JP2004055558A - Copper paste and wiring board using the same - Google Patents

Copper paste and wiring board using the same Download PDF

Info

Publication number
JP2004055558A
JP2004055558A JP2003276191A JP2003276191A JP2004055558A JP 2004055558 A JP2004055558 A JP 2004055558A JP 2003276191 A JP2003276191 A JP 2003276191A JP 2003276191 A JP2003276191 A JP 2003276191A JP 2004055558 A JP2004055558 A JP 2004055558A
Authority
JP
Japan
Prior art keywords
wiring board
conductor layer
copper
copper paste
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003276191A
Other languages
Japanese (ja)
Other versions
JP4544837B2 (en
Inventor
Yasushi Sumi
墨 泰志
Hidetoshi Mizutani
水谷 秀俊
Manabu Sato
佐藤 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003276191A priority Critical patent/JP4544837B2/en
Publication of JP2004055558A publication Critical patent/JP2004055558A/en
Application granted granted Critical
Publication of JP4544837B2 publication Critical patent/JP4544837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper paste with excellent plating and soldering performances of a conductive layer in a wiring board using copper in the conductive layer and without bringing forth swelling and peeling of the conductive layer even if the wiring board is heated, and with a high reliability in connecting a heat dissipating component and various circuit components, and a wiring board using the same. <P>SOLUTION: A copper paste that contains copper powder, an organic vehicle, and Fe<SB>2</SB>O<SB>3</SB>particles is obtained. And a wiring board which has formed a conductive layer containing Fe element by coating and firing this copper paste on a ceramic green sheet is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、セラミック基板上に回路を形成するために、印刷して同時焼成される銅ペースト、及びそれを用いた配線基板に関するものであり、特にろう付け等の接合法により回路部品が接続される配線基板に用いる銅ペースト、及びそれを用いた配線基板に関するものである。 The present invention relates to a copper paste which is printed and co-fired to form a circuit on a ceramic substrate, and a wiring board using the same, and in particular, circuit components are connected by a joining method such as brazing. The present invention relates to a copper paste used for a wiring board and a wiring board using the same.

 近年、配線基板は、情報通信の高速化に伴い、GHz帯以上の高周波領域で使用され、伝送損失の低減が要求されている。このため、配線基板は、比較的低い誘電率をもつセラミック基板上に、導体抵抗が少なくて低融点金属である銀や銅等から成る導体層が形成されている。特に、導体層は、回路の高密度化が進むにしたがい、マイグレーションの防止を図るために銅が用いられ、導体層として銅が印刷されたセラミック基板は、銅の酸化を抑制しつつ伝送損失の低い配線基板を得るために湿潤窒素雰囲気中(水蒸気と窒素ガスの混合雰囲気中)で焼成が行われる。 In recent years, wiring boards have been used in the high frequency region of the GHz band or higher with the increase in the speed of information communication, and there has been a demand for reduction of transmission loss. For this reason, in the wiring substrate, a conductor layer made of a low melting point metal such as silver or copper is formed on a ceramic substrate having a relatively low dielectric constant. In particular, as the circuit density increases, copper is used for the conductor layer to prevent migration.A ceramic substrate on which copper is printed as the conductor layer suppresses transmission of copper while suppressing oxidation of copper. Firing is performed in a wet nitrogen atmosphere (in a mixed atmosphere of water vapor and nitrogen gas) to obtain a low wiring substrate.

 配線基板は、一般に、セラミック原料粉末と有機バインダー、溶媒等を用いて調製したスラリーをドクターブレード法等のシート成形でセラミックグリーンシートを成形し、このセラミックグリーンシート上に、銅ペーストを用いて配線パターン印刷して乾燥させ、次いで、セラミックグリーンシートを、水蒸気と窒素ガスの混合雰囲気中において、数百℃の温度で脱バインダーを行って銅ペースト及びセラミックグリーンシートに含有される有機成分を除去し、略1000℃以上に昇温して焼成を行うことにより作製される。 In general, a wiring board is formed by forming a ceramic green sheet from a slurry prepared using a ceramic raw material powder, an organic binder, a solvent, and the like by sheet forming such as a doctor blade method, and forming a wiring on the ceramic green sheet using a copper paste. After pattern printing and drying, the ceramic green sheet is debindered at a temperature of several hundred degrees Celsius in a mixed atmosphere of steam and nitrogen gas to remove the copper paste and organic components contained in the ceramic green sheet. The temperature is raised to about 1000 ° C. or more and firing is performed.

 配線基板は、機器の高密度実装化及び多機能化が進むにしたがい、トランジスタ、ダイオード等の半導体素子や放熱部品、端子等、種々の回路部品が搭載されるため、配線基板に形成される導体層の密着強度に一層高い信頼性が求められる。 Wiring boards are mounted with various circuit components such as semiconductor elements such as transistors and diodes, heat-radiating components, terminals, etc. with the progress of high-density mounting and multifunctionalization of devices. Higher reliability is required for the adhesion strength of the layers.

 特に、トランジスタ、ダイオード等の半導体素子が搭載された配線基板は、半導体素子が入力信号により発熱して温度上昇し、半導体素子の特性を劣化させたり、回路基板に搭載した他の回路部品の特性を劣化させたりする原因となるので放熱対策が重要である。そこで、配線基板は、導体層を介して放熱体が接続されて用いられる場合が多く、配線基板上に形成された導体層には、熱負荷に対してふくれや剥離などの無い密着強度が要求される。 In particular, a wiring board on which a semiconductor element such as a transistor or a diode is mounted, the semiconductor element generates heat due to an input signal and rises in temperature, thereby deteriorating the characteristics of the semiconductor element or the characteristics of other circuit components mounted on the circuit board. Therefore, it is important to take measures to dissipate heat. Therefore, a wiring board is often used with a radiator connected via a conductor layer, and the conductor layer formed on the wiring board is required to have an adhesion strength that does not cause blistering or peeling against a thermal load. Is done.

 配線基板に形成された導体層のふくれや剥離を防止するための対策として、銅ペースト中に含まれる有機ビヒクルが焼成工程においてガスを発生して導体層のふくれや剥離を起こすことに着目し、銅ペーストに、亜鉛―カルシウムアルミニウムケイ酸塩ガラスフリット、亜鉛―マグネシウムーバリウムーアルミニウムケイ酸塩ガラスフリットおよびそれらの混合物から選ばれた失透性ガラスフリット、酸化ビスマス、酸化カドミニウム等、特定の酸化物を添加させることによりガスの発生を抑制し導体層の剥離やふくれを防止しようとするものがある(例えば、特許文献1参照)。
特開平1−128488号公報(第4−7頁)
As a measure to prevent blistering and peeling of the conductor layer formed on the wiring board, we focused on that the organic vehicle contained in the copper paste generates gas in the firing process and causes blistering and peeling of the conductor layer, Copper oxide has a specific oxidation property such as devitrified glass frit selected from zinc-calcium aluminum silicate glass frit, zinc-magnesium-barium-aluminum silicate glass frit and mixtures thereof, bismuth oxide, cadmium oxide, etc. There is a method in which the generation of gas is suppressed by adding a substance to prevent peeling or swelling of the conductor layer (for example, see Patent Document 1).
JP-A-1-128488 (pages 4-7)

 しかしながら、特許文献1の技術によれば、銅ペーストにガラスフリットを添加しているので、配線基板に導体層として用いると導体層の表面にガラスが浮き出して残留し、半田付け性やメッキ性を損なうという問題点があり、且つ、配線基板を加熱すると導体層のふくれや剥離が発生するので、ふくれを防止する対策が不十分であるという問題点があった。 However, according to the technique of Patent Document 1, since glass frit is added to the copper paste, when used as a conductor layer on a wiring board, the glass emerges and remains on the surface of the conductor layer, and the solderability and plating property are reduced. In addition, there is a problem in that the conductor layer is bulged or peeled off when the wiring board is heated, so that measures for preventing bulging are insufficient.

 本発明は、前記問題点を解決するもので、導体層に銅を用いた配線基板において、導体層のメッキ性や半田付け性が良好であり、配線基板を加熱しても導体層のふくれや剥離などが生ずることなく、トランジスタ、ダイオード等の半導体素子や放熱部品、端子等、種々の回路部品を接続して高い信頼性を有する銅ペーストとそれを用いた配線基板を提供することを目的とするものである。 The present invention solves the above problems, and in a wiring board using copper for the conductive layer, the plating property and the solderability of the conductive layer are good, and even if the wiring board is heated, the blistering of the conductive layer may occur. It is an object of the present invention to provide a copper paste having high reliability by connecting various circuit components such as semiconductor elements such as transistors and diodes, heat radiation components, terminals, and the like, without causing peeling, and a wiring board using the same. Is what you do.

 かかる目的を達成するためになされた請求項1に記載の発明は、銅粉末と有機ビヒクルとFe23粒子とを含有することを特徴とする銅ペーストである。
 請求項1に記載の銅ペーストは、Fe23粒子を含有しているので、これを用いて非酸化雰囲気中で焼成することにより配線基板との密着強度が優れた導体層が形成され、この配線基板にトランジスタ、ダイオード等の半導体素子や放熱部品、端子等、種々の回路部品をハンダや各種低融点合金等の接合材を用いたろう付けなどの接合法により加熱して接続しても導体層のふくれや剥離が生ずることなく、導体層の密着強度が優れた配線基板が得られる。
The invention described in claim 1 for achieving the above object is a copper paste containing copper powder, an organic vehicle, and Fe 2 O 3 particles.
Since the copper paste according to claim 1 contains Fe 2 O 3 particles, the copper paste is fired in a non-oxidizing atmosphere to form a conductor layer having excellent adhesion strength to a wiring board, Various circuit components such as semiconductor elements such as transistors and diodes, heat dissipating components, terminals and the like are connected to this wiring board by heating and joining by a joining method such as soldering or joining materials such as various low melting point alloys. A wiring board having excellent adhesion strength of the conductor layer without swelling or peeling of the layer is obtained.

 銅ペースト中にFe23粒子を添加することによって導体層の密着強度が向上する理由は以下のごとく推察される。
 一般に、配線基板を作製する焼成工程において、銅金属と低温焼成磁器材料中の液相成分との濡れが悪いので低温焼成磁器材料と銅金属との密着性は悪いと知られている。一般に、酸化銅を銅ペーストに添加することにより、低温焼成磁器材料の液相成分との濡れ性を向上させ、銅金属の密着性を改善しようとする方法が知られているが、この方法によって得られた配線基板をろう付け等の接合工程で加熱すると導体層にふくれが生じてしまい、導体層と配線基板との密着性が不十分であった。
The reason why the adhesion strength of the conductor layer is improved by adding Fe 2 O 3 particles to the copper paste is presumed as follows.
In general, it is known that in a firing step for manufacturing a wiring board, the adhesion between the low-temperature fired porcelain material and the copper metal is poor because the wettability between the copper metal and the liquid phase component in the low-temperature fired porcelain material is poor. In general, a method of adding copper oxide to a copper paste to improve wettability with a liquid phase component of a low-temperature fired porcelain material and improve adhesion of copper metal is known. When the obtained wiring board is heated in a joining step such as brazing, the conductor layer bulges, and the adhesion between the conductor layer and the wiring board is insufficient.

 即ち、銅酸化物を添加した銅ペーストを用いると、配線基板と導体層との密着面は、金属酸化物の存在する界面と金属酸化物が存在しない界面とが混ざり合って構成され、加熱することにより、金属酸化物が存在しない界面(密着性の劣る界面)からふくれが発生して顕在化したものと思われる。 That is, when the copper paste to which the copper oxide is added is used, the contact surface between the wiring substrate and the conductor layer is formed by mixing the interface where the metal oxide exists and the interface where the metal oxide does not exist, and is heated. It is considered that this caused blistering to occur from an interface where no metal oxide was present (an interface having poor adhesion).

 そこで本発明は、銅ペーストにFe23粒子を添加し、配線基板と導体層との密着面全域に、均一に金属酸化物が存在する界面を構成し、導体層と配線基板との密着性を向上させたものである。 Accordingly, the present invention provides a method in which Fe 2 O 3 particles are added to a copper paste to form an interface in which a metal oxide is uniformly present over the entire contact surface between the wiring substrate and the conductor layer, and that the adhesion between the conductor layer and the wiring substrate is improved. It is the one with improved characteristics.

 Fe23粒子を銅ペーストに添加して焼成工程で700℃より高い温度に移行すると、下記(式1)の化学反応が発現する。
  2Cu + 3Fe23 → Cu2O + 2Fe34 … (式1)
 つまり、焼成温度域で、Fe23がCuの酸化剤として働き、Cu全体を僅かに酸化させるのではないかと考えられる。
When Fe 2 O 3 particles are added to the copper paste and the temperature is raised to a temperature higher than 700 ° C. in the firing step, a chemical reaction represented by the following (formula 1) occurs.
2Cu + 3Fe 2 O 3 → Cu 2 O + 2Fe 3 O 4 ... (Equation 1)
That is, it is considered that Fe 2 O 3 acts as an oxidizing agent for Cu in the firing temperature range and slightly oxidizes Cu as a whole.

 このとき、Cuの酸化は極僅かな量であるがCu全体が均一に酸化されるので、焼成において、銅と低温焼成磁器材料の液相成分との濡れ性が全体にわたって向上し、局部的なふくれの発生が抑制されるものと考えられる。 At this time, although the Cu is oxidized in a very small amount, the entire Cu is uniformly oxidized. Therefore, in the sintering, the wettability between the copper and the liquid phase component of the low-temperature sintering porcelain material is improved throughout, and the local It is considered that blistering is suppressed.

 前記Fe23は、Fe23を主成分とする酸化鉄粒子であり、Fe23以外の酸化鉄(例えば、Fe34やFeOなど)やFe金属が含まれていても良い。
 また、前記Fe23の平均粒径は、1μm以下が好ましい。その理由は、Fe23の平均粒径が1μmを越えると、導体層中のFeの分散にむらができて、導体層のふくれの抑制効果が低減するからである。Fe23の平均粒径は、特には500nm以下、更には100nm以下が好ましい。その理由は、少量のFe23粒子の添加でも、ふくれ抑制効果が発現するからである。また、Fe23の平均粒径の下限値は、小さいほど導体層のふくれを抑制する効果があって好ましいが、実用上5nmで良い。
The Fe 2 O 3 is an iron oxide particle containing Fe 2 O 3 as a main component, and may contain iron oxide other than Fe 2 O 3 (for example, Fe 3 O 4 or FeO) or Fe metal. good.
The average particle diameter of the Fe 2 O 3 is preferably 1 μm or less. The reason is that if the average particle diameter of Fe 2 O 3 exceeds 1 μm, the dispersion of Fe in the conductor layer becomes uneven, and the effect of suppressing the blister of the conductor layer is reduced. The average particle size of Fe 2 O 3 is particularly preferably 500 nm or less, more preferably 100 nm or less. The reason is that even if a small amount of Fe 2 O 3 particles are added, the blister suppressing effect is exhibited. The lower limit of the average particle diameter of Fe 2 O 3 is preferably smaller as it has an effect of suppressing blistering of the conductor layer, but may be 5 nm in practical use.

 また、前記Fe23の添加量は、銅粉末100質量部に対して、0.1質量部〜10.0質量部の範囲が好ましい。その理由は、Fe23の添加量が0.1質量部よりも少ないと、導体層ふくれの抑制効果が低減し、Fe23の添加量が10.0質量部より多いと導体抵抗が大きくなるからである。Fe23の添加量は、特には0.1〜5.0質量部、更には0.1〜2.0質量部が好ましい。その理由は、導体抵抗を増大させずにふくれを抑制する最適な範囲だからである。 Further, the addition amount of the Fe 2 O 3 is preferably in the range of 0.1 part by mass to 10.0 parts by mass with respect to 100 parts by mass of the copper powder. The reason is that if the added amount of Fe 2 O 3 is less than 0.1 parts by mass, the effect of suppressing the conductive layer swelling is reduced, and if the added amount of Fe 2 O 3 is more than 10.0 parts by mass, the conductor resistance is reduced. Is larger. The addition amount of Fe 2 O 3 is particularly preferably 0.1 to 5.0 parts by mass, more preferably 0.1 to 2.0 parts by mass. The reason is that the range is an optimum range for suppressing blistering without increasing the conductor resistance.

 銅粉末は、平均粒径が0.5μm〜10μmの範囲が好ましい。その理由は、銅粉末の平均粒径が0.5μmより小さいと銅の焼結開始温度が低くなりすぎて配線基板に反りやうねりが発生することがあり、銅粉末の平均粒径が10μmより大きいと、配線基板に微細な配線パターンを形成することが困難になるからである。銅粉末の平均粒径は、更には1〜7μm若しくは2〜5μmが好ましい。その理由は、うねり抑制と微細配線を両立させる最適な範囲だからである。このとき、銅粉末の形状は、略球状、樹枝状、フレーク状等のいずれでも使用できる。 The copper powder preferably has an average particle size of 0.5 μm to 10 μm. The reason is that when the average particle size of the copper powder is smaller than 0.5 μm, the sintering start temperature of the copper becomes too low, and the wiring board may be warped or undulated. This is because if it is large, it becomes difficult to form a fine wiring pattern on the wiring board. The average particle size of the copper powder is more preferably 1 to 7 μm or 2 to 5 μm. The reason for this is that it is an optimal range for achieving both undulation suppression and fine wiring. At this time, the shape of the copper powder may be substantially spherical, dendritic, flake, or the like.

 有機ビヒクルは、有機高分子を有機溶剤に溶解させたもので有り、この有機高分子は、エチルセルロース、アクリル樹脂、ポリメチルスチレン、ブチラール樹脂、PTFE、アルキッド樹脂、ポリアルキレンカーボネート等の少なくともいずれか一つを用いるが、特に、焼成において分解性が向上し緻密で低抵抗の導体層を得ることができるのでアクリル樹脂が好ましく、更には、ポリ―n―ブチルメタクリレート、ポリ―2−エチルヘキシルメタクリレートが好ましい。 The organic vehicle is obtained by dissolving an organic polymer in an organic solvent, and the organic polymer is at least one of ethyl cellulose, acrylic resin, polymethylstyrene, butyral resin, PTFE, alkyd resin, and polyalkylene carbonate. Although one is used, an acrylic resin is particularly preferred since a decomposability is improved and a dense and low-resistance conductor layer can be obtained during firing, and further, poly-n-butyl methacrylate and poly-2-ethylhexyl methacrylate are preferred. .

 有機溶剤は、テルピネオール、ブチルカルビトールアセテート、ブチルカルビトール、ジブチルフタレート等の高沸点溶剤を使用することが好ましい。
 また、有機ビヒクルの含有量は、銅粉末100質量部に対して、20〜40質量部の範囲が好ましく、20〜30質量部の範囲がより好ましい。その理由は、有機ビヒクルの含有量が20質量部未満の場合、銅ペーストの流動性が低下し、配線基板に銅ペーストを塗布する際に、作業性を損なって好ましくないからであり、一方、有機ビヒクルの含有量が40質量部を越えると、配線基板に銅ペーストを塗布して乾燥させると導体層の厚みがバラツキ易く好ましくないからである。
As the organic solvent, a high-boiling solvent such as terpineol, butyl carbitol acetate, butyl carbitol, or dibutyl phthalate is preferably used.
The content of the organic vehicle is preferably in the range of 20 to 40 parts by mass, more preferably 20 to 30 parts by mass, based on 100 parts by mass of the copper powder. The reason is that when the content of the organic vehicle is less than 20 parts by mass, the fluidity of the copper paste is reduced, and when applying the copper paste to the wiring board, the workability is impaired, which is not preferable. If the content of the organic vehicle exceeds 40 parts by mass, the thickness of the conductor layer tends to vary when a copper paste is applied to the wiring substrate and dried, which is not preferable.

 また、銅ペーストの粘度は、5000ポイズ〜30ポイズの範囲が好ましい。その理由は、銅ペーストの粘度が5000ポイズを越えると、銅ペーストの流動性が低下し、配線基板に銅ペーストを塗布する際に、作業性を損ない好ましくないからであり、一方、銅ペーストの粘度が30ポイズ未満であると、配線基板に銅ペーストを塗布して乾燥させると導体層の厚みがバラツキ易く好ましくないからである。 粘度 Further, the viscosity of the copper paste is preferably in the range of 5000 poise to 30 poise. The reason for this is that when the viscosity of the copper paste exceeds 5,000 poise, the fluidity of the copper paste decreases, and when the copper paste is applied to a wiring board, the workability is impaired, which is not preferable. This is because if the viscosity is less than 30 poise, the thickness of the conductor layer tends to vary when a copper paste is applied to the wiring substrate and dried, which is not preferable.

 銅ペーストは、可塑剤、増粘剤、レベリング剤、消泡剤等の成分が含まれていても良い。
 次に、請求項2に記載の発明は、請求項1に記載の銅ペーストに、平均粒径100nm以下のセラミック粒子を含むことを特徴とする銅ペーストである。
The copper paste may contain components such as a plasticizer, a thickener, a leveling agent, and an antifoaming agent.
Next, a second aspect of the present invention is a copper paste according to the first aspect, wherein the copper paste contains ceramic particles having an average particle diameter of 100 nm or less.

 請求項2に記載の銅ペーストは、メッキ性や銅粉末の焼結性を向上させるために、平均粒径100nm以下のセラミック粒子を含んでいるので、メッキ性及び半田付け性か良く、反りやうねりの少ない配線基板が得られる。 The copper paste according to claim 2 contains ceramic particles having an average particle diameter of 100 nm or less in order to improve the plating property and the sinterability of the copper powder. A wiring board with less undulation can be obtained.

 前記セラミック粒子は、平均粒径が100nm以下であることが好ましい。その理由は、セラミック粒子の平均粒径が100nmを越えると配線基板にうねりが発生し易くなったり、導体層のメッキ性が損なわれたりするからである。セラミック粒子の平均粒径は、特には50nm以下、更には、30nm以下が好ましい。その理由は、うねりの抑制やメッキ性を発現させる最適な範囲だからである。また、セラミック粒子の平均粒径の下限値は、小さいほどうねりの抑制やメッキ性を発現させる効果があって好ましいが、実用上5nmで良い。 セ ラ ミ ッ ク The ceramic particles preferably have an average particle size of 100 nm or less. The reason is that if the average particle size of the ceramic particles exceeds 100 nm, undulation is likely to occur on the wiring board, and the plating property of the conductor layer is impaired. The average particle size of the ceramic particles is particularly preferably 50 nm or less, and more preferably 30 nm or less. The reason is that it is an optimum range for suppressing the undulation and developing the plating property. The lower limit of the average particle size of the ceramic particles is preferably as small as possible because it has the effect of suppressing undulations and exhibiting plating properties, but is preferably 5 nm in practical use.

 そして、セラミック粒子の添加量は、銅粉末100質量部に対して、0.1〜5.0質量部の範囲で添加することが好ましい。その理由は、セラミック粒子の添加量が0.1質量部より少ないと、うねりの抑制効果が現れなかったり、導体層のメッキ性が劣化したりし、セラミック粒子の添加量が5.0質量部より多いと銅の焼結性が損なわれるからである。セラミック粒子の添加量は、更には、0.1〜1.0質量部の範囲で添加することが好ましい。その理由は、うねりの抑制やメッキ性を発現させる最適な範囲だからである。 And it is preferable to add the ceramic particles in an amount of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the copper powder. The reason is that if the addition amount of the ceramic particles is less than 0.1 part by mass, the effect of suppressing the undulation does not appear, the plating property of the conductor layer is deteriorated, and the addition amount of the ceramic particles is 5.0 parts by mass. If the amount is larger, the sinterability of copper is impaired. The addition amount of the ceramic particles is more preferably in the range of 0.1 to 1.0 part by mass. The reason is that it is an optimum range for suppressing the undulation and developing the plating property.

 前記セラミック粒子は、銅の焼結性を向上させるためには、ガラス質のセラミック粒子や焼結してガラス化する材料から選択することができる。本発明のガラス質のセラミック粒子とは、アモルファスSiO2やガラスフリットなどである。また、本発明の焼結してガラス化するセラミック粒子とは、焼成によりセラミックグリーンシート中に含まれるガラス内に溶け込むものであり、例えば、結晶性SiO2、B23などのガラス形成酸化物、MgO、CaO、Na2O、K2Oなどのアルカリ金属やアルカリ土類金属である。特にSiO2は少量の添加によってうねりを抑制でき、導体層表面のガラス浮きを低減できるので好ましい。 In order to improve the sinterability of copper, the ceramic particles can be selected from glassy ceramic particles and materials that are sintered and vitrified. The glassy ceramic particles of the present invention include amorphous SiO 2 and glass frit. In addition, the ceramic particles that are vitrified by sintering according to the present invention are those that melt into the glass contained in the ceramic green sheet by firing, and include, for example, glass-forming oxides such as crystalline SiO 2 and B 2 O 3. And alkali metals and alkaline earth metals such as MgO, CaO, Na 2 O, and K 2 O. In particular, SiO 2 is preferable because undulation can be suppressed by adding a small amount thereof and floating of glass on the surface of the conductor layer can be reduced.

 また、セラミック粒子の表面は、親水性であることが好ましい。その理由は、疎水処理をしたものは有機成分の分解性が悪くなり、残存炭素量が増える原因となるからである。
 また、セラミック微粒子は、導体層のメッキ性を向上させるためには、セラミックグリーンシートとともに焼成してガラス化することなく、且つ、セラミックグリーンシートを構成する組成物や銅ペースト中に含まれる添加剤と反応してガラス化しないセラミック粉末から選択することができる。焼成によってガラス化しないセラミック粒子とは、結晶性セラミックスであり、かつ、セラミックグリーンシートや銅ペーストに含まれる添加剤と反応してガラス化しないものをいう。
The surface of the ceramic particles is preferably hydrophilic. The reason for this is that, after the hydrophobic treatment, the decomposability of the organic component is deteriorated and the amount of residual carbon is increased.
In addition, in order to improve the plating property of the conductor layer, the ceramic fine particles are fired together with the ceramic green sheet without vitrification, and an additive contained in the composition and the copper paste constituting the ceramic green sheet. And a non-vitrified ceramic powder. The ceramic particles that are not vitrified by firing are crystalline ceramics that are not vitrified by reacting with additives contained in ceramic green sheets and copper paste.

 ガラス化しないセラミック粉末は、例えば、Al23、TiO2、CeO2、ムライト、のうち少なくとも1種類を含むものから選択されるが、具体的には、セラミックグリーンシートや銅ペーストに含まれる添加剤と反応しないように個別に留意して、適宜材質を選択する。特にTiO2は配線基板のうねり量を低減できて導体層の密着強度も一層向上するので好ましい。 The non-vitrified ceramic powder is selected from, for example, one containing at least one of Al 2 O 3 , TiO 2 , CeO 2 , and mullite, and specifically, is contained in a ceramic green sheet or a copper paste. Careful attention should be paid individually so as not to react with the additives, and the material should be appropriately selected. In particular, TiO 2 is preferable because it can reduce the amount of undulation of the wiring board and further improve the adhesion strength of the conductor layer.

 銅の焼結性を向上させるためのセラミック粒子と、導体層のメッキ性を向上させるためのセラミック粒子とは、別個に用いてもよいが、両者の長所をバランスよく発揮させるために、適量比で混合して用いてもよい。 The ceramic particles for improving the sinterability of copper and the ceramic particles for improving the plating property of the conductor layer may be used separately, but in order to exert the advantages of both in a well-balanced ratio. May be used as a mixture.

 次に、請求項3に記載の発明は、請求項1又は請求項2に記載の銅ペーストをセラミック基板に塗布して焼成したことを特徴とする配線基板である。
 請求項3に記載の配線基板によれば、配線基板を加熱しても導体層のふくれや剥離などが生ずることがなく、導体層のメッキ性や半田付け性等も良好であるという作用効果が得られる。
Next, a third aspect of the present invention is a wiring substrate characterized in that the copper paste according to the first or second aspect is applied to a ceramic substrate and fired.
According to the wiring board of the third aspect, even if the wiring board is heated, the conductive layer does not bulge or peel off, and the effect of the plating property and the solderability of the conductive layer being good. can get.

 次に、請求項4に記載の発明は、請求項3に記載の配線基板の導体層に放熱体、接続端子、蓋体、回路部品のうち少なくとも一つを、ろう材を介して接続したことを特徴とする配線基板である。 Next, according to a fourth aspect of the present invention, at least one of a radiator, a connection terminal, a lid, and a circuit component is connected to the conductor layer of the wiring board according to the third aspect via a brazing material. A wiring board characterized by the following.

 請求項4に記載の配線基板によれば、ろう材を溶融させて放熱体、接続端子、蓋体や回路部品を接続しても導体層の剥離やふくれが生ずることがないので、放熱部材や実装用の接続端子、発熱を伴う電子部品(半導体素子等)を封止する蓋体、回路部品等を接続する配線基板において高い信頼性が得られる。 According to the wiring board of the fourth aspect, even if the brazing material is melted to connect the radiator, the connection terminal, the lid, and the circuit component, the conductor layer does not peel or bulge. High reliability can be obtained in connection terminals for mounting, lids for sealing electronic components (semiconductor elements and the like) that generate heat, and wiring boards for connecting circuit components and the like.

 放熱体としては、例えばヒートシンクやサーマルビア等が挙げられる。接続端子としては、例えばピン端子やリード端子やフリップチップ端子、ランド端子、はんだボール端子等が挙げられる。蓋体としては、例えば板状の金属製リッドやセラミック製リッド等が挙げられる。回路部品としては、例えば半導体素子や、コンデンサ、インダクタ、レジスタ等の電子部品等が挙げられる。 Examples of the heat radiator include a heat sink and a thermal via. Examples of the connection terminal include a pin terminal, a lead terminal, a flip chip terminal, a land terminal, a solder ball terminal, and the like. Examples of the lid include a plate-shaped metal lid and a ceramic lid. Examples of the circuit component include a semiconductor element and electronic components such as a capacitor, an inductor, and a resistor.

 金具接続に用いられるろう材には、ハンダ(Sn−Pb合金)やAuろう、Agろう、Cuろう等の各種低融点合金が使用できる。この合金の融点は270℃〜800℃であることが好ましい。270℃より小さいと、PCB実装時のハンダ付けで合金が溶融してしまい、金具位置がずれてしまうからである。800℃より大きいと、配線基板に使用するガラスの軟化点に近くなり、配線基板が変形してしまうからである。特に融点が300℃〜600℃、更には300℃〜500℃の合金が好ましい。これら融点の合金は取り扱いが容易だからである。 ろ う Various low-melting alloys such as solder (Sn-Pb alloy), Au brazing, Ag brazing, and Cu brazing can be used for the brazing material used for metal fitting connection. The melting point of this alloy is preferably from 270C to 800C. If the temperature is lower than 270 ° C., the alloy is melted by soldering at the time of mounting the PCB, and the position of the bracket is shifted. If the temperature is higher than 800 ° C., the softening point of the glass used for the wiring board is approached, and the wiring board is deformed. Particularly, an alloy having a melting point of 300 ° C to 600 ° C, more preferably 300 ° C to 500 ° C, is preferable. This is because alloys having these melting points are easy to handle.

 次に、請求項5に記載の発明は、配線基板にFeを含有するCu金属を用いて導体層を形成し、この導体層に放熱体、接続端子、蓋体、回路部品のうち少なくとも一つを、接合材を介して接続したことを特徴とする配線基板である。 Next, according to a fifth aspect of the present invention, a conductive layer is formed on a wiring board using Cu metal containing Fe, and at least one of a heat radiator, a connection terminal, a lid, and a circuit component is formed on the conductive layer. Are connected via a bonding material.

 請求項5に記載の配線基板によれば、ろう材を溶融させて放熱体、接続端子、蓋体や回路部品を接続しても導体層の剥離やふくれが生ずることがないので、放熱部材や実装用の接続端子、発熱を伴う電子部品(半導体素子等)を封止する蓋体、回路部品等を接続する配線基板において高い信頼性が得られる。尚、放熱体、接続端子、蓋体や回路部品等の接続は、セラミックグリーンシートと同時焼成を行った導体層の表面に直接接続してもよいが、この導体層の表面に放熱体、接続端子、蓋体、回路部品等との接合に好ましい二次導体層を形成し、二次導体層を介して接続してもよい。 According to the wiring board of the fifth aspect, even if the brazing material is melted to connect the radiator, the connection terminal, the lid, and the circuit component, the conductor layer does not peel or bulge. High reliability can be obtained in connection terminals for mounting, lids for sealing electronic components (semiconductor elements and the like) that generate heat, and wiring boards for connecting circuit components and the like. The connection of the heat radiator, the connection terminals, the lid and the circuit components may be directly connected to the surface of the conductor layer which has been co-fired with the ceramic green sheet. A secondary conductor layer that is preferable for joining with a terminal, a lid, a circuit component, or the like may be formed and connected via the secondary conductor layer.

 放熱体としては、例えばヒートシンクやサーマルビア等が挙げられる。接続端子としては、例えばピン端子やリード端子やフリップチップ端子、ランド端子、はんだボール端子等が挙げられる。蓋体としては、例えば板状の金属製リッドやセラミック製リッド等が挙げられる。回路部品としては、例えば半導体素子や、コンデンサ、インダクタ、レジスタ等の電子部品等が挙げられる。 Examples of the heat radiator include a heat sink and a thermal via. Examples of the connection terminal include a pin terminal, a lead terminal, a flip chip terminal, a land terminal, a solder ball terminal, and the like. Examples of the lid include a plate-shaped metal lid and a ceramic lid. Examples of the circuit component include a semiconductor element and electronic components such as a capacitor, an inductor, and a resistor.

 金具接続に用いられるろう材には、ハンダ(Sn−Pb合金)やAuろう、Agろう、Cuろう等の各種低融点合金が使用できる。この合金の融点は270℃〜800℃であることが好ましい。270℃より小さいと、PCB実装時のハンダ付けで合金が溶融してしまい、金具位置がずれてしまうからである。800℃より大きいと、配線基板に使用するガラスの軟化点に近くなり、配線基板が変形してしまうからである。特に融点が300℃〜600℃、更には300℃〜500℃の合金が好ましい。これら融点の合金は取り扱いが容易だからである。 ろ う Various low-melting alloys such as solder (Sn-Pb alloy), Au brazing, Ag brazing, and Cu brazing can be used for the brazing material used for metal fitting connection. The melting point of this alloy is preferably from 270C to 800C. If the temperature is lower than 270 ° C., the alloy is melted by soldering at the time of mounting the PCB, and the position of the bracket is shifted. If the temperature is higher than 800 ° C., the softening point of the glass used for the wiring board is approached, and the wiring board is deformed. Particularly, an alloy having a melting point of 300 ° C to 600 ° C, more preferably 300 ° C to 500 ° C, is preferable. This is because alloys having these melting points are easy to handle.

 次に、請求項6に記載の発明は、請求項5に記載の配線基板において、前記導体層の表面にメッキ処理を行ったことを特徴とする。
 請求項6に記載の配線基板によれば、導体層の表面に良好なメッキ処理が得られ、配線基板を加熱しても導体層やメッキ等のふくれや剥離などが生ずることなく、トランジスタ、ダイオード等の半導体素子や放熱部品、端子等、種々の回路部品を接続して高い信頼性を有する
Next, according to a sixth aspect of the present invention, in the wiring substrate according to the fifth aspect, a plating process is performed on a surface of the conductor layer.
According to the wiring substrate according to claim 6, a favorable plating treatment is obtained on the surface of the conductor layer, and even if the wiring substrate is heated, blistering or peeling of the conductor layer or plating does not occur, so that the transistor and the diode can be used. High reliability by connecting various circuit components such as semiconductor elements, heat dissipation components, terminals, etc.

 以下に、一実施例を用いて本発明について説明する。
 「セラミックグリーンシートの作製」
 まず、SiO2が63.3質量部、B23が24.1質量部、Al23が5.7質量部、CaOが6.9質量部の組成を有するガラス粉末50質量部とアルミナフィラー50質量部とを混合させて粒径2.5μmの混合粉末を作製した。
Hereinafter, the present invention will be described using an example.
"Preparation of ceramic green sheets"
First, 50 parts by mass of a glass powder having a composition of 63.3 parts by mass of SiO 2 , 24.1 parts by mass of B 2 O 3 , 5.7 parts by mass of Al 2 O 3 , and 6.9 parts by mass of CaO. By mixing with 50 parts by mass of alumina filler, a mixed powder having a particle size of 2.5 μm was prepared.

 次いで、混合粉末100質量部に対して、アクリル樹脂から成るバインダーを20質量部とフタル酸ジブチルから成る可塑剤10質量部、適量のトルエン・MEK混合溶媒とを加えスラリーを作製した。 Next, a slurry was prepared by adding 20 parts by mass of an acrylic resin binder, 10 parts by mass of a plasticizer made of dibutyl phthalate, and an appropriate amount of a mixed solvent of toluene and MEK to 100 parts by mass of the mixed powder.

 次いで、前記スラリーを用いてドクターブレード法等のシート成形により厚さ250μmのセラミックグリーンシートを成形した。このセラミックグリーンシートは、比較的低温(ここでは、1000℃をいう)で焼成できる低温焼成用のグリーンシートである。 Next, a ceramic green sheet having a thickness of 250 μm was formed from the slurry by sheet forming such as a doctor blade method. The ceramic green sheet is a green sheet for low-temperature firing that can be fired at a relatively low temperature (here, 1000 ° C.).

 「銅ペーストの作製」
 次いで、平均粒径が2.8μmの銅紛100質量部に対して、ビヒクルを25質量部と(表1)に表した添加剤とを加えて3本ロールミルで混合して銅ペーストを作製した。ビヒクルは、テルピネオール70質量部にポリイソブチルメタクリレート30質量部を溶解して調整したものを用いた。
"Preparation of copper paste"
Next, 25 parts by mass of the vehicle and the additives shown in (Table 1) were added to 100 parts by mass of copper powder having an average particle size of 2.8 μm, and mixed with a three-roll mill to prepare a copper paste. . The vehicle used was prepared by dissolving 30 parts by mass of polyisobutyl methacrylate in 70 parts by mass of terpineol.

Figure 2004055558
 (表1)に示すように、本発明の実施例として実施例A、Bの組成を有する銅ペーストを作製するとともに、本発明の効果と比較するために比較例A〜Cの組成を有する銅ペーストを作製した。
Figure 2004055558
As shown in (Table 1), copper pastes having compositions of Examples A and B were prepared as examples of the present invention, and copper pastes having compositions of Comparative Examples A to C were used for comparison with the effects of the present invention. A paste was made.

 実施例Aは、銅粉末100質量部に対して、平均粒径21nmのFe23を1.0質量部と、平均粒径12nmのSiO2を1.0質量部とを添加した銅ペーストである。
 実施例Bは、銅粉末100質量部に対して、平均粒径21nmのFe23を1.0質量部と、平均粒径12nmのSiO2を1.0質量部と、平均粒径21nmのTiO2を0.5質量部とを添加した銅ペーストである。
Example A is a copper paste obtained by adding 1.0 part by mass of Fe 2 O 3 having an average particle size of 21 nm and 1.0 part by mass of SiO 2 having an average particle size of 12 nm to 100 parts by mass of copper powder. It is.
In Example B, based on 100 parts by mass of copper powder, 1.0 part by mass of Fe 2 O 3 having an average particle size of 21 nm, 1.0 part by mass of SiO 2 having an average particle size of 12 nm, and an average particle size of 21 nm Is a copper paste to which 0.5 parts by mass of TiO 2 is added.

 比較例Aは、銅粉末100質量部に対して、平均粒径12nmのSiO2を1.0質量部と、平均粒径21nmのTiO2を0.5質量部とを添加した銅ペーストである。
 比較例Bは、銅粉末100質量部に対して、平均粒径20nmのCuOを1.0質量部と、平均粒径12nmのSiO2を1.0質量部と、平均粒径21nmのTiO2を0.5質量部とを添加した銅ペーストである。
Comparative Example A is a copper paste obtained by adding 1.0 part by mass of SiO 2 having an average particle diameter of 12 nm and 0.5 parts by mass of TiO 2 having an average particle diameter of 21 nm to 100 parts by mass of copper powder. .
In Comparative Example B, based on 100 parts by mass of copper powder, 1.0 part by mass of CuO having an average particle size of 20 nm, 1.0 part by mass of SiO 2 having an average particle size of 12 nm, and TiO 2 having an average particle size of 21 nm were used. Is added to the copper paste.

 「焼成サンプルの作製」
 次いで、セラミックグリーンシートに、(表1)に表した実施例A、B、比較例A、B、Cの銅ペーストを印刷して、それぞれの焼成サンプルを作製する。
"Preparation of fired sample"
Next, the copper pastes of Examples A and B and Comparative Examples A, B and C shown in (Table 1) are printed on the ceramic green sheets to prepare respective fired samples.

 まず、セラミックグリーンシートを縦50mm×横60mmの寸法に裁断してセラミックグリーンシート片を作製し、このセラミックグリーンシート片の略中央部に縦2mm×横2mm×厚さ20μmの寸法で銅ペーストを印刷した試験片Aと、前記セラミックグリーンシート片の略中央部に縦15mm×横15mm×厚さ20μmの寸法で銅ペーストを印刷した試験片Bを作製した。 First, a ceramic green sheet is cut into a size of 50 mm long × 60 mm wide to prepare a ceramic green sheet piece, and a copper paste having a size of 2 mm long × 2 mm wide × 20 μm thick is placed at a substantially central portion of the ceramic green sheet piece. A printed test piece A and a test piece B in which a copper paste was printed in a size of 15 mm long × 15 mm wide × 20 μm thick at substantially the center of the ceramic green sheet piece were prepared.

 次いで、前記試験片Aを1枚と、銅ペーストの印刷していないグリーンシート3枚の、計4枚を積層して加圧し、試験片Aの印刷面が上面に表れた積層体Aを作製し、前記試験片Bを1枚と、銅ペーストの印刷していないグリーンシート3枚の計4枚を積層して加圧し、試験片Bの印刷面が上面に表れた積層体Bを作製した。 Next, one test piece A and three green sheets on which no copper paste was printed, a total of four sheets, were laminated and pressed to produce a laminate A in which the printed surface of the test piece A appeared on the upper surface. Then, one test piece B and three green sheets, on which no copper paste was printed, were laminated and pressurized to produce a laminate B in which the printed surface of the test piece B appeared on the upper surface. .

 次いで、前記積層体A、Bを、水蒸気と窒素ガスの混合雰囲気(水蒸気と窒素ガスの露点が70℃の混合雰囲気である。)を調整した炉内に曝し、850℃の温度下で放置し、銅ペースト及びセラミックグリーンシート中に含有する有機成分を脱脂し、続けて、1000℃に昇温して、2時間放置し、焼成を行って上面に導体層を有する焼成サンプルA、Bを作製した。 Next, the laminates A and B are exposed to a furnace in which a mixed atmosphere of steam and nitrogen gas (a mixed atmosphere in which the dew point of steam and nitrogen gas is 70 ° C.) is adjusted and left at a temperature of 850 ° C. , The organic components contained in the copper paste and the ceramic green sheet are degreased, then the temperature is raised to 1000 ° C., and the mixture is left for 2 hours and fired to produce fired samples A and B having a conductor layer on the upper surface. did.

 焼成サンプルAは、積層体Aを焼成したものであり、後術の密着強度の評価に用いた。また、焼成サンプルBは積層体Bを焼成したものであり、後述の導体層のふくれの評価に用いた。 The fired sample A was obtained by firing the laminate A, and was used for evaluation of the adhesion strength in the later operation. The fired sample B was obtained by firing the laminate B, and was used for the evaluation of blistering of the conductor layer described later.

 「密着強度の評価」
 次に、前記焼成サンプルAの導体層上面に、錫メッキした径0.45mmの針金を半田付けし、この針金を引っ張り、焼成サンプルAの上面に対して垂直方向の引っ張り荷重を加え、導体層が剥離した荷重を密着強度とし(表1)に表した。
"Evaluation of adhesion strength"
Next, a tin-plated wire having a diameter of 0.45 mm was soldered to the upper surface of the conductor layer of the fired sample A, the wire was pulled, and a vertical tensile load was applied to the upper surface of the fired sample A. The load from which was peeled off was taken as the adhesion strength and shown in Table 1.

 「導体層のふくれの評価」
 次に、焼成サンプルBの導体層の上面に電解メッキ法により厚さ4μmのNiメッキを行い、さらにそのNiメッキの上面に電解メッキ法により厚さ0.5μmのAuメッキを行った。
"Evaluation of blistering of conductor layer"
Next, 4 μm thick Ni plating was performed on the upper surface of the conductor layer of the fired sample B by electrolytic plating, and further, 0.5 μm thick Au plating was performed on the upper surface of the Ni plating by electrolytic plating.

 次いで、Auメッキが施された焼成サンプルを390℃に加熱した炉内に数分間設置し、その後、導体層のフクレの有無を目視にて確認し、その結果を(表1)に表した。
 (表1)に示すように、本発明の実施例A、Bは、390℃に加熱しても導体層のふくれが無くて良好な外観を得た。一方、比較例A、B、Cは、390℃に.加熱することにより、導体層のふくれが発生した。
Next, the baked sample plated with Au was placed in a furnace heated to 390 ° C. for several minutes, and thereafter, the presence or absence of blisters on the conductor layer was visually checked, and the results are shown in (Table 1).
As shown in Table 1, in Examples A and B of the present invention, even when heated to 390 ° C., a good appearance was obtained without blistering of the conductor layer. On the other hand, in Comparative Examples A, B, and C, blistering of the conductor layer occurred by heating to 390 ° C.

 比較例Aと本発明の実施例Bを比較すると、比較例Bには添加物としてFe23が添加されておらず、その結果、加熱によりふくれが発生したことが判る。
 また、比較例Bと本発明の実施例Bを比較すると、比較例Bは酸化物としてFe23の代わりにCuOが添加されており、その結果、密着強度は本発明の実施例Bと略同等であるが、加熱によりふくれが発生したことが判る。
Comparison of Comparative Example A with Example B of the present invention shows that Comparative Example B did not contain Fe 2 O 3 as an additive, and as a result, blisters were generated by heating.
Also, comparing Comparative Example B with Example B of the present invention, Comparative Example B added CuO as an oxide instead of Fe 2 O 3 , and as a result, the adhesion strength was higher than that of Example B of the present invention. Although almost the same, it can be seen that blisters were generated by heating.

 また、比較例Cと本発明の実施例Bを比較すると、比較例Bは添加物としてFe23の代わりにNiOが添加されており、その結果、加熱によりふくれが発生し、密着強度も低いことが判る。 Also, comparing Comparative Example C with Example B of the present invention, Comparative Example B added NiO instead of Fe 2 O 3 as an additive, and as a result, blisters were generated by heating, and the adhesion strength was also increased. It turns out that it is low.

 また、本発明の実施例AとBを比較すると、添加剤として更にTiO2を添加することによって、一層、密着強度が向上することが判る。
 「配線基板の作製」
 上記のように作製したセラミックグリーンシートと実施例Bで表した組成を有する銅ペーストを用いて、配線基板を作製した。図1は、本発明が適用された一実施例の配線基板の構成を表す断面図である。
Further, comparing Examples A and B of the present invention, it is found that the adhesion strength is further improved by further adding TiO 2 as an additive.
"Production of wiring board"
Using the ceramic green sheet manufactured as described above and the copper paste having the composition shown in Example B, a wiring board was manufactured. FIG. 1 is a cross-sectional view illustrating a configuration of a wiring board according to one embodiment to which the present invention is applied.

 図1において、1は配線基板であり、この配線基板1は、複数のセラミックグリーンシートを積層して焼成し形成されたセラミック基板2と、このセラミック基板2の下面にろう材12を介して接合された放熱体3と、セラミック基板2の孔に挿入され放熱体3上面に設置された半導体素子4と、この半導体4を覆うようにセラミック基板2の孔を遮蔽し、導体層10にろう材13を介して接続された蓋体7と、セラミック基板2上面の導体層10にろう材14を介して接続された接続端子6、7とより構成されている。 In FIG. 1, reference numeral 1 denotes a wiring board. The wiring board 1 is bonded to a ceramic substrate 2 formed by laminating and firing a plurality of ceramic green sheets and a lower surface of the ceramic substrate 2 via a brazing material 12. The heat radiator 3, the semiconductor element 4 inserted in the hole of the ceramic substrate 2 and placed on the upper surface of the heat radiator 3, the hole of the ceramic substrate 2 is covered so as to cover the semiconductor 4, and the brazing material is formed on the conductor layer 10. A cover 7 is connected to the conductor layer 10 on the upper surface of the ceramic substrate 2 via a brazing material 14.

 前記セラミック基板2は、実施例Bの銅ペーストをセラミックグリーンシートに印刷して乾燥し、これを複数毎積層して積層体とし、850℃の湿潤窒素雰囲気中(水蒸気と窒素ガスの露点が70℃の混合雰囲気である)で脱脂した後に、乾燥窒素に置換し1000℃で2時間焼成して作製されている。また、セラミックグリーンシートを積層するごとに、複数のセラミックグリーンシートの配線回路を互いに接続するために導体層11で接続が行われている。 The ceramic substrate 2 was prepared by printing the copper paste of Example B on a ceramic green sheet, drying the green paste, and laminating a plurality of the pastes to form a laminate, in a 850 ° C. wet nitrogen atmosphere (dew point of water vapor and nitrogen gas was 70%). (A mixed atmosphere of 100 ° C.), followed by replacement with dry nitrogen and firing at 1000 ° C. for 2 hours. Further, every time the ceramic green sheets are stacked, the connection is made by the conductor layer 11 to connect the wiring circuits of the plurality of ceramic green sheets to each other.

 導体層10は、セラミック基板2の表面に露出した部分に、無電解メッキ法により厚さ4μmのNiメッキが行われ、さらにそのNiメッキの上面に無電解メッキ法により厚さ0.5μmのAuメッキが行われている。 The conductor layer 10 has a portion exposed on the surface of the ceramic substrate 2 plated with Ni having a thickness of 4 μm by an electroless plating method, and further, has an Au surface having a thickness of 0.5 μm deposited on the upper surface of the Ni plating by an electroless plating method. Plating has been performed.

 放熱体3は、銅とタングステンとの合金にNi−Auメッキが施されたものにより形成されており、セラミック基板2の裏面のNi−Auメッキが施された導体層にろう付けにより接合されている。このとき、ろう付けは、金とゲルマニウムとの合金から成るろう材12を用い、略390℃で加熱して行われている。 The heat radiator 3 is formed of an alloy of copper and tungsten plated with Ni-Au, and is joined to the conductor layer plated with Ni-Au on the back surface of the ceramic substrate 2 by brazing. I have. At this time, the brazing is performed by using a brazing material 12 made of an alloy of gold and germanium and heating at approximately 390 ° C.

 半導体素子4は、下面を放熱体3の上面に接着され、半導体素子4の上面に形成した端子(図示せず)がワイアボンデイング8、9によりセラミック基板2のNi−Auメッキが施された導体層10と接続されている。 The semiconductor element 4 has a lower surface adhered to the upper surface of the heat radiator 3, and a terminal (not shown) formed on the upper surface of the semiconductor element 4 is a conductor in which the ceramic substrate 2 is subjected to Ni-Au plating by wire bonding 8, 9. It is connected to the layer 10.

 蓋体7は、NiとCoとFeとの合金にNi−Auメッキが施されたものにより形成されており、セラミック基板2の上面のNi−Auメッキが施された導体層10にろう付けにより接合されている。このとき、ろう付けは、金とゲルマニウムとの合金から成るろう材13を用い、略390℃で加熱して行われている。 The lid 7 is formed of an alloy of Ni, Co, and Fe and plated with Ni-Au, and is brazed to the Ni-Au-plated conductor layer 10 on the upper surface of the ceramic substrate 2 by brazing. Are joined. At this time, the brazing is performed by using a brazing material 13 made of an alloy of gold and germanium and heating at approximately 390 ° C.

 接続端子6は、銅とFeの合金にNi−Auメッキが施されたものにより形成されており、セラミック基板2の上面のNi−Auメッキが施された導体層10にろう付けにより接合されている。このとき、ろう付けは、金とゲルマニウムとの合金から成るろう材14を用い、略390℃で加熱して行われている。 The connection terminal 6 is formed of an alloy of copper and Fe plated with Ni-Au, and joined to the conductor layer 10 plated with Ni-Au on the upper surface of the ceramic substrate 2 by brazing. I have. At this time, the brazing is performed by using a brazing material 14 made of an alloy of gold and germanium and heating at approximately 390 ° C.

 前記の構成を有する本発明の実施例における銅ペースト及びそれを用いた配線基板の作用効果を、以下に記載する。
 本発明の実施例の銅ペーストによれば、配線基板1においてセラミック基板2と導体層10との密着強度が優れており、この配線基板1にパワートランジスタ、ダイオード等の半導体素子4や放熱体3、接続端子6等をろう付けにより加熱して接続しても導体層10のふくれや剥離が生ずることなく信頼性に優れた配線基板が得られる。
The operation and effect of the copper paste and the wiring board using the same in the embodiment of the present invention having the above configuration will be described below.
According to the copper paste of the embodiment of the present invention, the adhesive strength between the ceramic substrate 2 and the conductor layer 10 in the wiring board 1 is excellent, and the wiring board 1 has the semiconductor element 4 such as a power transistor and a diode and the radiator 3. Even if the connection terminals 6 and the like are connected by heating by brazing, a wiring board having excellent reliability can be obtained without swelling or peeling of the conductor layer 10.

 また、本発明の実施例の銅ペーストによれば、銅の焼結性が一層向上し、メッキ性及び半田付け性か良く、反りやうねりの少ない配線基板が得られる。
 また、本発明の実施例の配線基板1によれば、導体層10のメッキ性や半田付け性が良好であり、配線基板1を加熱してもメッキふくれや剥離などが生ずることがないので高密度実装に優れた配線基板が得られる。
Further, according to the copper paste of the embodiment of the present invention, a wiring board with further improved copper sinterability, good plating and soldering properties, and less warpage and undulation can be obtained.
Further, according to the wiring board 1 of the embodiment of the present invention, the plating property and the solderability of the conductor layer 10 are good, and the plating board does not bulge or peel even when the wiring board 1 is heated, so that the wiring board 1 has a high performance. A wiring board excellent in density mounting can be obtained.

 また、本発明の実施例の配線基板1によれば、ろう材12〜14を溶融させて放熱体3や蓋体7、接続端子6等を接続しても導体層10の剥離やふくれが生ずることがないので、特に、放熱体や回路部品間の接続端子、発熱を伴う半導体素子等を搭載する配線基板において高い信頼性が得られる。 According to the wiring board 1 of the embodiment of the present invention, even if the brazing materials 12 to 14 are melted and the radiator 3, the lid 7, the connection terminals 6, and the like are connected, peeling or swelling of the conductor layer 10 occurs. Therefore, high reliability can be obtained particularly in a wiring board on which a radiator, connection terminals between circuit components, a semiconductor element which generates heat, and the like are mounted.

 尚、本発明の実施例においては、導体層10の上面にNi及びAuをメッキし、このAuメッキ面に放熱体3、接続端子6、蓋体7等を、ろう材12〜14を介して接続したが、Ni及びAuメッキの代わりに、低抵抗を有する他の金属をメッキしてもよい。また、本発明はAuメッキ処理を行うことに限定されるものでなく、メッキ処理をしないで確実にろう付けできるときは、メッキ処理を省いてもよい。 In the embodiment of the present invention, Ni and Au are plated on the upper surface of the conductor layer 10, and the radiator 3, the connection terminal 6, the lid 7, and the like are provided on the Au plated surface via the brazing materials 12 to 14. Although connected, another metal having a low resistance may be plated instead of Ni and Au plating. Further, the present invention is not limited to performing the Au plating process, and the plating process may be omitted when the brazing can be surely performed without the plating process.

 また、本発明の実施例において、ろう材として金とゲルマニウムとの合金を用いたが、半田や銅合金などを用いても良い。
 また、本発明の実施例の銅ペーストを用いて配線基板を製造する際には、銅ペーストを塗布したセラミックグリーンシートを、650〜900℃の湿潤窒素中(水蒸気と窒素ガスの露点が70℃の混合雰囲気)で有機成分を除去(脱バインダー工程)し、次いで、850〜1050℃で焼成すると良い。ここで、脱バインダー工程は、続く焼成温度を越えない範囲で設定される。
In the embodiment of the present invention, an alloy of gold and germanium is used as the brazing material, but solder or a copper alloy may be used.
When a wiring board is manufactured using the copper paste of the embodiment of the present invention, the ceramic green sheet coated with the copper paste is placed in wet nitrogen at 650 to 900 ° C. (dew point of water vapor and nitrogen gas is 70 ° C.). It is preferable to remove the organic component (debinding step) in a mixed atmosphere of (1) and then fire at 850 to 1050 ° C. Here, the debinding step is set within a range that does not exceed the subsequent firing temperature.

 まず、650〜900℃の湿潤窒素中でセラミックグリーンシートおよび銅ペースト中に含まれる有機成分が除去(脱バインダー工程)される。ここで、脱バインダー工程は、続く焼成温度を越えない範囲で設定される。銅ペースト中の銅粉末の周囲にセラミック粒子が分散された状態で脱バインダーされているので、脱バインダー中は銅粉末の焼結開始が抑制されているが、続く高温下での焼成過程においては、脱バインダー時に湿潤窒素中に曝されたことにより銅粉末の焼結が促進されるので、緻密な導体層を得ることができる。 First, the organic components contained in the ceramic green sheet and the copper paste are removed in a wet nitrogen atmosphere at 650 to 900 ° C. (a binder removing step). Here, the binder removal step is set within a range not exceeding the subsequent firing temperature. Since the binder is removed in a state where the ceramic particles are dispersed around the copper powder in the copper paste, the start of sintering of the copper powder is suppressed during the binder removal, but in the subsequent firing process at a high temperature, Since the sintering of the copper powder is promoted by being exposed to the wet nitrogen at the time of debinding, a dense conductor layer can be obtained.

 脱バインダー工程に次いで行われる焼成過程では、850〜1050℃の窒素中または湿潤窒素中で銅とセラミックグリーンシートとが同時に焼成される。それぞれの焼結開始の温度と焼成収縮のタイミングとが近くなるように制御されているので、反りやうねりが少なく、緻密で低抵抗で、高周波信号の伝送損失が少ない配線基板を得ることができる。 (4) In the firing step performed after the binder removal step, copper and the ceramic green sheet are simultaneously fired in nitrogen at 850 to 1050 ° C. or in wet nitrogen. Since the sintering start temperature and the firing shrinkage timing are controlled so as to be close to each other, it is possible to obtain a wiring board with less warpage and undulation, a dense and low resistance, and a low transmission loss of a high-frequency signal. .

本発明が適用された実施例の配線基板の構成を表す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a wiring board according to an example to which the present invention is applied.

符号の説明Explanation of reference numerals

 1…配線基板、2…基板、3…放熱体、4…半導体素子、5…蓋体、6…接続端子、7…蓋体、8,9…ワイアボンデイング、10,11…導体層、12,13,14…ろう材。 DESCRIPTION OF SYMBOLS 1 ... Wiring board, 2 ... Board, 3 ... Heat radiator, 4 ... Semiconductor element, 5 ... Lid, 6 ... Connection terminal, 7 ... Lid, 8, 9 ... Wire bonding, 10, 11 ... Conductive layer, 12, 13, 14 ... brazing material.

Claims (6)

 銅粉末と有機ビヒクルとFe23粒子とを含有することを特徴とする銅ペースト。 A copper paste containing copper powder, an organic vehicle, and Fe 2 O 3 particles.  前記銅ペーストは、平均粒径100nm以下のセラミック粒子を含むことを特徴とする請求項1に記載の銅ペースト。 The copper paste according to claim 1, wherein the copper paste contains ceramic particles having an average particle diameter of 100 nm or less.  請求項1又は請求項2に記載の銅ペーストを導体層としてセラミックグリーンシートに塗布して焼成したことを特徴とする配線基板。 (4) A wiring board, wherein the copper paste according to (1) or (2) is applied as a conductor layer to a ceramic green sheet and fired.  前記配線基板は、導体層に放熱体、接続端子、蓋体、回路部品のうち少なくとも一つを、接合材を介して接続したことを特徴とする請求項3に記載の配線基板。 The wiring board according to claim 3, wherein the wiring board has at least one of a heat radiator, a connection terminal, a lid, and a circuit component connected to a conductor layer via a bonding material.  配線基板にFeを含有するCu金属を用いて導体層を形成し、この導体層に放熱体、接続端子、蓋体、回路部品のうち少なくとも一つを、接合材を介して接続したことを特徴とする配線基板。 A conductor layer is formed on a wiring board using Cu metal containing Fe, and at least one of a heat radiator, a connection terminal, a lid, and a circuit component is connected to the conductor layer via a bonding material. Wiring board.  前記配線基板は、前記導体層の表面にメッキ処理を行ったことを特徴とする請求項5に記載の配線基板。 6. The wiring board according to claim 5, wherein the wiring board has been subjected to a plating process on a surface of the conductor layer.
JP2003276191A 2002-07-17 2003-07-17 Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board Expired - Fee Related JP4544837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276191A JP4544837B2 (en) 2002-07-17 2003-07-17 Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002208320 2002-07-17
JP2003276191A JP4544837B2 (en) 2002-07-17 2003-07-17 Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board

Publications (2)

Publication Number Publication Date
JP2004055558A true JP2004055558A (en) 2004-02-19
JP4544837B2 JP4544837B2 (en) 2010-09-15

Family

ID=31949499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276191A Expired - Fee Related JP4544837B2 (en) 2002-07-17 2003-07-17 Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board

Country Status (1)

Country Link
JP (1) JP4544837B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216363A (en) * 2005-02-03 2006-08-17 Kyocera Corp Conductor composition, wiring substrate using it and its manufacturing method
JP2007019483A (en) * 2005-06-09 2007-01-25 Ngk Spark Plug Co Ltd Wiring substrate
JPWO2016104391A1 (en) * 2014-12-25 2017-10-05 住友電気工業株式会社 Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
US10388423B2 (en) 2007-09-13 2019-08-20 Henkel Ag & Co. Kgaa Electrically conductive composition
US10690011B2 (en) 2016-02-26 2020-06-23 Kokusai Electric Corporation Power generation system, management device, and semiconductor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119105A (en) * 1986-11-06 1988-05-23 昭和電工株式会社 Conducting paste
JPH03285965A (en) * 1990-03-31 1991-12-17 Fujitsu Ltd Conductor paste composition for green sheet
JPH0992030A (en) * 1995-09-22 1997-04-04 Sumitomo Bakelite Co Ltd Conductive copper paste composition
JPH11284296A (en) * 1998-01-29 1999-10-15 Kyocera Corp Wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119105A (en) * 1986-11-06 1988-05-23 昭和電工株式会社 Conducting paste
JPH03285965A (en) * 1990-03-31 1991-12-17 Fujitsu Ltd Conductor paste composition for green sheet
JPH0992030A (en) * 1995-09-22 1997-04-04 Sumitomo Bakelite Co Ltd Conductive copper paste composition
JPH11284296A (en) * 1998-01-29 1999-10-15 Kyocera Corp Wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216363A (en) * 2005-02-03 2006-08-17 Kyocera Corp Conductor composition, wiring substrate using it and its manufacturing method
JP2007019483A (en) * 2005-06-09 2007-01-25 Ngk Spark Plug Co Ltd Wiring substrate
JP4625429B2 (en) * 2005-06-09 2011-02-02 日本特殊陶業株式会社 Wiring board
US10388423B2 (en) 2007-09-13 2019-08-20 Henkel Ag & Co. Kgaa Electrically conductive composition
JPWO2016104391A1 (en) * 2014-12-25 2017-10-05 住友電気工業株式会社 Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
US10690011B2 (en) 2016-02-26 2020-06-23 Kokusai Electric Corporation Power generation system, management device, and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP4544837B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5180443B2 (en) Thick film conductor paste composition for LTCC tape in microwave applications
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
JP2001243836A (en) Conductive paste and printed circuit board using it
JP2010531044A (en) Insulating paste for metal core substrates and electronic devices
JP2001307547A (en) Conductive composition and printed circuit board using the same
KR100617436B1 (en) Thick film conductor paste compositions for ltcc tape
KR100744855B1 (en) High Thermal Cycle Conductor System
JP4544837B2 (en) Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board
JP3538549B2 (en) Wiring board and method of manufacturing the same
US7291789B2 (en) Copper paste and wiring board using the same
JPH11284296A (en) Wiring board
JP2002084051A (en) Metallized copper composition, low-temperature sintered ceramic wiring board, and method of manufacturing the same
JP2001291959A (en) Manufacturing method for multilayer ceramic substrate and copper conductive paste
JPH11186727A (en) Wiring board and manufacture thereof
JPH06342965A (en) Ceramic circuit board and manufacture thereof
JP2001143527A (en) Conductive paste and ceramic wiring substrate using the same
JPH01201090A (en) Metallizing composition for ceramic
JP2006108399A (en) Conductive paste for forming conductive section for ferrite multilayer circuit board and ferrite multilayer circuit board using conductive paste
JPH10256730A (en) Multilayer ceramic board
JP3652184B2 (en) Conductive paste, glass-ceramic wiring board and manufacturing method thereof
JP4646469B2 (en) Ceramic wiring board
JP2002015620A (en) Conductor composition and wiring board using it
JP2005191307A (en) Wiring board
JP4762564B2 (en) Conductor composition, wiring board using the same, and method for producing the same
JP2002128581A (en) Copper-metallized composition, ceramic wiring substrate using the same and method of fabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4544837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees