JP2004052014A - Liquid and method for plating iridium - Google Patents

Liquid and method for plating iridium Download PDF

Info

Publication number
JP2004052014A
JP2004052014A JP2002208085A JP2002208085A JP2004052014A JP 2004052014 A JP2004052014 A JP 2004052014A JP 2002208085 A JP2002208085 A JP 2002208085A JP 2002208085 A JP2002208085 A JP 2002208085A JP 2004052014 A JP2004052014 A JP 2004052014A
Authority
JP
Japan
Prior art keywords
iridium
plating
plating solution
acid
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002208085A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shiokawa
塩川 和彦
Hiroki Nakamura
中村 裕樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2002208085A priority Critical patent/JP2004052014A/en
Publication of JP2004052014A publication Critical patent/JP2004052014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iridium-plating liquid for forming a flat and dense plated film free from a void in a via hole, onto a micro-wiring portion of an electronic component, and to provide an iridium-plating method. <P>SOLUTION: The iridium-plating liquid includes an agent for modifying film characteristics consisting of at least one surface active agent selected from the group consisting of an ampholytic surface active agent, a nonionic detergent, a cationic surface active agent and an anionic surface active agent, in a liquid containing a compound of a soluble iridium salt and an inorganic acid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、イリジウムめっき液およびめっき方法に関する。
【0002】
【従来の技術】
イリジウムめっき液に関する技術は、研究例が少なく、未だ実用化に至っていない。
【0003】
従来公知のイリジウムめっき液としては、可溶性イリジウム塩とスルファミン酸又は硫酸を含有するめっき液(USP 3,639,219)、可溶性イリジウム塩とカルボン酸塩等を含有するめっき液(特開平6−316786)等がある。しかしながら、これらは電流効率が安定せず、均一な外観、均一な膜厚とすることができない。また、得られるめっき皮膜の表面状態も非常に悪いものである。
【0004】
また、従来のイリジウムめっき液は、ホウ酸をpH緩衝剤として用いているために、pH緩衝能力が弱く、めっき中にめっき液のpHが変化し、電流効率も変化しやすい傾向にある。そのために、頻繁にpHの調整を行う必要があり、実用的でない。
【0005】
近年、電子部品の多様化により、より耐食性の優れたイリジウムによるめっきが求められている。特に、LSI等に用いられるSiやGaAs化合物等の半導体Wafer上における電子回路配線で形成される、層間接続ホール、溝等の微細ホール(ビアホール)へのめっきは、微細ホール内のボイドが無く、均一にめっきできることが要求される。このような微細構造を有する電子部品に従来のイリジウムめっき液でめっきした場合、微細配線部分でボイドを生じたり、めっき表面の外観異常、デンドライトが析出する等の問題があり、微細配線電子部品への適用ができないものであった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、めっき液のpHの変動が少なく、電流効率が安定で、膜厚を均一とすることができ、めっき外観の良好なイリジウムめっき液及びめっき方法を提供することにある。特に、本発明は、電子部品の微細配線部分へのイリジウムめっきを行なう場合にビアホール内のボイドが無く、微細配線上に平滑で、緻密なめっき皮膜を形成することができるイリジウムめっき液及びめっき方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決する本発明は以下に記載するものである。
【0008】
〔1〕 可溶性イリジウム塩化合物と無機酸とを含有する水溶液に、両性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤及び陰イオン性界面活性剤の群より選ばれる少なくとも1種類の界面活性剤からなる皮膜特性改質剤とを含むことを特徴とするイリジウムめっき液。
【0009】
〔2〕 pH緩衝剤として、リン酸塩、酢酸塩、クエン酸塩及び酒石酸塩の少なくとも1つを含有する〔1〕に記載のイリジウムめっき液。
【0010】
〔3〕 スルホン酸塩及びカルボン酸塩の少なくとも一つを含有する〔1〕又は〔2〕に記載のイリジウムめっき液。
【0011】
〔4〕 〔1〕乃至〔3〕のいずれかに記載のイリジウムめっき液に電子部品を浸積して電子部品の微細部分にイリジウム電解めっきを行なうめっき方法。
【0012】
〔5〕 電子部品の微細部分が、配線間隔が200μm以下の配線又は直径200μm以下のビアホールの回路である〔4〕に記載のめっき方法。
【0013】
【発明の実施の形態】
本発明のイリジウムめっき液は可溶性イリジウム塩化合物及び無機酸を含有する。
【0014】
可溶性イリジウム塩化合物としては、例えば、塩化イリジウム酸塩、臭化イリジウム塩、シュウ酸イリジウム塩、硫酸イリジウム塩等のイリジウム塩を用いることができるが、臭化イリジウム塩が好ましい。
【0015】
可溶性イリジウム塩化合物の含有量としては、金属イリジウムとして0.5〜20g/Lが好ましく、1.0〜15g/Lとすることがより好ましい。金属イリジウム濃度が0.5g/L未満であるとめっき速度が遅く、また、20g/Lを超えるとめっき液中のイリジウム塩が分解しやすくなるばかりか、経済的でない。
【0016】
無機酸としては、例えば、硫酸、塩酸、硝酸等を用いることができるが、硫酸が好ましい。
【0017】
無機酸の濃度は、2〜100g/Lが好ましく、4〜80g/Lがより好ましい。濃度が2g/L未満あるいは100g/Lを超えると、めっき液中のイリジウム塩が分解しやすくなるばかりか、導電性も低下する為に電流効率が極端に低下し、イリジウムの析出が妨げられる傾向がある。
【0018】
本発明のイリジウムめっき液は、上記成分以外に、両性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤及び陰イオン性界面活性剤の群から選ばれる少なくとも1種類の界面活性剤からなる皮膜特性改質剤を含有する。
【0019】
皮膜特性改質剤としては低発泡性のものが好ましい。低発泡性の皮膜特性改質剤としては、例えば、アルキルベタイン系、アミンオキサイド系等の両性界面活性剤、ポリオキシエチレンアルキルエーテル系、ポリオキシエチレンアルキルアリルエーテル系等の非イオン性界面活性剤、アルキルイミダゾリン系の陽イオン性界面活性剤、炭素数8〜26のアルキル基を有するカルボン酸系陰イオン性界面活性剤を用いることができる。中でも、アルキルベタイン系、ポリオキシエチレンアルキルアリルエーテル系の界面活性剤が好ましい。
【0020】
具体的には、ヤシ油アルキルベタイン、ラウリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミンオキシド、ヤシ油アルキルジメチルアミンオキシド等の両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンステアリルエーテル等の非イオン性界面活性剤、ヤシ油アルキルイミダゾリウム、オクタデシルイミダゾリウム等の陽イオン性界面活性剤、ラウリン酸トリエタノールアミン、スルホコハク酸ラウリル二ナトリウム等の陰イオン性界面活性剤を例示できる。
【0021】
これらは低発泡性であるので、めっき液をポンプ等で循環しても、気泡が発生しにくい特徴を有する。気泡は基板上のめっき部へ吸着し、めっきを阻害することがある。特に微細回路上へのめっきにおいては、気泡により未めっきが生じる場合が多いので低発泡性のめっき液が望まれる。
【0022】
皮膜特性改質剤の濃度は、0.01〜30g/Lが好ましく、0.02〜20g/Lがより好ましい。皮膜特性改質剤の濃度が0.01g/L未満では、微細電子部品への析出皮膜は緻密でなく、外観が異常な皮膜となり易い。特にビアホール内へのめっきにおいて、めっきの均一電着性が得られず、未析出や異常析出が生じやすい。また、電流効率も低下し、安定しためっき速度が得られにくい。皮膜特性改質剤の濃度が30g/Lを超えると、発泡が多くなり、かつ電流効率も低下しイリジウムの析出が妨げられる傾向がある。
【0023】
更に、本発明のイリジウムめっき液はpH緩衝剤を含有することが好ましい。
【0024】
pH緩衝剤としては、リン酸、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、リン酸水素カリウム、リン酸二水素カリウム、リン酸水素二カリウム、酢酸、酒石酸、クエン酸、クエン酸一カリウム、クエン酸三カリウム等を例示できる。
【0025】
pH緩衝剤の濃度は、5〜150g/Lが好ましく、8〜120g/Lがより好ましい。pH緩衝剤の濃度が5g/L未満ではめっき液のpHの変動が大きく、150g/Lを超えると電流効率を低下させる傾向にある。
【0026】
本発明のイリジウムめっき液は、上記の必須成分に加えて、電流効率を安定化するため、スルホン酸塩及びカルボン酸塩の少なくとも一つを含有することが好ましい。
【0027】
スルホン酸塩としては、スルファミン酸塩、スルフィン酸、ベンゼンスルホン酸塩、メタンスルホン酸等を挙げることができるが、好ましくはスルファミン酸である。
【0028】
カルボン酸塩としては、シュウ酸、グルタル酸、コハク酸、マロン酸、マレイン酸、プロピオン酸等を例示できる。
【0029】
スルホン酸塩及びカルボン酸塩の濃度は、1〜100g/Lが好ましく、2〜80g/Lがより好ましい。スルホン酸塩およびカルボン酸塩の濃度が1g/L未満であると、電流効率を安定させる効果が少なく、100g/Lを超えると、電流効率が低下し易い。
【0030】
本発明のイリジウムめっき液は、pH1.0〜7.0で使用可能であるが、pH2.0〜6.0で使用することが好ましい。pHが1.0未満あるいは7.0を超える場合、めっき液が分解しやすいばかりでなく、電流効率が低下し析出が妨げられる。
【0031】
上述したように、本発明のイリジウムめっき液は、少なくとも1種類の低発泡性の界面活性剤からなる皮膜特性改質剤を必須の成分とする。
【0032】
通常、ビアホール等にめっきを行なう場合、皮膜特性改質剤が添加されない場合は、めっき液の表面張力が高いために、微細なホールあるいは溝にめっき液が入りこみにくくなり、均一にめっき皮膜が成長できない傾向にある。表面(トップ)の膜厚に対してホール底部あるいは溝底部(ボトム)の膜厚が薄くなる傾向にある。このため、ボトムの膜厚を所定の膜厚とするためには、めっき時間を増加させる必要がある。
【0033】
しかし、めっき時間を増加させるとトップの膜厚が厚くなりすぎるうえ、析出した皮膜が緻密でなくホール内にボイド等の不具合が発生しやすい。
【0034】
これに対し、本発明においては皮膜特性改質剤を添加するので、めっき液の表面張力が低下し、ビアホールにめっき液が入りこみやすくなる。このため、ボトムの膜厚がトップと同程度で均一となり、ホールあるいは溝内に均一にめっきを行なうことができる。また析出皮膜が緻密になり、ボイド等の不具合が発生しにくくなる。
【0035】
このように、本発明のイリジウムめっき液は皮膜特性改質剤を含有するので微細構造を有する電子部品のイリジウムめっきに好適に用いることができる。
【0036】
電子部品のイリジウムめっきは、上記イリジウムめっき液に電子部品を浸積して公知の方法により電解めっきを行う。
【0037】
本発明は、電子部品の微細部分が、配線間隔が200μm以下の配線あるいは直径200μm以下のビアホールの回路である場合に特に有効である。
【0038】
イリジウム電解めっきは、液温40〜90℃で行うことが可能であるが、50〜80℃が好ましい。めっき温度が40℃以下であると、めっきがほとんど進行せず、90℃以上であるとめっき液が分解しやすくなる。
【0039】
また、電流密度が0.01〜1.0A/dmの範囲でめっきが可能であるが、0.02〜0.6A/dmが好ましい。電流密度が0.01A/dm未満であると析出速度が極端に低下する。電流密度が1.0A/dmを超えると、微細配線電子部品にめっきした場合、析出皮膜がデンドライト状になり緻密な皮膜が形成されにくい。特にビアホール等の微細なホール内へのめっきにおいて、めっきの均一性が得られず、異常析出が生じやすい。
【0040】
【実施例】
以下、実施例を用いて本発明を更に詳細に説明する。
【0041】
実施例1
間隔が30〜200μmの配線とビアホール(直径30〜200μm、深さ5〜10μm)の回路を形成した、大きさ5×5cmの微細電子回路基板にNiめっきを施した基板を試料とした。
【0042】
臭化イリジウムを金属イリジウムとして5g/L、硫酸を10g/L、アルキルベタイン両性界面活性剤(ヤシ油アルキルベタイン)を30g/L、リン酸三カリウムを110g/Lを含有するイリジウムめっき液を調製した。このイリジウムめっき液を水酸化カリウム溶液を用いてpH5.0に調整し、液温を60℃とした中に上記試料を浸漬し、電流密度0.1A/dmで56分めっきした。めっき後のめっき液のpHを測定した結果、pHは4.9であった。
【0043】
実施例2
臭化イリジウムを金属イリジウムとして10g/L、硫酸を15g/L、アルキルエーテル非イオン界面活性剤(ポリオキシエチレンラウリルエーテル)を5g/L、スルファミン酸を15g/L、酢酸を8g/L、酢酸カリウム10g/Lを含有するイリジウムめっき液を調整した。このイリジウムめっき液を水酸化カリウム溶液を用いてpH4.0に調整し、液温を65℃とした中に上記試料を浸漬し、電流密度0.2A/dmで28分めっきした。めっき後のめっき液のpHを測定した結果、pHは4.0であった。
【0044】
実施例3
臭化イリジウムを金属イリジウムとして5g/L、硫酸を15g/L、アルキルベタイン両性界面活性剤(ラウリルジメチルアミンオキシド)を10g/L、シュウ酸を15g/L、リン酸一カリウムを40g/L、クエン酸三カリウムを15g/Lを含有するイリジウムめっき液を調製した。このイリジウムめっき液を水酸化カリウム溶液を用いてpH5.0に調整し、液温を65℃とした中に上記試料を浸漬し、電流密度0.1A/dmで56分めっきした。めっき後のめっき液のpHを測定した結果、pHは4.9であった。
【0045】
比較例1
臭化イリジウムを金属イリジウムとして10g/L、硫酸を15g/L、スルファミン酸を15g/L、ホウ酸を10g/Lを含有するイリジウムめっき液を調製した。このイリジウムめっき液を水酸化カリウム溶液を用いてpH5.0に調整し、液温を65℃とした中に上記試料を浸漬し、電流密度0.1A/dmで56分めっきした。めっき後のめっき液のpHを測定した結果、pHは3.5であった。
【0046】
実施例1〜3および比較例1で得られたイリジウムめっき済み試料のイリジウム皮膜の膜厚を蛍光X線膜厚測定装置を用いて測定した。また、析出外観と皮膜状態を金属顕微鏡にて、皮膜の密着性をテープ剥離にて評価した。更に、ビアホール内のめっき均一性を評価するためSEM断面による観察を行なった。結果を表1に示す。
【0047】
【表1】

Figure 2004052014
【0048】
実施例1〜3のホール内のトップとボトムの膜厚の差は比較例1に比べて差が少なく、むしろ、ボトムの方が膜厚が高くなっている。
【0049】
これに対し、比較例はトップに比べてボトムの膜厚が低く、ホール内へ均一なめっきができていないことがわかる。
【0050】
【発明の効果】
本発明によれば、イリジウムめっき液の電流効率が高いうえ安定であり、かつめっき液のpHの変動が少ないので、皮膜の膜厚を均一とすることができ、外観が良好なイリジウムめっきを行うことができる。また、本発明によれば、電子部品の微細配線部分へのイリジウムめっきを行った場合であってもビアホール内のボイドが無く、平滑で、均一な厚さの緻密なめっき皮膜を安定して形成することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an iridium plating solution and a plating method.
[0002]
[Prior art]
There have been few studies on the iridium plating solution technology, and it has not yet been put to practical use.
[0003]
Conventionally known iridium plating solutions include a plating solution containing a soluble iridium salt and sulfamic acid or sulfuric acid (USP 3,639,219), and a plating solution containing a soluble iridium salt and a carboxylate (Japanese Patent Laid-Open No. 6-316786). ). However, these have unstable current efficiency and cannot have a uniform appearance and a uniform film thickness. Also, the surface condition of the obtained plating film is very poor.
[0004]
Further, since the conventional iridium plating solution uses boric acid as a pH buffer, the pH buffering capacity is weak, the pH of the plating solution changes during plating, and the current efficiency tends to change easily. Therefore, it is necessary to frequently adjust the pH, which is not practical.
[0005]
In recent years, with the diversification of electronic components, plating with iridium having more excellent corrosion resistance has been required. In particular, plating on fine holes (via holes) such as interlayer connection holes and grooves formed by electronic circuit wiring on a semiconductor wafer such as Si or GaAs compound used for LSI or the like has no voids in the fine holes. It is required that plating can be performed uniformly. When an electronic component having such a fine structure is plated with a conventional iridium plating solution, there are problems such as occurrence of voids in the fine wiring portion, abnormal appearance of the plating surface, and precipitation of dendrites. Was not applicable.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an iridium plating solution and a plating method which have a small variation in pH of a plating solution, a stable current efficiency, a uniform film thickness, and a good plating appearance. In particular, the present invention provides an iridium plating solution and a plating method capable of forming a smooth and dense plating film on a fine wiring without voids in a via hole when performing iridium plating on a fine wiring portion of an electronic component. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The present invention that solves the above-mentioned problems is described below.
[0008]
[1] At least one selected from the group consisting of an amphoteric surfactant, a nonionic surfactant, a cationic surfactant and an anionic surfactant, in an aqueous solution containing a soluble iridium salt compound and an inorganic acid. An iridium plating solution comprising: a film property modifier comprising a surfactant.
[0009]
[2] The iridium plating solution according to [1], which contains at least one of a phosphate, an acetate, a citrate, and a tartrate as a pH buffer.
[0010]
[3] The iridium plating solution according to [1] or [2], containing at least one of a sulfonate and a carboxylate.
[0011]
[4] A plating method in which an electronic component is immersed in the iridium plating solution according to any one of [1] to [3], and iridium electrolytic plating is performed on a fine portion of the electronic component.
[0012]
[5] The plating method according to [4], wherein the minute part of the electronic component is a circuit of a wiring having a wiring interval of 200 μm or less or a via hole having a diameter of 200 μm or less.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The iridium plating solution of the present invention contains a soluble iridium salt compound and an inorganic acid.
[0014]
As the soluble iridium salt compound, for example, iridium salts such as iridium chloride, iridium bromide, iridium oxalate, and iridium sulfate can be used, and iridium bromide is preferable.
[0015]
The content of the soluble iridium salt compound is preferably 0.5 to 20 g / L as metal iridium, and more preferably 1.0 to 15 g / L. If the metal iridium concentration is less than 0.5 g / L, the plating rate is low, and if it exceeds 20 g / L, the iridium salt in the plating solution is easily decomposed and is not economical.
[0016]
As the inorganic acid, for example, sulfuric acid, hydrochloric acid, nitric acid and the like can be used, but sulfuric acid is preferable.
[0017]
The concentration of the inorganic acid is preferably 2 to 100 g / L, and more preferably 4 to 80 g / L. When the concentration is less than 2 g / L or more than 100 g / L, not only is the iridium salt in the plating solution easily decomposed, but also the conductivity is lowered, so that the current efficiency is extremely lowered and the precipitation of iridium tends to be hindered. There is.
[0018]
The iridium plating solution of the present invention comprises, in addition to the above components, at least one surfactant selected from the group consisting of amphoteric surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants. And a film property modifier consisting of
[0019]
As the film property modifier, those having low foaming property are preferable. Examples of low foaming film property modifiers include amphoteric surfactants such as alkyl betaines and amine oxides, and nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene alkyl allyl ethers. And an alkyl imidazoline-based cationic surfactant and a carboxylic acid-based anionic surfactant having an alkyl group having 8 to 26 carbon atoms can be used. Among them, alkyl betaine-based and polyoxyethylene alkyl allyl ether-based surfactants are preferable.
[0020]
Specifically, amphoteric surfactants such as coconut oil alkyl betaine, lauryl dimethylaminoacetic acid betaine, lauryl dimethylamine oxide, coconut oil alkyl dimethylamine oxide, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene Examples include nonionic surfactants such as stearyl ether; cationic surfactants such as coconut oil alkyl imidazolium and octadecyl imidazolium; and anionic surfactants such as triethanolamine laurate and disodium lauryl sulfosuccinate. it can.
[0021]
Since these are low foaming properties, they have a feature that bubbles are hardly generated even when the plating solution is circulated by a pump or the like. Bubbles may be adsorbed to the plating portion on the substrate and may hinder plating. In particular, in plating on a fine circuit, unplating often occurs due to bubbles, and therefore a plating solution with low foaming properties is desired.
[0022]
The concentration of the film property modifier is preferably from 0.01 to 30 g / L, more preferably from 0.02 to 20 g / L. When the concentration of the film property modifier is less than 0.01 g / L, the deposited film on the fine electronic component is not dense and tends to be a film having an abnormal appearance. In particular, in plating in a via hole, uniform electrodeposition of plating cannot be obtained, and non-precipitation or abnormal deposition is likely to occur. In addition, the current efficiency is reduced, and it is difficult to obtain a stable plating rate. If the concentration of the film property modifier exceeds 30 g / L, foaming tends to increase, the current efficiency also decreases, and the precipitation of iridium tends to be hindered.
[0023]
Further, the iridium plating solution of the present invention preferably contains a pH buffer.
[0024]
pH buffers include phosphoric acid, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, acetic acid, tartaric acid, citric acid, citric acid Examples thereof include monopotassium and tripotassium citrate.
[0025]
The concentration of the pH buffer is preferably from 5 to 150 g / L, more preferably from 8 to 120 g / L. When the concentration of the pH buffer is less than 5 g / L, the fluctuation of the pH of the plating solution is large, and when it exceeds 150 g / L, the current efficiency tends to decrease.
[0026]
The iridium plating solution of the present invention preferably contains at least one of a sulfonate and a carboxylate in order to stabilize current efficiency, in addition to the above essential components.
[0027]
Examples of the sulfonic acid salt include a sulfamic acid salt, a sulfinic acid, a benzenesulfonic acid salt, and methanesulfonic acid, and preferably a sulfamic acid.
[0028]
Examples of the carboxylate include oxalic acid, glutaric acid, succinic acid, malonic acid, maleic acid, propionic acid and the like.
[0029]
The concentration of the sulfonate and carboxylate is preferably 1 to 100 g / L, more preferably 2 to 80 g / L. When the concentration of the sulfonate and the carboxylate is less than 1 g / L, the effect of stabilizing the current efficiency is small, and when the concentration exceeds 100 g / L, the current efficiency tends to decrease.
[0030]
The iridium plating solution of the present invention can be used at pH 1.0 to 7.0, but is preferably used at pH 2.0 to 6.0. When the pH is less than 1.0 or more than 7.0, not only the plating solution is easily decomposed, but also the current efficiency is lowered and precipitation is prevented.
[0031]
As described above, the iridium plating solution of the present invention contains a film property modifier composed of at least one kind of low foaming surfactant as an essential component.
[0032]
Normally, when plating on via holes, etc., if the film property modifier is not added, the plating solution has a high surface tension, so it is difficult for the plating solution to enter fine holes or grooves, and the plating film grows uniformly. It tends to be impossible. The thickness of the bottom of the hole or the bottom of the groove (bottom) tends to be smaller than the thickness of the surface (top). For this reason, in order to make the bottom film thickness a predetermined film thickness, it is necessary to increase the plating time.
[0033]
However, when the plating time is increased, the thickness of the top becomes too thick, and the deposited film is not dense, and defects such as voids are likely to occur in the holes.
[0034]
On the other hand, in the present invention, since the film property modifier is added, the surface tension of the plating solution decreases, and the plating solution easily enters the via holes. For this reason, the film thickness of the bottom becomes almost the same as that of the top, and the plating can be performed uniformly in the holes or grooves. In addition, the deposited film becomes dense, and defects such as voids are less likely to occur.
[0035]
As described above, since the iridium plating solution of the present invention contains a film property modifier, it can be suitably used for iridium plating of electronic components having a fine structure.
[0036]
The iridium plating of an electronic component is performed by immersing the electronic component in the iridium plating solution and performing electrolytic plating by a known method.
[0037]
The present invention is particularly effective when the fine part of the electronic component is a circuit having a wiring having a wiring interval of 200 μm or less or a via hole having a diameter of 200 μm or less.
[0038]
The iridium electrolytic plating can be performed at a liquid temperature of 40 to 90 ° C, but preferably 50 to 80 ° C. When the plating temperature is 40 ° C. or lower, plating hardly proceeds, and when the plating temperature is 90 ° C. or higher, the plating solution is easily decomposed.
[0039]
Plating can be performed at a current density in the range of 0.01 to 1.0 A / dm 2 , but 0.02 to 0.6 A / dm 2 is preferable. When the current density is less than 0.01 A / dm 2 , the deposition rate is extremely reduced. When the current density exceeds 1.0 A / dm 2 , when plating is applied to fine wiring electronic components, the deposited film becomes dendritic and a dense film is hardly formed. In particular, when plating into fine holes such as via holes, plating uniformity cannot be obtained, and abnormal deposition is likely to occur.
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0041]
Example 1
A 5 × 5 cm fine electronic circuit board on which a circuit having wirings and via holes (30 to 200 μm in diameter, 5 to 10 μm in depth) with an interval of 30 to 200 μm was formed was used as a sample.
[0042]
An iridium plating solution containing 5 g / L of iridium bromide as metal iridium, 10 g / L of sulfuric acid, 30 g / L of an alkyl betaine amphoteric surfactant (coconut oil alkyl betaine), and 110 g / L of tripotassium phosphate is prepared. did. The iridium plating solution was adjusted to pH 5.0 using a potassium hydroxide solution, and the sample was immersed in the solution at a temperature of 60 ° C., and plated at a current density of 0.1 A / dm 2 for 56 minutes. As a result of measuring the pH of the plating solution after plating, the pH was 4.9.
[0043]
Example 2
10 g / L of iridium bromide as metal iridium, 15 g / L of sulfuric acid, 5 g / L of alkyl ether nonionic surfactant (polyoxyethylene lauryl ether), 15 g / L of sulfamic acid, 8 g / L of acetic acid, acetic acid An iridium plating solution containing 10 g / L of potassium was prepared. The iridium plating solution was adjusted to pH 4.0 using a potassium hydroxide solution, the sample was immersed in a solution temperature of 65 ° C., and plated at a current density of 0.2 A / dm 2 for 28 minutes. As a result of measuring the pH of the plating solution after plating, the pH was 4.0.
[0044]
Example 3
5 g / L of iridium bromide as metal iridium, 15 g / L of sulfuric acid, 10 g / L of alkyl betaine amphoteric surfactant (lauryl dimethylamine oxide), 15 g / L of oxalic acid, 40 g / L of monopotassium phosphate, An iridium plating solution containing 15 g / L of tripotassium citrate was prepared. This iridium plating solution was adjusted to pH 5.0 using a potassium hydroxide solution, and the sample was immersed in a solution temperature of 65 ° C., and plated at a current density of 0.1 A / dm 2 for 56 minutes. As a result of measuring the pH of the plating solution after plating, the pH was 4.9.
[0045]
Comparative Example 1
An iridium plating solution containing 10 g / L of iridium bromide as metal iridium, 15 g / L of sulfuric acid, 15 g / L of sulfamic acid, and 10 g / L of boric acid was prepared. This iridium plating solution was adjusted to pH 5.0 using a potassium hydroxide solution, and the sample was immersed in a solution temperature of 65 ° C., and plated at a current density of 0.1 A / dm 2 for 56 minutes. As a result of measuring the pH of the plating solution after plating, the pH was 3.5.
[0046]
The film thickness of the iridium film of the iridium-plated samples obtained in Examples 1 to 3 and Comparative Example 1 was measured using a fluorescent X-ray film thickness measuring device. The appearance of the deposited film and the state of the film were evaluated with a metallographic microscope, and the adhesion of the film was evaluated by peeling off the tape. Further, observations were made on SEM cross sections to evaluate the plating uniformity in the via holes. Table 1 shows the results.
[0047]
[Table 1]
Figure 2004052014
[0048]
The difference between the film thickness of the top and the bottom in the holes of Examples 1 to 3 is smaller than that of Comparative Example 1, and rather, the film thickness of the bottom is higher.
[0049]
On the other hand, in the comparative example, the thickness of the bottom was smaller than that of the top, and it was found that uniform plating was not formed in the holes.
[0050]
【The invention's effect】
According to the present invention, the current efficiency of the iridium plating solution is high and stable, and the variation of the pH of the plating solution is small, so that the film thickness can be made uniform and the iridium plating with a good appearance can be performed. be able to. Further, according to the present invention, even when iridium plating is performed on a fine wiring portion of an electronic component, there is no void in a via hole, and a smooth, uniform, dense plating film having a uniform thickness is stably formed. can do.

Claims (5)

可溶性イリジウム塩化合物と無機酸とを含有する水溶液に、両性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤及び陰イオン性界面活性剤の群より選ばれる少なくとも1種類の界面活性剤からなる皮膜特性改質剤とを含むことを特徴とするイリジウムめっき液。In an aqueous solution containing a soluble iridium salt compound and an inorganic acid, at least one type of surfactant selected from the group of amphoteric surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants An iridium plating solution comprising a film property modifier comprising an agent. pH緩衝剤として、リン酸塩、酢酸塩、クエン酸塩及び酒石酸塩の少なくとも1つを含有する請求項1に記載のイリジウムめっき液。The iridium plating solution according to claim 1, wherein the pH buffer contains at least one of phosphate, acetate, citrate, and tartrate. スルホン酸塩及びカルボン酸塩の少なくとも一つを含有する請求項1又は2に記載のイリジウムめっき液。3. The iridium plating solution according to claim 1, wherein the iridium plating solution contains at least one of a sulfonate and a carboxylate. 請求項1乃至3のいずれかに記載のイリジウムめっき液に電子部品を浸積して電子部品の微細部分にイリジウム電解めっきを行なうめっき方法。4. A plating method for immersing an electronic component in the iridium plating solution according to claim 1 to perform iridium electrolytic plating on a fine portion of the electronic component. 電子部品の微細部分が、配線間隔が200μm以下の配線又は直径200μm以下のビアホールの回路である請求項4に記載のめっき方法。The plating method according to claim 4, wherein the fine part of the electronic component is a circuit having a wiring having a wiring interval of 200 μm or less or a via hole having a diameter of 200 μm or less.
JP2002208085A 2002-07-17 2002-07-17 Liquid and method for plating iridium Pending JP2004052014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208085A JP2004052014A (en) 2002-07-17 2002-07-17 Liquid and method for plating iridium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208085A JP2004052014A (en) 2002-07-17 2002-07-17 Liquid and method for plating iridium

Publications (1)

Publication Number Publication Date
JP2004052014A true JP2004052014A (en) 2004-02-19

Family

ID=31932326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208085A Pending JP2004052014A (en) 2002-07-17 2002-07-17 Liquid and method for plating iridium

Country Status (1)

Country Link
JP (1) JP2004052014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039778A (en) * 2005-08-05 2007-02-15 Nisshin Kasei Kk Iridium plating solution and iridium plating method
CN101974770A (en) * 2010-11-18 2011-02-16 北京航空航天大学 Aqueous solution for electrodepositing iridium layer and method for preparing iridium layer in aqueous solution by way of electrodeposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039778A (en) * 2005-08-05 2007-02-15 Nisshin Kasei Kk Iridium plating solution and iridium plating method
JP4751126B2 (en) * 2005-08-05 2011-08-17 日進化成株式会社 Iridium plating solution and iridium plating method
CN101974770A (en) * 2010-11-18 2011-02-16 北京航空航天大学 Aqueous solution for electrodepositing iridium layer and method for preparing iridium layer in aqueous solution by way of electrodeposition

Similar Documents

Publication Publication Date Title
JP4932094B2 (en) Electroless gold plating solution and electroless gold plating method
JP4598945B2 (en) Seed layer repair method
US20110259750A1 (en) Method of direct plating of copper on a ruthenium alloy
TWI630176B (en) Pretreatment agent for electroless plating, pretreatment method using electroplating substrate using the above pretreatment method for electroless plating, and manufacturing method thereof
JP2000144441A (en) Electroless gold plating method and electroless gold plating solution used therefor
JP2002115090A (en) Electrolytic solution for copper plating and electroplating method for copper wiring of semiconductor device using the same
JP2012026029A (en) Aluminum oxide film remover and method for surface treatment of aluminum or aluminum alloy
KR101170560B1 (en) Compositions for the currentless depoisition of ternary materials for use in the semiconductor industry
KR20150136066A (en) Electroless copper plating solution
KR20060061395A (en) Improved copper bath for electroplating fine circuitry on semiconductor chips
TWI412631B (en) Copper plating solution for embedding ULSI (Ultra Large-Scale Integration) micro copper wiring
EP3312308A1 (en) Nickel plating solution
JP2004052014A (en) Liquid and method for plating iridium
JP2009242860A (en) Pretreating agent for acidic copper and plating method using the same
TW521325B (en) Seed layer deposition
KR20100128865A (en) A composition of eletroless chemical copper plating for nano scale device interconnection
TWI414643B (en) Composition of copper electroplating solution
JP2004190093A (en) Displacement electroless gold plating bath
KR101115592B1 (en) Non-cyanide silver plating solution and method for forming plating using it
KR101493358B1 (en) Method of fabricating copper plating layer using electroless copper plating solution
JPH11269693A (en) Deposition method of copper and copper plating liquid
JPH1072694A (en) Surface coating material by tin and tin-lead alloy plating and electronic parts by utilizing the coating material
JP2003293189A (en) Copper sulfate plating method
KR100752504B1 (en) Fabrication Method of Metal Interconnection by Electroless Plating
KR101224206B1 (en) Electroless silver plating solution with high stability, electroless plating method using the same and silver coating layer prepared by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A02