch is closed, and the excitation power supply is stopped. By this operation, a permanent current continues to flow in the superconducting coil, and a so-called superconducting energy storage device enters an energy storage state. In this state, when an operation command for system stabilization is issued from the power system to the superconducting energy storage device, the pulse power source connected in parallel with the excitation power source is driven, and the current-type permanent current according to the present invention is driven. A current higher than the critical current value is supplied to the switch to open the circuit at high speed. By this operation, the superconducting coil and the power supply for excitation are electrically connected, and energy can be transferred between the superconducting energy storage device and the power system. However, since the system stabilization operation can be performed in a few seconds or less, the timing of the reclosing of the current-type permanent current switch may be about this time. It is possible by designing as it is. When the current-type permanent current switch is reclosed, the state of energy storage by the superconducting coil is reproduced. In order to stop the superconducting energy storage device, the thermal or magnetic field type permanent current switch is opened.

【0010】[0010]

【実施例】以下、図示した実施例に基づいて本発明を詳
細に説明する。以下に説明する例は、超電導エネルギー
貯蔵装置についてである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. The example described below is for a superconducting energy storage device.

【0011】図1に本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

【0012】該図に示す如く、本実施例では、臨界電流
により制御される電流式永久電流スイッチ(以下、PC
S1と略称する)1と、臨界温度や臨界磁界等により制
御される熱式、又は磁界式永久電流スイッチ(以下、P
CS2と略称する)2とを直列接続し、これを超電導コ
イル3に並列接続して、共にクライオスタット内に設置
している。又、PCS1に臨界電流値以上の電流を通電
する為の、コンデンサ5とサイリスタスイッチ6との直
列回路で構成される外部回路を超電導コイル3に並列に
接続する。更に、超電導コイル3に並列に接続する励磁
用サイリスタ変換器7を備え、この励磁用サイリスタ変
換器7の交流側を電力系統8に接続して超電導エネルギ
ー貯蔵装置を構成している。次に、本実施例の超電導エ
ネルギー貯蔵装置における運転方法を説明する。
As shown in FIG. 1, in this embodiment, a current-type permanent current switch (hereinafter referred to as a PC) controlled by a critical current.
S1) and a thermal or magnetic field permanent current switch (hereinafter referred to as P
CS2), connected in parallel with the superconducting coil 3, and both are installed in the cryostat. Further, an external circuit composed of a series circuit of a capacitor 5 and a thyristor switch 6 for supplying a current equal to or greater than the critical current value to the PCS 1 is connected to the superconducting coil 3 in parallel. Further, an excitation thyristor converter 7 connected in parallel to the superconducting coil 3 is provided, and the AC side of the excitation thyristor converter 7 is connected to a power system 8 to constitute a superconducting energy storage device. Next, an operation method in the superconducting energy storage device of the present embodiment will be described.

【0013】先ず、PCS2をヒーター等により加熱し
たり、磁界を付与することにより開路状態とする。PC
S1は、未だ電流が流れていないので、当然閉路状態で
ある。次に、励磁用サイリスタ変換器7を駆動する事に
より、超電導コイル3へ直流電流を通電し、設定値にな
った時点でPCS2を閉路状態に復帰させ、励磁用サイ
リスタ変換器7をゲートブロックする。この操作によ
り、超電導コイル3の電流は、PCS1,PCS2にて
クランプされ、設定されたエネルギー貯蔵状態となる
(矢印9参照)。ちなみに、定格電流値は、PCS1の
臨界電流値の60〜80%程度に、予め設定しておくも
のである。
First, the PCS 2 is opened by heating it with a heater or by applying a magnetic field. PC
S1 is, of course, in a closed state since no current has flown yet. Next, by driving the excitation thyristor converter 7, a DC current is applied to the superconducting coil 3, and when the set value is reached, the PCS 2 is returned to the closed state, and the excitation thyristor converter 7 is gate-blocked. . By this operation, the current of the superconducting coil 3 is clamped by the PCS1 and PCS2 to be in the set energy storage state (see arrow 9). Incidentally, the rated current value is set in advance to about 60 to 80% of the critical current value of PCS1.

【0014】上記状態にて、電力系統8へ擾乱が発生し
た場合は、該電力系統8からの運転要請に基づき、先
ず、サイリスタスイッチ6をONさせる。コンデンサ5
は、予め設定値まで充電されており、且つ、励磁用サイ
リスタ変換器7はゲートブロックされているから、この
操作により放電電流は、矢印10の放電路を形成し、P
CS1,PCS2,超電導コイル3へ流れ込む事にな
る。但し、PCS1,PCS2の直列回路インピーダン
スは、超電導コイル3のインピーダンスと比べ、はるか
に小さく、その結果、放電電流の殆んどが、PCS1,
PCS2回路へ流入し、貯蔵状態にあった超電導コイル
3の電流に重畳される事になる。この結果、PCS1は
臨界電流値以上の通電となってクエンチし、開路状態と
なる。
In the above state, when a disturbance occurs in the power system 8, the thyristor switch 6 is first turned on based on an operation request from the power system 8. Capacitor 5
Is charged to a preset value in advance, and the thyristor converter for excitation 7 is gate-blocked, so that the discharge current forms a discharge path indicated by an arrow 10 by this operation, and P
CS1, PCS2, and superconducting coil 3 will flow. However, the series circuit impedance of PCS1 and PCS2 is much smaller than the impedance of superconducting coil 3, and as a result, most of the discharge current is reduced by PCS1 and PCS1.
The current flows into the PCS2 circuit and is superimposed on the current of the superconducting coil 3 in the stored state. As a result, the PCS 1 is energized by a current equal to or greater than the critical current value to quench and open.

【0015】PCS1,PCS2回路のインピーダンス
は、上述した様に極めて低いので、コンデンサ5は小容
量で十分高速、且つ、大電流放電を達成出来る。また、
超電導コイル3については、貯蔵状態に於ける電流方向
とは逆方向の電流注入となるので、この放電によりクエ
ンチが発生する事はない。さて、PCS1が開路状態に
なる事によって、超電導コイル3の端子間には、PCS
1に発生する抵抗成分に基づく過渡電圧が発生する。但
し、この過渡電圧は、励磁用サイリスタ変換器7にとっ
て順方向電圧となるので、PCS1の開路により、むし
ろ、励磁用サイリスタ変換器7は再起動しやすい方向へ
作用する為、超電導コイル3の電流は、高速に励磁用サ
イリスタ変換器7側へ転流し、その結果、超電導コイル
3に貯蔵されていた磁気エネルギーを、電力系統8側へ
高速でパワーバックする事が可能となるものである。励
磁用サイリスタ変換器7を介した系統安定化運転は、高
々、数秒間程度であり、PCS1の過渡熱時定数を数秒
以上に設定してあるので、系統安定化運転後、PCS1
は自動的に閉路状態に復帰し、励磁用サイリスタ変換器
7のゲートブロックにより、再び、元のエネルギー貯蔵
状態に到るものである。
Since the impedances of the PCS1 and PCS2 circuits are extremely low as described above, the capacitor 5 has a small capacity and can achieve a sufficiently high speed and a large current discharge. Also,
As for the superconducting coil 3, since the current is injected in the direction opposite to the current direction in the storage state, no quench occurs due to this discharge. Now, when the PCS 1 is in an open circuit state, the PCS 1
A transient voltage is generated based on the resistance component generated in step (1). However, since this transient voltage becomes a forward voltage for the excitation thyristor converter 7, the excitation thyristor converter 7 acts rather in a direction in which the excitation thyristor converter 7 is easily restarted by opening of the PCS 1. Is commutated to the exciting thyristor converter 7 at high speed, and as a result, the magnetic energy stored in the superconducting coil 3 can be power backed to the power system 8 at high speed. The system stabilization operation via the excitation thyristor converter 7 is at most about several seconds, and the transient thermal time constant of the PCS1 is set to several seconds or more.
Automatically returns to the closed state, and returns to the original energy storage state again by the gate block of the excitation thyristor converter 7.

【0016】図2は、本発明の他の実施例を示すもので
あり、図1に於けるPCS1にPCS2の機能を付加し、1
台の永久電流スイッチ1´にて、初期充電の為のスイッ
チング、及び系統安定化運転の為のスイッチングを行わ
せしめるものである。運転操作は、図1と略同様なので
説明は省略する。
FIG. 2 shows another embodiment of the present invention, in which the function of PCS2 is added to PCS1 in FIG.
The switching for the initial charging and the switching for the system stabilization operation are performed by one of the permanent current switches 1 '. The driving operation is substantially the same as in FIG.

【0017】このような本実施例のようにすることによ
り、電力系統に擾乱が発生していない期間(待機期間)
には、超電導コイルに流れる電流を永久電流スイッチで
クランプするので、貯蔵エネルギーの損失が殆んどな
く、極めて効率の高い系統安定化用超電導エネルギー貯
蔵装置を実現出来る。又、電力系統に擾乱が発生した場
合は、超電導エネルギー貯蔵装置の主回路に設置される
コンデンサ放電により、上記永久電流スイッチに臨界電
流値以上の通電を行い、極めて高速にて開路状態に至ら
しめる事が可能な上、永久電流の過渡熱時定数により、
設定時間以後は自動的に再閉路出来るので、系統安定化
用超電導エネルギー貯蔵装置として最適である。
According to this embodiment, a period in which no disturbance occurs in the power system (standby period)
In this method, the current flowing in the superconducting coil is clamped by the permanent current switch, so that there is almost no loss of stored energy, and a highly efficient superconducting energy storage device for system stabilization can be realized. In addition, when a disturbance occurs in the power system, the permanent current switch is energized at a critical current value or more by the discharge of the capacitor installed in the main circuit of the superconducting energy storage device, and the circuit is opened at an extremely high speed. Is possible, and the transient thermal time constant of the permanent current
Since the circuit can be automatically reclosed after the set time, it is optimal as a superconducting energy storage device for system stabilization.

【0018】図3は本発明の第3の実施例を示すもので
あり、図1に示す実施例に加え励磁用サイリスタ変換器
7と直列に投入器等の開閉手段11を設けたことを基本
とするものである。
FIG. 3 shows a third embodiment of the present invention. In addition to the embodiment shown in FIG. 1, an opening / closing means 11 such as a thrower is provided in series with the thyristor converter 7 for excitation. It is assumed that.

【0019】本実施例において、先ず超電導コイル3を
励磁するには、開閉手段11を閉路、PCS1を閉路、
PCS2を開路しておき、励磁用サイリスタ変換器7を
運転することにより行う。そして、超電導コイル3の電
流値が設定電流に達した時点でPCS2を閉路して永久
電流モード運転へ移行すると共に、励磁用サイリスタ変
換器7をゲートブロックし、開閉手段11を開路する。
この一連の操作にて、超電導エネルギー貯蔵装置は、エ
ネルギー貯蔵状態に入る。
In this embodiment, first, in order to excite the superconducting coil 3, the switching means 11 is closed, the PCS 1 is closed,
This is performed by opening the PCS 2 and operating the excitation thyristor converter 7. Then, when the current value of the superconducting coil 3 reaches the set current, the PCS 2 is closed to shift to the permanent current mode operation, the thyristor converter for excitation 7 is gate-blocked, and the switching means 11 is opened.
Through this series of operations, the superconducting energy storage device enters an energy storage state.

【0020】次に、電力系統8からの要求により、系統
安定化運転を行う場合を考える。この場合、先ずPCS
1を外部電源(コンデンサ5とサイリスタスイッチ6と
の直列回路)の駆動により開路させる必要がある。PC
S1は、臨界電流値以上の通電にて開路する特徴を備え
ているので、例えば、外部電源がコンデンサバンクであ
るとした場合、比較的大きな充電電圧を必要とすること
が考えられる。但し、開閉手段11は開路されているの
で、励磁用サイリスタ変換器7に直接印加される事がな
い。一方、放電電流10が充分大きくなり、それと共に
外部電源(コンデンサバンク)の充電電圧値が小さくな
った時点を超電導コイル3と並列に設けた電圧検出器1
2で計測して、励磁用電圧の耐圧以下の電圧になったこ
とを確認し、開閉手段11にON指令を与えて励磁用サ
イリスタ変換器7をデブロック(再起動)させれば、超
電導コイル3の電流は、励磁用サイリスタ変換器7にシ
フトされ、系統安定化運転を行うことが出来る。尚、制
御装置13は、上記した回路構成機器を制御し、正常に
システム全体を運転するため設置されるものである。
Next, a case where a system stabilization operation is performed according to a request from the power system 8 will be considered. In this case, first the PCS
1 needs to be opened by driving an external power supply (a series circuit of the capacitor 5 and the thyristor switch 6). PC
Since S1 has a feature that it is opened when a current equal to or more than the critical current value is supplied, for example, when the external power supply is a capacitor bank, a relatively large charging voltage may be required. However, since the opening / closing means 11 is open, it is not directly applied to the excitation thyristor converter 7. On the other hand, when the discharge current 10 becomes sufficiently large and the charging voltage value of the external power supply (capacitor bank) becomes small, the voltage detector 1 provided in parallel with the superconducting coil 3
2 to confirm that the voltage has become equal to or lower than the withstand voltage of the exciting voltage. If an ON command is given to the switching means 11 to deblock (restart) the exciting thyristor converter 7, the superconducting coil The current of No. 3 is shifted to the thyristor converter for excitation 7, and the system stabilization operation can be performed. The control device 13 is provided to control the above-described circuit components and to normally operate the entire system.

【0021】尚、各実施例では特に図示してはいない
が、前記PCS1を無誘導巻きした超電導コイルで形成
することにより、インダクタンス分を殆んど0にするこ
とが可能であり、外部電源からの通電電流は、前記超電
導コイルへは殆んど通電されず、効果的にPCS1に流
入されることになる。
Although not particularly shown in each embodiment, the inductance can be reduced to almost zero by forming the PCS1 with a non-inductively wound superconducting coil. Of the current is hardly supplied to the superconducting coil, but flows into the PCS 1 effectively.

【0022】このため、外部電源の容量を低減できる
他、運転の信頼性,高速性を達成することが可能であ
る。PCS2についても、同様に無誘導巻きとした超電
導コイルで形成すれば、同様な効果が得られる。
As a result, the capacity of the external power supply can be reduced, and the reliability and speed of operation can be achieved. Similarly, if the PCS 2 is formed of a superconducting coil having no induction winding, the same effect can be obtained.

【0023】[0023]

【発明の効果】以上説明した本発明の超電導装置、並び
に超電導エネルギー貯蔵装置、及びその運転方法によれ
ば、極めて高速に永久電流スイッチを開路することがで
き、又、瞬時に系統擾乱に対応できることは勿論、貯蔵
エネルギーの損失が殆んどなく、極めて効率の高いもの
が得られ、その効果は多大である。
According to the superconducting device, the superconducting energy storage device, and the operating method of the present invention described above, the permanent current switch can be opened at a very high speed, and instantaneous response to system disturbance can be achieved. Of course, there is almost no loss of stored energy, and an extremely efficient one can be obtained, and the effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超電導エネルギー貯蔵装置の一実施例
を示す回路図。
FIG. 1 is a circuit diagram showing one embodiment of a superconducting energy storage device of the present invention.

【図2】本発明の第2の実施例を示す回路図。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す回路図。FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電流式永久電流スイッチ、2…熱式永久電流スイッ
チ、3…超電導コイル、4…クライオスタット、5…コ
ンデンサ、6…サイリスタスイッチ、7…励磁用サイリ
スタ変換器、8…電力系統、10…放電電流、11…開
閉手段、12…電圧検出器、13…制御装置。
REFERENCE SIGNS LIST 1 current permanent current switch 2 thermal permanent current switch 3 superconducting coil 4 cryostat 5 capacitor 6 thyristor switch 7 thyristor converter for excitation 8 power system 10 discharge Current, 11 opening / closing means, 12 voltage detector, 13 control device.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される熱式、又は磁界式永久
電流スイッチとを備えた超電導エネルギー貯蔵装置にお
いて、超電導エネルギー貯蔵装置の運転方法において、
臨界電流値以上の通電で開路動作する電流式永久電流ス
イッチを接続したことを特徴とする超電導エネルギー貯
蔵装置。
1. A superconducting coil, an exciting power supply for exciting the superconducting coil, and a circuit closed to supply a permanent current to the superconducting coil when a set energy is stored in the superconducting coil by the exciting power supply. In a superconducting energy storage device provided with a thermal or magnetic field type permanent current switch, in a method of operating the superconducting energy storage device,
A superconducting energy storage device, characterized in that a current-type permanent current switch that operates to open when an electric current having a critical current or more is applied is connected.
【請求項2】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される熱式、又は磁界式永久
電流スイッチとを備えた超電導エネルギー貯蔵装置にお
いて、前記永久電流スイッチは、熱的、又は磁気的に開
閉制御される特性と、臨界電流値以上の通電で開路さ
れ、過渡熱時定数で閉路される特性とを有していること
を特徴とする超電導エネルギー貯蔵装置。
2. A superconducting coil, an exciting power supply for exciting the superconducting coil, and a circuit closed to supply a permanent current to the superconducting coil when a set energy is stored in the superconducting coil by the exciting power supply. In a superconducting energy storage device including a thermal or magnetic field type permanent current switch, the permanent current switch is thermally or magnetically controlled to be opened and closed, and is opened when a current equal to or more than a critical current value is applied, and the transient current switch is opened. A superconducting energy storage device having a characteristic of being closed by a thermal time constant.
【請求項3】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
を励磁している時には開路され、設定エネルギーが貯蔵
された時点で閉路されて前記超電導コイルに永久電流を
流す熱式、又は磁界式永久電流スイッチとを備えた超電
導エネルギー貯蔵装置において、前記熱式、又は磁界式
永久電流スイッチと直列に、前記超電導コイルを高速に
前記励磁用電源に接続したい場合にのみ開路動作する電
流式永久電流スイッチを接続したことを特徴とする超電
導エネルギー貯蔵装置。
3. A superconducting coil, an exciting power supply for exciting the superconducting coil, and a circuit which is opened when the superconducting coil is excited by the exciting power supply, and closed when a set energy is stored, thereby closing the superconducting coil. In a superconducting energy storage device having a thermal or magnetic field type permanent current switch for flowing a permanent current through a coil, the thermal type or magnetic field type permanent current switch is connected in series with the superconducting coil to the exciting power supply at high speed. A superconducting energy storage device characterized in that a current-type permanent current switch that operates only when it is desired to connect is connected.
【請求項4】超電導コイルと並列接続されている永久電
流スイッチを開路した状態で電力系統に接続されている
励磁用電源で励磁して前記超電導コイルにエネルギーを
貯蔵し、この貯蔵エネルギーが設定値になった時点で前
記永久電流スイッチを閉路すると共に、前記励磁用電源
を停止させて前記超電導コイルに永久電流を流し続ける
超電導エネルギー貯蔵装置の運転方法において、前記超
電導コイルに永久電流が流れている状態で前記電力系統
から系統安定化のための運転指令があった場合に、前記
永久電流スイッチへ臨界電流値以上の電流を通電して開
路操作を行い、次に再閉路されるまでの時間だけ前記励
磁用電源の系統側に前記超電導コイルの貯蔵エネルギー
を取り出すようにしたことを特徴とする超電導エネルギ
ー貯蔵装置の運転方法。
4. A state in which a permanent current switch connected in parallel with a superconducting coil is opened and excited by a power supply for excitation connected to a power system to store energy in the superconducting coil, and the stored energy is set to a predetermined value. In the operating method of the superconducting energy storage device in which the permanent current switch is closed and the excitation power supply is stopped and the permanent current is continuously supplied to the superconducting coil, the permanent current flows through the superconducting coil. When there is an operation command for system stabilization from the power system in the state, the circuit is opened by applying a current equal to or greater than the critical current value to the permanent current switch, and only for the time until the next time the circuit is reclosed. Operation of the superconducting energy storage device, wherein the stored energy of the superconducting coil is taken out to the system side of the excitation power supply. Law.
【請求項5】超電導コイルと並列接続されている永久電
流スイッチを開路した状態で電力系統に接続されている
励磁用電源で励磁して前記超電導コイルにエネルギーを
貯蔵し、この貯蔵エネルギーが設定値になった時点で前
記永久電流スイッチを閉路すると共に、前記励磁用電源
を停止させて前記超電導コイルに永久電流を流し続ける
超電導エネルギー貯蔵装置の運転方法において、前記永
久電流スイッチに臨界電流値以上の電流を通電して開路
し、かつ、開路された該永久電流スイッチの過渡熱時定
数により数秒後に自動的に再閉路させ、前記超電導コイ
ルを系統安定化運転するに必要な期間だけ前記励磁用電
源に電気的に接続することを特徴とする超電導エネルギ
ー貯蔵装置の運転方法。
5. A state in which a permanent current switch connected in parallel with a superconducting coil is opened, and is excited by an exciting power supply connected to a power system to store energy in the superconducting coil. In the operation method of the superconducting energy storage device, in which the permanent current switch is closed at the time when the power is turned off, the excitation power supply is stopped, and the permanent current is continuously supplied to the superconducting coil, The exciting power supply is opened for a period necessary for conducting the current and opening the circuit, and automatically closing the circuit after a few seconds due to the transient thermal time constant of the opened permanent current switch, so that the superconducting coil operates in a system stabilizing operation. A method for operating a superconducting energy storage device, wherein the method is electrically connected to a device.
【請求項6】超電導コイルと並列接続されている熱式、
又は磁気式永久電流スイッチを開路した状態で電力系統
に接続されている励磁用電源で励磁して前記超電導コイ
ルにエネルギーを貯蔵し、この貯蔵エネルギーが設定値
になった時点で前記熱式、又は磁界式永久電流スイッチ
を閉路すると共に、前記励磁用電源を停止させて前記超
電導コイルに永久電流を流し続ける超電導エネルギー貯
蔵装置の運転方法において、前記熱式、又は磁界式永久
電流スイッチと直列に電流式永久電流スイッチを接続
し、前記超電導コイルに永久電流が流れている状態で前
記電力系統から系統安定化のための運転命令があった場
合に、前記電流式永久電流スイッチへ臨界電流値以上の
電流を通電して開路操作を行い、次に再閉路されるまで
の期間だけ前記励磁用電源の系統側に前記超電導コイル
の貯蔵エネルギーを取り出すようにしたことを特徴とす
る超電導エネルギー貯蔵装置の運転方法。
6. A thermal type connected in parallel with a superconducting coil,
Or, when the magnetic permanent current switch is opened, the energy is stored in the superconducting coil by exciting with an exciting power supply connected to the power system, and when the stored energy reaches a set value, the thermal type, or A method for operating a superconducting energy storage device in which a magnetic field type permanent current switch is closed and the excitation power supply is stopped to continuously supply a permanent current to the superconducting coil, wherein a current is supplied in series with the thermal or magnetic field type permanent current switch. When a permanent current switch is connected, and an operation command for system stabilization is issued from the power system in a state where a permanent current is flowing through the superconducting coil, the critical current value or more is supplied to the current type permanent current switch. An electric current is applied to open the circuit, and the stored energy of the superconducting coil is supplied to the system side of the excitation power supply until the next time the circuit is closed again. How the operation of the superconducting energy storage device, characterized in that as issued Ri.
【請求項7】超電導コイルと並列接続されている熱式、
又は磁気式永久電流スイッチを開路した状態で電力系統
に接続されている励磁用電源で励磁して前記超電導コイ
ルにエネルギーを貯蔵し、この貯蔵エネルギーが設定値
になった時点で前記熱式、又は磁界式永久電流スイッチ
を閉路すると共に、前記励磁用電源を停止させて前記超
電導コイルに永久電流を流し続ける超電導エネルギー貯
蔵装置の運転方法において、前記熱式、又は磁界式永久
電流スイッチに、臨界電流値以上の電流が通電されて開
路する電流式永久電流スイッチを直列接続し、かつ、開
路された該電流式永久電流スイッチを、その過渡熱時定
数により数秒後に自動的に再閉路させ、前記超電導コイ
ルを系統安定化運転するに必要な期間だけ前記励磁用電
源に電気的に接続することを特徴とする超電導エネルギ
ー貯蔵装置の運転方法。
7. A thermal type connected in parallel with a superconducting coil,
Or, when the magnetic permanent current switch is opened, the energy is stored in the superconducting coil by exciting with an exciting power supply connected to the power system, and when the stored energy reaches a set value, the thermal type, or A method for operating a superconducting energy storage device, in which a magnetic field type permanent current switch is closed and the excitation power supply is stopped to continuously supply a permanent current to the superconducting coil, wherein a critical current is supplied to the thermal or magnetic field type permanent current switch. A current-type permanent current switch that is opened when a current equal to or more than the current is supplied is connected in series, and the opened current-type permanent current switch is automatically reclosed after a few seconds by the transient thermal time constant, and An operation of the superconducting energy storage device, wherein the coil is electrically connected to the excitation power supply for a period required for system stabilization operation. Law.
JP3047856A 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same Expired - Fee Related JP3052397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047856A JP3052397B2 (en) 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6100090 1990-03-14
JP2-61000 1990-03-14
JP3047856A JP3052397B2 (en) 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same

Publications (2)

Publication Number Publication Date
JPH04211105A JPH04211105A (en) 1992-08-03
JP3052397B2 true JP3052397B2 (en) 2000-06-12

Family

ID=26388060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047856A Expired - Fee Related JP3052397B2 (en) 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same

Country Status (1)

Country Link
JP (1) JP3052397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893357B2 (en) 2007-06-21 2018-02-13 Murata Manufacturing Co., Ltd. Cathode mix and nonaqueous electrolyte battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831516B2 (en) * 1992-09-21 1998-12-02 株式会社日立製作所 Superconducting energy storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893357B2 (en) 2007-06-21 2018-02-13 Murata Manufacturing Co., Ltd. Cathode mix and nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH04211105A (en) 1992-08-03

Similar Documents

Publication Publication Date Title
JP3052397B2 (en) Superconducting device, superconducting energy storage device, and method of operating the same
US4894745A (en) Method and apparatus for protecting against semiconductor power control failure
JP2566968B2 (en) Power supply circuit
JPH04165930A (en) Power supply system changeover system
JPH03195374A (en) Stopping method for power converter
JPH07220598A (en) Electromagnetic operation switch
JP2996140B2 (en) Motor control circuit
JP2529366B2 (en) Heating cooker
JP2828521B2 (en) Inductive load current controller
JPH11225432A (en) Transformer rush current reduction method
JPS60207403A (en) Controller for electric railcar
JPH0371606A (en) Superconducting magnet device
JPH08288154A (en) Switching device
JPH0442728A (en) Instantaneous power interruption protective unit employing superconducting switch
JPS644313Y2 (en)
JPS6216503A (en) Device for starting operation of superconductive magnet
JPS6231372A (en) Starting method for dc/dc converter
JPH0345637B2 (en)
JPS61142937A (en) Method and apparatus for storing and discharging superconductive energy
JP2813735B2 (en) DC-DC converter
JP2982436B2 (en) Inverter operation state switching method
JPS6248232A (en) Superconductive energy transfer circuit
JPS617522A (en) Starter protecting circuit
JPS6147091A (en) High frequency heater
JPS63251777A (en) Controller for operation of refrigerator, etc.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees