JP2007039778A - Iridium plating solution and iridium plating method - Google Patents

Iridium plating solution and iridium plating method Download PDF

Info

Publication number
JP2007039778A
JP2007039778A JP2005228109A JP2005228109A JP2007039778A JP 2007039778 A JP2007039778 A JP 2007039778A JP 2005228109 A JP2005228109 A JP 2005228109A JP 2005228109 A JP2005228109 A JP 2005228109A JP 2007039778 A JP2007039778 A JP 2007039778A
Authority
JP
Japan
Prior art keywords
iridium
plating
plating solution
cathode current
iridium plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005228109A
Other languages
Japanese (ja)
Other versions
JP4751126B2 (en
Inventor
Yukio Matsubara
幸夫 松原
Takashi Osaka
高志 大坂
Keitaro Kato
桂太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Kasei KK
Original Assignee
Nisshin Kasei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Kasei KK filed Critical Nisshin Kasei KK
Priority to JP2005228109A priority Critical patent/JP4751126B2/en
Publication of JP2007039778A publication Critical patent/JP2007039778A/en
Application granted granted Critical
Publication of JP4751126B2 publication Critical patent/JP4751126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical and stable iridium plating solution capable of keeping high cathode current density and cathode current efficiency for a long period and obtaining an excellent coating film and an iridium plating method. <P>SOLUTION: The iridium plating solution contains a soluble iridium salt containing halogen, alcohols and preferably at least one of sulfate, nitrate and a hydrohalogenic acid salt. The iridium plating method is an electroplating method for forming an iridium coating film using the iridium plating solution in which alcohols are added or alcohols, sulfate, nitrate and hydrohalogenic acid salt are added in a plating bath provided a diaphragm between an anode and a cathode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はイリジウムめっき液およびイリジウムめっき方法に関し、詳しくは、高い電流効率が安定に維持でき、良好なメッキ被膜が得られるイリジウムめっき液およびイリジウムめっき方法に関する。   The present invention relates to an iridium plating solution and an iridium plating method, and more particularly to an iridium plating solution and an iridium plating method capable of stably maintaining high current efficiency and obtaining a good plating film.

防錆膜形成、保護膜形成、金属光沢付与、電導性付与などのために、金属をはじめとして多くの物品に電気めっき(めっきと略称する)が施されている。最近は、電子部品の配線形成にもめっきが利用されている。特に電子部品等には金めっきや白金めっきのように高価なめっき素材が用いられている場合も多い。このような環境の中で、イリジウムめっき皮膜は高硬度で耐熱性、耐食性が優れているため、工業的な利用価値は非常に高く実用化に向けた研究開発が続けられている。イリジウムは、高い硬度を有するとともに、高濃度の強酸や王水、ハロゲン類に対しても優れた耐腐食性を示す金属であるが、加工の困難性のためその用途は一部の硬化剤や触媒等に限られていた。しかし、近年のめっき技術の発展に伴い、イリジウムめっきを装飾品のみならず電子部品の配線や防食材等に利用する技術が開発されている。イリジウムめっき浴としては、イリジウム化合物としてヘキサクロロイリジウム(III)酸塩、ヘキサクロロイリジウム(IV)酸塩のような塩化イリジウム酸塩、臭化イリジウム酸塩、硫酸イリジウム酸塩などの可溶性イリジウム塩を用いたものが知られており、例えば、可溶性イリジウム塩とカルボン酸塩等を含有するめっき液、可溶性イリジウム塩と無機酸と界面活性剤を含有するめっき液、可溶性イリジウム塩とスルファミン酸又は硫酸を含有するめっき液等が報告されている(特許文献1、2、3)。これらの報告によれば、緻密で均一な被膜を持つイリジウムめっきができるようになり、陰極電流効率もかなり良好になってきた。特許文献1では、ハロゲンイオンとイリジウムの錯体にカルボン酸類を添加したイリジウムメッキ液により安定で高い電流効率と早いメッキ速度を実現している。また、特許文献2では、可溶性イリジウム塩化物に無機酸と界面活性剤を加えたメッキ液により、平滑で緻密な被膜形成を実現できるとしている。   Many articles including metal are electroplated (abbreviated as plating) for forming a rust-preventing film, forming a protective film, imparting a metallic luster, and imparting conductivity. Recently, plating has also been used to form wiring for electronic components. In particular, expensive plating materials such as gold plating and platinum plating are often used for electronic parts and the like. In such an environment, the iridium plating film has high hardness, excellent heat resistance, and corrosion resistance. Therefore, the industrial utility value is very high, and research and development for practical use is continued. Iridium is a metal that has high hardness and excellent corrosion resistance against high concentrations of strong acids, aqua regia, and halogens. It was limited to the catalyst. However, with the recent development of plating technology, a technology has been developed that uses iridium plating not only for decorative items but also for wiring of electronic parts, anticorrosion materials, and the like. As the iridium plating bath, a soluble iridium salt such as hexachloroiridium (III) salt, chloroiridate such as hexachloroiridium (IV), bromide iridate, or iridium sulfate was used as the iridium compound. For example, a plating solution containing a soluble iridium salt and a carboxylate, a plating solution containing a soluble iridium salt, an inorganic acid and a surfactant, a soluble iridium salt and a sulfamic acid or sulfuric acid Plating solutions and the like have been reported (Patent Documents 1, 2, and 3). According to these reports, it has become possible to perform iridium plating with a dense and uniform film, and the cathode current efficiency has also been considerably improved. In Patent Document 1, a stable and high current efficiency and a high plating rate are realized by an iridium plating solution obtained by adding a carboxylic acid to a complex of a halogen ion and iridium. Patent Document 2 states that a smooth and dense film can be formed by a plating solution obtained by adding an inorganic acid and a surfactant to soluble iridium chloride.

特開平6−316786号公報JP-A-6-316786 特開2004−52014号公報JP 2004-52014 A USP 3,639,219USP 3,639,219

上述のようにイリジウムめっきは可能ではあるが、これまでは工業的に利用できるような長時間のめっきにおいても高い陰極電流効率を維持することは難しかった。本発明においては、高い陰極電流密度でも高陰極電流効率を維持でき、良好な皮膜が得られる実用的で安定したイリジウムめっき液及びイリジウムめっき方法の提供を課題としている。   As described above, iridium plating is possible, but until now it has been difficult to maintain high cathode current efficiency even in long-term plating that can be used industrially. In the present invention, it is an object to provide a practical and stable iridium plating solution and an iridium plating method capable of maintaining high cathode current efficiency even at a high cathode current density and obtaining a good film.

上記課題を解決するため、本発明者らは以下の手段を見出した。
(1)ハロゲンを含む可溶性イリジウム塩およびアルコール類を含有するイリジウムめっき液。
(2)硫酸塩、硝酸塩、およびハロゲン化水素酸塩のうち少なくとも1種を含む(1)に記載のイリジウムめっき液。
(3)アノードとカソードの間に隔膜を備えためっき槽中で(1)または(2)に記載のイリジウムめっき液によりイリジウム被膜を形成するめっき方法。
In order to solve the above problems, the present inventors have found the following means.
(1) An iridium plating solution containing a halogen-containing soluble iridium salt and alcohols.
(2) The iridium plating solution according to (1), comprising at least one of sulfate, nitrate, and hydrohalide.
(3) A plating method in which an iridium film is formed with the iridium plating solution according to (1) or (2) in a plating tank provided with a diaphragm between an anode and a cathode.

本発明のイリジウムめっき液及びイリジウムめっき方法によれば、比較的高い陰極電流密度でのめっきが可能であり、しかも、陰極電流効率は90%以上を長く維持することが出来、早いめっき速度でも安定で良好なめっき皮膜が得られる。   According to the iridium plating solution and the iridium plating method of the present invention, it is possible to perform plating at a relatively high cathode current density, and the cathode current efficiency can be maintained at 90% or more for a long time and is stable even at a high plating rate. A good plating film can be obtained.

本発明のイリジウムめっき液はハロゲンを含む可溶性イリジウム塩を含有する。ハロゲンを含む可溶性イリジウム塩としては、塩化イリジウム(III)酸塩、塩化イリジウム(IV)酸塩、臭化イリジウム(III)酸塩、臭化イリジウム(IV)酸塩等のハロゲン化イリジウム酸塩を用いることができる。これらの中でも臭化イリジウム(III)酸塩が好ましい。塩基イオンは特に限定されないが、通常は入手し易いナトリウム、カリウム、リチウム、マグネシウム、カルシウムなどのアルカリ金属やアルカリ土類金属のイオンあるいはアンモニウムイオンなどを用いればよい。具体的なイリジウム塩としては、ヘキサクロロイリジウム(III)酸カリウム、ヘキサクロロイリジウム(IV)酸カリウム、ヘキサクロロイリジウム(III)酸ナトリウム、ヘキサクロロイリジウム(IV)酸ナトリウム、ヘキサクロロイリジウム(III)酸アンモニウム、ヘキサクロロイリジウム(IV)酸アンモニウム、ヘキサブロモイリジウム(III)酸カリウム、ヘキサブロモイリジウム(IV)酸カリウム、ヘキサブロモイリジウム(III)酸ナトリウム、ヘキサブロモイリジウム(IV)酸ナトリウムなどが挙げられる。なお、ハロゲン化イリジウム酸塩はイリジウム酸塩そのものをめっき液に添加してもよいし、臭化イリジウムや塩化イリジウムのようなハロゲン化イリジウムと水酸化ナトリウムや水酸化カリウムをめっき液に添加してpHを調整して作成もよい。ハロゲンを含む可溶性イリジウム塩のめっき液中の含有量としては、金属イリジウムとして0.5〜30g/lが好ましく、さらに好ましくは1〜20g/lである。金属イリジウム濃度が上記未満であるとめっき速度が遅くなり、上記範囲を超えると、イリジウムイオンが飽和に達し実用的には無駄になる。めっき中にイリジウムは消費され減少していくので消費量に応じてイリジウム塩を添加してその濃度を保ってやればよい。   The iridium plating solution of the present invention contains a soluble iridium salt containing halogen. Examples of soluble iridium salts containing halogen include iridium chloride (III), iridium (IV) chloride, iridium bromide (III), and iridium bromide (IV) halides such as iridium halides. Can be used. Among these, iridium bromide (III) acid salt is preferable. The base ion is not particularly limited, but normally available alkali metal or alkaline earth metal ions such as sodium, potassium, lithium, magnesium, calcium, or ammonium ions may be used. Specific iridium salts include potassium hexachloroiridium (III), potassium hexachloroiridium (IV), sodium hexachloroiridium (III), sodium hexachloroiridium (IV), ammonium hexachloroiridium (III), hexachloroiridium (IV) ammonium acid, potassium hexabromoiridium (III), potassium hexabromoiridium (IV), sodium hexabromoiridium (III), sodium hexabromoiridium (IV), and the like. The iridium halide may be added to the plating solution, or iridium halide such as iridium bromide or iridium chloride and sodium hydroxide or potassium hydroxide may be added to the plating solution. It may be prepared by adjusting the pH. The content of the soluble iridium salt containing halogen in the plating solution is preferably 0.5 to 30 g / l, more preferably 1 to 20 g / l as metal iridium. When the metal iridium concentration is less than the above, the plating rate is slow, and when the metal iridium concentration exceeds the above range, the iridium ion reaches saturation and is practically wasted. Since iridium is consumed and reduced during plating, an iridium salt may be added to maintain the concentration according to consumption.

本発明のイリジウムめっき液は上記成分以外にアルコール類の中から選ばれる1種類以上の化合物を含有する。アルコール類としてはどのようなアルコールを用いても良いが、水溶性で複雑な官能機を含まない通常の1価および多価アルコールが好適である。1価アルコールとしてエタノール、ブタノール、2価アルコールとしてエチレングリコール、プロピレングリコール、1,4−ブタンジオール、3価アルコールとしてグリセリン、6価アルコールとしてイノシット、その他の多価アルコールである糖類としてはグルコースが特に好適である。低沸点のエタノール、プロパノール、特にメタノールはめっき条件によっては蒸発し易いので大量の補充が必要となる点で実用的ではない。しかし、アルコール分子に占めるヒドロキシ基の比率が低すぎるものは好ましくない。例えば、糖類と違ってポリエチレングリコールのように高分子量の化合物でヒドロキシル基の含有比率が比較的少ない化合物は実用的ではない。めっき液中のアルコールの濃度は、0.0005〜0.5mol/lが好ましく、さらに好ましくは0.001〜0.05mol/lである。アルコールの濃度が低すぎると添加効果がほとんど現れず高陰極電流効率を持続できず、上記範囲を超えると陰極電流効率が低下しイリジウムの析出が妨げられる傾向がある。   The iridium plating solution of the present invention contains one or more compounds selected from alcohols in addition to the above components. Any alcohol may be used as the alcohol, but ordinary monohydric and polyhydric alcohols that are water-soluble and do not contain complicated functional units are suitable. Ethanol, butanol as monohydric alcohol, ethylene glycol, propylene glycol, 1,4-butanediol as dihydric alcohol, glycerin as trihydric alcohol, inosit as hexahydric alcohol, glucose as other polyhydric alcohol, especially glucose Is preferred. Low boiling point ethanol, propanol, and particularly methanol are not practical in that a large amount of replenishment is required because they easily evaporate depending on plating conditions. However, it is not preferable that the ratio of hydroxy groups in alcohol molecules is too low. For example, unlike sugars, a high molecular weight compound such as polyethylene glycol, which has a relatively small hydroxyl group content, is not practical. The concentration of the alcohol in the plating solution is preferably 0.0005 to 0.5 mol / l, more preferably 0.001 to 0.05 mol / l. If the alcohol concentration is too low, the effect of addition hardly appears and the high cathode current efficiency cannot be maintained, and if the alcohol concentration exceeds the above range, the cathode current efficiency tends to decrease and the precipitation of iridium tends to be prevented.

本発明のイリジウムめっき液は、上記の必須成分に加え、硫酸塩、硝酸塩、ハロゲン化水素酸塩のうちの1種以上を含むことが好ましい。硫酸塩としては硫酸ナトリウム、硫酸カリウム等、硝酸塩としては硝酸ナトリウム、硝酸カリウム等、ハロゲン化水素酸塩としては塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム等が挙げられる。めっき液中の硫酸塩、硝酸塩、ハロゲン化水素酸塩の濃度は0.01〜6mol/lが好ましく、さらに好ましくは0.1〜2mol/lである。濃度が上記未満だとめっき液の導電性が低下し、上記範囲を超えると過飽和となり易く実用的でない。   The iridium plating solution of the present invention preferably contains one or more of sulfates, nitrates and hydrohalides in addition to the above essential components. Examples of the sulfate include sodium sulfate and potassium sulfate. Examples of the nitrate include sodium nitrate and potassium nitrate. Examples of the hydrohalide include sodium chloride, potassium chloride, sodium bromide, and potassium bromide. The concentration of sulfate, nitrate and hydrohalide in the plating solution is preferably 0.01 to 6 mol / l, more preferably 0.1 to 2 mol / l. When the concentration is less than the above, the electroconductivity of the plating solution is lowered.

本発明のイリジウムめっき方法は、めっき槽中にアノード側とカソード側を隔てる隔膜を用いることが好ましい。隔膜としては、イオン透過性であるが固体や気体は遮断するような材質の膜がよい。例えば、ガラスフィルター、素焼き板、イオン交換膜、合成繊維(ポリプロピレン等)等、あるいは通常の電気分解に使用される隔膜を用いればよい。隔膜を用いることにより、アノード側で発生した気体や固体がカソード側に移動し生成したイリジウム皮膜中に混入し、被膜の緻密性を疎外したりボイドを発生させたりすることがなくなる。   In the iridium plating method of the present invention, it is preferable to use a diaphragm separating the anode side and the cathode side in the plating tank. The diaphragm is preferably made of a material that is ion permeable but blocks solids and gases. For example, a glass filter, an unglazed plate, an ion exchange membrane, a synthetic fiber (polypropylene or the like), or a diaphragm used for normal electrolysis may be used. By using the diaphragm, the gas or solid generated on the anode side moves to the cathode side and is mixed into the generated iridium film, so that the denseness of the film is not excluded or voids are not generated.

本発明のイリジウムめっきは通常の電解めっきと同様の操作によりめっきをすることができる。本発明のイリジウムめっき液は、pH1.0〜8.0での使用が可能であるが、実用的にはpH2.0〜7.0が好ましい。pHが低すぎると陰極電流効率が低下し、pHが高すぎるとめっき液が分解しやすくなる。また、本発明のイリジウムめっき液は、常圧では液温50〜99℃であれば十分使用が可能であるが、70〜95℃とすることが好ましい。めっき温度が低いとイリジウム被膜がほとんど析出せず、99℃以上だと水の蒸発が激しくなり実用に適していない。特に、上述したように比較的低沸点のアルコールは蒸発し易く高温条件では使用しにくい。本発明のイリジウムめっき法は、陰極電流密度を0.01〜3.0A/dmの範囲でのめっきが好ましく、さらに好ましくは0.1〜1.0A/dmとすればよい。陰極電流密度が上記範囲より低いと析出速度が極端に遅く、上記範囲より高いと水素の発生により陰極電流効率が低下したり、めっき被膜が緻密でなくなることがある。なお、ピット防止用に通常電気めっきに用いられる陰イオン界面活性剤等(ポリオキシエチレンアルキルエーテル等)を用いることも好ましい態様である。 The iridium plating of the present invention can be plated by the same operation as ordinary electrolytic plating. The iridium plating solution of the present invention can be used at pH 1.0 to 8.0, but practically pH 2.0 to 7.0 is preferable. When the pH is too low, the cathode current efficiency is lowered, and when the pH is too high, the plating solution is easily decomposed. Further, the iridium plating solution of the present invention can be sufficiently used at normal pressure as long as the solution temperature is 50 to 99 ° C., but is preferably 70 to 95 ° C. When the plating temperature is low, almost no iridium film is deposited, and when it is 99 ° C. or higher, the evaporation of water becomes intense and is not suitable for practical use. In particular, as described above, alcohol having a relatively low boiling point easily evaporates and is difficult to use under high temperature conditions. Iridium plating method of the present invention, the cathode current density is preferably plated with a range of 0.01~3.0A / dm 2, more preferably it may be the 0.1~1.0A / dm 2. When the cathode current density is lower than the above range, the deposition rate is extremely slow. When the cathode current density is higher than the above range, the cathode current efficiency may be lowered due to the generation of hydrogen, or the plating film may not be dense. In addition, it is also a preferable aspect to use an anionic surfactant or the like (polyoxyethylene alkyl ether or the like) usually used for electroplating for preventing pits.

以下に実施例および比較例を用いて本発明を具体的に説明する。但し、本発明は以下の実施例に限られるものではない。
(実施例1)
蒸留水中に、臭化イリジウムを金属イリジウムとして10g/l、エチレングリコールを0.008mol/l、硫酸ナトリウムを0.5mol/l、臭化ナトリウムを0.5mol/l含有するイリジウムめっき液を調整した。このイリジウムめっき液に水酸化ナトリウムを加えてpH5に調整した。液温は85℃とした。めっき槽にはアノード側とカソード側を隔てる隔膜としてポリプロピレン製袋を設置した。ニッケル板に金ストライクめっきをしたものを試料として浸漬し、陰極電流密度0.5A/dmで20分間めっきをした。その後、めっきに使ったイリジウムめっき液のpH調整をせずに再び同じ条件(液温85℃、陰極電流密度0.5A/dm、20分間)でめっきを繰返し、合計4回、80分間めっきを実施した。その際の陰極電流効率を図1に示した。図から判るように3回目のめっき(60分間)までは陰極電流効率はほぼ100%であった。なお、得られた60分間までのめっき試料(3個目まで)のめっき皮膜は、外観が平滑で光沢があり、密着性も良好であった。
The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
Example 1
An iridium plating solution containing 10 g / l iridium bromide as metal iridium, 0.008 mol / l ethylene glycol, 0.5 mol / l sodium sulfate, and 0.5 mol / l sodium bromide in distilled water was prepared. . The iridium plating solution was adjusted to pH 5 by adding sodium hydroxide. The liquid temperature was 85 ° C. In the plating tank, a polypropylene bag was installed as a diaphragm separating the anode side and the cathode side. A nickel plate plated with gold strike was immersed as a sample and plated at a cathode current density of 0.5 A / dm 2 for 20 minutes. Thereafter, plating was repeated again under the same conditions (liquid temperature 85 ° C., cathode current density 0.5 A / dm 2 , 20 minutes) without adjusting the pH of the iridium plating solution used for plating, for a total of 4 times for 80 minutes. Carried out. The cathode current efficiency at that time is shown in FIG. As can be seen from the figure, the cathode current efficiency was almost 100% until the third plating (60 minutes). The obtained plating film of up to 60 minutes of plating samples (up to the third one) had a smooth appearance, gloss, and good adhesion.

(実施例2)
実施例1と同様の組成と条件で、めっきの途中イリジウムとエチレングリコールを補充して濃度を一定に保ち、さらにイリジウムめっき液のpH調整も行いながら金属イリジウムとして10g/lを消費するまで合計503分間めっきを実施した。その後においても、初期の陰極電流効率(ほぼ100%)を維持していた。その際のめっき被膜の状態も良好であった。
(Example 2)
In the same composition and conditions as in Example 1, iridium and ethylene glycol were replenished during the plating to keep the concentration constant, and while adjusting the pH of the iridium plating solution, a total of 503 was consumed until 10 g / l was consumed as metallic iridium. Plating was performed for a minute. Even after that, the initial cathode current efficiency (almost 100%) was maintained. The state of the plating film at that time was also good.

(実施例3〜15)
実施例1のめっき液のアルコール類、陰極電流密度、めっき時間などを表1に示すように変更した以外は実施例1と同様にして本発明のイリジウムめっきをした。表1にその結果の陰極電流効率およびめっき被膜の厚さを示した。なお、これらの実施例の試料のめっき皮膜の外観は平滑で光沢があり、密着性も良好であった。
(Examples 3 to 15)
The iridium plating of the present invention was carried out in the same manner as in Example 1 except that the alcohols, cathode current density, plating time, etc. of the plating solution of Example 1 were changed as shown in Table 1. Table 1 shows the resulting cathode current efficiency and plating film thickness. The appearance of the plating film of the samples of these examples was smooth and glossy, and the adhesion was good.

Figure 2007039778
Figure 2007039778

(比較例1)
臭化イリジウムを金属イリジウムとして10g/l、マロン酸を0.02mol/l、ホウ酸を40g/l含有するイリジウムめっき液を調整した。このイリジウムめっき液を水酸化ナトリウムを用いてpH5に調整した。液温は85℃とし、ニッケル板に金ストライクめっきをしたものを試料として浸漬し、陰極電流密度0.5A/dmで20分間めっきをした。その後、めっきに使ったイリジウムめっき液のpH調整をせずに再び同じ条件(液温85℃、陰極電流密度0.5A/dm、20分)でめっきをもう1回行った。陰極電流効率の変化を図1に示した。
(Comparative Example 1)
An iridium plating solution containing 10 g / l of iridium bromide as metal iridium, 0.02 mol / l of malonic acid, and 40 g / l of boric acid was prepared. The iridium plating solution was adjusted to pH 5 using sodium hydroxide. The liquid temperature was 85 ° C., a nickel plate plated with gold strike was immersed as a sample, and plating was performed at a cathode current density of 0.5 A / dm 2 for 20 minutes. Thereafter, plating was performed once again under the same conditions (liquid temperature 85 ° C., cathode current density 0.5 A / dm 2 , 20 minutes) without adjusting the pH of the iridium plating solution used for plating. The change in cathode current efficiency is shown in FIG.

(比較例2)
臭化イリジウムを金属イリジウムとして10g/l、硫酸ナトリウムを0.5mol/l、臭化ナトリウムを0.5mol/l含有するイリジウムめっき液を調整した。このイリジウムめっき液を水酸化ナトリウムを用いてpH5に調整した。液温は85℃とし、ニッケル板に金ストライクめっきをしたものを試料として浸漬し、陰極電流密度0.5A/dmで20分間めっきをした。その後、めっきに使ったイリジウムめっき液のpH調整をせずに再び同じ条件(液温85℃、陰極電流密度0.5A/dm、20分)でめっきをもう1回行った。陰極電流効率の変化を図1に示した。
(Comparative Example 2)
An iridium plating solution containing 10 g / l of iridium bromide as metal iridium, 0.5 mol / l of sodium sulfate, and 0.5 mol / l of sodium bromide was prepared. The iridium plating solution was adjusted to pH 5 using sodium hydroxide. The liquid temperature was 85 ° C., a nickel plate plated with gold strike was immersed as a sample, and plating was performed at a cathode current density of 0.5 A / dm 2 for 20 minutes. Thereafter, plating was performed once again under the same conditions (liquid temperature 85 ° C., cathode current density 0.5 A / dm 2 , 20 minutes) without adjusting the pH of the iridium plating solution used for plating. The change in cathode current efficiency is shown in FIG.

図1から判るように、アルコールを添加しためっき液(実施例1)に対し、アルコールの代りにカルボン酸を添加しためっき液(比較例1)、および何も添加しなかっためっき液(比較例2)によるめっきにおいては陰極電流効率の低下が早く、2回目のめっきでも陰極電流効率は50%以下となり、実施例1のように長時間のめっきには耐えられなかった。   As can be seen from FIG. 1, with respect to the plating solution to which alcohol was added (Example 1), the plating solution to which carboxylic acid was added instead of alcohol (Comparative Example 1), and the plating solution to which nothing was added (Comparative Example) In the plating according to 2), the cathode current efficiency was lowered rapidly, and the cathode current efficiency was 50% or less even in the second plating, and could not withstand long-time plating as in Example 1.

本発明のイリジウムめっき液及びイリジウムめっき方法によれば、めっき速度を早めるための比較的高い陰極電流密度での作業が可能であり、しかも、陰極電流効率は90%以上を長く維持することが出来、安定で良好なめっき皮膜が得られ、高い実用性がある。   According to the iridium plating solution and the iridium plating method of the present invention, it is possible to work at a relatively high cathode current density for increasing the plating speed, and the cathode current efficiency can be maintained at 90% or more for a long time. A stable and good plating film can be obtained and has high practicality.

図1は実施例1、比較例1および比較例2の陰極電流効率を表す。FIG. 1 shows the cathode current efficiencies of Example 1, Comparative Example 1, and Comparative Example 2.

符号の説明Explanation of symbols

1 :実施例1の結果
2 :比較例1の結果
3 :比較例2の結果
1: Result of Example 1 2: Result of Comparative Example 1 3: Result of Comparative Example 2

Claims (3)

ハロゲンを含む可溶性イリジウム塩およびアルコール類を含有するイリジウムめっき液。   An iridium plating solution containing a soluble iridium salt containing halogen and an alcohol. 硫酸塩、硝酸塩、およびハロゲン化水素酸塩のうち少なくとも1種を含む請求項1に記載のイリジウムめっき液。   The iridium plating solution according to claim 1, comprising at least one of sulfate, nitrate, and hydrohalide. アノードとカソードの間に隔膜を備えためっき槽中で請求項1または2に記載のイリジウムめっき液によりイリジウム被膜を形成するめっき方法。
The plating method which forms an iridium film with the iridium plating solution of Claim 1 or 2 in the plating tank provided with the diaphragm between the anode and the cathode.
JP2005228109A 2005-08-05 2005-08-05 Iridium plating solution and iridium plating method Expired - Fee Related JP4751126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228109A JP4751126B2 (en) 2005-08-05 2005-08-05 Iridium plating solution and iridium plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228109A JP4751126B2 (en) 2005-08-05 2005-08-05 Iridium plating solution and iridium plating method

Publications (2)

Publication Number Publication Date
JP2007039778A true JP2007039778A (en) 2007-02-15
JP4751126B2 JP4751126B2 (en) 2011-08-17

Family

ID=37798043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228109A Expired - Fee Related JP4751126B2 (en) 2005-08-05 2005-08-05 Iridium plating solution and iridium plating method

Country Status (1)

Country Link
JP (1) JP4751126B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248552A (en) * 2009-04-14 2010-11-04 Electroplating Eng Of Japan Co Iridium plating solution and plating method thereof
CN105401181A (en) * 2015-12-23 2016-03-16 苏州市金星工艺镀饰有限公司 Electroplating method of environmentally-friendly cyanide-free gold-plating electroplating fluid
CN105420771A (en) * 2015-12-23 2016-03-23 苏州市金星工艺镀饰有限公司 Environment-friendly cyanide-free gilding electroplating liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316786A (en) * 1993-04-30 1994-11-15 Electroplating Eng Of Japan Co Water-soluble iridium plating bath and plating method using the same
JPH0734289A (en) * 1993-07-22 1995-02-03 Electroplating Eng Of Japan Co Iridium plating article
JPH09256189A (en) * 1996-03-21 1997-09-30 Electroplating Eng Of Japan Co Platinum-iridium alloy plating
JP2004052014A (en) * 2002-07-17 2004-02-19 Ne Chemcat Corp Liquid and method for plating iridium
JP2004137523A (en) * 2002-10-16 2004-05-13 National Institute For Materials Science Method for applying plating of iridium, platinum or alloy therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316786A (en) * 1993-04-30 1994-11-15 Electroplating Eng Of Japan Co Water-soluble iridium plating bath and plating method using the same
JPH0734289A (en) * 1993-07-22 1995-02-03 Electroplating Eng Of Japan Co Iridium plating article
JPH09256189A (en) * 1996-03-21 1997-09-30 Electroplating Eng Of Japan Co Platinum-iridium alloy plating
JP2004052014A (en) * 2002-07-17 2004-02-19 Ne Chemcat Corp Liquid and method for plating iridium
JP2004137523A (en) * 2002-10-16 2004-05-13 National Institute For Materials Science Method for applying plating of iridium, platinum or alloy therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248552A (en) * 2009-04-14 2010-11-04 Electroplating Eng Of Japan Co Iridium plating solution and plating method thereof
CN105401181A (en) * 2015-12-23 2016-03-16 苏州市金星工艺镀饰有限公司 Electroplating method of environmentally-friendly cyanide-free gold-plating electroplating fluid
CN105420771A (en) * 2015-12-23 2016-03-23 苏州市金星工艺镀饰有限公司 Environment-friendly cyanide-free gilding electroplating liquid

Also Published As

Publication number Publication date
JP4751126B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
CN108559979B (en) Chemical nickel plating solution and preparation method thereof
Bai et al. Effects of electroplating variables on the composition and morphology of nickel–cobalt deposits plated through means of cyclic voltammetry
Wang et al. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid
US4167460A (en) Trivalent chromium plating bath composition and process
Abou-Krisha et al. Electrochemical studies on the electrodeposited Zn–Ni–Co ternary alloy in different media
Murase et al. Potential‐pH Diagram of the Cd‐Te‐NH 3‐H 2 O System and Electrodeposition Behavior of CdTe from Ammoniacal Alkaline Baths
Rodriguez-Torres et al. Electrodeposition of zinc–nickel alloys from ammonia-containing baths
GB2086939A (en) Trivalent chromium electrolyte and process employing vanadium reducing agent
US4699696A (en) Zinc-nickel alloy electrolyte and process
JP4751126B2 (en) Iridium plating solution and iridium plating method
NL7905374A (en) CATALYTIC ELECTRODE AND METHOD OF MANUFACTURE THEREOF.
Abd El Rehim et al. Electrodeposition of cobalt from gluconate electrolyte
JP4979328B2 (en) Iridium-cobalt alloy plating solution
Bae et al. Effect of solution temperature on electrodeposition behavior of Zn–Ni alloy from alkaline zincate solution
US5415763A (en) Methods and electrolyte compositions for electrodepositing chromium coatings
Podestá et al. The influence of iridium, ruthenium and palladium on the electrochemical behaviour of Co-P and Ni-Co-P base amorphous alloys for water electrolysis in KOH aqueous solutions
US6979392B2 (en) Method for forming Re—Cr alloy film or Re-based film through electroplating process
Protsenko et al. Electrodeposition of lead coatings from a methanesulphonate electrolyte
Rashwan Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine
Abd El Rehim et al. Thin films of chromium electrodeposition from a trivalent chromium electrolyte
JP2008088520A (en) Plating method
Abd El Rehim et al. Electroplating of tin from acidic gluconate baths
CN112239876A (en) Functional chromium alloy plating from trivalent chromium electrolytes
JPS58151486A (en) Electroplating of trivalent chromium
CN114622238A (en) Preparation and application of transition metal-based hydrogen evolution and oxygen evolution dual-functional electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees