JP2004050257A - Method for calculating forward slip in rolling mill - Google Patents

Method for calculating forward slip in rolling mill Download PDF

Info

Publication number
JP2004050257A
JP2004050257A JP2002212893A JP2002212893A JP2004050257A JP 2004050257 A JP2004050257 A JP 2004050257A JP 2002212893 A JP2002212893 A JP 2002212893A JP 2002212893 A JP2002212893 A JP 2002212893A JP 2004050257 A JP2004050257 A JP 2004050257A
Authority
JP
Japan
Prior art keywords
rolling
advanced
rolled
rate
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212893A
Other languages
Japanese (ja)
Inventor
Yuichiro Oki
沖 祐一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002212893A priority Critical patent/JP2004050257A/en
Publication of JP2004050257A publication Critical patent/JP2004050257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correct the error of forward slip especially when the thickness of a material to be rolled is large about the forward slip calculated according to the model formula of the forward slip on the basis of rolling theory. <P>SOLUTION: A shape factor consisting of the ratio of contact length Ld expressing the length in the direction of rolling of a part where rolling rolls and the material to be rolled are brought into contact to the average value Hm of the thickness hi of the material to be rolled on the inlet side of a rolling stand and the thickness ho of the material to be rolled on the outlet side of the rolling stand when a forward slip f<SB>MODEL</SB>which is calculated on the basis of the model formula of the forward slip is calculated is determined ( steps S2, S4 ). The forward slip f<SB>MODEL</SB>on the basis of the model formula is corrected in the accordance with the shape factor when the forward slip is calculated according to a correction formula shown in a formula (1) in the figure which expresses the relationship between a forward slip f<SB>FEM</SB>calculated on the basis of the rigid-plastic finite element method and the forward slip f<SB>MODEL</SB>calculated according to the model formula of the forward slip on the basis of the rolling theory (step S6 ). Formula 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、圧延機における先進率の算出方法に関し、特に、より高精度に先進率を算出することの可能な先進率の算出方法に関する。
【0002】
【従来の技術】
従来、圧延機においては、圧延機出側の板速度を予測し、これに基づいて、最適な圧延が行われるようにロール間隙やロール回転速度等を制御するようにしている。
この板速度の予測は、タンデム圧延機の場合や、圧延に引き続いて被圧延材を巻き取り機によって巻き取る場合、また、被圧延材をシャーカットする切断設備が圧延機に引き続いて設置されている場合等には、圧延機間或いは、圧延機とこれに引き続き設置された設備間との同期を図るためにも、高精度に行うことが重要である。
【0003】
この圧延機出側の板速度の予測を誤ると、タンデム圧延機の場合には、圧延スタンド間で被圧延材のたるみ或いは異常な引っ張りが生じることになり、圧延上のトラブルを招くおそれがある。例えば、圧延スタンド間で被圧延材のたるみが発生すると、次の圧延スタンドで、被圧延材が重なった状態(だぶりこみ状態)で圧延される場合があり、また、圧延スタンド間の張力が異常に高くなると、被圧延材が大きく縮み、極端な場合には被圧延材が破断する場合もある。
【0004】
また、圧延機の出側に巻き取り機が設置されている場合も同様に、圧延機出側の板速度の推定を誤ると、圧延機と巻き取り機との間の速度の同期がとれず、被圧延材のたるみ、或いは引っ張りが生じる。また、圧延機の出側に切断機が設置されている場合には、圧延機出側の板速度の推定を誤ると、被圧延材の切断長さ、切断位置が所望の位置とならなくなる。
【0005】
このように、圧延機出側の板速度を正確に求めることは、圧延操業の安定性、及び製品の寸法品質の向上のためにも重要である。
この圧延機出側の板速度を求める方法としては、例えば、特開平8−71623号公報に記載されているように、被圧延材に接触することなく板速度を測定する板速度計を設置し、これによって測定する方法や、特開平6−246318号公報に記載されているように、先進率つまりロール周速に対する圧延機出側の板速度の増加割合を算出し、これに基づいて板速度を算出する方法等が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前記板速度計を用いる板速度を測定する方法にあっては、この板速度を検出すべき位置毎にこの板速度計を設置する必要があり、板速度を検出すべき位置が多いほど、その設置費用が嵩むという問題がある。また、被圧延材の速度を測定できるのは、圧延中のみである。したがって、圧延前に圧延機出側の板速度を予測し、圧延機やこの圧延機に隣接する設備の運転速度を設定する際には、実速の板速度を用いることができない。
【0007】
また、前述のように、先進率を用いて板速度を算出する方法においては、圧延理論に基づいて推定を行っているため、圧延条件によっては、十分な予測精度を得ることができない場合がある。
このため、特開2000−280013号公報に記載されているように、圧延時のロール偏平形状が円弧であると仮定した圧延理論式により偏平ロール半径及び先進率を算出し、先進率をロール偏平比に基づいて補正するようにした方法等も提案されている。
【0008】
しかしながら、このロール偏平比に基づいて先進率を補正するようにした方法にあっては、硬質材や薄物材の圧延においては、先進率を良好に補正することができるものの、比較的板厚の大きい厚物材の圧延においては、先進率の精度の点で、十分ではないという問題がある。
そこで、この発明は、上記従来の未解決の問題に着目してなされたものであり、厚物材においても十分な精度の先進率を得ることの可能な、圧延機における先進率の算出方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る圧延機における先進率の算出方法は、圧延理論に基づく先進率算出用のモデル式にしたがって算出され、且つ、被圧延材の厚みが大きいときの先進率を、予め設定した補正係数を用いて補正するようにしたことを特徴としている。
【0010】
また、請求項2に係る圧延機における先進率の算出方法は、前記補正係数は、圧延前後における被圧延材の厚みの平均値と、圧延ロール及び前記被圧延材の接触長とから定まる特性変数に応じて設定されることを特徴としている。
さらに、請求項3に係る圧延機における先進率の算出方法は、前記補正係数を用いた補正式は、次式(1)で表されることを特徴としている。
【0011】
【数2】

Figure 2004050257
【0012】
なお、式(1)中のFは、補正後の先進率、fMODEL は補正前の先進率、つまり、圧延理論に基づく先進率算出用のモデル式に基づく先進率、Ldは圧延ロールと被圧延材との接触長、Hmは圧延前後の被圧延材の厚みの平均値を表し、また、max{a,b}は、a及びbのうち大きい方を選択することを表している。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の先進率算出方法を適用した、熱間圧延設備の一例を示す概略構成図であって、例えば、熱間圧延機としての3基の粗ミル1、7基タンデム配列の仕上げ圧延機2を備え、仕上げ圧延機2の下流には巻き取り機3が配置されている。また、巻き取り機3の上流には、被圧延材を切断するためのストリップシャー7及び切断された被圧延材を巻き取り機3に安定誘導するためのピンチロール4が設置されている。
【0014】
また、仕上げ圧延機2の前から6番目に位置する第6圧延スタンドと7番目に位置する第7圧延スタンドとの間と、第7圧延スタンドの出側とに、板厚計5が設置され第7圧延スタンドの入側及び出側の板厚を検出する。また、各圧延スタンドには、圧延荷重を測定するロードセル(荷重計)6が組み込まれている。
そして、板厚計5及びロードセル6の検出信号は、コントローラ10に入力され、コントーラ10では、これら検出信号に基づいて、第7圧延スタンドにおける先進率Fを推定し、この先進率Fに基づいて、図示しない巻き取り機3の電動機を駆動制御し、巻き取り機3の速度制御を行う。また、各圧延スタンドの圧延ロールの駆動制御を行うと共に、各圧延ロールの圧下量を制御し板厚制御を行う。なお、コントローラ10における、巻き取り機3の速度制御、圧延ロールの駆動制御また、板厚制御等の各制御処理は公知の手順で行うようになっている。
【0015】
図2は、先進率Fを推定するための処理手順の一例を示すフローチャートである。
先進率Fの推定を行う際には、まず、ステップS2の処理で、圧延理論にしたがって設定された、公知の先進率のモデル式に基づいて先進率fMODEL を算出する。このモデル式としては、例えば、Simsの式、Orowanの微分方程式、玉野・柳本の式等が知られており、例えば、「板圧延の理論と実際:日本鉄鋼協会編」の第2章等、圧延理論に関する教科書に詳説されている。
【0016】
次に、ステップS4に移行し、Ld/Hmで表されるシェイプファクタを算出する。前記Ldは、図3に示すように圧延時に圧延ロールと被圧延材とが接触する部分の、圧延方向の長さを表す接触長である。また、前記Hmは、圧延スタンドの入り側における被圧延材の板厚hiと圧延スタンドの出側における被圧延材の板厚hoとの平均値である。この平均値は、前記板厚計5からの検出信号に基づいて算出すればよくまた、前記接触長Ldは、例えば、ロードセル6からの圧延荷重と、板厚計5からの検出信号に基づく圧延前後の板厚とに基づいて算出すればよい。
【0017】
次に、ステップS6に移行し、ステップS2で算出した先進率fMODEL を、次式(1)に基づいて補正し、補正した先進率fMODEL を算出すべき先進率Fとし、処理を終了する。なお、式(1)において、max{a,b}は、a及びbのうち何れか大きい方を選択することを意味する。
【0018】
【数3】
Figure 2004050257
【0019】
前記(1)式は、次のようにして算出される。
前述の先進率のモデル式は、圧延理論に基づいて算出されており、さまざまな仮定のもとで導かれている。例えば、Simsの式や、Orowanの微分方程式、玉野・柳本の式等の熱間圧延に関する理論は、板厚方向の応力の分布を一定とするという仮定のもとでそれぞれモデル式を導いている。
【0020】
しかしながら、板厚が大きくなったり、また、軽圧下の圧延においては、この仮定が成り立たなくなり、圧延機入側の部分において、圧延材が板厚方向に応力分布を持ち荷重が大きくなることが、Peening効果として知られている。図4は、図1の7基のタンデム圧延機において、第6圧延スタンド及び第7圧延スタンド間に非接触で板速度を測定する板速計(図示せず)を設置し、この板速計で計測した実際の板速度及び第6圧延スタンドの圧延ロールのロール周速に基づき算出した先進率fLDV と、前記モデル式に基づき算出した先進率fMODEL との差を先進率誤差(=fLDV −fMODEL )として算出したものであって、横軸は、圧延機出側の板厚〔mm〕、縦軸は、先進率誤差〔%〕である。
【0021】
なお、板速度VO と先進率Fとの間には、次式(2)が成り立つことが知られている。なお、式(2)中のVR は、圧延ロールのロール周速である。
0 =(1+F)×VR                  ……(2)
図4は、圧延機出側の板厚が大きい場合(6〜7〔mm〕程度以上)を示したものであるが、板厚が大きくなるに従い誤差が大きくなる傾向があることがわかる。
【0022】
そこで、厚物における先進率のずれは、板厚方向の応力の分布にあると考え、Peening効果が顕著になる度合、つまり、板厚が大きくまた、軽圧下であることを表すシェイプファクタ(Ld/Hm)を用い、板厚や圧下量を変化させた複数のモデルについて、剛塑性有限要素法による先進率FEM とモデル式に基づく先進率fMODEL とを算出し、シェイプファクタを用いて先進率のずれの傾向を整理したところ、図5の関係を得ることができた。
【0023】
なお、図5において、横軸は、シェイプファクタ、縦軸は、剛塑性有限要素法による先進率fFEM とモデル式に基づく先進率fMODEL との比(fFEM /fMODEL )であって、先進率の比fFEM /fMODEL は、fFEM /fMODEL が大きいほど、ずれ量が大きいことを表している。
したがって、図5から、シェイプファクタが小さいほど、先進率のずれが増大する傾向にあることがわかる。
【0024】
この図5において、シェイプファクタと先進率のずれとの対応を表す特性は、次式(3)で表すことができる。
【0025】
【数4】
Figure 2004050257
【0026】
この式(3)から、シェイプファクタ(Ld/Hm)がわかれば、モデル式に基づく先進率fMODEL に基づき、剛塑性有限要素法に基づき算出した先進率fFEM と同等の先進率を得ることができることがわかる。
したがって、前記(3)式を変形し、このとき、前記(3)式の右辺が“1”以下となると、過度に補正がかかり、逆に先進率の精度が低下してしまうため、前記(3)式の右辺が、“1”以下とならないように、前記(3)式の右辺と“1”との何れか大きい方を選択するようにすることによって、前記(1)式を導くことができる。
【0027】
このようにして、モデル式に基づく先進率fMODEL を補正し、先進率Fを得たならば、処理を終了する。
そして、コントローラ10では、算出した先進率Fに基づいて、例えば、前記(2)式にしたがって仕上げ圧延機2の第7圧延スタンドの出側における板速度を算出し、これに基づいて巻き取り機3の駆動制御を行う。
【0028】
ここで、前記(1)式は、シェイプファクタ(Ld/Hm)に応じて、モデル式に基づく先進率fMODEL を剛塑性有限要素法に基づく先進率fFEM と同等の値に補正し得る関数式であり、前記シェイプファクタ(Ld/Hm)は、前述のように前記Peening効果が顕著になってくる度合を示すから、前記(1)式から得られる先進率Fは、Peening効果の影響を考慮した先進率となる。
【0029】
したがって、前記図4に示す板厚の大きい領域における先進率誤差を低減することができ、また、軽圧下状態である場合でも的確な先進率を算出することができ、Peening効果の影響を無視し、板厚方向の応力分布を一定と仮定したモデル式に基づいて、的確な先進率を算出することができる。
図6は、板速計で計測した実際の板速度及び仕上圧延機の圧延ロールのロール周速に基づき算出した先進率fLDV と、前記モデル式に基づき算出した先進率fMODEL を前記(1)式の補正式により補正した後の先進率Fとの差を先進率誤差(=fLDV −F)として算出したものであって、横軸は仕上圧延機出側の板厚〔mm〕、縦軸は先進率誤差〔%〕である。
【0030】
前記図4に示す、実測値に基づき算出した先進率fLDV 及びモデル式に基づく先進率fMODEL の先進率誤差と比較すると、全体的にばらつきが小さくなっており、特に、比較的板厚の大きい領域、つまり、Peening効果が顕著となり、板厚方向の応力分布が一定とならない領域においても、先進率誤差が抑制されていることがわかる。
【0031】
つまり、図4に示すように、従来の方法により先進率を算出した場合、前述のように、圧延機出側の板厚が比較的大きい場合に、先進率誤差が大きくなっているが、図6に示すように、本実施の形態に示す方法を用いることによって、先進率のずれは、板厚が大きい場合において是正されることがわかる。
また、板厚と圧下量とに応じたシェイプファクタ(Ld/Hm)に基づいて補正を行うようにしている。したがって、図4において、例えば圧延機出側の板厚が大きい領域においては、板厚が大きくなるほど、先進率誤差が上昇しているが、図6に示すように、本実施の形態に示す方法を用いることによって、板厚の変化に伴う先進率誤差の増加を抑制することができる。
【0032】
したがって、Peening効果の影響が大きく板厚方向の応力分布が一定とならない領域においても、先進率誤差を抑制することができるから、従来の方法では、十分な精度を得ることのできなかった、比較的板厚の大きい領域、つまりPeening効果の影響が大きく板厚方向の応力分布が一定とならない領域においても、先進率の精度向上を図ることができ効果的である。
【0033】
ちなみに、従来の方法を用いて先進率を算出した場合、板厚計の実測値に基づき算出した先進率との誤差の平均が1.13%であったのに対し、本実施の形態に示す方法を用いて先進率を算出した場合の誤差の平均は、0.03%程度であった。
したがって、このようにして算出した先進率Fに基づいて、板速度を算出することによって、高精度な板速度を得ることができる。よって、このような板速度に基づいて例えば後段の巻き取り機3の駆動制御を行うことによって、巻き取り機3との速度の同期を適正にとることができ、被圧延材のダブリや引っ張りの発生を防止することができる。
【0034】
また、前記剛塑性有限要素法に基づいて先進率fFEM を算出した場合、比較的高精度な先進率を得ることができるが、その算出は困難である。しかしながら、前記補正式を用いることによって、剛塑性有限要素法に基づく先進率fFEM と同等の精度の先進率Fを容易に得ることができる。
なお、上記実施の形態においては、仕上圧延機の出側における板速度を予測するようにした場合について説明しているが、これに限るものではなく、例えば、各圧延スタンドにおける出側の板速度を算出し、これに基づいて各圧延スタンドにおける圧延ロールの回転速度制御を行うようにしてもよい。この場合には、各圧延スタンド間に板厚計を設置し、各板厚計からの検出信号及びロードセルの検出信号に基づいて、各圧延スタンド毎にシェイプファクタを算出し、各圧延スタンド出側におけるモデル式に基づく先進率fMODEL を算出し、これを前記(1)式にしたがって、シェイプファクタに応じて補正すればよい。
【0035】
このようにすることによって、各圧延スタンドの先進率を高精度に算出することができるから、この先進率に基づいて各圧延スタンドの圧延ロールの駆動制御を行うことにより、圧延スタンド間における、被圧延材のダブリや引っ張りの発生を回避することができる。
また、上記実施の形態において、前記(3)式中の、定数“1.7993”及び“0.5329”は、剛塑性有限要素法に基づき定まる定数である。したがって、前記先進率fFEM に代えて、板速計による実測値に基づき算出した先進率fLDV に基づいて前記補正式を予め算出しておき、これに基づいて、先進率の補正を行うことによって、より高精度に先進率を算出することができる。
【0036】
【発明の効果】
本発明の請求項1乃至請求項3に係る、圧延機における先進率の算出方法によれば、圧延理論に基づくモデル式にしたがって算出した、被圧延材の厚みが大きいときの先進率を補正係数に基づいて補正するようにしたから、被圧延材の厚みが大きい場合であっても精度の高い先進率を得ることができる。
【0037】
特に、圧延前後における被圧延材の厚みの平均値と圧延ロール及び前記被圧延材の接触長とから定まる特性変数に応じて特定される補正係数に基づいて、先進率の補正を行うようにしたから、被圧延材の厚み方向の応力の分布の度合に応じて補正係数を設定することができ、被圧延材の厚み方向の応力の分布の度合に応じて生じる圧延理論に基づく先進率と真の先進率とのずれ分を的確に補正することができる。
【図面の簡単な説明】
【図1】本発明の、圧延機における先進率の算出方法を適用した熱間圧延設備の一例を示す概略構成図である。
【図2】図1のコントローラ10における、先進率算出時の処理手順の一例を示すフローチャートである。
【図3】接触長Ldと圧延前後における被圧延材の厚みの平均値Hmとを説明するための説明図である。
【図4】圧延理論に基づく先進率のモデル式に基づき算出した先進率の先進率誤差と、圧延機出側の被圧延材の板厚との対応を表す特性図である。
【図5】剛塑性有限要素法に基づく先進率fFEM 及びモデル式に基づく先進率fMODEL の比と、シェイプファクタとの対応を表す特性図である。
【図6】モデル式に基づく先進率fMODEL を補正式にしたがって補正した後の先進率の先進率誤差と、圧延機出側の被圧延材の板厚との対応を表す特性図である。
【符号の説明】
1 粗ミル
2 仕上げ圧延機
3 巻き取り機
4 ピンチロール
5 板厚計
6 ロードセル
7 ストリップシャー
10 コントローラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of calculating an advanced rate in a rolling mill, and more particularly, to a method of calculating an advanced rate capable of calculating an advanced rate with higher accuracy.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a rolling mill, a sheet speed on the exit side of the rolling mill is predicted, and based on this, a roll gap, a roll rotation speed, and the like are controlled so that optimum rolling is performed.
The prediction of the sheet speed is, in the case of a tandem rolling mill, or when the rolled material is wound by a winding machine following the rolling, or a cutting facility for shear-cutting the rolled material is installed following the rolling mill. In such a case, it is important to perform the process with high accuracy in order to synchronize between the rolling mills or between the rolling mill and the equipment installed subsequently thereto.
[0003]
If the prediction of the sheet speed on the exit side of the rolling mill is erroneous, in the case of the tandem rolling mill, the material to be rolled becomes slack or abnormally stretched between the rolling stands, which may cause trouble in rolling. . For example, if the material to be rolled sags between the rolling stands, the material to be rolled may be rolled in the next rolling stand in an overlapping state (a state of squeezing), and the tension between the rolling stands may be abnormal. , The rolled material shrinks greatly, and in extreme cases, the rolled material may break.
[0004]
Similarly, when the winding machine is installed on the exit side of the rolling mill, if the estimation of the sheet speed on the exit side of the rolling mill is incorrect, the speed between the rolling mill and the winding machine cannot be synchronized. Then, the material to be rolled becomes slack or stretched. Further, when a cutting machine is installed on the exit side of the rolling mill, if the estimation of the sheet speed on the exit side of the rolling mill is incorrect, the cutting length and the cutting position of the material to be rolled will not be the desired positions.
[0005]
As described above, it is important to accurately obtain the sheet speed on the exit side of the rolling mill in order to improve the stability of the rolling operation and the dimensional quality of the product.
As a method of obtaining the sheet speed on the exit side of the rolling mill, for example, as described in JP-A-8-71623, a sheet speed meter for measuring the sheet speed without contacting the material to be rolled is installed. As described in Japanese Patent Application Laid-Open No. Hei 6-246318, a rate of increase in the advance rate, that is, the increase rate of the sheet speed on the exit side of the rolling mill with respect to the peripheral speed of the roll, is calculated based on this. Has been proposed.
[0006]
[Problems to be solved by the invention]
However, in the method of measuring the plate speed using the plate speedometer, it is necessary to install the plate speedometer at each position where the plate speed is to be detected. However, there is a problem that the installation cost increases. The speed of the material to be rolled can be measured only during rolling. Therefore, when estimating the plate speed on the exit side of the rolling mill before rolling and setting the operation speed of the rolling mill and the equipment adjacent to the rolling mill, the actual speed of the plate cannot be used.
[0007]
In addition, as described above, in the method of calculating the sheet speed using the advanced ratio, since the estimation is performed based on the rolling theory, depending on the rolling conditions, sufficient prediction accuracy may not be obtained. .
For this reason, as described in Japanese Patent Application Laid-Open No. 2000-280013, the flat roll radius and the advance ratio are calculated by a rolling theoretical formula assuming that the roll flat shape at the time of rolling is an arc, and the advance ratio is calculated as the roll flat. A method of correcting based on the ratio has been proposed.
[0008]
However, in the method in which the advanced ratio is corrected based on the roll flatness ratio, in the rolling of a hard material or a thin material, the advanced ratio can be corrected satisfactorily. In the rolling of a large thick material, there is a problem that the precision of the advanced ratio is not sufficient.
Accordingly, the present invention has been made in view of the above-mentioned conventional unsolved problem, and a method of calculating an advanced rate in a rolling mill capable of obtaining an advanced rate with sufficient accuracy even in a thick material. It is intended to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method of calculating an advanced ratio in a rolling mill according to claim 1 of the present invention is calculated according to a model formula for calculating an advanced ratio based on a rolling theory, and the thickness of a material to be rolled is calculated. It is characterized in that the advanced ratio when large is corrected using a preset correction coefficient.
[0010]
Further, in the method for calculating an advanced rate in a rolling mill according to claim 2, the correction coefficient is a characteristic variable determined from an average value of a thickness of a material to be rolled before and after rolling, and a contact length of a rolling roll and the material to be rolled. Is set in accordance with
Furthermore, a method of calculating an advanced rate in a rolling mill according to claim 3 is characterized in that a correction equation using the correction coefficient is expressed by the following equation (1).
[0011]
(Equation 2)
Figure 2004050257
[0012]
In Formula (1), F is the advanced ratio after correction, f MODEL is the advanced ratio before correction, that is, the advanced ratio based on a model formula for calculating the advanced ratio based on the rolling theory, and Ld is the rolling roll and the coating. The contact length with the rolled material, Hm, represents the average value of the thickness of the material to be rolled before and after rolling, and max {a, b} indicates that the larger of a and b is selected.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a hot rolling facility to which the advanced rate calculation method of the present invention is applied. For example, three rough mills 1 as hot rolling mills, seven tandem arrangement finishing A rolling mill 2 is provided, and a winding machine 3 is arranged downstream of the finishing rolling mill 2. A strip shear 7 for cutting the material to be rolled and a pinch roll 4 for stably guiding the cut material to be wound to the winder 3 are provided upstream of the winding machine 3.
[0014]
A thickness gauge 5 is provided between a sixth rolling stand located sixth from the front of the finishing rolling mill 2 and a seventh rolling stand located seventh, and on the exit side of the seventh rolling stand. The thickness of the entrance side and the exit side of the seventh rolling stand is detected. Each rolling stand incorporates a load cell (load meter) 6 for measuring a rolling load.
The detection signals of the thickness gauge 5 and the load cell 6 are input to the controller 10, and the controller 10 estimates the advance rate F at the seventh rolling stand based on the detection signals, and based on the advance rate F, The drive of the winder 3 (not shown) is drive-controlled to control the speed of the winder 3. Further, while controlling the drive of the rolling rolls of each rolling stand, the rolling reduction of each rolling roll is controlled to control the thickness. It should be noted that the control processes such as the speed control of the winding machine 3, the drive control of the rolling rolls, and the thickness control in the controller 10 are performed in a known procedure.
[0015]
FIG. 2 is a flowchart illustrating an example of a processing procedure for estimating the advanced rate F.
When estimating the advanced rate F, first, in the process of step S2, the advanced rate f MODEL is calculated based on a well-known advanced rate model formula set in accordance with the rolling theory. As this model formula, for example, the Sims formula, the Orowan differential equation, the Tamano-Yanagimoto formula, and the like are known. For example, Chapter 2 of “Theory and practice of sheet rolling: edited by the Iron and Steel Institute of Japan” It is detailed in textbooks on rolling theory.
[0016]
Next, the process proceeds to step S4 to calculate a shape factor represented by Ld / Hm. The Ld is a contact length representing a length in a rolling direction of a portion where a rolling roll and a material to be rolled come into contact with each other during rolling as shown in FIG. Hm is an average value of the thickness hi of the material to be rolled on the entrance side of the rolling stand and the thickness ho of the material to be rolled on the exit side of the rolling stand. The average value may be calculated based on the detection signal from the thickness gauge 5. The contact length Ld may be, for example, a rolling load based on the rolling load from the load cell 6 and the detection signal from the thickness gauge 5. What is necessary is just to calculate based on the thickness before and behind.
[0017]
Next, the process proceeds to step S6, in which the advanced rate f MODEL calculated in step S2 is corrected based on the following equation (1), the corrected advanced rate f MODEL is set as the advanced rate F to be calculated, and the process ends. . In Expression (1), max {a, b} means that the larger one of a and b is selected.
[0018]
[Equation 3]
Figure 2004050257
[0019]
Equation (1) is calculated as follows.
The above-mentioned model equation of the advance rate is calculated based on the rolling theory, and is derived under various assumptions. For example, the theories related to hot rolling, such as the Sims equation, the Orowan differential equation, and the Tamano-Yanagimoto equation, each derive a model equation under the assumption that the stress distribution in the thickness direction is constant. .
[0020]
However, when the sheet thickness increases, or in rolling under light pressure, this assumption does not hold, and in the part on the rolling mill entry side, the rolled material has a stress distribution in the sheet thickness direction and the load increases, Known as the Peening effect. FIG. 4 shows a sheet speed meter (not shown) for measuring a sheet speed in a non-contact manner between the sixth rolling stand and the seventh rolling stand in the seven tandem rolling mills shown in FIG. The difference between the advanced rate f LDV calculated based on the actual plate speed measured in step S1 and the roll peripheral speed of the rolling roll of the sixth rolling stand and the advanced rate f MODEL calculated based on the model formula is defined as an advanced rate error (= f be those calculated as LDV -f MODEL), the horizontal axis represents a plate thickness on the delivery side of the rolling mill (mm), the vertical axis represents the forward slip error (%).
[0021]
It is known that the following equation (2) holds between the plate speed V O and the advance rate F. Incidentally, V R in the formula (2) is a roll peripheral speed of the rolling rolls.
V 0 = (1 + F) × V R (2)
FIG. 4 shows the case where the sheet thickness on the exit side of the rolling mill is large (about 6 to 7 mm or more). It can be seen that the error tends to increase as the sheet thickness increases.
[0022]
Therefore, it is considered that the deviation of the advanced ratio in the thick object is due to the distribution of stress in the thickness direction, and the degree of the Peening effect becomes remarkable, that is, the shape factor (Ld) indicating that the thickness is large and the pressure is low. / Hm), the advance rate FEM based on the rigid-plastic finite element method and the advance rate f MODEL based on the model formula are calculated for a plurality of models in which the plate thickness and the reduction amount are changed, and the advance rate is calculated using the shape factor. When the tendency of the deviation was arranged, the relationship shown in FIG. 5 was obtained.
[0023]
In FIG. 5, the horizontal axis is the shape factor, and the vertical axis is the ratio (f FEM / f MODEL ) between the advanced rate f FEM based on the rigid-plastic finite element method and the advanced rate f MODEL based on the model formula. The ratio f FEM / f MODEL of the advance rate indicates that the larger the value of f FEM / f MODEL , the larger the amount of deviation.
Therefore, it can be seen from FIG. 5 that the smaller the shape factor is, the more the deviation of the advanced ratio tends to be.
[0024]
In FIG. 5, the characteristic representing the correspondence between the shape factor and the deviation of the advanced rate can be expressed by the following equation (3).
[0025]
(Equation 4)
Figure 2004050257
[0026]
From this equation (3), if the shape factor (Ld / Hm) is known, an advanced rate equal to the advanced rate f FEM calculated based on the rigid-plastic finite element method based on the advanced rate f MODEL based on the model formula can be obtained. You can see that you can do it.
Therefore, the equation (3) is modified. At this time, if the right side of the equation (3) becomes “1” or less, excessive correction is applied, and conversely, the precision of the advance rate is reduced. Deriving the above equation (1) by selecting the larger one of the right side of the above equation (3) and "1" so that the right side of the equation does not become "1" or less. Can be.
[0027]
In this way, when the advanced rate f MODEL based on the model formula is corrected and the advanced rate F is obtained, the processing is terminated.
Then, the controller 10 calculates the plate speed at the exit side of the seventh rolling stand of the finishing mill 2 according to the above formula (2), for example, based on the calculated advance rate F, and based on the calculated speed, 3 is performed.
[0028]
Here, the above equation (1) is a function that can correct the advanced factor f MODEL based on the model formula to a value equivalent to the advanced factor f FEM based on the rigid-plastic finite element method according to the shape factor (Ld / Hm). Since the shape factor (Ld / Hm) indicates the degree to which the Peening effect becomes remarkable as described above, the advance rate F obtained from the expression (1) depends on the influence of the Peening effect. It will be the advanced rate considered.
[0029]
Therefore, it is possible to reduce the error of the advanced ratio in the region where the plate thickness is large as shown in FIG. 4, and to calculate the accurate advanced ratio even in the state of the light reduction, ignoring the influence of the Peening effect. In addition, it is possible to calculate an accurate advance rate based on a model formula assuming that the stress distribution in the thickness direction is constant.
FIG. 6 shows the advance rate f LDV calculated based on the actual sheet speed measured by the sheet speed meter and the roll peripheral speed of the rolling roll of the finishing mill, and the advance rate f MODEL calculated based on the model formula. ) Is calculated as the advanced rate error (= f LDV −F) after the correction by the correction equation of the formula, wherein the horizontal axis represents the thickness [mm] of the exit side of the finishing mill, The vertical axis is the advance rate error [%].
[0030]
Compared to the advanced rate f LDV calculated based on the actually measured values and the advanced rate error of the advanced rate f MODEL based on the model formula shown in FIG. It can be seen that the advanced ratio error is suppressed even in a large region, that is, a region where the Peening effect is remarkable and the stress distribution in the plate thickness direction is not constant.
[0031]
That is, as shown in FIG. 4, when the advance rate is calculated by the conventional method, as described above, the advance rate error increases when the plate thickness on the rolling mill exit side is relatively large. As shown in FIG. 6, by using the method described in the present embodiment, it is understood that the deviation of the advanced ratio is corrected when the plate thickness is large.
Further, the correction is performed based on the shape factor (Ld / Hm) corresponding to the plate thickness and the reduction amount. Therefore, in FIG. 4, for example, in a region where the plate thickness on the rolling mill exit side is large, as the plate thickness increases, the advance rate error increases. However, as shown in FIG. 6, the method described in the present embodiment is used. Is used, it is possible to suppress an increase in the advance rate error due to a change in the plate thickness.
[0032]
Therefore, even in a region where the Peening effect is large and the stress distribution in the plate thickness direction is not constant, the error in the advance rate can be suppressed, so that the conventional method cannot obtain sufficient accuracy. Even in a region where the target plate thickness is large, that is, in a region where the influence of the Peening effect is large and the stress distribution in the plate thickness direction is not constant, the accuracy of the advance rate can be improved, which is effective.
[0033]
By the way, when the advanced ratio is calculated using the conventional method, the average of the error with the advanced ratio calculated based on the actually measured value of the thickness gauge is 1.13%, which is shown in the present embodiment. The average of the error when the advance rate was calculated using the method was about 0.03%.
Therefore, by calculating the plate speed based on the advance rate F calculated as described above, a highly accurate plate speed can be obtained. Therefore, for example, by controlling the drive of the winding device 3 at the subsequent stage based on such a plate speed, it is possible to properly synchronize the speed with the winding device 3, and to achieve the doubling and pulling of the material to be rolled. Occurrence can be prevented.
[0034]
Further, when the advance rate f FEM is calculated based on the rigid-plastic finite element method, a relatively high precision advance rate can be obtained, but the calculation is difficult. However, by using the correction formula, it is possible to easily obtain the advanced rate F having the same accuracy as the advanced rate f FEM based on the rigid-plastic finite element method.
In addition, in the said embodiment, although the case where it was made to predict the plate | board speed in the output side of a finishing rolling mill was demonstrated, it is not limited to this, For example, the plate | board speed of the output side in each rolling stand May be calculated, and based on this, the rotation speed control of the rolling rolls in each rolling stand may be performed. In this case, a thickness gauge is installed between each rolling stand, a shape factor is calculated for each rolling stand based on a detection signal from each thickness gauge and a detection signal of the load cell, and each rolling stand exit side May be calculated based on the model formula in and then corrected according to the shape factor according to the above formula (1).
[0035]
By doing so, the advance rate of each rolling stand can be calculated with high accuracy. By controlling the drive of the rolling rolls of each rolling stand based on this advance rate, the coating rate between the rolling stands can be reduced. It is possible to avoid the occurrence of doubling and stretching of the rolled material.
In the above embodiment, the constants “1.7939” and “0.5329” in the above equation (3) are constants determined based on the rigid-plastic finite element method. Therefore, instead of the advance rate f FEM , the correction equation is calculated in advance based on the advance rate f LDV calculated based on the actual value measured by the sheet speedometer, and the advance rate is corrected based on this. Thereby, the advanced rate can be calculated with higher accuracy.
[0036]
【The invention's effect】
According to the method for calculating the advanced ratio in a rolling mill according to claims 1 to 3, the advanced ratio when the thickness of the material to be rolled is large, calculated according to a model formula based on the rolling theory, is a correction coefficient. Therefore, even if the thickness of the material to be rolled is large, a high precision advance rate can be obtained.
[0037]
In particular, based on a correction coefficient specified according to a characteristic variable determined from the average value of the thickness of the material to be rolled before and after rolling and the contact length of the rolling roll and the material to be rolled, the advance rate is corrected. Thus, the correction coefficient can be set in accordance with the degree of distribution of stress in the thickness direction of the material to be rolled, and the advanced rate and trueness based on the rolling theory generated according to the degree of distribution of stress in the thickness direction of the material to be rolled can be set. The deviation from the advanced rate can be accurately corrected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a hot rolling facility to which a method for calculating an advanced rate in a rolling mill according to the present invention is applied.
FIG. 2 is a flowchart showing an example of a processing procedure when calculating an advanced rate in the controller 10 of FIG.
FIG. 3 is an explanatory diagram for explaining a contact length Ld and an average value Hm of a thickness of a material to be rolled before and after rolling.
FIG. 4 is a characteristic diagram showing a correspondence between an advanced rate error of an advanced rate calculated based on a model equation of an advanced rate based on a rolling theory and a sheet thickness of a material to be rolled on a rolling mill exit side.
FIG. 5 is a characteristic diagram illustrating a correspondence between a shape factor and a ratio of an advanced factor f FEM based on a rigid-plastic finite element method and an advanced factor f MODEL based on a model formula.
FIG. 6 is a characteristic diagram showing the correspondence between the advanced rate error of the advanced rate after correcting the advanced rate f MODEL based on the model equation according to the correction equation, and the sheet thickness of the material to be rolled on the rolling mill exit side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rough mill 2 Finishing rolling mill 3 Winding machine 4 Pinch roll 5 Thickness gauge 6 Load cell 7 Strip shear 10 Controller

Claims (3)

圧延理論に基づく先進率算出用のモデル式にしたがって算出され、且つ、被圧延材の厚みが大きいときの先進率を、予め設定した補正係数を用いて補正するようにしたことを特徴とする、圧延機における先進率算出方法。Calculated according to a model formula for advanced ratio calculation based on rolling theory, and, the advanced ratio when the thickness of the material to be rolled is large, characterized by being corrected using a preset correction coefficient, Calculation method of advanced rate in rolling mill. 前記補正係数は、圧延前後における被圧延材の厚みの平均値と、圧延ロール及び前記被圧延材の接触長とから定まる特性変数に応じて設定されることを特徴とする請求項1記載の圧延機における先進率算出方法。2. The rolling method according to claim 1, wherein the correction coefficient is set according to a characteristic variable determined from an average value of the thickness of the material to be rolled before and after rolling, and a contact length between the rolling roll and the material to be rolled. Method of calculating the advanced rate of the machine. 前記補正係数を用いた補正式は、次式(1)で表されることを特徴とする請求項1又は2記載の圧延機における先進率算出方法。
Figure 2004050257
なお、式(1)中のFは、補正後の先進率、fMODEL は前記モデル式に基づく補正前の先進率、Ldは圧延ロールと被圧延材との接触長、Hmは圧延前後の被圧延材の厚みの平均値を表す。また、max{a,b}は、a及びbのうち大きい方を選択することを表す。
The advanced rate calculation method for a rolling mill according to claim 1 or 2, wherein the correction equation using the correction coefficient is represented by the following equation (1).
Figure 2004050257
In the equation (1), F is the advanced ratio after correction, f MODEL is the advanced ratio before correction based on the model formula, Ld is the contact length between the rolling roll and the material to be rolled, and Hm is the rolling ratio before and after rolling. Indicates the average value of the thickness of the rolled material. Also, max {a, b} indicates that the larger one of a and b is selected.
JP2002212893A 2002-07-22 2002-07-22 Method for calculating forward slip in rolling mill Pending JP2004050257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212893A JP2004050257A (en) 2002-07-22 2002-07-22 Method for calculating forward slip in rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212893A JP2004050257A (en) 2002-07-22 2002-07-22 Method for calculating forward slip in rolling mill

Publications (1)

Publication Number Publication Date
JP2004050257A true JP2004050257A (en) 2004-02-19

Family

ID=31935693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212893A Pending JP2004050257A (en) 2002-07-22 2002-07-22 Method for calculating forward slip in rolling mill

Country Status (1)

Country Link
JP (1) JP2004050257A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206801A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Rolling method of steel plate and pass schedule calculation method
CN105234186A (en) * 2015-10-29 2016-01-13 燕山大学 Rolling schedule optimization method with control over electric power consumption per ton steel as target in cold continuous rolling process
CN105234188A (en) * 2015-10-29 2016-01-13 燕山大学 Rolling speed optimization method with benefit control as target in cold continuous rolling process
CN111069286A (en) * 2019-12-05 2020-04-28 唐山不锈钢有限责任公司 Automatic correction method for rolled piece slipping based on analysis and judgment of rolling process parameters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206801A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Rolling method of steel plate and pass schedule calculation method
CN105234186A (en) * 2015-10-29 2016-01-13 燕山大学 Rolling schedule optimization method with control over electric power consumption per ton steel as target in cold continuous rolling process
CN105234188A (en) * 2015-10-29 2016-01-13 燕山大学 Rolling speed optimization method with benefit control as target in cold continuous rolling process
CN111069286A (en) * 2019-12-05 2020-04-28 唐山不锈钢有限责任公司 Automatic correction method for rolled piece slipping based on analysis and judgment of rolling process parameters

Similar Documents

Publication Publication Date Title
JPWO2008129634A1 (en) Thickness control device for reverse rolling mill
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
US6185967B1 (en) Strip threading speed controlling apparatus for tandem rolling mill
JP2004050257A (en) Method for calculating forward slip in rolling mill
JP2018176197A (en) On-traveling plate thickness change method in tandem rolling machine
JP5418244B2 (en) Control method for cold tandem rolling mill
JP4319431B2 (en) Sheet thickness control method and control device for tandem rolling mill
KR101443082B1 (en) Apparatus for controlling thickness of rolled steel plate and the method thereof
JPH1110215A (en) Method for controlling wedge of hot rolled stock
JPH05208204A (en) Method for controlling shape in strip rolling
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JP3277162B2 (en) Plate speed prediction method in rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JP2003205306A (en) Method for manufacturing steel plate
JP5631233B2 (en) Thickness control method of rolling mill
JP5385643B2 (en) Sheet thickness control method and sheet thickness control apparatus in multi-high rolling mill
JP3935116B2 (en) Thickness control device for rolling mill
JP3610819B2 (en) Sheet speed prediction method in rolling.
JP2002028710A (en) Method of continuous rolling
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JP4091739B2 (en) Sheet width control method
JPS629711A (en) Controlling method for sheet width on hot rolling line of sheet
JP2002205106A (en) Method for changing distribution of rolling load in tandem mill
JP2004034032A (en) Method for controlling edge drop in tandem cold- rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125