JP2004050101A - Manufacturing method for photocatalyst body - Google Patents

Manufacturing method for photocatalyst body Download PDF

Info

Publication number
JP2004050101A
JP2004050101A JP2002213010A JP2002213010A JP2004050101A JP 2004050101 A JP2004050101 A JP 2004050101A JP 2002213010 A JP2002213010 A JP 2002213010A JP 2002213010 A JP2002213010 A JP 2002213010A JP 2004050101 A JP2004050101 A JP 2004050101A
Authority
JP
Japan
Prior art keywords
photocatalyst
coating film
metal
coating
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213010A
Other languages
Japanese (ja)
Inventor
Yukio Takeda
武田 幸雄
Ichiro Wakui
和久井 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWASAKI KANKYO SHISETSU KK
Mitsubishi Corp
Original Assignee
IWASAKI KANKYO SHISETSU KK
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWASAKI KANKYO SHISETSU KK, Mitsubishi Corp filed Critical IWASAKI KANKYO SHISETSU KK
Priority to JP2002213010A priority Critical patent/JP2004050101A/en
Publication of JP2004050101A publication Critical patent/JP2004050101A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst body which has an excellent photocatalytic activity, reduces deterioration by ultraviolet light, and excellent in mechanical strength by increasing the surface area irradiated with light by efficiently irradiating the body with the ultraviolet light. <P>SOLUTION: A coating film of a photocatalyst is formed on a metal substrate, and then the metal substrate on which the coating film has been formed is processed into a three-dimensional structure body, thereby obtaining a photocatalyst having a three-dimensional structure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光触媒体の製造方法に関する。
【0002】
【従来の技術】
いわゆる半導体光触媒による光反応は、その1つの機構である酸化還元反応により、脱臭、抗菌、防汚作用を生じさせる。この光触媒の作用を利用して種々の製品が検討され、実用化されている。代表的な半導体光触媒である酸化チタンのバンドギャップは約3eVであり、波長に直すと400nm程度である。したがって、400nm以下の紫外線を照射すると半導体内部に電子(e)と正孔(h)が生じる。この電子は酸素と反応してきわめて大きい酸化力を示すスーパーオキサイドイオン〔O 〕を生成し、一方の正孔は水と反応してヒドロキシラジカル〔・OH〕を生成する。この2つの活性酸素が酸化還元反応を発現させ、臭気もしくは汚れ物質の分解、さらには有機系塩素化合物等の他の難分解性化合物が酸化分解されることになる。
【0003】
従来、光触媒体として種々の基材、形状のものが知られている。たとえば、空気清浄機等の脱臭に光触媒体が用いられる場合、通気性がよく、軽量で、表面積が大きい等の点から、ダンボール紙もしくは不織布を基材として酸化チタンを塗布することが多いが、紙の場合には照射される紫外線によりパルプ繊維が劣化されやすく、また紙も不織布も紫外線のあたらない内側部分での光触媒活性に難があり、有効な触媒活性を得るのは困難であった。
【0004】
そこで、基材として金属を使用すると低波長の紫外線による劣化がないので有利であり、たとえば金属基材をハニカム形状とし、チタンのアルコシドを塗布した後に加熱して酸化チタンを形成させることも行われている。しかし、このような場合、加熱によりハニカム形成に用いられた接着剤が失活ないしは強度低下してしまうことが避けづらく、ハニカムの機械的強度が著しく低下する恐れがある。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような難点を解決し、光の当たる表面積を大きくし、紫外線を効率的に照射することにより優れた光触媒活性を有し、しかも紫外線による劣化を少なくし得、機械的強度にも優れた光触媒体を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の要旨は、金属基板上に光触媒のコーティング膜を形成させ、ついでこのコーティング膜形成金属基板を加工して立体構造体とすることにより、立体構造を有する光触媒体を得ることを特徴とする光触媒体の製造方法にある。
【0007】
【発明の実施の形態】
本発明の光触媒体において、上記の金属は好適にはアルミニウム、チタン、マグネシウム、鋼もしくはステンレス鋼から選択されるが、特に好適にはアルミニウムである。アルミニウム、チタンもしくはマグネシウムは合金であってもよい。たとえばアルミニウム合金としては、Al−Mg、Al−Mg−Si、Al−Cu−Mg−Mn、Al−Zn−Mg−Cu等、マグネシウム合金としては、Mg−Al、Mg−Al−Zn、Mg−Mn等が挙げられる。本発明においてはこれらの金属の基板上に、光触媒のコーティング膜が形成されるが、この形成前に、金属表面は絶縁被覆されるのが好ましい。この絶縁被覆により、光触媒上の電子が金属側に流れることなく、電子の授受を十分に行ないうるので、光分解活性を格段に高めることができる。
【0008】
この絶縁被覆処理は、好適には陽極酸化、化成処理もしくはガラスコーティング処理から選ばれる。たとえば、アルミニウム、チタンの場合には、それらを電解質水溶液中に浸漬してアノード分極することにより、金属の表面に酸化物皮膜を形成する、いわゆる陽極酸化皮膜が一般的である。また、鋼板の場合には電気めっき、もしくは溶融めっき、さらにはリン酸、およびリン酸塩による化成処理が一般的である。さらにアルミニウムの場合には、陽極酸化に代えて化学薬品による化学的皮膜化成法(化成処理)を採用しうる。この化成処理としてはクロム酸またはクロム酸−リン酸を主体とするもの、すなわちクロメート処理皮膜が好適である。マグネシウムの場合にも、陽極酸化,化成処理が適用されうる。
【0009】
またアルミニウム等の表面に珪酸ソーダ(水ガラス)を塗布して焼結させるガラスコーティング法を採用することもできる。
【0010】
ステンレス鋼の場合、表面を酸化させ不働態化を目的とする酸(好適には重クロム酸ソーダ)処理(化成処理)も採用しうる。
【0011】
絶縁被覆の膜厚は特に制限されないが、通常約0.1〜1μm程度から選択される。
【0012】
本発明における光触媒としては、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化タングステン、酸化カドミウム、酸化マンガン、酸化銅等の金属酸化物;硫化カドミウム、硫化亜鉛、硫化インジウム、硫化鉛、硫化タングステン等の金属硫化物;ポリパラフェニレン、ポリアニリン、ポリチオフェン等の有機高分子;チタン酸ストロンチウムに各種の金属酸化物を添加した層間化合物、等が挙げられるが、酸化ジルコニウムおよび酸化チタンが好適である。そして最も好適には、酸化ジルコニウムを選択することにより、比較的短波長の紫外光を利用しうるので向上した光触媒活性が得られ易い。酸化チタンとしてはアナタ−ゼ、ルチルもしくはブロッカイト型のいずれでもよいが、触媒活性および入手し易さの点からアナタ−ゼ型が最適である。
【0013】
これらの光触媒の金属基板へのコーティング膜の形成法自体は、常法によることができるが、液相から析出させる方法、気相から蒸着させる方法が好ましい。たとえば、液相法としてはゾル−ゲル法等、気相法としてはスパッタリング、真空蒸着等の物理蒸着法(PVD)または気相化学反応法(CVD)等の化学的方法が挙げられるが、得られる被覆の均一性、コスト等の点からゾル−ゲル法が最適である。そしてゾル−ゲル法における出発物質としては、たとえば金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート等の金属有機化合物、たとえばオキシ塩化物、塩化物、硝酸塩等の金属無機化合物が一般的に用いられる。これらの中で、金属アルコキシドが反応性等の点から好適であり、ブトキシド、エトキシド、プロポキシド等の金属(たとえばジルコニウムもしくはチタン)アルコキシドをブタノール、プロパノール等の溶媒を用いて溶液として、これを金属基板に塗布することにより目的とするコーティング膜が形成されうる。塗布は、はけ塗り、ロール塗り、浸漬法、スプレー、スピン等を適宜選択しうる。コーティング膜の厚さは通常3〜500μm、好ましくは5〜20μm程度から選ばれる。たとえば、ゾル−ゲル法を用いて金属アルコキシド溶液に基板を浸漬し、引き上げることによりによりーティング膜を得る。このコーティング膜は常法により、たとえば室温で乾燥され、ついで300〜550℃程度に加熱され基板に固着される。上記のCVD法としてはプラズマCVD法が400〜500℃程度までの比較的低い温度範囲の気相化学反応で成膜しうるので、基材に制限がなく好適である。
【0014】
得られたコーティング膜形成基板はついで立体構造体に加工される。この構造体はハニカム、波板および/平板より構成される。ハニカムは六角形のコアに限定されず、いかなる形状であってもよい。波板は、平板と組合わせて(波付け)、平行に配置して使用してもよいが、巻き上げてハニカムを形成することもできる。平板は、平行に配置して、いわゆるパラレルパッセージ形として使用するのが好適である。本発明の構造体は通気抵抗が極めて小さいので効率的な光触媒反応を可能にする。上記の立体構造体を形成するための加工は、接着、切削もしくは切断であり、常法によることができる。接着に際しては、有機接着剤は光触媒により劣化するおそれがあるので、無機接着剤が使用されるのが好ましい。そのような無機接着剤としては、低融点ガラス等のガラス系;Sn−In,Bi−Pb,Sn−Pb,Pb−Sb等の軟ろう等の金属系;ケイ酸アルカリ(特に水ガラス)、リン酸塩系等、のその他の無機系、等が挙げられるが、接着温度が100〜500℃、好ましくは120〜200℃のものが特に好ましい。これらの無機接着剤のうち、最も好適なのは水ガラスである。
【0015】
本発明による光触媒体は、その表面粗さが50nmRa(中心線粗さ)以下であるのが好適であり、このように鏡面を形成し、コーティング膜も透明であると、光の反射率が著しく高くなり、たとえばハニカム光触媒体の内部まで紫外線を乱反射して照射することができ、触媒活性を著しく向上しうる。
【0016】
本発明の光触媒体に近接して紫外線源を適宜配置することにより、脱臭装置、殺菌装置、空気清浄化器、水純化装置等に使用しうる。この場合、従来の活性炭等の吸着剤層等を併置することもできる。
【0017】
脱臭は悪臭物質を拡散現象により光触媒表面に接触させて酸化分解することにより行なわれる。悪臭物質としては硫化水素、メルカプタン、アミン、アンモニア、アルデヒド等が挙げられる。空気中に離散した揮発性有機ハロゲン化合物、例えばトリクロロエタン、トリクロロエチレン等も光触媒反応により分解しうる。
【0018】
照射に利用される紫外線としてはたとえば波長が185nm、254nm、300〜400nmの紫外線が挙げられる。光触媒を光励起する波長は光触媒の種類により異なるが、たとえば二酸化チタンの場合、アナタ−ゼ型で380nm以下、ルチル型で415nm以下であり、さらに酸化ジルコニウムの場合、254nm以下である。このような光線を放射するランプとしては、ブラックライト、低圧、中圧もしくは高圧の水銀ランプ等の放電ランプが好適である。
【0019】
【実施例】
以下、実施例によりさらに本発明を詳細に説明する。
実施例1 Al板−陽極酸化/ZrO/ゾル−ゲル/ハニカム(波板巻き上げ)
アルミニウム(Al)基板(平板および波板)を次の条件で陽極酸化した。
【0020】
・ 浴組成 硫酸 13.7%
・ 処理条件 約22℃、0.5A/dm、DC,5分間、陰極:カーボン
得られた陽極酸化アルミニウム基板(酸化皮膜厚さ:約0.5μm)をジルコニウムブトキシドのエタノール溶液(ジルコニウムブトキシド20g、エタノール45g、水20g、塩酸0.3g)に浸漬し、引き上げ、乾燥(室温)を繰り返して、ついで焼成(約500℃)し、厚さ約10μmのZrOコーティング膜(50nmRa以下)を作製した。ついで得られた陽極酸化膜/ZrOコーティング膜/アルミニウム基板から水ガラス接着剤を用いて、平板および波板を組合わせて波付けし、これをハニカム状に巻き上げることによりハニカム光触媒体を得た。
実施例2 Al板−陽極酸化/TiO/ゾル−ゲル/ハニカム(波板巻き上げ)
実施例1において、ZrOコーティング膜に代えてTiOコーティング膜(厚さ約10μm)を作製する以外は同様にしてハニカム光触媒体を得た。チタンイソプロポキシドのエタノール溶液(チタンイソプロポキシド25g、エタノール40g、水25g、塩酸0.3g)を用いた。
実施例3 Al板−化成処理/ZrO/ゾル−ゲル/PPR
実施例1において、Al基板の陽極酸化に代えて化成処理を採用した以外は同様にしてZrOコーティング膜を作製した。化成処理はクロム酸−リン酸法により、処理方法:浸漬、濃度:4.5%、温度:40〜50℃、時間:30秒で行った(膜厚:0.2μm)。ついで得られた化成皮膜/ZrOコーティング膜/アルミニウム基板から、平板もしくは波板を間隔約0.5cmで常法により平行に配置することによりPPR光触媒体を得た。
実施例4 鋼板−めっき/TiO/CVD/ハニカム(波板巻き上げ)
鋼基板を次の条件でめっきして亜鉛めっき皮膜(厚さ0.3μm)を形成させた。
【0021】

Figure 2004050101
ついで、TiOコーティング膜(厚さ約10μm)をプラズマCVD法により作製し、実施例1と同様にしてハニカム光触媒体を得た。プラズマCVDは次の条件によった。
【0022】
反応装置:対向電極型プラズマCVD装置
反応ガス:TiCl
雰囲気:Ar+O
温度:300〜400℃
圧力:1.0Torr
実施例5 Mg板−陽極酸化/TiO/ゾル−ゲル/ハニカム(波板巻き上げ)
マグネシウム合金(Mg−Al−Zn)基板を次の条件で陽極酸化した。
【0023】
Figure 2004050101
得られた陽極酸化マグネシウム合金基板(酸化皮膜厚さ:約0.3μm)を用いて、実施例2と同様の方法でTiOコーティング膜を作製し、ついで実施例2と同様の方法でハニカム光触媒体を得た。
参考例
実施例1で得られた光触媒体(1)を用いて、図1に示す脱臭装置を作製した。(2)は低圧水銀ランプ(30W)であり、さらに光の反射効率を上げるために反射鏡(3)を設けてなる。悪臭・細菌を含むガスは送風ファン(図示せず)により装置内に送られ、悪臭成分は光触媒により酸化分解され、細菌は紫外線によるDNA分解とともに光触媒による溶菌酸化により殺菌される。
【図面の簡単な説明】
【図1】本発明の光触媒体を用いた脱臭装置の1態様を示す概略図。
【符号の説明】
1…光触媒体
2…低圧水銀ランプ(30W)
3…反射鏡[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a photocatalyst.
[0002]
[Prior art]
A photoreaction by a so-called semiconductor photocatalyst causes deodorization, antibacterial and antifouling actions by an oxidation-reduction reaction, which is one of the mechanisms. Various products have been studied by utilizing the action of the photocatalyst and have been put to practical use. The band gap of titanium oxide, which is a typical semiconductor photocatalyst, is about 3 eV, which is about 400 nm in terms of wavelength. Therefore, when ultraviolet light of 400 nm or less is irradiated, electrons (e ) and holes (h + ) are generated inside the semiconductor. These electrons react with oxygen to generate superoxide ions [O 2 ] exhibiting extremely large oxidizing power, and one hole reacts with water to generate hydroxyl radicals [.OH]. These two active oxygens cause an oxidation-reduction reaction to decompose odors or dirt substances, and further oxidatively decompose other hardly decomposable compounds such as organic chlorine compounds.
[0003]
BACKGROUND ART Conventionally, various substrates and shapes having a photocatalyst have been known. For example, when a photocatalyst is used for deodorization of an air purifier or the like, titanium oxide is often applied using corrugated cardboard or a nonwoven fabric as a base material in terms of good air permeability, light weight, and large surface area. In the case of paper, the pulp fibers are liable to be degraded by the irradiated ultraviolet light, and both the paper and the nonwoven fabric have poor photocatalytic activity in the inner part where the ultraviolet light does not reach, and it has been difficult to obtain effective catalytic activity.
[0004]
Therefore, it is advantageous to use a metal as a base material, because there is no deterioration due to low-wavelength ultraviolet rays. For example, a metal base material is formed into a honeycomb shape, and after applying an alkoxide of titanium, heating is performed to form titanium oxide. ing. However, in such a case, it is difficult to avoid that the adhesive used for forming the honeycomb is deactivated or the strength is reduced by heating, and the mechanical strength of the honeycomb may be significantly reduced.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned difficulties, has a large surface area exposed to light, has excellent photocatalytic activity by efficiently irradiating ultraviolet rays, and can reduce deterioration due to ultraviolet rays, and has a mechanical strength. Another object of the present invention is to provide a photocatalyst excellent in the above.
[0006]
[Means for Solving the Problems]
The gist of the present invention is characterized in that a photocatalyst having a three-dimensional structure is obtained by forming a coating film of a photocatalyst on a metal substrate, and then processing the metal substrate on which the coating film is formed into a three-dimensional structure. A method for producing a photocatalyst.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the photocatalyst of the present invention, the metal is preferably selected from aluminum, titanium, magnesium, steel or stainless steel, and is particularly preferably aluminum. Aluminum, titanium or magnesium may be an alloy. For example, as an aluminum alloy, Al-Mg, Al-Mg-Si, Al-Cu-Mg-Mn, Al-Zn-Mg-Cu, etc., and as a magnesium alloy, Mg-Al, Mg-Al-Zn, Mg- Mn and the like. In the present invention, a coating film of a photocatalyst is formed on a substrate of such a metal, and it is preferable that the metal surface is coated with an insulating film before this formation. By this insulating coating, the electrons on the photocatalyst can be sufficiently exchanged without flowing to the metal side, so that the photolytic activity can be remarkably enhanced.
[0008]
This insulating coating treatment is preferably selected from anodic oxidation, chemical conversion treatment or glass coating treatment. For example, in the case of aluminum and titanium, a so-called anodic oxide film that forms an oxide film on a metal surface by immersing them in an aqueous electrolyte solution and subjecting them to anodic polarization is generally used. In the case of a steel sheet, electroplating or hot-dip plating, and furthermore, chemical conversion treatment with phosphoric acid and phosphate are common. Further, in the case of aluminum, a chemical film formation method (chemical conversion treatment) using a chemical agent may be adopted instead of anodic oxidation. As the chemical conversion treatment, a treatment mainly composed of chromic acid or chromic acid-phosphoric acid, that is, a chromate treatment film is preferable. Also in the case of magnesium, anodic oxidation and chemical conversion treatment can be applied.
[0009]
Further, a glass coating method in which sodium silicate (water glass) is applied to the surface of aluminum or the like and then sintered may be employed.
[0010]
In the case of stainless steel, an acid (preferably sodium dichromate) treatment (chemical conversion treatment) for oxidizing the surface to passivate the surface may be employed.
[0011]
The thickness of the insulating coating is not particularly limited, but is usually selected from about 0.1 to 1 μm.
[0012]
Examples of the photocatalyst in the present invention include metal oxides such as zirconium oxide, titanium oxide, zinc oxide, tungsten oxide, cadmium oxide, manganese oxide, and copper oxide; metals such as cadmium sulfide, zinc sulfide, indium sulfide, lead sulfide, and tungsten sulfide. Sulfides; organic polymers such as polyparaphenylene, polyaniline, and polythiophene; intercalation compounds obtained by adding various metal oxides to strontium titanate; and zirconium oxide and titanium oxide are preferable. Most preferably, by selecting zirconium oxide, an ultraviolet light having a relatively short wavelength can be used, so that an improved photocatalytic activity can be easily obtained. Titanium oxide may be any of an anatase, rutile or blockite type, but an anatase type is optimal from the viewpoint of catalytic activity and availability.
[0013]
The method of forming the coating film of the photocatalyst on the metal substrate itself can be a conventional method, but a method of depositing from a liquid phase and a method of depositing from a gas phase are preferable. For example, the liquid phase method includes a sol-gel method and the like, and the gas phase method includes a chemical method such as a physical vapor deposition method (PVD) such as sputtering and vacuum vapor deposition or a gas phase chemical reaction method (CVD). The sol-gel method is optimal from the viewpoint of uniformity of coating to be obtained, cost and the like. As a starting material in the sol-gel method, a metal organic compound such as a metal alkoxide, a metal acetylacetonate, or a metal carboxylate, for example, a metal inorganic compound such as an oxychloride, a chloride, or a nitrate is generally used. Among these, metal alkoxides are preferable from the viewpoint of reactivity and the like. Metal alkoxides such as butoxide, ethoxide and propoxide (for example, zirconium or titanium) are used as a solution using a solvent such as butanol or propanol, and this is converted to a metal. A desired coating film can be formed by applying the composition to a substrate. For application, brushing, roll coating, dipping, spraying, spinning, or the like can be appropriately selected. The thickness of the coating film is generally selected from the range of 3 to 500 μm, preferably about 5 to 20 μm. For example, a substrate is immersed in a metal alkoxide solution using a sol-gel method, and is lifted to obtain a coating film. The coating film is dried by a conventional method, for example, at room temperature, and then heated to about 300 to 550 ° C. and fixed to the substrate. As the above-mentioned CVD method, a plasma CVD method can be used for forming a film by a gas phase chemical reaction in a relatively low temperature range of about 400 to 500 ° C., and thus there is no limitation on the base material, which is suitable.
[0014]
The obtained coating film forming substrate is then processed into a three-dimensional structure. This structure comprises a honeycomb, a corrugated sheet and / or a flat sheet. The honeycomb is not limited to a hexagonal core and may have any shape. The corrugated plate may be used in combination with a flat plate (corrugation) and arranged in parallel, or may be rolled up to form a honeycomb. The flat plates are preferably arranged in parallel and used as a so-called parallel passage type. The structure of the present invention enables efficient photocatalytic reaction because of extremely low airflow resistance. The processing for forming the three-dimensional structure is bonding, cutting, or cutting, and can be performed by an ordinary method. At the time of bonding, an organic adhesive is likely to be degraded by a photocatalyst, so that an inorganic adhesive is preferably used. Examples of such inorganic adhesives include glass based materials such as low melting point glass; metal based materials such as soft solder such as Sn-In, Bi-Pb, Sn-Pb and Pb-Sb; alkali silicate (particularly water glass); Other inorganic materials such as phosphates and the like can be mentioned, and those having an adhesion temperature of 100 to 500 ° C, preferably 120 to 200 ° C, are particularly preferable. Of these inorganic adhesives, the most preferred is water glass.
[0015]
The photocatalyst according to the present invention preferably has a surface roughness of 50 nmRa (center line roughness) or less. When the mirror surface is formed and the coating film is transparent, the light reflectance is remarkable. Thus, for example, the inside of the honeycomb photocatalyst body can be irradiated with ultraviolet rays with irregular reflection, and the catalytic activity can be significantly improved.
[0016]
By appropriately arranging an ultraviolet light source close to the photocatalyst of the present invention, it can be used for a deodorizer, a sterilizer, an air purifier, a water purifier and the like. In this case, a conventional adsorbent layer of activated carbon or the like may be provided.
[0017]
Deodorization is performed by bringing a malodorous substance into contact with the photocatalyst surface by a diffusion phenomenon and oxidatively decomposing it. Examples of the offensive odor include hydrogen sulfide, mercaptan, amine, ammonia, aldehyde and the like. Volatile organic halogen compounds dispersed in the air, such as trichloroethane and trichloroethylene, can also be decomposed by a photocatalytic reaction.
[0018]
Examples of the ultraviolet light used for the irradiation include ultraviolet light having a wavelength of 185 nm, 254 nm, or 300 to 400 nm. The wavelength of photoexcitation of the photocatalyst varies depending on the type of photocatalyst. For example, in the case of titanium dioxide, it is 380 nm or less for anatase type and 415 nm or less for rutile type, and further, it is 254 nm or less for zirconium oxide. As a lamp that emits such a light beam, a discharge lamp such as a black light, a low-pressure, medium-pressure or high-pressure mercury lamp is preferable.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1 Al plate - anodic oxidation / ZrO 2 / sol - gel / honeycomb (hoisting corrugated)
An aluminum (Al) substrate (flat plate and corrugated plate) was anodized under the following conditions.
[0020]
・ Bath composition sulfuric acid 13.7%
Treatment conditions: about 22 ° C., 0.5 A / dm 2 , DC, 5 minutes, cathode: carbon An anodized aluminum oxide substrate (oxide film thickness: about 0.5 μm) was obtained and ethanol solution of zirconium butoxide (zirconium butoxide 20 g) was used. , 45 g of ethanol, 20 g of water, 0.3 g of hydrochloric acid), pulling up, drying (room temperature), repeating baking (about 500 ° C.), and producing a ZrO 2 coating film (about 50 nm Ra or less) having a thickness of about 10 μm. did. Then, a flat plate and a corrugated plate were combined and corrugated from the obtained anodic oxide film / ZrO 2 coating film / aluminum substrate using a water glass adhesive, and this was rolled up in a honeycomb shape to obtain a honeycomb photocatalyst. .
Example 2 Al plate - anodic oxidation / TiO 2 / sol - gel / honeycomb (hoisting corrugated)
A honeycomb photocatalyst was obtained in the same manner as in Example 1, except that a TiO 2 coating film (thickness: about 10 μm) was formed instead of the ZrO 2 coating film. An ethanol solution of titanium isopropoxide (25 g of titanium isopropoxide, 40 g of ethanol, 25 g of water, 0.3 g of hydrochloric acid) was used.
Example 3 Al plate - chemical treatment / ZrO 2 / sol - gel / PPR
A ZrO 2 coating film was produced in the same manner as in Example 1, except that a chemical conversion treatment was employed instead of the anodic oxidation of the Al substrate. The chemical conversion treatment was performed by a chromic acid-phosphoric acid method at a treatment method: immersion, concentration: 4.5%, temperature: 40 to 50 ° C., and time: 30 seconds (film thickness: 0.2 μm). Then, a PPR photocatalyst was obtained by arranging flat plates or corrugated plates in parallel by a conventional method at intervals of about 0.5 cm from the obtained chemical conversion film / ZrO 2 coating film / aluminum substrate.
Example 4 steel - Plating / TiO 2 / CVD / honeycomb (hoisting corrugated)
A steel substrate was plated under the following conditions to form a galvanized film (thickness 0.3 μm).
[0021]
Figure 2004050101
Next, a TiO 2 coating film (thickness: about 10 μm) was formed by a plasma CVD method, and a honeycomb photocatalyst was obtained in the same manner as in Example 1. Plasma CVD was performed under the following conditions.
[0022]
Reactor: Counter electrode type plasma CVD device Reactant gas: TiCl 4
Atmosphere: Ar + O 2
Temperature: 300-400 ° C
Pressure: 1.0 Torr
Example 5 Mg plate - anodic oxidation / TiO 2 / sol - gel / honeycomb (hoisting corrugated)
A magnesium alloy (Mg-Al-Zn) substrate was anodized under the following conditions.
[0023]
Figure 2004050101
Using the obtained anodic magnesium oxide alloy substrate (oxide film thickness: about 0.3 μm), a TiO 2 coating film was produced in the same manner as in Example 2, and then a honeycomb photocatalyst was produced in the same manner as in Example 2. Got a body.
Reference Example Using the photocatalyst (1) obtained in Example 1, a deodorizing apparatus shown in FIG. 1 was produced. (2) is a low-pressure mercury lamp (30 W), and further provided with a reflecting mirror (3) to increase the light reflection efficiency. The gas containing the malodor and bacteria is sent into the apparatus by a blower fan (not shown), and the malodor component is oxidatively decomposed by a photocatalyst.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a deodorizing apparatus using a photocatalyst according to the present invention.
[Explanation of symbols]
1: Photocatalyst body 2: Low-pressure mercury lamp (30W)
3. Reflector

Claims (16)

金属基板上に光触媒のコーティング膜を形成させ、ついでこのコーティング膜形成金属基板を加工して立体構造体とすることにより、立体構造を有する光触媒体を得ることを特徴とする光触媒体の製造方法。A method for producing a photocatalyst, characterized in that a photocatalyst having a three-dimensional structure is obtained by forming a coating film of a photocatalyst on a metal substrate and then processing the metal substrate on which the coating film is formed into a three-dimensional structure. 金属がアルミニウム、チタン、マグネシウム、鋼もしくはステンレス鋼である請求項1記載の製造方法。The method according to claim 1, wherein the metal is aluminum, titanium, magnesium, steel or stainless steel. 金属が絶縁被覆されてなる請求項1記載の製造方法。2. The method according to claim 1, wherein the metal is coated with an insulating material. 絶縁被覆処理が陽極酸化、化成処理もしくはガラスコーティング処理から選ばれる請求項3記載の製造方法。4. The method according to claim 3, wherein the insulating coating is selected from the group consisting of anodic oxidation, chemical conversion and glass coating. 光触媒が酸化ジルコニウムもしくは酸化チタンである請求項1記載の製造方法。The method according to claim 1, wherein the photocatalyst is zirconium oxide or titanium oxide. コーティング膜の厚さが3〜500μmである請求項1記載の製造方法。2. The method according to claim 1, wherein the thickness of the coating film is 3 to 500 [mu] m. コーティング膜が液相法により形成される請求項1記載の製造方法。The method according to claim 1, wherein the coating film is formed by a liquid phase method. 液相法がゾル−ゲル法である請求項1記載の製造方法。The method according to claim 1, wherein the liquid phase method is a sol-gel method. ゾル−ゲル法が金属アルコキシド溶液を用いる請求項8記載の製造方法。9. The method according to claim 8, wherein the sol-gel method uses a metal alkoxide solution. コーティング膜が気相法により形成される請求項1記載の製造方法。The method according to claim 1, wherein the coating film is formed by a gas phase method. 気相法がスパッタリングもしくは気相化学反応である請求項10記載の製造方法。The method according to claim 10, wherein the gas phase method is sputtering or a gas phase chemical reaction. 構造体がハニカム、波板および/または平板より構成される請求項1記載の製造方法。The method according to claim 1, wherein the structure comprises a honeycomb, a corrugated plate, and / or a flat plate. 加工が接着、切削もしくは切断である請求項1記載の製造方法。The method according to claim 1, wherein the processing is bonding, cutting, or cutting. 接着が無機接着剤による請求項1記載の製造方法。2. The method according to claim 1, wherein the bonding is performed with an inorganic adhesive. 無機接着剤が水ガラスである請求項14記載の製造方法。The method according to claim 14, wherein the inorganic adhesive is water glass. 光触媒体の表面粗さが50nmRa以下である請求項1記載の製造方法。The production method according to claim 1, wherein the surface roughness of the photocatalyst is 50 nmRa or less.
JP2002213010A 2002-07-22 2002-07-22 Manufacturing method for photocatalyst body Pending JP2004050101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213010A JP2004050101A (en) 2002-07-22 2002-07-22 Manufacturing method for photocatalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213010A JP2004050101A (en) 2002-07-22 2002-07-22 Manufacturing method for photocatalyst body

Publications (1)

Publication Number Publication Date
JP2004050101A true JP2004050101A (en) 2004-02-19

Family

ID=31935763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213010A Pending JP2004050101A (en) 2002-07-22 2002-07-22 Manufacturing method for photocatalyst body

Country Status (1)

Country Link
JP (1) JP2004050101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263625A (en) * 2005-03-24 2006-10-05 Univ Kinki Production method of functional coating on aluminum based material and aluminum based material having the same
JP2012161711A (en) * 2011-02-03 2012-08-30 U-Vix Corp Photocatalyst and method for producing the same
CN114984987A (en) * 2022-06-29 2022-09-02 河南师范大学 ZnIn 2 S 4 /Ti 3 C 2 /CuCo 2 S 4 Preparation and application of composite catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093807A (en) * 1998-09-25 2000-04-04 Sharp Corp Photocatalyst body, and heat exchanger and purifying device using the same
JP2000312830A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Photocatalyst composite material and production thereof
JP2002177790A (en) * 2000-12-13 2002-06-25 Mitsubishi Alum Co Ltd Photocatalyst precoated molding material and photocatalyst precoated molding and photocatalyst precoated fin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093807A (en) * 1998-09-25 2000-04-04 Sharp Corp Photocatalyst body, and heat exchanger and purifying device using the same
JP2000312830A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Photocatalyst composite material and production thereof
JP2002177790A (en) * 2000-12-13 2002-06-25 Mitsubishi Alum Co Ltd Photocatalyst precoated molding material and photocatalyst precoated molding and photocatalyst precoated fin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263625A (en) * 2005-03-24 2006-10-05 Univ Kinki Production method of functional coating on aluminum based material and aluminum based material having the same
JP4719919B2 (en) * 2005-03-24 2011-07-06 学校法人近畿大学 Method for producing functional coating on aluminum-based material and aluminum-based material having the functional coating
JP2012161711A (en) * 2011-02-03 2012-08-30 U-Vix Corp Photocatalyst and method for producing the same
CN114984987A (en) * 2022-06-29 2022-09-02 河南师范大学 ZnIn 2 S 4 /Ti 3 C 2 /CuCo 2 S 4 Preparation and application of composite catalyst
CN114984987B (en) * 2022-06-29 2023-09-15 河南师范大学 ZnIn 2 S 4 /Ti 3 C 2 /CuCo 2 S 4 Preparation and application of composite catalyst

Similar Documents

Publication Publication Date Title
US5670206A (en) Deodorizing lamp and method for production thereof
RU2660793C2 (en) Method for producing surface-treated metal titanium material or titanium alloy material and surface-treated material
JPH06205977A (en) Production of photocatalystic composition and photocatalystic composition
JPH11315398A (en) Formation of titanium anodically oxidized film for photocatalyst
JP2004050101A (en) Manufacturing method for photocatalyst body
JP2004089912A (en) Method for washing photocatalyst body
JP3027739B2 (en) Photocatalyst and method for producing the same
JP2007325995A (en) Photocatalyst film and its manufacturing method
JP2002177790A (en) Photocatalyst precoated molding material and photocatalyst precoated molding and photocatalyst precoated fin
JP2911021B2 (en) Photocatalyst for sticking
JP2004050100A (en) Photocatalytic reaction apparatus
JP2004050102A (en) Photocatalytic reaction apparatus
CN108855061A (en) Light catalytic purifying gas laminate film photochemical catalyst, preparation method and application
JP2001286749A (en) Chemical transducer
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
Kawahara et al. A Large-Area Patterned TiO 2/SnO 2 Bilayer Type Photocatalyst Prepared by Gravure Printing
JP3867036B2 (en) Method for producing composite material with photocatalytic coating
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
JP2004113621A (en) Air purifying apparatus
JP2816809B2 (en) Photocatalyst and method for producing the same
JP2006116398A (en) Method for producing photocatalyst
JP2000290779A (en) Titania film-formed member and its production
JPH11188272A (en) Photocatalytic body and its production
JPH11158694A (en) Article with hydrophilic coating, and coating method
JP2004188105A (en) Method of cleaning indoor air

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924