JP2004052922A - Hydraulic damper - Google Patents

Hydraulic damper Download PDF

Info

Publication number
JP2004052922A
JP2004052922A JP2002212140A JP2002212140A JP2004052922A JP 2004052922 A JP2004052922 A JP 2004052922A JP 2002212140 A JP2002212140 A JP 2002212140A JP 2002212140 A JP2002212140 A JP 2002212140A JP 2004052922 A JP2004052922 A JP 2004052922A
Authority
JP
Japan
Prior art keywords
oil chamber
hydraulic
hydraulic damper
oil
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002212140A
Other languages
Japanese (ja)
Other versions
JP4100547B2 (en
Inventor
Isao Nishimura
西村 功
Yuji Kotake
小竹 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senqcia Corp
Original Assignee
Hitachi Metals Techno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Techno Ltd filed Critical Hitachi Metals Techno Ltd
Priority to JP2002212140A priority Critical patent/JP4100547B2/en
Publication of JP2004052922A publication Critical patent/JP2004052922A/en
Application granted granted Critical
Publication of JP4100547B2 publication Critical patent/JP4100547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic damper having equivalent efficiency to a semiactive type damper without a controller or the like. <P>SOLUTION: A hydraulic damper 1 has a structure having a pair of a L side hydraulic damper 5 and a R side hydraulic damper 3 which have an identical structure arranged and installed on a structure such as a skyscraper. When an external force acts in a right direction in earthquake or the like, a reaction force (force to attenuate vibration) acts on just the R side hydraulic damper 3. At a moment when the external force switches to a right direction in earthquake, an R side open and close valve 7 is opened by pressure of operating oil filled in a L side first oil chamber 37, pressure of compressed operating oil in the R side oil chamber is relieved at a stretch. Just the L side hydraulic damper 5 generates reaction force against an external force in the left direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建築物等に用いられる油圧式ダンパに関するものである。
【0002】
【従来の技術】
従来、地震や風等による建築物の揺れを低減させるために油圧式ダンパが用いられていた。油圧式ダンパには、パッシブ式、セミアクティブ式等の油圧式ダンパが存する。
【0003】
パッシブ式は、シリンダ内にピストンを設けて、このシリンダ及びピストンロッドを構造物に固定する。シリンダ内には作動油が充填されており、構造物が揺れるとシリンダ内の作動油が圧縮され、外力に対する抵抗力が生じ、震動を減衰させる。
【0004】
セミアクティブ式油圧式ダンパには、油圧や変位をセンサで測定し、測定値に応じてコントローラが弁の開閉等を行い、外力に対する抵抗力を生じさせ、振動を減衰させる。そして、シリンダ内をピストンが移動して反転する際、圧縮された作動油の圧縮力を電気制御により解放させるものがある。
【0005】
【発明が解決しようとする課題】
このように、セミアクティブ式の油圧式ダンパは、パッシブ式より効率がよいものの、電気制御を行う必要があり、センサやコントローラ等が必要となる。
【0006】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、コントローラ等を必要とせず、セミアクティブ方式と同様の効率を有する油圧式ダンパを提供することにある。
【0007】
【課題を解決するための手段】
前述した目的を達成するため本発明は、作動油が充填されたシリンダと、前記シリンダ内を移動し、前記シリンダ内をヘッド側油室とロッド側油室に区分するピストンと、一端が前記ピストンの片側に設けられ、他端が前記シリンダを介して外部に突出するように設けられたピストンロッドと、前記ピストンが反転する際に、前記ヘッド側油室又は前記ロッド側油室の圧縮された作動油の圧力を解放する圧力解放機構とを有する油圧式ダンパにおいて、前記圧力解放機構が、他の油圧式ダンパの動作に応じて制御されることを特徴とする油圧式ダンパである。
【0008】
本発明の油圧式ダンパは、同一の構造を備える2つの油圧式ダンパを対向して設置し、一方の油圧式ダンパに地震等の揺れに対する反力(減衰力)が作動しており、ある瞬間に逆の揺れが加わった場合、他方の油圧式ダンパの動作を利用して、圧力解放機構を作動させ、油圧式ダンパのヘッド側油室又はロッド側油室の圧縮された作動油の圧力を解放させる。
【0009】
油圧式ダンパは、リリーフ弁、チェック弁のうち、少なくとも一方を、前記ピストン又は前記ピストンロッドに収装してもよい。
【0010】
ピストン及びピストンロッドを付勢するばね部材を設け、ピストンロッドのシリンダ外部に突出した端部を構造物に接触させるようにする。このばね部材のばね定数を、構造物の応答に対してピストンロッドが追従するような定数とする。
【0011】
圧力解放機構は、ヘッド側油室とロッド側油室とを連結する流路に設けられ、他の油圧式ダンパから流入する作動油によりヘッド側油室又はロッド側油室の圧縮された作動油の圧力を解放する開閉弁を有する。また、圧力解放機構にアキュムレータが接続される。
【0012】
【発明の実施の形態】
以下、図面に基づいて本発明に係る油圧式ダンパの実施の形態を詳細に説明する。
【0013】
(1.油圧式ダンパ1の概略構成)
図1は、油圧式ダンパ1の構成図である。油圧式ダンパ1は、同一の構成を持つL側油圧式ダンパ5と、R側油圧式ダンパ3とが対称に対向して設置された構成である。
【0014】
L側油圧式ダンパ5と、R側油圧式ダンパ3とは、同一の構成を有するので、ここではL側油圧式ダンパ5の構成について詳述し、R側油圧式ダンパ3の構成についての説明は省略する。
【0015】
円筒状のL側シリンダ13内に、L側ピストン25が移動可能に設けられる。L側ピストン25の片面には、円柱状のL側ピストンロッド17が設けられ、このL側ピストンロッド17はL側シリンダ13を介して外部に突出している。このL側ピストンロッド17の先端が構造物(ブレース53)に接する。尚、L側シリンダ13は、構造物(基台65)に固定される。
【0016】
L側シリンダ13は、L側ピストン25によって、L側第1油室37(ヘッド側油室)と、L側第2油室41(ロッド側油室)とに区分される。ここで、ロッド側とは、L側ピストン25に対してL側ピストンロッド17が取り付けられている側であり、ヘッド側とは、L側ピストン25に対してL側ピストンロッド17が取り付けられていない側である。L側シリンダ13、L側ピストン25、L側ピストンロッド17等は、金属等で構成される。
【0017】
L側第1油室37、L側第2油室41には、作動油が充填される。また、L側ピストン25内には、L側チェック弁29やL側リリーフ弁33等の流路が設けられる。
【0018】
L側チェック弁29は、作動油がL側第2油室41からL側第1油室37に向かって流れる際には開き、作動油の流入を許容する。逆にL側第1油室37から、L側第2油室41の方向への作動油の流れを阻止する。即ち、作動油はL側チェック弁29を介して、図中B方向にのみ流れる。
【0019】
L側リリーフ弁33は、L側第1油室37の作動油の圧力が一定値(リリーフ荷重)を超えると開き、作動油がL側第1油室37からL側第2油室41に流れることを許容する。L側第1油室37内の作動油が更に加圧されている状態では、作動油がL側第1油室37からL側第2油室41に流れることによりL側第1油室37内の作動油の圧力を一定に保つ。
【0020】
L側第1油室37内の作動油の圧力が、前述したリリーフ荷重より低くなると、L側リリーフ弁33は閉じ、作動油はL側第1油室37からL側第2油室41には流れなくなる。また、作動油がL側第2油室41からL側第1油室37に流れようとする場合、L側リリーフ弁33は閉じ、流れを阻止する。即ち、L側第1油室37内の作動油の圧力がリリーフ荷重を超えている場合にのみL側リリーフ弁33は開き、作動油が図中C方向に流れる。
【0021】
L側第1油室37内には、L側ばね21が設置される。L側ばね21の一端は、L側シリンダ13に固定され、他端はL側ピストンロッド17に固定される。L側ばね21の復元力により、L側ピストン25は、A方向の力を受け常に構造物(ブレース53)に押し付けられている。
【0022】
L側ばね21は、L側第1油室37内に設ける必要はなく、L側ピストン25及びL側ピストンロッド17にA方向の力を与える位置であれば、L側シリンダ13の外部等に設けても良い。
【0023】
L側第1油室37と、L側第2油室41とを連結する流路66が、L型シリンダ13の外部に設けられる。流路66には、L型開閉弁9とL側アキュムレータ45とが設けられる。
【0024】
また、L側第1油室37とR側開閉弁7とは、流路67で連結される。R側開閉弁7は、R側油圧式ダンパ3のR側第1油室35とR側第2油室39を連結する流路68に設けられる。R側第1油室35とL側開閉弁9とは、流路69で連結される。L側開閉弁9は、L側油圧式ダンパ5のL側第1油室37とL側第2油室41を連結する流路66に設けられる。
【0025】
L側開閉弁9は、内部ばねの働きにより、流路69を介して一定圧力以上の作動油の圧力がかからなければ閉じていて、L側開閉弁9が閉じている間は流路66を介して作動油がL側第1油室37とL側第2油室41間を移動することはない。
【0026】
L側開閉弁9は、R側第1油室35の作動油に圧力がかかり流路69及びチェック弁49を介してL側開閉弁9に作動油が一定量流入する時に開き、L側第1油室37とL側第2油室41間を作動油が移動する。ここで、R側ピストン23の移動量が微小である場合には、作動油のL側開閉弁9への流入量が少ないためL側開閉弁9は開かない。
【0027】
L側開閉弁9とL側第2油室41間の流路66に設けられたL側アキュムレータ45は、L側第1油室37とL側第2油室41との体積差(L側第1油室37とL側第2油室41とは、L側ピストンロッド17の分だけの体積差がある。)の吸収と、作動油の温度による体積差の吸収を行う。
【0028】
本発明の油圧式ダンパ1を構成する、L側油圧式ダンパ5とR側油圧式ダンパ3とが、それぞれ柱55とブレース53間、及び柱57とブレース51間に設置される。設置の詳細については、図6を用いて後述する。
【0029】
(2.油圧式ダンパ1の動作の説明)
次に、図1から図5を用いて油圧式ダンパ1の動作を説明する。油圧式ダンパ1は、建築物に設置される(詳細は図6で説明する)。油圧式ダンパ1を構成するL側油圧式ダンパ5は、柱57の基台65に固定されブレース53に接触して設置され、R側油圧式ダンパ3は、柱55の基台63に固定されブレース51に接触して設置される。構造物に地震力等が加わり、構造物に振動が生じる場合を想定する。
【0030】
図2は、油圧式ダンパ1の設置された構造物に地震等の外力301が加わり、構造物に紙面向かって右方向に外力301が働いている場合を示す。図3は、図2の右方向の外力301が左方向の外力401に切り替わった場合を示す。
【0031】
図4の横軸は、R側ピストン23の変位501を示し、縦軸方向にピストンロッド(例えばR側ピストンロッド15)に生じる減衰力502(即ち、作動油がヘッド側油室で圧縮されることでピストンロッドに生じる反発力)の大きさを示す。
【0032】
図5は、油圧式ダンパ1の動作を示すフローチャートである。図1から図4を用い、図5のフローチャートに沿って油圧式ダンパ1の動作を説明する。
【0033】
構造物(即ちブレース51、53)に、右方向の外力301が加わっている(ステップ601、図2)。このとき、R側油圧式ダンパ3では、R側ピストン23が右方向に押され、R側第1油室35に充填された作動油に圧力がかかってその抵抗でR側ピストンロッド15及びR側ピストン23に減衰力308(即ち外力301に対する反発力)が生じる(ステップ604)。R側リリーフ弁31は閉、R側チェック弁27は閉、R側開閉弁7も閉である。このように、外力301に対して、構造物の揺れを減衰させる減衰力308が、R側油圧ダンパ3側に発生する。
【0034】
また、L側油圧式ダンパ5側では、L側リリーフ弁33は閉、L側チェック弁29は開でL側第2油室41からL側第1油室37への流路306が確保される(ステップ603)。また、R側第1油室35の作動油にかかる圧力で、流路69を介してL側開閉弁9間に流路302、流路303が形成され、L側開閉弁9が開き、L側第1油室37とL側第2油室41間の流路66が確保されている。流路66は両方向に作動油が移動可能である。
【0035】
即ち、L側第1油室37とL側第2油室41の作動油の圧力が等しくなり、L側ピストンロッド17には、作動油の圧力は加わらない。L側ピストンロッド17には、L側ばね21でブレース53に押し付けられるばねの復元力のみが加わる。
【0036】
外力301が増加していくと(ステップ602)、外力301に反発するR側ピストンロッド15に生じる減衰力308も増加する(図4のa部、図5のa部)。
【0037】
外力301が増加し、R側第1油室35内の作動油が更に圧縮されて作動油の圧力がリリーフ荷重を超える、即ちR側リリーフ弁31の限界圧力設定値に達すると(ステップ605)、R側リリーフ弁31が開き、流路307が確保される(ステップ606)。
【0038】
R側リリーフ弁31の働きにより、R側第1油室35内の作動油の圧力は一定に保たれ、安全性を確保できる(図4のb部、図5のb部)。尚、R側第1油室35内の作動油の圧力が前述したリリーフ荷重以下になると、R側リリーフ弁31は再び閉じる。
【0039】
続いて、図3のように、右側方向の外力301とは反対方向の外力401が構造物(即ちブレース51、53)に加わるとする(ステップ607)。即ち、地震等の揺れの力が逆方向に変わったとする。
【0040】
R側油圧式ダンパ3側では、R側リリーフ弁31が閉じる(ステップ608)。ただし、R側リリーフ弁31は、R側第1油室35の圧力がリリーフ荷重に達しなければ初めから閉じたままである。
【0041】
同時に、L側油圧式ダンパ5側では、L側チェック弁29が閉じ、L側第1油室37内の作動油が加圧されて流路67のチェック弁47が開いて流路402、流路403が確保される(ステップ609)。従って、R側開閉弁7が開き、R側第2油室39とR側第1油室35間の流路68が確保され、圧縮されていたR側第1油室35の作動油が流路405、流路404の方向にR側第2油室に流れてR側第1油室35の圧力を一気に解放する(ステップ610)。
【0042】
尚、L側開閉弁9は、閉じている(R側第1油室35の作動油の圧力が一定値以下になるとL側開閉弁9は閉じる。)。また、R側第2油室39とR側第1油室35の作動油の圧力が等しくなり、外力401でR側ピストン23が左に移動すると、R側チェック弁27は開き、流路406(R側第2油室39からR側第1油室35への単方向の流路)が確保される。
【0043】
図5のステップ607からステップ610(図5のc部)は、図4のc部に相当し、R側油圧式ダンパ3が発生する減衰力308(図2)、即ちR側第1油室35の作動油の圧力を一気に解放する瞬間を示す。
【0044】
このように、本発明では、油圧式ダンパの圧縮されている作動油の圧力を解放する時、一気に作動油の圧力を解放するために、一対に配置した反対側の油圧式ダンパの作動油の圧力を利用して開閉弁を開き、流路を確保するところに特徴がある。
【0045】
続いて、L側油圧ダンパ5側に減衰力408が生じる場合を説明するが、前述のR側油圧式ダンパ3と同じであるので、簡単に説明する。
【0046】
構造物に、左側方向の外力401が加わり、増加していく(ステップ611)と、L側第1油室37の作動油に圧力が加わり、L側ピストンロッド17に外力401を押し戻す力(減衰力408)が生じる(ステップ612)。図5のステップ611とステップ612(図5のd部)は、図4のd部に相当する。
【0047】
この時、R側油圧式ダンパ3側では、R側リリーフ弁31は閉、R側チェック弁27は開でR側第2油室39からR側第1油室35への流路406が確保されている。即ち、R側第1油室35とR側第2油室39の作動油の圧力が等しくなり、R側ピストンロッド15には、作動油の圧力は加わらず、R側ばね19によりブレース51に押し付けられる力のみが加わっている。
【0048】
外力401が増加し、L側第1油室37の作動油の圧力がリリーフ荷重を超える、即ちL側リリーフ弁33の限界圧力設定値を超えると(ステップ613)、L側リリーフ弁33が開いて流路407が確保される(ステップ614)。
【0049】
図5のステップ613、ステップ614(図5のe部)は、図4のe部に相当する。即ちL側リリーフ弁33は、左側方向の外力401の増加に対してL側第1油室37の作動油の圧力が一定値を超えないよう、安全性を確保する役割を有する。
【0050】
次に、再び構造物(即ちブレース51、53)に逆方向の外力301(図2)が加わると(ステップ615)、L側油圧式ダンパ5側では、L側リリーフ弁33が閉じる(ステップ616)。ただし、L側第1油室37の圧力がリリーフ荷重に達しない場合には、L側リリーフ弁33は初めから閉じたままの状態にある。
【0051】
同時に、R側油圧式ダンパ3側では、R側チェック弁27が閉じ、R側第1油室35内の作動油に圧力が加わり流路69のチェック弁49が開いて流路302、流路303が確保される(ステップ617)。従って、L側開閉弁9が開き、L側第2油室41とL側第1油室37間の流路66が確保され、圧縮されていたL側第1油室37の作動油が、流路305及び流路304の方向にL側第2油室41の方向に流れ、L側第1油室37の作動油の圧力を一気に解放する(ステップ618)。
【0052】
尚、R側開閉弁7は、閉じている(R側第1油室35の作動油の圧力が一定値以下になるとR側開閉弁7は閉じる。)。また、L側第2油室41とL側第1油室37の作動油の圧力が等しくなり、外力301でL側ピストン25が右に移動すると、L側チェック弁29は開き、流路306(L側第2油室41からL側第1油室37への単方向の流路)が確保される。
【0053】
図5のステップ615からステップ618(図5のf部)は、図4のf部に相当し、L側油圧式ダンパ5が発生する減衰力408(図3)、即ちL側第1油室37の作動油の圧力を一気に解放する瞬間を示す。
【0054】
このように、油圧式ダンパ1は、対に配置されたL側油圧式ダンパ5とR側油圧式ダンパ3とが、地震等の外力301、外力401に対して、振動を制する反力(減衰力308、減衰力408)を発生する。
【0055】
尚、アキュムレータは、例えば流路66に設けられたL側アキュムレータ45は、L側第1油室37とL側第2油室41との体積差(L側第1油室37とL側第2油室41とは、L側ピストンロッド17の分だけの体積差がある。)の吸収と、作動油の熱膨張を吸収する機能を有する。また、アキュムレータは、低圧側油室に作動油を補給し、作動油が負圧になることを防止して油圧式ダンパの性能を安定化させる機能を有している。
【0056】
(3.高層ビルに取り付けられる例)
次に、この油圧式ダンパ1が高層ビル101に取り付けられる例を示す。図6は、この油圧式ダンパ1が取り付けられた高層ビル101を示す。図1は、取り付け部の拡大図でもあり、図1と図6を用いて説明する。
【0057】
高層ビル101は、多数の梁59、梁61、柱55等を有する。図1に示すように、梁59から下側斜め方向にブレース53、51が設けられる。梁61には、基台65、63が設けられる。基台65にはL側油圧式ダンパ5のL側シリンダ13が固定され、L側ピストンロッド17はブレース53の端部に接触する。同様に、基台63にはR油圧式ダンパ3のR側シリンダ11が固定され、R側ピストンロッド15はブレース51の端部に接触する。
【0058】
L側油圧式ダンパ5のL側ばね21の復元力で、L側ピストンロッド17はブレース53方向に押されて接触している。同様に、R側油圧式ダンパ3のR側ばね19の復元力で、R側ピストンロッド15はブレース51方向に押されて接触している。
【0059】
また、L側ばね21、R側ばね19のばね定数は、高層ビル101等の構造物の応答にL側ピストンロッド17、R側ピストンロッド15が追従する程度のものとする。具体的には、ばね定数を高層ビル101の固有振動数の例えば2〜3倍程度のものとする。
【0060】
(4.その他、効果など)
尚、図面には示していないが、適宜流路中にオリフィス等の絞りを設け、流量を意図的に制御してもよい。
【0061】
このように本実施の形態によれば、同じ構成の油圧式ダンパを対に配置して使用し、反対側の油圧式ダンパにかかる作動油の圧力を利用して開閉弁を開く。開閉弁を開くことで、シリンダ内の圧縮された作動油の圧力を一気に解放することができ、センサやコントローラ等を用いたセミアクティブ方式の油圧式ダンパとほぼ同様の機能を有する油圧式ダンパを提供することができる。
【0062】
従って、電気制御などの複雑な機構を備える必要がなく、地震による揺れや風等による微動を減衰させる効果的な油圧式ダンパを提供することができる。また、維持コストを抑えることができる。
【0063】
尚、本発明の技術的範囲は、前述した実施の形態に限られるものではない。例えば、リリーフ弁、チェック弁等をシリンダ外に流路を設け、その中に設置してもよい。また、ばねの設置はシリンダ内に限られない。また、リリーフ弁やチェック弁の数や形状も限定されない。
【0064】
また、油圧式ダンパ1を建築物と建築物との間に取り付けてもよい。
【0065】
本発明では、ヘッド側油室(L側第1油室37及びR側第1油室35)の圧縮された作動油を一気に解放する機構について説明したが、ロッド側油室(L側第2油室41及びR側第2油室39)の圧縮された作動油を一気に解放する構成とすることもできる。
【0066】
【発明の効果】
以上、詳細に説明したように本発明によれば、コントローラ等を必要とせず、セミアクティブ方式と同様の効率を有する油圧式ダンパを提供することができる。
【図面の簡単な説明】
【図1】油圧式ダンパ1の概略構成図
【図2】油圧式ダンパ1の動作を示す図
【図3】油圧式ダンパ1の動作を示す図
【図4】構造物の変位501と油圧式ダンパ1の減衰力502を示す図
【図5】油圧式ダンパ1の動作を示すフローチャート
【図6】油圧式ダンパ1の高層ビル101への取り付けを示す図
【符号の説明】
1・・・ 油圧式ダンパ
3・・・ R側油圧式ダンパ
5・・・ L側油圧式ダンパ
7、9・・・ 開閉弁(R側、L側)
11、13・・・ シリンダ(R側、L側)
15、17・・・ ピストンロッド(R側、L側)
19、21・・・ ばね(R側、L側)
23、25・・・ ピストン(R側、L側)
27、29・・・ チェック弁(R側、L側)
31、33・・・ リリーフ弁(R側、L側)
35、37・・・ 第1油室(R側、L側)
39、41・・・ 第2油室(R側、L側)
43、45・・・ アキュムレータ(R側、L側)
47、49・・・ チェック弁
51、53・・・ ブレース
55、57・・・ 柱
59、61・・・ 梁
63、65・・・ 基台
66、67、68、69・・・ 流路
101・・・ 高層ビル
301、401・・・ 外力
308、408・・・ 減衰力
302、303、304、305、306、307・・・ 流路
402、403、404、405、406、407・・・ 流路
501・・・ 変位
502・・・ 減衰力
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic damper used for a building or the like.
[0002]
[Prior art]
Conventionally, a hydraulic damper has been used to reduce shaking of a building due to an earthquake, wind, or the like. Hydraulic dampers include passive and semi-active hydraulic dampers.
[0003]
In the passive type, a piston is provided in a cylinder, and the cylinder and the piston rod are fixed to a structure. Hydraulic oil is filled in the cylinder, and when the structure shakes, the hydraulic oil in the cylinder is compressed, and a resistance to an external force is generated, thereby damping vibration.
[0004]
In the semi-active hydraulic damper, the hydraulic pressure and displacement are measured by a sensor, and a controller opens and closes the valve according to the measured value, thereby generating a resistance against an external force and damping the vibration. In some cases, when the piston moves in the cylinder and reverses, the compression force of the compressed hydraulic oil is released by electric control.
[0005]
[Problems to be solved by the invention]
As described above, the semi-active hydraulic damper is more efficient than the passive type, but needs to perform electric control, and requires a sensor, a controller, and the like.
[0006]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a hydraulic damper which does not require a controller or the like and has the same efficiency as a semi-active system.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a cylinder filled with hydraulic oil, a piston moving in the cylinder, and dividing the inside of the cylinder into a head side oil chamber and a rod side oil chamber, and one end of the piston A piston rod provided on one side of the cylinder, the other end of which is provided so as to protrude to the outside via the cylinder, and the head-side oil chamber or the rod-side oil chamber is compressed when the piston is inverted. A hydraulic damper having a pressure release mechanism for releasing pressure of hydraulic oil, wherein the pressure release mechanism is controlled in accordance with the operation of another hydraulic damper.
[0008]
In the hydraulic damper of the present invention, two hydraulic dampers having the same structure are installed to face each other, and a reaction force (damping force) against a shake such as an earthquake is acting on one of the hydraulic dampers. When the reverse sway is applied to the hydraulic damper, the pressure release mechanism is operated by using the operation of the other hydraulic damper, and the pressure of the compressed hydraulic oil in the head-side oil chamber or the rod-side oil chamber of the hydraulic damper is reduced. Let go.
[0009]
In the hydraulic damper, at least one of a relief valve and a check valve may be housed in the piston or the piston rod.
[0010]
A spring member for biasing the piston and the piston rod is provided, and an end of the piston rod protruding outside the cylinder is brought into contact with the structure. The spring constant of the spring member is a constant such that the piston rod follows the response of the structure.
[0011]
The pressure release mechanism is provided in a flow path connecting the head side oil chamber and the rod side oil chamber, and the hydraulic oil compressed in the head side oil chamber or the rod side oil chamber by the hydraulic oil flowing from another hydraulic damper. The valve has an on-off valve to release the pressure. An accumulator is connected to the pressure release mechanism.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a hydraulic damper according to the present invention will be described in detail with reference to the drawings.
[0013]
(1. Schematic configuration of hydraulic damper 1)
FIG. 1 is a configuration diagram of the hydraulic damper 1. The hydraulic damper 1 has a configuration in which an L-side hydraulic damper 5 and an R-side hydraulic damper 3 having the same configuration are installed symmetrically facing each other.
[0014]
Since the L-side hydraulic damper 5 and the R-side hydraulic damper 3 have the same configuration, the configuration of the L-side hydraulic damper 5 will be described in detail here, and the configuration of the R-side hydraulic damper 3 will be described. Is omitted.
[0015]
An L-side piston 25 is movably provided in the cylindrical L-side cylinder 13. A cylindrical L-side piston rod 17 is provided on one side of the L-side piston 25, and the L-side piston rod 17 projects outside via the L-side cylinder 13. The tip of the L-side piston rod 17 contacts the structure (the brace 53). The L-side cylinder 13 is fixed to a structure (base 65).
[0016]
The L side cylinder 13 is divided by the L side piston 25 into an L side first oil chamber 37 (head side oil chamber) and an L side second oil chamber 41 (rod side oil chamber). Here, the rod side is the side on which the L-side piston rod 17 is attached to the L-side piston 25, and the head side is the side on which the L-side piston rod 17 is attached to the L-side piston 25. Not on the side. The L-side cylinder 13, the L-side piston 25, the L-side piston rod 17, and the like are made of metal or the like.
[0017]
The L-side first oil chamber 37 and the L-side second oil chamber 41 are filled with hydraulic oil. In the L-side piston 25, flow paths such as an L-side check valve 29 and an L-side relief valve 33 are provided.
[0018]
The L-side check valve 29 opens when the operating oil flows from the L-side second oil chamber 41 toward the L-side first oil chamber 37, and allows the inflow of the operating oil. Conversely, the flow of hydraulic oil from the L-side first oil chamber 37 to the L-side second oil chamber 41 is blocked. That is, the hydraulic oil flows only in the direction B in the drawing via the L-side check valve 29.
[0019]
The L-side relief valve 33 opens when the pressure of the hydraulic oil in the L-side first oil chamber 37 exceeds a certain value (relief load), and the hydraulic oil moves from the L-side first oil chamber 37 to the L-side second oil chamber 41. Allow to flow. When the operating oil in the L-side first oil chamber 37 is further pressurized, the operating oil flows from the L-side first oil chamber 37 to the L-side second oil chamber 41, so that the L-side first oil chamber 37 Keep the pressure of the hydraulic oil inside.
[0020]
When the pressure of the working oil in the L-side first oil chamber 37 becomes lower than the above-described relief load, the L-side relief valve 33 closes, and the working oil flows from the L-side first oil chamber 37 to the L-side second oil chamber 41. Will not flow. Further, when the operating oil is going to flow from the L-side second oil chamber 41 to the L-side first oil chamber 37, the L-side relief valve 33 closes and blocks the flow. That is, the L-side relief valve 33 opens only when the pressure of the hydraulic oil in the L-side first oil chamber 37 exceeds the relief load, and the hydraulic oil flows in the direction C in the figure.
[0021]
The L-side spring 21 is installed in the L-side first oil chamber 37. One end of the L-side spring 21 is fixed to the L-side cylinder 13 and the other end is fixed to the L-side piston rod 17. Due to the restoring force of the L-side spring 21, the L-side piston 25 receives a force in the direction A and is constantly pressed against the structure (the brace 53).
[0022]
The L-side spring 21 does not need to be provided in the L-side first oil chamber 37, and may be provided outside the L-side cylinder 13 or the like as long as the L-side piston 25 and the L-side piston rod 17 exert a force in the A direction. It may be provided.
[0023]
A flow path 66 that connects the L-side first oil chamber 37 and the L-side second oil chamber 41 is provided outside the L-type cylinder 13. The flow path 66 is provided with the L-type on-off valve 9 and the L-side accumulator 45.
[0024]
The L-side first oil chamber 37 and the R-side on-off valve 7 are connected by a flow path 67. The R-side on-off valve 7 is provided in a flow path 68 that connects the R-side first oil chamber 35 and the R-side second oil chamber 39 of the R-side hydraulic damper 3. The R-side first oil chamber 35 and the L-side on-off valve 9 are connected by a flow path 69. The L-side on-off valve 9 is provided in a flow path 66 that connects the L-side first oil chamber 37 and the L-side second oil chamber 41 of the L-side hydraulic damper 5.
[0025]
The L-side on-off valve 9 is closed by a function of an internal spring unless hydraulic oil having a pressure equal to or higher than a predetermined pressure is applied through the flow path 69, and while the L-side on-off valve 9 is closed, the flow path 66 is closed. The hydraulic oil does not move between the L-side first oil chamber 37 and the L-side second oil chamber 41 via.
[0026]
The L-side on-off valve 9 opens when a certain amount of hydraulic oil flows into the L-side on-off valve 9 via the flow path 69 and the check valve 49 when pressure is applied to the hydraulic oil in the R-side first oil chamber 35, The hydraulic oil moves between the first oil chamber 37 and the L-side second oil chamber 41. Here, when the moving amount of the R-side piston 23 is very small, the L-side on-off valve 9 does not open because the amount of hydraulic oil flowing into the L-side on-off valve 9 is small.
[0027]
The L-side accumulator 45 provided in the flow path 66 between the L-side on-off valve 9 and the L-side second oil chamber 41 is provided with a volume difference between the L-side first oil chamber 37 and the L-side second oil chamber 41 (L-side). The first oil chamber 37 and the L-side second oil chamber 41 have a volume difference corresponding to the L-side piston rod 17), and absorb the volume difference due to the temperature of the hydraulic oil.
[0028]
The L-side hydraulic damper 5 and the R-side hydraulic damper 3 constituting the hydraulic damper 1 of the present invention are installed between the column 55 and the brace 53 and between the column 57 and the brace 51, respectively. Details of the installation will be described later with reference to FIG.
[0029]
(2. Description of operation of hydraulic damper 1)
Next, the operation of the hydraulic damper 1 will be described with reference to FIGS. The hydraulic damper 1 is installed on a building (details will be described with reference to FIG. 6). The L-side hydraulic damper 5 constituting the hydraulic damper 1 is fixed to the base 65 of the column 57 and is installed in contact with the brace 53, and the R-side hydraulic damper 3 is fixed to the base 63 of the column 55. It is installed in contact with the brace 51. It is assumed that a seismic force or the like is applied to the structure and the structure vibrates.
[0030]
FIG. 2 shows a case where an external force 301 such as an earthquake is applied to the structure on which the hydraulic damper 1 is installed, and the external force 301 acts on the structure in a rightward direction with respect to the paper surface. FIG. 3 shows a case where the external force 301 in the right direction in FIG. 2 is switched to the external force 401 in the left direction.
[0031]
The horizontal axis in FIG. 4 indicates the displacement 501 of the R-side piston 23, and the damping force 502 (that is, the hydraulic oil is compressed in the head-side oil chamber) generated in the piston rod (for example, the R-side piston rod 15) in the vertical axis direction. This shows the magnitude of the repulsive force generated on the piston rod.
[0032]
FIG. 5 is a flowchart showing the operation of the hydraulic damper 1. The operation of the hydraulic damper 1 will be described with reference to FIGS. 1 to 4 along the flowchart of FIG.
[0033]
An external force 301 in the right direction is applied to the structure (that is, the braces 51 and 53) (step 601, FIG. 2). At this time, in the R-side hydraulic damper 3, the R-side piston 23 is pushed rightward, and pressure is applied to the working oil filled in the R-side first oil chamber 35, and the R-side piston rods 15 and R A damping force 308 (that is, a repulsive force against the external force 301) is generated in the side piston 23 (Step 604). The R-side relief valve 31 is closed, the R-side check valve 27 is closed, and the R-side on-off valve 7 is also closed. Thus, the damping force 308 for damping the swing of the structure with respect to the external force 301 is generated on the R-side hydraulic damper 3 side.
[0034]
On the side of the L-side hydraulic damper 5, the L-side relief valve 33 is closed and the L-side check valve 29 is opened to secure a flow path 306 from the L-side second oil chamber 41 to the L-side first oil chamber 37. (Step 603). Further, with the pressure applied to the hydraulic oil in the R-side first oil chamber 35, a flow path 302 and a flow path 303 are formed between the L-side on-off valves 9 via the flow path 69, and the L-side on-off valve 9 is opened. A flow path 66 between the first side oil chamber 37 and the second side L oil chamber 41 is secured. The flow path 66 is capable of moving hydraulic oil in both directions.
[0035]
That is, the pressures of the hydraulic oil in the L-side first oil chamber 37 and the L-side second oil chamber 41 become equal, and the pressure of the hydraulic oil is not applied to the L-side piston rod 17. Only the restoring force of the spring pressed against the brace 53 by the L-side spring 21 is applied to the L-side piston rod 17.
[0036]
As the external force 301 increases (step 602), the damping force 308 generated on the R-side piston rod 15 repelling the external force 301 also increases (a part in FIG. 4 and a part a in FIG. 5).
[0037]
When the external force 301 increases and the hydraulic oil in the R-side first oil chamber 35 is further compressed, and the pressure of the hydraulic oil exceeds the relief load, that is, reaches the limit pressure set value of the R-side relief valve 31 (step 605). , The R-side relief valve 31 is opened, and the flow path 307 is secured (step 606).
[0038]
By the operation of the R-side relief valve 31, the pressure of the hydraulic oil in the R-side first oil chamber 35 is kept constant, and safety can be secured (part b in FIG. 4 and part b in FIG. 5). When the pressure of the hydraulic oil in the R-side first oil chamber 35 becomes equal to or less than the above-described relief load, the R-side relief valve 31 is closed again.
[0039]
Subsequently, as shown in FIG. 3, it is assumed that an external force 401 in a direction opposite to the external force 301 in the right direction is applied to the structure (that is, the braces 51 and 53) (step 607). That is, it is assumed that the shaking force such as an earthquake has changed in the opposite direction.
[0040]
On the side of the R-side hydraulic damper 3, the R-side relief valve 31 closes (Step 608). However, the R-side relief valve 31 remains closed from the beginning unless the pressure in the R-side first oil chamber 35 reaches the relief load.
[0041]
At the same time, on the L side hydraulic damper 5 side, the L side check valve 29 is closed, the hydraulic oil in the L side first oil chamber 37 is pressurized, the check valve 47 of the flow path 67 is opened, and the flow path 402 The road 403 is secured (step 609). Accordingly, the R-side on-off valve 7 is opened, the flow path 68 between the R-side second oil chamber 39 and the R-side first oil chamber 35 is secured, and the compressed hydraulic oil in the R-side first oil chamber 35 flows. The pressure flows into the R-side second oil chamber 35 in the direction of the path 405 and the flow path 404 to release the pressure of the R-side first oil chamber 35 at a stretch (step 610).
[0042]
Note that the L-side on-off valve 9 is closed (when the pressure of the hydraulic oil in the R-side first oil chamber 35 falls below a certain value, the L-side on-off valve 9 is closed). When the hydraulic oil pressures in the R-side second oil chamber 39 and the R-side first oil chamber 35 become equal and the R-side piston 23 moves to the left with an external force 401, the R-side check valve 27 opens and the flow path 406 (A unidirectional flow path from the R-side second oil chamber 39 to the R-side first oil chamber 35) is secured.
[0043]
Steps 607 to 610 (part c in FIG. 5) in FIG. 5 correspond to part c in FIG. 4, and the damping force 308 (FIG. 2) generated by the R-side hydraulic damper 3, that is, the R-side first oil chamber. The moment when the pressure of the hydraulic oil 35 is released at once is shown.
[0044]
As described above, in the present invention, when the pressure of the hydraulic oil compressed by the hydraulic damper is released, in order to release the pressure of the hydraulic oil at a stretch, the hydraulic oil of the opposite hydraulic damper arranged in a pair is released. The feature is that the on-off valve is opened using pressure to secure a flow path.
[0045]
Subsequently, a case where the damping force 408 is generated on the L-side hydraulic damper 5 will be described. However, since it is the same as the above-described R-side hydraulic damper 3, it will be briefly described.
[0046]
When an external force 401 in the left direction is applied to the structure and increases (step 611), a pressure is applied to the hydraulic oil in the L-side first oil chamber 37, and a force (damping) that pushes the external force 401 back to the L-side piston rod 17 is applied. Force 408) occurs (step 612). Steps 611 and 612 in FIG. 5 (part d in FIG. 5) correspond to part d in FIG.
[0047]
At this time, on the side of the R-side hydraulic damper 3, the R-side relief valve 31 is closed, and the R-side check valve 27 is opened, and a flow path 406 from the R-side second oil chamber 39 to the R-side first oil chamber 35 is secured. Have been. That is, the pressure of the hydraulic oil in the R-side first oil chamber 35 and the hydraulic oil in the R-side second oil chamber 39 become equal, the hydraulic oil pressure is not applied to the R-side piston rod 15, Only the pressing force is applied.
[0048]
When the external force 401 increases and the pressure of the hydraulic oil in the L-side first oil chamber 37 exceeds the relief load, that is, exceeds the limit pressure set value of the L-side relief valve 33 (step 613), the L-side relief valve 33 opens. Thus, the flow path 407 is secured (step 614).
[0049]
Steps 613 and 614 in FIG. 5 (e part in FIG. 5) correspond to the e part in FIG. That is, the L-side relief valve 33 has a role of ensuring safety so that the pressure of the hydraulic oil in the L-side first oil chamber 37 does not exceed a certain value with respect to the increase of the external force 401 in the left direction.
[0050]
Next, when the external force 301 (FIG. 2) in the opposite direction is applied again to the structure (that is, the braces 51 and 53) (Step 615), the L-side relief valve 33 closes on the L-side hydraulic damper 5 (Step 616). ). However, when the pressure in the L-side first oil chamber 37 does not reach the relief load, the L-side relief valve 33 is kept closed from the beginning.
[0051]
At the same time, on the R-side hydraulic damper 3 side, the R-side check valve 27 is closed, pressure is applied to the hydraulic oil in the R-side first oil chamber 35, and the check valve 49 of the flow path 69 is opened, and the flow path 302 and the flow path 303 is secured (step 617). Therefore, the L-side on-off valve 9 is opened, the flow path 66 between the L-side second oil chamber 41 and the L-side first oil chamber 37 is secured, and the compressed hydraulic oil of the L-side first oil chamber 37 is It flows in the direction of the L-side second oil chamber 41 in the direction of the flow path 305 and the flow path 304, and releases the pressure of the hydraulic oil in the L-side first oil chamber 37 at a stretch (step 618).
[0052]
The R-side on-off valve 7 is closed (when the pressure of the hydraulic oil in the R-side first oil chamber 35 becomes equal to or lower than a certain value, the R-side on-off valve 7 is closed). When the pressure of the hydraulic oil in the L-side second oil chamber 41 and the pressure of the hydraulic oil in the L-side first oil chamber 37 become equal and the L-side piston 25 moves rightward with an external force 301, the L-side check valve 29 opens and the flow path 306 (A unidirectional flow path from the L-side second oil chamber 41 to the L-side first oil chamber 37) is secured.
[0053]
Steps 615 to 618 in FIG. 5 (part f in FIG. 5) correspond to part f in FIG. 4, and the damping force 408 (FIG. 3) generated by the L-side hydraulic damper 5, that is, the L-side first oil chamber. The moment when the pressure of the hydraulic oil of No. 37 is released at once is shown.
[0054]
As described above, the hydraulic damper 1 is configured such that the L-side hydraulic damper 5 and the R-side hydraulic damper 3 arranged in pairs form a reaction force (vibration control) against an external force 301 and an external force 401 such as an earthquake. A damping force 308 and a damping force 408) are generated.
[0055]
Note that the accumulator is, for example, an L-side accumulator 45 provided in the flow path 66, and a volume difference between the L-side first oil chamber 37 and the L-side second oil chamber 41 (the L-side first oil chamber 37 and the L-side The second oil chamber 41 has a function of absorbing the volume difference of the L-side piston rod 17) and absorbing the thermal expansion of the hydraulic oil. The accumulator also has a function of supplying hydraulic oil to the low-pressure side oil chamber, preventing the hydraulic oil from becoming negative pressure, and stabilizing the performance of the hydraulic damper.
[0056]
(3. Example of installation in high-rise building)
Next, an example in which the hydraulic damper 1 is attached to a high-rise building 101 will be described. FIG. 6 shows a high-rise building 101 to which the hydraulic damper 1 is attached. FIG. 1 is also an enlarged view of the mounting portion, and will be described with reference to FIGS.
[0057]
The high-rise building 101 has many beams 59, beams 61, columns 55, and the like. As shown in FIG. 1, braces 53 and 51 are provided diagonally downward from the beam 59. Bases 65 and 63 are provided on the beam 61. The L side cylinder 13 of the L side hydraulic damper 5 is fixed to the base 65, and the L side piston rod 17 contacts the end of the brace 53. Similarly, the R side cylinder 11 of the R hydraulic damper 3 is fixed to the base 63, and the R side piston rod 15 contacts the end of the brace 51.
[0058]
With the restoring force of the L-side spring 21 of the L-side hydraulic damper 5, the L-side piston rod 17 is pushed in the direction of the brace 53 and is in contact therewith. Similarly, the R-side piston rod 15 is pushed in the direction of the brace 51 by the restoring force of the R-side spring 19 of the R-side hydraulic damper 3 and is in contact therewith.
[0059]
The spring constants of the L-side spring 21 and the R-side spring 19 are such that the L-side piston rod 17 and the R-side piston rod 15 follow the response of a structure such as the high-rise building 101. Specifically, the spring constant is, for example, about two to three times the natural frequency of the high-rise building 101.
[0060]
(4. Other effects, etc.)
Although not shown in the drawings, a restrictor such as an orifice may be appropriately provided in the flow path to control the flow rate intentionally.
[0061]
As described above, according to the present embodiment, the hydraulic dampers having the same configuration are arranged and used in pairs, and the on-off valve is opened by utilizing the pressure of the hydraulic oil applied to the hydraulic damper on the opposite side. By opening the on-off valve, the pressure of the compressed hydraulic oil in the cylinder can be released at a stretch, and a hydraulic damper having almost the same function as a semi-active hydraulic damper using sensors, controllers, etc. Can be provided.
[0062]
Therefore, it is not necessary to provide a complicated mechanism such as electric control, and it is possible to provide an effective hydraulic damper that attenuates micromotion caused by shaking due to an earthquake or wind. In addition, maintenance costs can be reduced.
[0063]
Note that the technical scope of the present invention is not limited to the above-described embodiment. For example, a relief valve, a check valve, and the like may be provided in a flow path outside the cylinder and installed therein. The installation of the spring is not limited to the inside of the cylinder. Further, the number and shape of the relief valve and the check valve are not limited.
[0064]
Further, the hydraulic damper 1 may be mounted between buildings.
[0065]
In the present invention, the mechanism for releasing the hydraulic oil compressed in the head-side oil chamber (the L-side first oil chamber 37 and the R-side first oil chamber 35) at once is described. It is also possible to adopt a configuration in which the compressed hydraulic oil in the oil chamber 41 and the R-side second oil chamber 39) is released at a stretch.
[0066]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a hydraulic damper having the same efficiency as the semi-active system without requiring a controller or the like.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hydraulic damper 1. FIG. 2 is a diagram showing an operation of a hydraulic damper 1. FIG. 3 is a diagram showing an operation of a hydraulic damper 1. FIG. 4 is a structural displacement 501 and a hydraulic system. FIG. 5 is a flowchart showing the damping force 502 of the damper 1. FIG. 5 is a flowchart showing the operation of the hydraulic damper 1. FIG. 6 is a diagram showing the mounting of the hydraulic damper 1 on the high-rise building 101.
DESCRIPTION OF SYMBOLS 1 ... Hydraulic damper 3 ... R side hydraulic damper 5 ... L side hydraulic damper 7, 9 ... On-off valve (R side, L side)
11, 13 ... Cylinder (R side, L side)
15, 17 ... Piston rod (R side, L side)
19, 21 ... Spring (R side, L side)
23, 25 ... Piston (R side, L side)
27, 29 ... Check valve (R side, L side)
31, 33 ... relief valve (R side, L side)
35, 37 ... 1st oil chamber (R side, L side)
39, 41 ... 2nd oil chamber (R side, L side)
43, 45 ... accumulator (R side, L side)
47, 49 Check valves 51, 53 Brace 55, 57 Column 59, 61 Beam 63, 65 Base 66, 67, 68, 69 Flow path 101 ... High-rise buildings 301, 401 ... External forces 308, 408 ... Damping forces 302, 303, 304, 305, 306, 307 ... Channels 402, 403, 404, 405, 406, 407 ... Flow path 501 Displacement 502 Damping force

Claims (8)

作動油が充填されたシリンダと、
前記シリンダ内を移動し、前記シリンダ内をヘッド側油室とロッド側油室に区分するピストンと、
一端が前記ピストンの片側に設けられ、他端が前記シリンダを介して外部に突出するように設けられたピストンロッドと、
前記ピストンが反転する際に、前記ヘッド側油室又は前記ロッド側油室の圧縮された作動油の圧力を解放する圧力解放機構と、
を有する油圧式ダンパにおいて、
前記圧力解放機構が、他の油圧式ダンパの動作に応じて制御されることを特徴とする油圧式ダンパ。
A cylinder filled with hydraulic oil,
A piston that moves inside the cylinder and divides the inside of the cylinder into a head-side oil chamber and a rod-side oil chamber;
A piston rod having one end provided on one side of the piston and the other end provided so as to protrude outside via the cylinder;
When the piston reverses, a pressure release mechanism that releases the pressure of the compressed hydraulic oil in the head-side oil chamber or the rod-side oil chamber,
In a hydraulic damper having
A hydraulic damper, wherein the pressure release mechanism is controlled in accordance with the operation of another hydraulic damper.
前記圧力解放機構は、前記ヘッド側油室と前記ロッド側油室とを連結する流路に設けられ、
前記他の油圧式ダンパから流入する作動油により、前記ヘッド側油室又は前記ロッド側油室の圧縮された作動油の圧力を解放する開閉弁を有することを特徴とする請求項1記載の油圧式ダンパ。
The pressure release mechanism is provided in a flow path that connects the head-side oil chamber and the rod-side oil chamber,
2. The hydraulic system according to claim 1, further comprising an on-off valve configured to release the pressure of the hydraulic oil compressed in the head-side oil chamber or the rod-side oil chamber by the hydraulic oil flowing from the another hydraulic damper. 3. Formula damper.
前記開閉弁が、前記ピストンの移動量が設定値以上になったときに開く構造であることを特徴とする請求項2記載の油圧式ダンパ。The hydraulic damper according to claim 2, wherein the on-off valve has a structure that opens when a movement amount of the piston becomes equal to or greater than a set value. 前記圧力解放機構に、アキュムレータが接続されることを特徴とする請求項1記載の油圧式ダンパ。The hydraulic damper according to claim 1, wherein an accumulator is connected to the pressure release mechanism. 前記ヘッド側油室と前記ロッド側油室とを連結する流路に、
前記ピストンが移動する時に、作動油が圧縮される油室から、他方の油室にのみ前記作動油の流れを許容するリリーフ弁と、
前記ピストンが移動しても作動油が圧縮されない油室から、他方の油室にのみ前記作動油の流れを許容するチェック弁と、
を有することを特徴とする請求項1記載の油圧式ダンパ。
In the flow path connecting the head side oil chamber and the rod side oil chamber,
When the piston moves, from a hydraulic chamber in which hydraulic oil is compressed, a relief valve that allows the flow of the hydraulic oil only to the other oil chamber,
A check valve that allows the flow of the hydraulic oil only from the oil chamber in which the hydraulic oil is not compressed even when the piston moves, to the other oil chamber;
The hydraulic damper according to claim 1, comprising:
前記リリーフ弁と、前記チェック弁のうち、少なくとも一方が前記ピストン又は前記ピストンロッドに収装されることを特徴とする請求項5記載の油圧式ダンパ。The hydraulic damper according to claim 5, wherein at least one of the relief valve and the check valve is housed in the piston or the piston rod. 前記ピストン及び前記ピストンロッドを付勢するばね部材を設け、
前記ピストンロッドの前記シリンダ外部に突出した端部を構造物に接触させることを特徴とする請求項1記載の油圧式ダンパ。
A spring member for urging the piston and the piston rod is provided,
The hydraulic damper according to claim 1, wherein an end of the piston rod protruding outside the cylinder is brought into contact with a structure.
前記ばね部材は、前記構造物の応答に対して前記ピストンロッドが追従できるばね定数を有することを特徴とする請求項7記載の油圧式ダンパ。The hydraulic damper according to claim 7, wherein the spring member has a spring constant that allows the piston rod to follow a response of the structure.
JP2002212140A 2002-07-22 2002-07-22 Hydraulic damper Expired - Fee Related JP4100547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212140A JP4100547B2 (en) 2002-07-22 2002-07-22 Hydraulic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212140A JP4100547B2 (en) 2002-07-22 2002-07-22 Hydraulic damper

Publications (2)

Publication Number Publication Date
JP2004052922A true JP2004052922A (en) 2004-02-19
JP4100547B2 JP4100547B2 (en) 2008-06-11

Family

ID=31935162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212140A Expired - Fee Related JP4100547B2 (en) 2002-07-22 2002-07-22 Hydraulic damper

Country Status (1)

Country Link
JP (1) JP4100547B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234516A (en) * 2008-03-28 2009-10-15 Kayaba Ind Co Ltd Stopper
JP2014189114A (en) * 2013-03-27 2014-10-06 Kayaba Ind Co Ltd Stopper
WO2016045686A1 (en) 2014-09-24 2016-03-31 Mahmoud Galal Yehia Kamel Lateral distribution of loads in super high-rise buildings to reduce the effect of wind, earthquakes and explosions as well as increasing the utilized area

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234516A (en) * 2008-03-28 2009-10-15 Kayaba Ind Co Ltd Stopper
JP2014189114A (en) * 2013-03-27 2014-10-06 Kayaba Ind Co Ltd Stopper
WO2016045686A1 (en) 2014-09-24 2016-03-31 Mahmoud Galal Yehia Kamel Lateral distribution of loads in super high-rise buildings to reduce the effect of wind, earthquakes and explosions as well as increasing the utilized area

Also Published As

Publication number Publication date
JP4100547B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
CN101413295B (en) Self-adapting frequency conversion tuning quality damping vibration attenuation apparatus and self-adapting frequency conversion method thereof
JP4050103B2 (en) Hydraulic damper
JP4901896B2 (en) Hydraulic damper
JP4182200B2 (en) Hydraulic damper
JP4442770B2 (en) Oil damper for seismic isolation device
JP2004052922A (en) Hydraulic damper
JP3796216B2 (en) Installation method of hydraulic damper
JP5870138B2 (en) Hydraulic damper with speed limiting function with hardened hydraulic circuit
Kurino et al. High performance passive hydraulic damper with semi-active characteristics
JP2014062578A (en) Hydraulic damper
JP5436333B2 (en) Seismic isolation device
JP3939609B2 (en) Hydraulic damper
JP2003148545A (en) Hydraulic damping device
JP4083513B2 (en) Seismic control method for building structures
Gavin et al. Resonance suppression through variable stiffness and damping mechanisms
JP5453170B2 (en) Vibration control device
JP2002106632A (en) Base isolation device and base isolation structure
JPH04277273A (en) Damping structure
JP3724541B2 (en) Vibration control device between multiple building structures
JP3793498B2 (en) Hydraulic control system for buildings
JP3394015B2 (en) Hydraulic damper for vibration control
JPH04272371A (en) Vibration controlling structure
JPH11182616A (en) Vibration control device
JP4386826B2 (en) Hydraulic damper
JPH03107640A (en) Damping device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees