JP2004051599A - N-acylsulfenamide compound and method for manufacturing n-acylsulfenamide compound - Google Patents

N-acylsulfenamide compound and method for manufacturing n-acylsulfenamide compound Download PDF

Info

Publication number
JP2004051599A
JP2004051599A JP2002214689A JP2002214689A JP2004051599A JP 2004051599 A JP2004051599 A JP 2004051599A JP 2002214689 A JP2002214689 A JP 2002214689A JP 2002214689 A JP2002214689 A JP 2002214689A JP 2004051599 A JP2004051599 A JP 2004051599A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
compound
acylsulfenamide
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002214689A
Other languages
Japanese (ja)
Other versions
JP3924611B2 (en
Inventor
Masao Shimizu
清水政男
Akira Tsutsumi
包 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002214689A priority Critical patent/JP3924611B2/en
Publication of JP2004051599A publication Critical patent/JP2004051599A/en
Application granted granted Critical
Publication of JP3924611B2 publication Critical patent/JP3924611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an N-acylsulfenamide compound having physiological activities and a method for manufacturing the same. <P>SOLUTION: The method for manufacturing the N-acylsulfenamide compound represented by general formula (1) in comprises reacting a compound of formula (2) with an acid anhydride of formula (3). In the general formula, R<SP>1</SP>is a 1-8C alkyl group, a 3-8C cycloalkyl group, a 1-8C alkoxyl group, a 2-8C alkoxycarbonyl group, a halogen atom or a nitro group, and when a plurality of R<SP>1</SP>exist, each R<SP>1</SP>may be the same or different; n is an integer of 0-4; and R<SP>2</SP>is a 1-12C perfluoroalkyl group. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規なN−アシルスルフェンアミド化合物およびN−アシルスルフェンアミド化合物の製造方法に関するものである。さらに詳しくは、新規なN−アシルスルフェンアミド化合物を提供すると共に、スルフェンアミド化合物と酸無水物を反応させることによりN−アシルスルフェンアミド化合物を効率よく製造する方法に関するものである。
【0002】
【従来の技術】
スルフェンアミド化合物は、従来からゴムの加硫化剤、殺菌剤、殺虫剤、除草剤としての機能を有するものがあることが知られており(Chem. Rev., 89, 689 (1989))、特に、N−ベンゾイル−4−クロロベンゼンスルフェンアミドには、植物成長調整機能があることが報告されている(Fiziol. Akt. Veshch, 16, 47 (1984); Chem. Abstr., 103, 18314 (1985).)。
このように、一群のN−アシルスルフェンアミド化合物は、産業上重要な化合物であり、新たな化合物、また、より安全な製法の開発が必要とされている。
【0003】
アミド化合物は一般的にはアミン化合物のアシル化によって製造されている。同様に20世紀初頭の論文には、スルフェンアミドのアシル化によってN−アシルスルフェンアミド化合物が得られるとの報告があるが(Ann. 391, 55 (1912),Ann., 400, 1 (1913), Ann., 406, 103 (1914), Ber., 72, 663 (1939).),その後スルフェンアミド化合物に対するアシル化は、通常の方法である酸塩化物や酸無水物による反応では進行せず、ジスルフィド化合物やジスルフェニルアミン化合物が得られことが報告されている(J. Gen. Chem. USSR, 47, 1004 (1977);Zh. Obshch. Khim., 47, 1096 (1977).)。
したがって、N−アシルスルフェンアミド化合物を製造するためには、塩化スルフェニル化合物とアミド化合物の反応により製造されてきた(例えばBull. Chem. Soc. Jpn., 51, 3004 (1978).)。
しかしながら、塩化スルフェニル化合物は、従来、チオール化合物あるいはジスルフィド化合物と塩素ガスとの反応により製造しなければならなかったので、有毒な塩素ガスを気体で反応系に供給することが必要であり、その取り扱いに困難なことが多く、安全な製造方法が望まれている。
【0004】
【発明が解決しようとする課題】
本発明の課題は、新規なN−アシルスルフェンアミド化合物を提供すると共に、N−アシルスルフェンアミド化合物を製造するにあたり、有毒な塩素ガスを用いて合成されている塩化スルフェニル化合物を原料に用いるという欠点を克服し、N−アシルスルフェンアミド化合物を製造するための工業的に有利な方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、N−アシルスルフェンアミド化合物及びその製造方法について鋭意研究を重ねた結果、スルフェンアミド化合物とペルフルオロカルボン酸無水物を反応させることにより、新規なN−アシルスルフェンアミド化合物を得ることができることにより、塩素ガスを用いることなく、安全かつ容易にN−アシルスルフェンアミド化合物が得られることを見い出し、この知見に基づいて本発明を完成するに至った。
【0006】
すなわち、本発明によれば、下記一般式(イ)で表される新規なN−アシルスルフェンアミド化合物が提供される。
【化5】

Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは0または1〜4の整数である。Rは炭素数1〜12のペルフルオロアルキル基を示す。)
【0007】
また、本発明によれば、下記一般式(イ)で表されるN−アシルスルフェンアミド化合物を製造する方法において、下記一般式(ロ)で表されるスルフェンアミド化合物と、下記一般式(ハ)で表される酸無水物を反応させることを特徴とするN−アシルスルフェンアミド化合物の製造方法が提供される。
【化6】
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは0または1〜4の整数である。Rは炭素数1〜12のペルフルオロアルキル基を示す。)
【化7】
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは0または1〜4の整数である。)
【化8】
Figure 2004051599
(式中、Rは炭素数1〜12のペルフルオロアルキル基を示す。)
【0008】
【発明の実施の形態】
本発明のN−アシルスルフェンアミド化合物は、以下の一般式(イ)で示される化合物である。
【化9】
Figure 2004051599
式中、Rは、炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示す。
前記アルキル基の具体例を示すと、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、t−ペンチル基、n−ヘキシル基、イソヘキシル基、2−ヘキシル、3−ヘキシル基、n−ヘプチル基、2−ヘプチル基、3−ヘプチル基、4−ヘプチル基、n−オクチル基、2−オクチル基、3−オクチル基、4−オクチル基等が挙げられる。
前記シクロアルキル基具体例を示すと、シクロプロピル基、シクロブチル基、シクロヘキシル基等が挙げられる。
前記アルコキシル基の具体例を示すと、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ヘキシロキシ基等が挙げられる。
前記アルコキシカルボニル基の具体例を示すと、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ヘキシロキシカルボニル基、ベンジロキシカルボニル基等が挙げられる。
nは0または1〜4の整数を示す。
【0009】
また、Rは、炭素数1〜12のペルフルオロアルキル基を示す。前記ペルフルオロアルキル基の具体例を示すと、トリフルオロメチル基、ペンタフルオロエチル基、ペルフルオロプロピル基、ペルフルオロイソプロピル基、ペルフルオロブチル基、ペルフルオロイソブチル基、ペルフルオロ−s−ブチル基,ペルフルオロ−t−ブチル基、ペルフルオロヘキシル基等が挙げられる。
【0010】
本発明のN−アシルスルフェンアミド化合物の具体的な化合物を挙げると、化合物(1)から(7)に示されるN−アシルスルフェンアミド化合物が挙げられる。これらの化合物は、ゴムの加硫化剤、殺菌剤、殺虫剤、除草剤の出発原料としての用途がある。
【化10】
Figure 2004051599
【0011】
前記一般式(イ)で表される本発明のN−アシルスルフェンアミド化合物
の製造方法は以下の通りである。
【化11】
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても、異なっていてもよく、nは0または1〜4の整数である。Rは炭素数1〜12のペルフルオロアルキル基を示す。)
【0012】
原料物質である下記一般式(ロ)で表されるスルフェンアミド化合物と、下記一般式(ハ)で表される酸無水物を反応させる。
【化12】
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは0または1〜4の整数である。)
【化13】
Figure 2004051599
(式中、Rは炭素数1〜12のペルフルオロアルキル基を示す。)
【0013】
前記原料物質を、好ましくは溶剤に溶解させ、 塩基性物質の存在下に反応させる。
反応溶媒は、塩化メチレン、クロロホルム、1,2−ジクロロエタン、アセトニトリル、テトラヒドロフラン、ジオキサン、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、アニソール等の溶媒中で行われる。
また、これらの溶媒は単独または混合溶媒の形で使用される。
添加する塩基物質としては、第三級アミン類が用いられる。このアミン類として、ピリジン、メチルピリジン、ジメチルピリジン、トリエチルアミン、トリブチルアミン等が用いられる。
反応温度は、−78℃から0℃、好ましくは、−30℃から0℃の範囲である。この温度未満では、反応は遅く、反応の進行が困難となる。この範囲を超える場合には、副反応が生起し、好ましくない。
なお、前記原料物質である一般式(ロ)で表されるスルフェンアミド化合物は、チオール化合物とヒドロキシルアミン−O−スルホン酸を公知の方法で反応させて製造される。もう一方の原料物質である一般式(ハ)で表される酸無水物は、カルボン酸を脱水反応させることにより製造される。
反応時間は、5分から5時間である。反応終了後、溶剤を除去し、目的生成物を取り出す。
【0014】
【実施例】
次に、本発明を実施例により詳細に説明する。なお、本発明の実施例は本発明の理解を容易にするために代表的な物をあげたものであり、本発明はこれだけに限定されるものではない。なお、下記実施例によって製造される新規なN−アシルスルフェンアミド化合物(1)〜(7)は、前記で示した化合物(1)〜(7)であり、各種スペクトルデータを主要な判定基準として同定した。他のN−アシルスルフェンアミド化合物は、既知のものについては融点および各種スペクトルデータを比較することより、未知のものについては各種スペクトルを主要な判定基準として同定した。
【0015】
実施例1
内容積30mlのガラス製容器中に2−メトキシカルボニルベンゼンスルフェンアミド(91.5mg,0.5mmol)を塩化メチレン5mlに溶かし、無水トリフルオロ酢酸(210mg,1.0mmol)とピリジン(80μl)を加えた。0℃で30分撹拌させた後、溶媒を減圧下留去させ、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン)で精製することにより、化合物(1)のN−アシルスルフェンアミドを収量102mg、収率73%で得た。
この化合物は塩化メチレン−ヘキサンを用いて再結晶することによりさらに精製することができた。
融点:127−128 °C. H NMR (500 MHz, CDCl): d 8.04 (dd, J = 7.6, 1.2 Hz,1H), 7.54 (ddd, J = 8.6, 7.3, 1.5 Hz, 1H), 7.50 (s, 1H), 7.27 (ddd, J =7.0, 7.0, 1.3 Hz, 1H), 7.17 (dd, J = 8.0, 0.6 Hz, 1H), 3.96 (s, 3H); 13C NMR (125 MHz, CDCl): d 167.4, 159.2 (q, JCF = 37.0 Hz, C=O), 142.4, 133.6, 131.3, 125.5, 124.5, 121.5, 115.7 (q, JCF = 287.4 Hz, CF), 52.8; IR (KBr): 3223, 3090, 2959, 1713, 1696, 1468, 1441, 1319, 1206, 1163, 747 cm−1; 高分解能マス:計算値 C10NOS:279.0177, 実測値 279.0141.
【0016】
実施例2
実施例1において、2−メトキシカルボニルベンゼンスルフェンアミドの代わりに、2−ブロモベンゼンスルフェンアミド(102mg,0.5mmol)を用いて同様な反応を行い、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン:ヘキサン=2:1)で精製することにより、化合物(2)のN−アシルスルフェンアミドを収率144mg、収率80%で得た。
融点:89−90 °C. H NMR (500 MHz, CDCl): d 7.56 (s, 1H), 7.54 (dd, J = 8.6, 1.6 Hz, 1H), 7.33 (ddd, J = 8.6, 7.3, 1.2 Hz, 1H), 7.16−7.13 (m, 2H); 13C NMR (125 MHz, CDCl): d 159.0 (q, JCF = 38.1 Hz, C=O), 136.1, 133.2, 128.8, 128.3, 126.3, 119.9, 115.5 (q, JCF = 288.4 Hz, CF); IR (KBr): 3225, 1723, 1468, 1447, 1211, 1167, 1150, 741 cm−1; 高分解能マス:計算値 CBrFNOS: 298.9227, 300.9207, 実測値298.9210, 300.9216.
【0017】
実施例3
実施例1において、2−メトキシカルボニルベンゼンスルフェンアミドの代わりに、4−ニトロベンゼンスルフェンアミド(85mg,0.5mmol)を用いて同様な反応を行い、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン)で精製することにより、化合物(3)のN−アシルスルフェンアミドを収率90mg、収率82%で得た。
融点:111−113 °C. H NMR (500 MHz, CDCl): d 8.22 (ddd, J = 9.2, 2.5, 2.5 Hz, 2H ), 7.74 (s, 1H), 7.34 (ddd, J = 9.2, 2.5, 2.5 Hz, 2H); 13C NMR(125 MHz, CDCl): d 159.0 (q, JCF = 39.1 Hz, C=O), 146.8, 144.8, 124.6,124.4, 115.4 (q, JCF = 288.4 Hz, CF); IR (KBr): 3274, 1726, 1580, 1522, 1458, 1341, 1211, 1169, 1132 cm−1; 高分解能マス:計算値 CS: 265.9973, 実測値265.9953.
【0018】
実施例4
実施例1において、2−メトキシカルボニルベンゼンスルフェンアミドの代わりに、ベンゼンスルフェンアミド(63mg,0.5mmol)を用い、同様な反応を行い、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン:ヘキサン2:1)で精製することにより、化合物(4)のN−アシルスルフェンアミドを収率86mg、収率78%で得た。
融点:70−72 °C. H NMR (500 MHz, CDCl): d 7.53 (s, 1H), 7.46−7.43 (m, 2H), 7.39−7.32 (m, 3H); 13C NMR (125 MHz, CDCl): d 159.1 (q, JCF = 37.1Hz, C=O), 135.5, 129.5, 129.1, 129.0, 115.6 (q, JCF = 287.4 Hz, CF); IR (KBr): 3245, 1717, 1441, 1321, 1186, 740, 689 cm−1; 高分解能マス:計算値CNOS: 221.0122, 実測値 221.0145.
【0019】
実施例5
実施例1において、2−メトキシカルボニルベンゼンスルフェンアミドの代わりに、4−メチルベンゼンスルフェンアミド(70mg,0.5mmol)を用いて同様な反応を行い、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン:ヘキサン=2:1)で精製することにより、化合物(5)のN−アシルスルフェンアミドを収率74mg、収率63%で得た。
融点:84−86 °C. H NMR (500 MHz, CDCl): d 7.53 (s, 1H), 7.43 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.0Hz, 2H), 2.36 (s, 3H); 13C NMR (125 MHz, CDCl): d 159.1 (q, JCF = 38.1 Hz, C=O), 140.1, 131.9, 130.9, 130.2, 115.6 (q, JCF = 287.4 Hz, CF), 21.3; IR (KBr): 3289, 3239, 2926, 1725, 1468, 1321, 1163, 804 cm−1; 高分解能マス:計算値CNOS: 235.0279, 実測値235.0291.
【0020】
実施例6
内容積30mlのガラス製容器中に2−メトキシカルボニルベンゼンスルフェンアミド(91.5mg,0.5mmol)を塩化メチレン5mlに溶かし、無水ペンタフルオロプロピオン酸(310mg,1.0mmol)とピリジン(80μl,1.0mmol)を加えた。0℃で15分撹拌させた後、溶媒を減圧下留去させ、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン)で精製することにより、化合物(6)のN−アシルスルフェンアミドを収量148mg、収率90%で得た。この化合物は塩化メチレン−ヘキサンを用いて再結晶することによりさらに精製することができた。
融点:117−118 °C. H NMR (500 MHz, CDCl): d 8.04 (dd, J = 8.0, 1.6 Hz,1H), 7.55−7.52 (m, 2H), 7.26 (ddd, J = 7.3, 7.3, 1.2 Hz, 1H), 7.14 (dd,J = 8.2, 0.6 Hz, 1H), 3.96 (s, 3H); 13C NMR (125 MHz, CDCl): d 167.4, 159.8 (t, JCF = 26.8 Hz, C=O), 142.4, 133.6, 131.8, 125.5, 124.5, 121.5,117.7 (qt, JCF = 285.4, 34.0 Hz, CF), 107.1 (tq, JCF = 266.8, 39.3 Hz,CF), 52.8; IR (KBr): 3252, 1707, 1443, 1319, 1213, 1148, 1032, 747 cm−1; 高分解能マス:計算値C11NOS: 329.0145, 実測値329.0094.
【0021】
実施例7
実施例6において、2−メトキシカルボニルベンゼンスルフェンアミドの代わりに、4−ニトロベンゼンスルフェンアミド(85mg,0.5mmol)を用いて同様な反応を行い、粗生成物をシリカゲルクロマトグラフィー(溶出溶媒 塩化メチレン)で精製することにより、化合物(7)のN−アシルスルフェンアミドを収率119mg、収率85%で得た。
融点:88−89 °C. H NMR (500 MHz, CDCl): d 8.24 (ddd, J = 9.2, 2.5, 2.5Hz, 2H ), 7.67 (s, 1H), 7.34 (ddd, J = 9.2, 2.5, 2.5 Hz, 2H); 13C NMR (125 MHz, CDCl): d 159.8 (t, JCF = 26.8 Hz, C=O), 146.8, 144.7, 124.6, 124.4, 117.5 (qt, JCF = 285.4, 34.0 Hz, CF), 107.0 (tq, JCF = 266.8, 40.3 Hz, CF); IR (KBr): 3260, 1721, 1512, 1451, 1346, 1208, 1181, 1157, 1030, 855 cm−1; 高分解能マス:計算値CS: 315.9941, 実測値315.9930.
【0022】
【発明の効果】
本発明によれば、スルフェンアミド化合物と酸無水物を反応させることにより、新規なN−アシルスルフェンアミド化合物を収率よく製造することができる。しかも、有毒な塩素ガスを用いることなく安全に製造できるので、工業的なN−アシルスルフェンアミド化合物の合成法として最適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel N-acylsulfenamide compound and a method for producing an N-acylsulfenamide compound. More specifically, the present invention relates to a novel N-acylsulfenamide compound and a method for efficiently producing an N-acylsulfenamide compound by reacting a sulfenamide compound with an acid anhydride.
[0002]
[Prior art]
It has been known that some sulfenamide compounds have functions as rubber vulcanizing agents, fungicides, insecticides, and herbicides (Chem. Rev., 89 , 689 (1989)). In particular, it has been reported that N-benzoyl-4-chlorobenzenesulfenamide has a plant growth regulating function (Fiziol. Akt. Veshch, 16 , 47 (1984); Chem. Abstr., 103 , 18314 ( 1985).).
As described above, a group of N-acylsulfenamide compounds are industrially important compounds, and there is a need for the development of new compounds and safer production methods.
[0003]
Amide compounds are generally produced by acylation of an amine compound. Similarly, there is a report in the early 20th century that an N-acylsulfenamide compound can be obtained by acylation of sulfenamide (Ann. 391 , 55 (1912), Ann., 400 , 1 ( 1913), Ann., 406 , 103 (1914), Ber., 72 , 663 (1939).) Then, acylation of a sulfenamide compound is performed by a conventional method using an acid chloride or an acid anhydride. It has been reported that a disulfide compound or a disulfenylamine compound was obtained without progress (J. Gen. Chem. USSR, 47 , 1004 (1977); Zh. Obshch. Khim., 47 , 1096 (1977)). .).
Therefore, in order to produce an N-acylsulfenamide compound, it has been produced by reacting a sulfenyl chloride compound with an amide compound (for example, Bull. Chem. Soc. Jpn., 51 , 3004 (1978)).
However, since the sulfenyl chloride compound had to be produced conventionally by reacting a thiol compound or a disulfide compound with chlorine gas, it was necessary to supply toxic chlorine gas to the reaction system as a gas. Handling is often difficult, and a safe manufacturing method is desired.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel N-acylsulfenamide compound and, in producing an N-acylsulfenamide compound, using a sulfenyl chloride compound synthesized using toxic chlorine gas as a raw material. It is an object of the present invention to overcome the disadvantages of the use and to provide an industrially advantageous method for producing an N-acylsulfenamide compound.
[0005]
[Means for Solving the Problems]
The present inventors have conducted extensive studies on N-acylsulfenamide compounds and methods for producing the same, and as a result, a novel N-acylsulfenamide compound was obtained by reacting a sulfenamide compound with perfluorocarboxylic anhydride. Have been found to be able to safely and easily obtain an N-acylsulfenamide compound without using chlorine gas, and have completed the present invention based on this finding.
[0006]
That is, according to the present invention, a novel N-acylsulfenamide compound represented by the following general formula (A) is provided.
Embedded image
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 4 .R 2 is perfluoroalkyl of 1 to 12 carbon atoms Represents a group.)
[0007]
Further, according to the present invention, in a method for producing an N-acylsulfenamide compound represented by the following general formula (A), a sulfenamide compound represented by the following general formula (B): A method for producing an N-acylsulfenamide compound, characterized by reacting the acid anhydride represented by (c), is provided.
Embedded image
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 4 .R 2 is perfluoroalkyl of 1 to 12 carbon atoms Represents a group.)
Embedded image
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 4.)
Embedded image
Figure 2004051599
(In the formula, R 2 represents a C 1-12 perfluoroalkyl group.)
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The N-acylsulfenamide compound of the present invention is a compound represented by the following general formula (A).
Embedded image
Figure 2004051599
In the formula, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, and a nitro group. Is shown.
Illustrative examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, t-pentyl group, n-hexyl group, isohexyl group, 2-hexyl, 3-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, 4-heptyl group, n-octyl group, 2-octyl Group, 3-octyl group, 4-octyl group and the like.
Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, and a cyclohexyl group.
Specific examples of the alkoxyl group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a hexyloxy group.
Specific examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a hexyloxycarbonyl group, and a benzyloxycarbonyl group.
n shows 0 or the integer of 1-4.
[0009]
R 2 represents a C 1-12 perfluoroalkyl group. Specific examples of the perfluoroalkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluoroisopropyl group, a perfluorobutyl group, a perfluoroisobutyl group, a perfluoro-s-butyl group, and a perfluoro-t-butyl group. And a perfluorohexyl group.
[0010]
Specific examples of the N-acylsulfenamide compound of the present invention include the N-acylsulfenamide compounds represented by the compounds (1) to (7). These compounds find use as starting materials for rubber vulcanizing agents, fungicides, insecticides and herbicides.
Embedded image
Figure 2004051599
[0011]
The method for producing the N-acylsulfenamide compound of the present invention represented by the general formula (a) is as follows.
Embedded image
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 is more than one be each R 1 is the same as each other or different, .R 2 n is 0 or an integer of 1 to 4 1 to 12 carbon atoms perfluoro Represents an alkyl group.)
[0012]
A sulfenamide compound represented by the following general formula (b), which is a raw material, is reacted with an acid anhydride represented by the following general formula (c).
Embedded image
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 4.)
Embedded image
Figure 2004051599
(In the formula, R 2 represents a C 1-12 perfluoroalkyl group.)
[0013]
The raw material is preferably dissolved in a solvent and reacted in the presence of a basic substance.
The reaction solvent is performed in a solvent such as methylene chloride, chloroform, 1,2-dichloroethane, acetonitrile, tetrahydrofuran, dioxane, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, and anisole.
These solvents are used alone or in the form of a mixed solvent.
Tertiary amines are used as the base substance to be added. As the amines, pyridine, methylpyridine, dimethylpyridine, triethylamine, tributylamine and the like are used.
Reaction temperatures range from -78 ° C to 0 ° C, preferably from -30 ° C to 0 ° C. If the temperature is lower than this temperature, the reaction is slow and the progress of the reaction becomes difficult. If it exceeds this range, a side reaction occurs, which is not preferable.
In addition, the sulfenamide compound represented by the general formula (b) as the raw material is produced by reacting a thiol compound with hydroxylamine-O-sulfonic acid by a known method. An acid anhydride represented by the general formula (C), which is another raw material, is produced by subjecting a carboxylic acid to a dehydration reaction.
The reaction time is between 5 minutes and 5 hours. After completion of the reaction, the solvent is removed and the desired product is taken out.
[0014]
【Example】
Next, the present invention will be described in detail with reference to examples. It should be noted that the embodiments of the present invention are representative ones for easy understanding of the present invention, and the present invention is not limited to these. In addition, the novel N-acylsulfenamide compounds (1) to (7) produced by the following Examples are the compounds (1) to (7) shown above, and various spectral data are used as main criteria. As identified. Other N-acylsulfenamide compounds were identified by comparing the melting point and various spectral data of known compounds with various spectra as the main criteria for unknown compounds.
[0015]
Example 1
In a glass container having an inner volume of 30 ml, 2-methoxycarbonylbenzenesulfenamide (91.5 mg, 0.5 mmol) was dissolved in 5 ml of methylene chloride, and trifluoroacetic anhydride (210 mg, 1.0 mmol) and pyridine (80 μl) were added. added. After stirring at 0 ° C. for 30 minutes, the solvent is distilled off under reduced pressure, and the crude product is purified by silica gel chromatography (elution solvent: methylene chloride) to yield the N-acylsulfenamide of compound (1). 102 mg was obtained in a yield of 73%.
This compound could be further purified by recrystallization using methylene chloride-hexane.
Melting point: 127-128 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 8.04 (dd, J = 7.6, 1.2 Hz, 1H), 7.54 (ddd, J = 8.6, 7.3, 1.3. 5 Hz, 1H), 7.50 (s, 1H), 7.27 (ddd, J = 7.0, 7.0, 1.3 Hz, 1H), 7.17 (dd, J = 8.0). , 0.6 Hz, 1H), 3.96 (s, 3H); 13 C NMR (125 MHz, CDCl 3): d 167.4, 159.2 (q, J CF = 37.0 Hz, C = O), 142.4, 133.6, 131.3 , 125.5, 124.5, 121.5, 115.7 (q, J CF = 287.4 Hz, CF 3), 52.8; IR (KBr): 3223, 3090, 2959, 1713, 1696, 146 , 1441, 1319, 1206, 1163 , 747 cm -1; High resolution mass: Calculated C 10 H 8 F 3 NO 3 S: 279.0177, Found 279.0141.
[0016]
Example 2
In Example 1, the same reaction was carried out using 2-bromobenzenesulfenamide (102 mg, 0.5 mmol) instead of 2-methoxycarbonylbenzenesulfenamide, and the crude product was subjected to silica gel chromatography (elution solvent). By purifying with methylene chloride: hexane = 2: 1), N-acylsulfenamide of the compound (2) was obtained in a yield of 144 mg and a yield of 80%.
Melting point: 89-90 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 7.56 (s, 1H), 7.54 (dd, J = 8.6, 1.6 Hz, 1H), 7.33 (ddd, J = 8). .6, 7.3, 1.2 Hz, 1H), 7.16-7.13 (m, 2H); 13 C NMR (125 MHz, CDCl 3 ): d 159.0 (q, J CF = 38). .1 Hz, C = O), 136.1, 133.2, 128.8, 128.3, 126.3, 119.9, 115.5 (q, J CF = 288.4 Hz, CF 3) ; IR (KBr): 3225, 1723, 1468, 1447, 1211, 1167, 1150, 741 cm -1; high resolution mass: calculated C 8 H 5 BrF 3 NOS: 298.9227, 300.9207, Found 29 8.9210, 300.9216.
[0017]
Example 3
In Example 1, a similar reaction was carried out using 4-nitrobenzenesulfenamide (85 mg, 0.5 mmol) instead of 2-methoxycarbonylbenzenesulfenamide, and the crude product was subjected to silica gel chromatography (elution solvent: chloride By purification with methylene), N-acylsulfenamide of compound (3) was obtained in a yield of 90 mg and 82%.
Melting point: 111-113 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 8.22 (ddd, J = 9.2, 2.5, 2.5 Hz, 2H), 7.74 (s, 1H), 7.34 (ddd) , J = 9.2, 2.5, 2.5 Hz, 2H); 13 C NMR (125 MHz, CDCl 3): d 159.0 (q, J CF = 39.1 Hz, C = O), 146.8, 144.8, 124.6, 124.4, 115.4 (q, J CF = 288.4 Hz, CF 3 ); IR (KBr): 3274, 1726, 1580, 1522, 1458, 1341 , 1211, 1169, 1132 cm -1 ; high resolution mass: calculated C 8 H 5 F 3 N 2 O 3 S: 265.9973, Found 265.9953.
[0018]
Example 4
In Example 1, the same reaction was carried out using benzenesulfenamide (63 mg, 0.5 mmol) instead of 2-methoxycarbonylbenzenesulfenamide, and the crude product was subjected to silica gel chromatography (elution solvent: methylene chloride: By purifying with hexane (2: 1), N-acylsulfenamide of the compound (4) was obtained in a yield of 86 mg and 78%.
Melting point: 70-72 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 7.53 (s, 1H), 7.46-7.43 (m, 2H), 7.39-7.32 (m, 3H); 13 C NMR. (125 MHz, CDCl 3 ): d 159.1 (q, J CF = 37.1 Hz, C = O), 135.5, 129.5, 129.1, 129.0, 115.6 (q, J CF = 287.4 Hz, CF 3) ; IR (KBr): 3245, 1717, 1441, 1321, 1186, 740, 689 cm -1; high resolution mass: calculated C 8 H 6 F 3 NOS: 221.0122 , Measured 221.0145.
[0019]
Example 5
In Example 1, the same reaction was carried out using 4-methylbenzenesulfenamide (70 mg, 0.5 mmol) instead of 2-methoxycarbonylbenzenesulfenamide, and the crude product was subjected to silica gel chromatography (elution solvent). By purifying with methylene chloride: hexane = 2: 1), N-acylsulfenamide of compound (5) was obtained in a yield of 74 mg and 63%.
Melting point: 84-86 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 7.53 (s, 1 H), 7.43 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H). ), 2.36 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ): d 159.1 (q, J CF = 38.1 Hz, C = O), 140.1, 131.9, 130.9, 130.2, 115.6 (q, J CF = 287.4 Hz, CF 3), 21.3; IR (KBr): 3289, 3239, 2926, 1725, 1468, 1321, 1163, 804 cm −1 ; high-resolution mass: calculated value C 9 H 8 F 3 NOS: 235.0279, measured value 235.0291.
[0020]
Example 6
In a 30 ml glass container, 2-methoxycarbonylbenzenesulfenamide (91.5 mg, 0.5 mmol) was dissolved in 5 ml of methylene chloride, and pentafluoropropionic anhydride (310 mg, 1.0 mmol) and pyridine (80 μl, 1.0 mmol) was added. After stirring at 0 ° C. for 15 minutes, the solvent is distilled off under reduced pressure, and the crude product is purified by silica gel chromatography (elution solvent: methylene chloride) to obtain the N-acylsulfenamide of compound (6). 148 mg was obtained in a yield of 90%. This compound could be further purified by recrystallization using methylene chloride-hexane.
Melting point: 117-118 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 8.04 (dd, J = 8.0, 1.6 Hz, 1H), 7.55-7.52 (m, 2H), 7.26 (ddd) , J = 7.3, 7.3, 1.2 Hz, 1H), 7.14 (dd, J = 8.2, 0.6 Hz, 1H), 3.96 (s, 3H); 13 C NMR (125 MHz, CDCl 3) : d 167.4, 159.8 (t, J CF = 26.8 Hz, C = O), 142.4, 133.6, 131.8, 125.5, 124 .5, 121.5,117.7 (qt, J CF = 285.4, 34.0 Hz, CF 3), 107.1 (tq, J CF = 266.8, 39.3 Hz, CF 2) , 52.8; IR (KBr): 3252, 1707, 1443, 1 319, 1213, 1148, 1032, 747 cm -1; High resolution mass: Calculated C 11 H 8 F 5 NO 3 S: 329.0145, Found 329.0094.
[0021]
Example 7
In Example 6, the same reaction was carried out using 4-nitrobenzenesulfenamide (85 mg, 0.5 mmol) instead of 2-methoxycarbonylbenzenesulfenamide, and the crude product was subjected to silica gel chromatography (elution solvent: chloride By purifying with methylene), 119 mg of the N-acylsulfenamide of the compound (7) was obtained at a yield of 85%.
Melting point: 88-89 ° C. 1 H NMR (500 MHz, CDCl 3 ): d 8.24 (ddd, J = 9.2, 2.5, 2.5 Hz, 2H), 7.67 (s, 1H), 7.34 (ddd, J = 9.2, 2.5, 2.5 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ): d 159.8 (t, J CF = 26.8 Hz, C = O), 146 .8, 144.7, 124.6, 124.4, 117.5 (qt, J CF = 285.4, 34.0 Hz, CF 3), 107.0 (tq, J CF = 266.8, 40.3 Hz, CF 2 ); IR (KBr): 3260, 1721, 1512, 1451, 1346, 1208, 1181, 1157, 1030, 855 cm −1 ; high-resolution mass: calculated value C 9 H 5 F 5 N 2 3 S: 315.9941, Found 315.9930.
[0022]
【The invention's effect】
According to the present invention, a novel N-acylsulfenamide compound can be produced with high yield by reacting a sulfenamide compound with an acid anhydride. Moreover, since it can be produced safely without using toxic chlorine gas, it is most suitable as an industrial method for synthesizing N-acylsulfenamide compounds.

Claims (2)

下記一般式(イ)で表される化合物であることを特徴とするN−アシルスルフェンアミド化合物。
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても、異なっていてもよく、nは0または1〜4の整数である。Rは炭素数1〜12のペルフルオロアルキル基を示す。)
An N-acylsulfenamide compound, which is a compound represented by the following general formula (A).
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 is more than one be each R 1 is the same as each other or different, .R 2 n is 0 or an integer of 1 to 4 1 to 12 carbon atoms perfluoro Represents an alkyl group.)
下記一般式(イ)で表されるスルフェンアミド化合物で表されるN−アシルスルフェンアミド化合物を製造する方法において、下記一般式(ロ)と下記一般式(ハ)で表される酸無水物を反応させることを特徴とするN−アシルスルフェンアミド化合物の製造方法。
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても、異なっていてもよく、nは0または1〜4の整数である。Rは炭素数1〜12のペルフルオロアルキル基を示す。)
Figure 2004051599
(式中、Rは炭素数1〜8のアルキル基、炭素数3〜8のシクロアルキル基、炭素数1〜8のアルコキシル基、炭素数2〜8のアルコキシカルボニル基、ハロゲン原子、ニトロ基を示し、Rが複数ある場合は、各Rは互いに同一であっても異なっていてもよく、nは0または1〜4の整数である。)
Figure 2004051599
(式中、Rは炭素数1〜12のペルフルオロアルキル基を示す。)
In a method for producing an N-acylsulfenamide compound represented by a sulfenamide compound represented by the following general formula (A), an acid anhydride represented by the following general formula (B) and the following general formula (C) A method for producing an N-acylsulfenamide compound, comprising reacting a product.
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 is more than one be each R 1 is the same as each other or different, .R 2 n is 0 or an integer of 1 to 4 1 to 12 carbon atoms perfluoro Represents an alkyl group.)
Figure 2004051599
(Wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, a halogen atom, a nitro group are shown, when R 1 are a plurality, each R 1 may be the being the same or different, n is an integer of 0 or 1 to 4.)
Figure 2004051599
(In the formula, R 2 represents a C 1-12 perfluoroalkyl group.)
JP2002214689A 2002-07-24 2002-07-24 Method for producing N-acylsulfenamide compound Expired - Lifetime JP3924611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214689A JP3924611B2 (en) 2002-07-24 2002-07-24 Method for producing N-acylsulfenamide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214689A JP3924611B2 (en) 2002-07-24 2002-07-24 Method for producing N-acylsulfenamide compound

Publications (2)

Publication Number Publication Date
JP2004051599A true JP2004051599A (en) 2004-02-19
JP3924611B2 JP3924611B2 (en) 2007-06-06

Family

ID=31936914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214689A Expired - Lifetime JP3924611B2 (en) 2002-07-24 2002-07-24 Method for producing N-acylsulfenamide compound

Country Status (1)

Country Link
JP (1) JP3924611B2 (en)

Also Published As

Publication number Publication date
JP3924611B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US20050165236A1 (en) Process for the preparation of Imiquimod and intermediates thereof
KR20190025991A (en) Method for producing 4-alkoxy-3- (acyl or alkyl) oxypicolinamide
KR0178542B1 (en) Salt of dithiocarbamic acid, production thereof, and production of isothiocyanate from said salt
KR20190082767A (en) New trityl protection agent
JP3924611B2 (en) Method for producing N-acylsulfenamide compound
JP3896455B2 (en) Method for producing N-acylsulfenamide compound
JP4041881B2 (en) Novel N-thio-substituted heterocyclic compound and method for producing the same
JP4729742B2 (en) Method for producing isothiazolopyridine compound
JP2020537680A (en) Process for producing herbicidal pyridadinone compounds
JP3046258B2 (en) Method for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
JP3896456B2 (en) Method for producing sulfenamide compound
JP4006520B2 (en) Method for producing sulfenamide compound
JP4323032B2 (en) Process for producing 3-nitro-2- (Nt-butoxycarbonyl) aminobenzoates and production intermediates thereof
JP3261454B2 (en) Method for producing ketene imine compound
JP4601274B2 (en) Method for producing γ-ketoacetals
JP3951018B2 (en) Method for producing N-acylsulfenamide compound
JP3038380B1 (en) Method for producing ketene imine compound
JP3896450B2 (en) Process for producing N-substituted or N, N-disubstituted sulfenamide compounds
JP4296267B2 (en) Novel N-sulfenyl substituted heterocyclic compound and method for producing the same
JPH0710845A (en) Production of 5-chloropyrazole-4-carbonyl chlorides
JP4296268B2 (en) Novel N-sulfenyl substituted heterocyclic compound and method for producing the same
RU2290398C2 (en) Method for preparing 5-amino-3-n-r1-amino-1-r-1,2,4-triazole
JP4002972B2 (en) Method for producing sulfenamide compound
JP4200209B2 (en) Process for producing 1,2-benzisothiazoline-3-one-1-oxide compound
KR0173036B1 (en) 2-sulfonylthiazolcarboxamide derivatives and process for their preparation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Ref document number: 3924611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term