JP2004050100A - Photocatalytic reaction apparatus - Google Patents

Photocatalytic reaction apparatus Download PDF

Info

Publication number
JP2004050100A
JP2004050100A JP2002213001A JP2002213001A JP2004050100A JP 2004050100 A JP2004050100 A JP 2004050100A JP 2002213001 A JP2002213001 A JP 2002213001A JP 2002213001 A JP2002213001 A JP 2002213001A JP 2004050100 A JP2004050100 A JP 2004050100A
Authority
JP
Japan
Prior art keywords
reactor according
photocatalyst
photocatalytic reactor
photocatalytic
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213001A
Other languages
Japanese (ja)
Inventor
Yukio Takeda
武田 幸雄
Ichiro Wakui
和久井 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWASAKI KANKYO SHISETSU KK
Mitsubishi Corp
Original Assignee
IWASAKI KANKYO SHISETSU KK
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWASAKI KANKYO SHISETSU KK, Mitsubishi Corp filed Critical IWASAKI KANKYO SHISETSU KK
Priority to JP2002213001A priority Critical patent/JP2004050100A/en
Publication of JP2004050100A publication Critical patent/JP2004050100A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic reaction apparatus to be efficiently irradiated with ultraviolet rays. <P>SOLUTION: This photocatalytic reaction apparatus is provided with multilayered fluid passages each consisting of a photocatalytic body obtained by coating the surface of a base material with a photocatalyst and an ultraviolet light source. The ultraviolet light source is arranged so that the irradiation light quantity of ultraviolet rays is reduced along the moving direction of the fluid to be treated in the multilayered fluid passages. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光触媒反応装置に関する。
【0002】
【従来の技術】
いわゆる半導体光触媒による光反応は、その1つの機構である酸化還元反応により、脱臭、抗菌、防汚作用を生じさせる。この光触媒の作用を利用して種々の製品が検討され、実用化されている。代表的な半導体光触媒である酸化チタンのバンドギャップは約3eVであり、波長に直すと400nm程度である。したがって、400nm以下の紫外線を照射すると半導体内部に電子(e)と正孔(h)が生じる。この電子は酸素と反応してきわめて大きい酸化力を示すスーパーオキサイドイオン〔O 〕を生成し、一方の正孔は水と反応してヒドロキシラジカル〔・OH〕を生成する。この2つの活性酸素が酸化還元反応を発現させ、臭気もしくは汚れ物質の分解、さらには有機系塩素化合物等の他の難分解性化合物が酸化分解されることになる。
【0003】
そして従来、光触媒反応装置として種々の目的でその光触媒活性を発揮させるため、種々の構成のものが知られている。
【0004】
【発明が解決しようとする課題】
本発明は、効率的に紫外線照射しうる光触媒反応装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の目的は、基材表面に光触媒を被覆した光触媒体から構成される複数層の流体通路および紫外線源を備えてなる光触媒反応装置において、該紫外線源が被処理流体の流体通路の進行方向に沿って紫外線照射量を低減し得るように構成されてなる光触媒反応装置により達成される。
【0006】
【発明の実施の形態】
本発明の光触媒体において、上記の基材としては低波長の紫外線による劣化がない点から、金属が好適である。そして、金属としては、好ましくはアルミニウム、チタン、マグネシウム、鋼もしくはステンレス鋼から選択されるが、特に好適にはアルミニウムである。アルミニウム、チタンもしくはマグネシウムは合金であってもよい。たとえばアルミニウム合金としては、Al−Mg、Al−Mg−Si、Al−Cu−Mg−Mn、Al−Zn−Mg−Cu等、マグネシウム合金としては、Mg−Al、Mg−Al−Zn、Mg−Mn等が挙げられる。本発明においてはこれらの金属の基板上に、光触媒のコーティング膜が形成されるが、この形成前に、金属表面は絶縁被覆されるのが好ましい。この絶縁被覆により、光触媒上の電子が金属側に流れることなく、電子の授受を十分に行ないうるので、光分解活性を格段に高めることができる。
【0007】
この絶縁被覆処理は、好適には陽極酸化、化成処理もしくはガラスコーティング処理から選ばれる。たとえば、アルミニウム、チタンの場合には、それらを電解質水溶液中に浸漬してアノード分極することにより、金属の表面に酸化物皮膜を形成する、いわゆる陽極酸化皮膜が一般的である。また、鋼板の場合には電気めっき、もしくは溶融めっき、さらにはリン酸、およびリン酸塩による化成処理が一般的である。さらにアルミニウムの場合には、陽極酸化に代えて化学薬品による化学的皮膜化成法(化成処理)を採用しうる。この化成処理としてはクロム酸またはクロム酸−リン酸を主体とするもの、すなわちクロメート処理皮膜が好適である。マグネシウムの場合にも、陽極酸化,化成処理が適用されうる。
【0008】
またアルミニウム等の表面に珪酸ソーダ(水ガラス)を塗布して焼結させるガラスコーティング法を採用することもできる。ステンレス鋼の場合、表面を酸化させ不働態化を目的とする酸(好適には重クロム酸ソーダ)処理(化成処理)も採用しうる。
【0009】
絶縁被覆の膜厚は特に制限されないが、通常約0.1〜1μm程度から選択される。
【0010】
本発明における光触媒としては、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化タングステン、酸化カドミウム、酸化マンガン、酸化銅等の金属酸化物;硫化カドミウム、硫化亜鉛、硫化インジウム、硫化鉛、硫化タングステン等の金属硫化物;ポリパラフェニレン、ポリアニリン、ポリチオフェン等の有機高分子;チタン酸ストロンチウムに各種の金属酸化物を添加した層間化合物、等が挙げられるが、酸化ジルコニウムおよび酸化チタンが好適である。そして最も好適には、酸化ジルコニウムを選択することにより、比較的短波長の紫外光を利用しうるので向上した光触媒活性が得られ易い。酸化チタンとしてはアナタ−ゼ、ルチルもしくはブロッカイト型のいずれでもよいが、触媒活性および入手し易さの点からアナタ−ゼ型が最適である。
【0011】
これらの光触媒の金属基板へのコーティング膜の形成法自体は、常法によることができるが、液相から析出させる方法、気相から蒸着させる方法が好ましい。たとえば、液相法としてはゾル−ゲル法等、気相法としてはスパッタリング、真空蒸着等の物理蒸着法(PVD)または気相化学反応法(CVD)等の化学的方法が挙げられるが、得られる被覆の均一性、コスト等の点からゾル−ゲル法が最適である。そしてゾル−ゲル法における出発物質としては、たとえば金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート等の金属有機化合物、たとえばオキシ塩化物、塩化物、硝酸塩等の金属無機化合物が一般的に用いられる。これらの中で、金属アルコキシドが反応性等の点から好適であり、ブトキシド、エトキシド、プロポキシド等の金属(たとえばジルコニウムもしくはチタン)アルコキシドをブタノール、プロパノール等の溶媒を用いて溶液として、これを金属基板に塗布することにより目的とするコーティング膜が形成されうる。塗布は、はけ塗り、ロール塗り、浸漬法、スプレー、スピン等を適宜選択しうる。コーティング膜の厚さは通常3〜500μm、好ましくは5〜20μm程度から選ばれる。たとえば、ゾル−ゲル法を用いて金属アルコキシド溶液に基板を浸漬し、引き上げることによりによりーティング膜を得る。このコーティング膜は常法により、たとえば室温で乾燥され、ついで300〜550℃程度に加熱され基板に固着される。上記のCVD法としてはプラズマCVD法が400〜500℃程度までの比較的低い温度範囲の気相化学反応で成膜しうるので、基材に制限がなく好適である。
【0012】
得られたコーティング膜形成基板はついで立体構造体に加工される。この構造体はハニカム、波板および/平板より構成される。ハニカムは六角形のコアに限定されず、いかなる形状であってもよい。波板は、平板と組合わせて(波付け)、平行に配置して使用してもよいが、巻き上げてハニカムを形成することもできる。平板は、平行に配置して、いわゆるパラレルパッセージ形として使用するのが好適である。本発明の構造体は通気抵抗が極めて小さいので効率的な光触媒反応を可能にする。上記の立体構造体を形成するための加工は、接着、切削もしくは切断であり、常法によることができる。接着に際しては、有機接着剤は光触媒により劣化するおそれがあるので、無機接着剤が使用されるのが好ましい。そのような無機接着剤としては、低融点ガラス等のガラス系;Sn−In,Bi−Pb,Sn−Pb,Pb−Sb等の軟ろう等の金属系;ケイ酸アルカリ(特に水ガラス)、リン酸塩系等、のその他の無機系、等が挙げられるが、接着温度が100〜500℃、好ましくは120〜200℃のものが特に好ましい。これらの無機接着剤のうち、最も好適なのは水ガラスである。
【0013】
本発明による光触媒体は、その表面粗さが50nmRa(中心線粗さ)以下であるのが好適であり、このように鏡面を形成し、コーティング膜も透明であると、光の反射率が著しく高くなり、たとえばハニカム光触媒体の内部まで紫外線を乱反射して照射することができ、触媒活性を著しく向上しうる。
【0014】
本発明装置においては、上記の立体構造体を形成するための加工により、光触媒体から構成される複数層の流体通路が形成される。本発明の光触媒反応装置は、このような光触媒体に近接して紫外線源を特定の構成で配置することにより構成され、脱臭装置、殺菌装置、空気清浄化器、水純化装置等に使用しうる。すなわち、本発明装置において、紫外線源は被処理流体の流体通路の進行方向に沿って紫外線照射量を低減し得るように構成されてなる。
【0015】
照射に利用される紫外線としてはたとえば波長が185nm、254nm、300〜400nmの紫外線が挙げられる。光触媒を光励起する波長は光触媒の種類により異なるが、たとえば二酸化チタンの場合、アナタ−ゼ型で380nm以下、ルチル型で415nm以下であり、さらに酸化ジルコニウムの場合、254nm以下である。
【0016】
このような光線を放射する紫外線源としては、ブラックライト、低圧、中圧もしくは高圧の水銀ランプ等の放電ランプが好適である。本発明装置において、紫外線源を被処理流体の流体通路での進行方向に沿って紫外線照射量が低減し得るように配置するには、たとえば(i)同一の紫外線源、たとえば放電ランプ、を用いる場合には、上記の流体通路での進行方向に沿って順次ランプの本数を低減させる;(ii)上記の流体通路での進行方向に沿って紫外線照射量が低減し得るように紫外線源を調光しうる構成とする。この場合、上記進行方向に沿って反応をモニタリングして得られる情報を調光にフィードバックさせることもできる。
【0017】
たとえば、脱臭は悪臭物質を拡散現象により光触媒表面に接触させて酸化分解することにより行なわれる。悪臭物質としては硫化水素、メルカプタン、アミン、アンモニア、アルデヒド等が挙げられる。空気中に離散した揮発性有機ハロゲン化合物、例えばトリクロロエタン、トリクロロエチレン等も光触媒反応により分解しうる。本発明装置において、従来の活性炭等の吸着剤層等を併置することもできる。
【0018】
【実施例】
以下、実施例によりさらに本発明を詳細に説明する。
参考例1 Al板−陽極酸化/ZrO/ゾル−ゲル/ハニカム(波板巻き上げ)
アルミニウム(Al)基板(平板および波板)を次の条件で陽極酸化した。
【0019】
・ 浴組成  硫酸 13.7%
・ 処理条件 約22℃、0.5A/dm、DC,5分間、陰極:カーボン
得られた陽極酸化アルミニウム基板(酸化皮膜厚さ:約0.5μm)をジルコニウムブトキシドのエタノール溶液(ジルコニウムブトキシド20g、エタノール45g、水20g、塩酸0.3g)に浸漬し、引き上げ、乾燥(室温)を繰り返して、ついで焼成(約500℃)し、厚さ約10μmのZrOコーティング膜(50nmRa以下)を作製した。ついで得られた陽極酸化膜/ZrOコーティング膜/アルミニウム基板から水ガラス接着剤を用いて、平板および波板を組合わせて波付けし、これをハニカム状に巻き上げることによりハニカム光触媒体を得た。
参考例2 Al板−陽極酸化/TiO/ゾル−ゲル/ハニカム(波板巻き上げ)
参考例1において、ZrOコーティング膜に代えてTiOコーティング膜(厚さ約10μm)を作製する以外は同様にしてハニカム光触媒体を得た。チタンイソプロポキシドのエタノール溶液(チタンイソプロポキシド25g、エタノール40g、水25g、塩酸0.3g)を用いた。
実施例1
参考例2で得られたハニカム光触媒体を用いて図1に示すような脱臭装置を作製した。図1の(a)は平面図、(b)は側面図であり、脱臭装置(1)は光触媒体(2)および紫外線ランプ(3)を備えており、紫外線ランプ(3)は1本が65wであり、3箇所の紫外線ランプ(3)は被処理流体の流体通路の進行方向に沿って、それぞれ8、6および4本と少なくなるように構成されている。(4)はさらに紫外線を有効利用するために設けられたアルミニウム製反射板モジュールであり、紫外線照射と平行な短冊状のスリットからなる通気開口部を有する。そして、この脱臭装置を用いて、農薬工場ブレンド混合層排ガスの処理を行った。排ガス条件は次のとおりであった: 風量;50m、温度;常温、湿度;80%、臭気濃度(官能試験);1360(原ガス)。そして、処理後のガスの臭気濃度(官能試験)は79であり、十分な脱臭効果が効率的な紫外線照射で得られた。なお、本体圧力損失はわずか30mmAqであった。これらの臭気濃度は、
臭気指数(最大と最小を除いたパネル(8人)全体の閾値)=10×log臭気濃度
より求めた。
実施例2
参考例1で得られたハニカム光触媒体を用いて実施例1と同様な脱臭装置を作製した。
【0020】
この脱臭装置を用いて、実施例1と同様に排ガスの処理を行ったところ、十分な脱臭効果が効率的な紫外線照射で得られた。
【図面の簡単な説明】
【図1】本発明の光触媒反応装置の1態様を示す概略図。(a)は平面図、(b)は側面図である。
【符号の説明】
1…脱臭装置
2…光触媒体
3…紫外線ランプ
4…反射板モジュール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocatalytic reactor.
[0002]
[Prior art]
A photoreaction by a so-called semiconductor photocatalyst causes deodorization, antibacterial and antifouling actions by an oxidation-reduction reaction, which is one of the mechanisms. Various products have been studied by utilizing the action of the photocatalyst and have been put to practical use. The band gap of titanium oxide, which is a typical semiconductor photocatalyst, is about 3 eV, which is about 400 nm in terms of wavelength. Therefore, when ultraviolet light of 400 nm or less is irradiated, electrons (e ) and holes (h + ) are generated inside the semiconductor. These electrons react with oxygen to generate superoxide ions [O 2 ] exhibiting extremely large oxidizing power, and one hole reacts with water to generate hydroxyl radicals [.OH]. These two active oxygens cause an oxidation-reduction reaction to decompose odors or dirt substances, and further oxidatively decompose other hardly decomposable compounds such as organic chlorine compounds.
[0003]
Conventionally, various types of photocatalytic reactors have been known in order to exhibit their photocatalytic activity for various purposes.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a photocatalytic reaction device capable of efficiently irradiating ultraviolet rays.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide a photocatalytic reaction device comprising a plurality of layers of fluid passages composed of a photocatalyst having a substrate surface coated with a photocatalyst and an ultraviolet light source, wherein the ultraviolet light source is directed in the direction of the fluid passage of the fluid to be treated. This is achieved by a photocatalytic reactor configured to reduce the amount of ultraviolet irradiation along the line.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the photocatalyst of the present invention, a metal is preferable as the above-mentioned base material since it is not deteriorated by ultraviolet light having a low wavelength. The metal is preferably selected from aluminum, titanium, magnesium, steel or stainless steel, and is particularly preferably aluminum. Aluminum, titanium or magnesium may be an alloy. For example, as an aluminum alloy, Al-Mg, Al-Mg-Si, Al-Cu-Mg-Mn, Al-Zn-Mg-Cu, etc., and as a magnesium alloy, Mg-Al, Mg-Al-Zn, Mg- Mn and the like. In the present invention, a coating film of a photocatalyst is formed on a substrate of such a metal, and it is preferable that the metal surface is coated with an insulating film before this formation. By this insulating coating, the electrons on the photocatalyst can be sufficiently exchanged without flowing to the metal side, so that the photolytic activity can be remarkably enhanced.
[0007]
This insulating coating treatment is preferably selected from anodic oxidation, chemical conversion treatment or glass coating treatment. For example, in the case of aluminum and titanium, a so-called anodic oxide film that forms an oxide film on a metal surface by immersing them in an aqueous electrolyte solution and subjecting them to anodic polarization is generally used. In the case of a steel sheet, electroplating or hot-dip plating, and furthermore, chemical conversion treatment with phosphoric acid and phosphate are common. Further, in the case of aluminum, a chemical film formation method (chemical conversion treatment) using a chemical agent may be adopted instead of anodic oxidation. As the chemical conversion treatment, a treatment mainly composed of chromic acid or chromic acid-phosphoric acid, that is, a chromate treatment film is preferable. Also in the case of magnesium, anodic oxidation and chemical conversion treatment can be applied.
[0008]
Further, a glass coating method in which sodium silicate (water glass) is applied to the surface of aluminum or the like and then sintered may be employed. In the case of stainless steel, an acid (preferably sodium dichromate) treatment (chemical conversion treatment) for oxidizing the surface to passivate the surface may be employed.
[0009]
The thickness of the insulating coating is not particularly limited, but is usually selected from about 0.1 to 1 μm.
[0010]
Examples of the photocatalyst in the present invention include metal oxides such as zirconium oxide, titanium oxide, zinc oxide, tungsten oxide, cadmium oxide, manganese oxide, and copper oxide; metals such as cadmium sulfide, zinc sulfide, indium sulfide, lead sulfide, and tungsten sulfide. Sulfides; organic polymers such as polyparaphenylene, polyaniline, and polythiophene; intercalation compounds obtained by adding various metal oxides to strontium titanate; and zirconium oxide and titanium oxide are preferable. Most preferably, by selecting zirconium oxide, an ultraviolet light having a relatively short wavelength can be used, so that an improved photocatalytic activity can be easily obtained. Titanium oxide may be any of an anatase, rutile or blockite type, but an anatase type is optimal from the viewpoint of catalytic activity and availability.
[0011]
The method of forming the coating film of the photocatalyst on the metal substrate itself can be a conventional method, but a method of depositing from a liquid phase and a method of depositing from a gas phase are preferable. For example, the liquid phase method includes a sol-gel method and the like, and the gas phase method includes a chemical method such as a physical vapor deposition method (PVD) such as sputtering and vacuum vapor deposition or a gas phase chemical reaction method (CVD). The sol-gel method is optimal from the viewpoint of uniformity of coating to be obtained, cost and the like. As a starting material in the sol-gel method, a metal organic compound such as a metal alkoxide, a metal acetylacetonate, or a metal carboxylate, for example, a metal inorganic compound such as an oxychloride, a chloride, or a nitrate is generally used. Among these, metal alkoxides are preferable from the viewpoint of reactivity and the like. Metal alkoxides such as butoxide, ethoxide and propoxide (for example, zirconium or titanium) are used as a solution using a solvent such as butanol or propanol, and this is converted to a metal. A desired coating film can be formed by applying the composition to a substrate. For application, brushing, roll coating, dipping, spraying, spinning, or the like can be appropriately selected. The thickness of the coating film is generally selected from the range of 3 to 500 μm, preferably about 5 to 20 μm. For example, a substrate is immersed in a metal alkoxide solution using a sol-gel method, and is lifted to obtain a coating film. The coating film is dried by a conventional method, for example, at room temperature, and then heated to about 300 to 550 ° C. and fixed to the substrate. As the above-mentioned CVD method, a plasma CVD method can be used for forming a film by a gas phase chemical reaction in a relatively low temperature range of about 400 to 500 ° C., and thus there is no limitation on the base material, which is suitable.
[0012]
The obtained coating film forming substrate is then processed into a three-dimensional structure. This structure comprises a honeycomb, a corrugated sheet and / or a flat sheet. The honeycomb is not limited to a hexagonal core and may have any shape. The corrugated plate may be used in combination with a flat plate (corrugation) and arranged in parallel, or may be rolled up to form a honeycomb. The flat plates are preferably arranged in parallel and used as a so-called parallel passage type. The structure of the present invention enables efficient photocatalytic reaction because of extremely low airflow resistance. The processing for forming the three-dimensional structure is bonding, cutting, or cutting, and can be performed by an ordinary method. At the time of bonding, an organic adhesive is likely to be degraded by a photocatalyst, so that an inorganic adhesive is preferably used. Examples of such inorganic adhesives include glass based materials such as low melting point glass; metal based materials such as soft solder such as Sn-In, Bi-Pb, Sn-Pb and Pb-Sb; alkali silicate (particularly water glass); Other inorganic materials such as phosphates and the like can be mentioned, and those having an adhesion temperature of 100 to 500 ° C, preferably 120 to 200 ° C, are particularly preferable. Of these inorganic adhesives, the most preferred is water glass.
[0013]
The photocatalyst according to the present invention preferably has a surface roughness of 50 nmRa (center line roughness) or less. When the mirror surface is formed and the coating film is transparent, the light reflectance is remarkable. Thus, for example, the inside of the honeycomb photocatalyst body can be irradiated with ultraviolet rays with irregular reflection, and the catalytic activity can be significantly improved.
[0014]
In the apparatus of the present invention, a plurality of layers of fluid passages composed of photocatalysts are formed by the processing for forming the three-dimensional structure. The photocatalytic reaction device of the present invention is constituted by disposing an ultraviolet light source in a specific configuration in the vicinity of such a photocatalyst, and can be used for a deodorizing device, a sterilizing device, an air purifier, a water purifying device, and the like. . That is, in the apparatus of the present invention, the ultraviolet light source is configured so as to reduce the amount of ultraviolet light irradiation along the traveling direction of the fluid passage of the fluid to be processed.
[0015]
Examples of the ultraviolet light used for the irradiation include ultraviolet light having a wavelength of 185 nm, 254 nm, or 300 to 400 nm. The wavelength of photoexcitation of the photocatalyst varies depending on the type of photocatalyst. For example, in the case of titanium dioxide, it is 380 nm or less for anatase type and 415 nm or less for rutile type, and further, it is 254 nm or less for zirconium oxide.
[0016]
As an ultraviolet light source that emits such a light beam, a discharge lamp such as a black light, a low pressure, a medium pressure or a high pressure mercury lamp is suitable. In the apparatus of the present invention, for example, (i) the same ultraviolet light source, for example, a discharge lamp is used to arrange the ultraviolet light source so that the irradiation amount of ultraviolet light can be reduced along the traveling direction of the fluid to be processed in the fluid passage. In this case, the number of lamps is sequentially reduced along the traveling direction in the fluid passage; (ii) the ultraviolet light source is adjusted so that the amount of ultraviolet irradiation can be reduced along the traveling direction in the fluid passage. It is configured to be lightable. In this case, information obtained by monitoring the reaction along the traveling direction can be fed back to dimming.
[0017]
For example, deodorization is performed by bringing a malodorous substance into contact with the photocatalyst surface by a diffusion phenomenon and oxidatively decomposing the substance. Examples of the offensive odor include hydrogen sulfide, mercaptan, amine, ammonia, aldehyde and the like. Volatile organic halogen compounds dispersed in the air, such as trichloroethane and trichloroethylene, can also be decomposed by a photocatalytic reaction. In the apparatus of the present invention, a conventional adsorbent layer of activated carbon or the like may be provided.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Reference Example 1 Al plate - anodic oxidation / ZrO 2 / sol - gel / honeycomb (hoisting corrugated)
An aluminum (Al) substrate (flat plate and corrugated plate) was anodized under the following conditions.
[0019]
・ Bath composition sulfuric acid 13.7%
Treatment conditions: about 22 ° C., 0.5 A / dm 2 , DC, 5 minutes, cathode: carbon An anodized aluminum oxide substrate (oxide film thickness: about 0.5 μm) was obtained and ethanol solution of zirconium butoxide (zirconium butoxide 20 g) was used. , 45 g of ethanol, 20 g of water, 0.3 g of hydrochloric acid), pulling up, drying (room temperature), repeating baking (about 500 ° C.), and producing a ZrO 2 coating film (about 50 nm Ra or less) having a thickness of about 10 μm. did. Then, a flat plate and a corrugated plate were combined and corrugated from the obtained anodic oxide film / ZrO 2 coating film / aluminum substrate using a water glass adhesive, and this was rolled up in a honeycomb shape to obtain a honeycomb photocatalyst. .
Reference Example 2 Al plate - anodic oxidation / TiO 2 / sol - gel / honeycomb (hoisting corrugated)
A honeycomb photocatalyst was obtained in the same manner as in Reference Example 1, except that a TiO 2 coating film (about 10 μm in thickness) was formed instead of the ZrO 2 coating film. An ethanol solution of titanium isopropoxide (25 g of titanium isopropoxide, 40 g of ethanol, 25 g of water, 0.3 g of hydrochloric acid) was used.
Example 1
Using the honeycomb photocatalyst obtained in Reference Example 2, a deodorizing device as shown in FIG. 1 was produced. 1A is a plan view, FIG. 1B is a side view, and the deodorizing device (1) includes a photocatalyst (2) and an ultraviolet lamp (3), and one ultraviolet lamp (3) is provided. 65w, and the number of the ultraviolet lamps (3) at three locations is reduced to 8, 6, and 4, respectively, along the traveling direction of the fluid passage of the fluid to be treated. (4) is an aluminum reflector plate module provided for further effective use of ultraviolet rays, and has a ventilation opening formed of a strip-shaped slit parallel to the ultraviolet irradiation. Then, the exhaust gas from the mixed layer of the agricultural chemical factory blend was processed using this deodorizing apparatus. The exhaust gas conditions were as follows: air volume: 50 m 3 , temperature: normal temperature, humidity: 80%, odor concentration (sensory test); 1360 (raw gas). The odor concentration (sensory test) of the gas after the treatment was 79, and a sufficient deodorizing effect was obtained by efficient ultraviolet irradiation. In addition, the main body pressure loss was only 30 mmAq. These odor concentrations are:
The odor index (threshold value of the entire panel (8 persons) excluding the maximum and the minimum) was determined from 10 × log odor concentration.
Example 2
Using the honeycomb photocatalyst obtained in Reference Example 1, a deodorizing device similar to that of Example 1 was produced.
[0020]
When the exhaust gas was treated using this deodorizing apparatus in the same manner as in Example 1, a sufficient deodorizing effect was obtained by efficient ultraviolet irradiation.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a photocatalytic reaction device of the present invention. (A) is a plan view and (b) is a side view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Deodorizer 2 ... Photocatalyst 3 ... Ultraviolet lamp 4 ... Reflector module

Claims (13)

基材表面に光触媒を被覆した光触媒体から構成される複数層の流体通路および紫外線源を備えてなる光触媒反応装置において、該紫外線源が被処理流体の流体通路の進行方向に沿って紫外線照射量を低減し得るように構成されてなる光触媒反応装置。In a photocatalytic reaction device comprising a plurality of layers of a fluid passage composed of a photocatalyst having a photocatalyst coated on a substrate surface and an ultraviolet light source, the ultraviolet light source emits ultraviolet light along a traveling direction of the fluid passage of the fluid to be treated. A photocatalytic reactor configured to reduce the amount of water. 低減が段階的もしくは連続的である請求項1記載の光触媒反応装置。2. The photocatalytic reactor according to claim 1, wherein the reduction is stepwise or continuous. 紫外線源が水銀ランプもしくはブラックライトである請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the ultraviolet light source is a mercury lamp or a black light. 光触媒体が金属基板上に光触媒のコーティング膜を形成させ、ついでこのコーティング膜形成金属基板を加工して立体構造体としてなる請求項1記載の光触媒反応装置。2. The photocatalytic reactor according to claim 1, wherein the photocatalyst forms a photocatalyst coating film on the metal substrate, and then processes the coating film-formed metal substrate to form a three-dimensional structure. 金属がアルミニウム、チタン、マグネシウム、鋼もしくはステンレス鋼である請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the metal is aluminum, titanium, magnesium, steel or stainless steel. 金属が絶縁被覆されてなる請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the metal is coated with an insulating material. 絶縁被覆処理が陽極酸化、化成処理もしくはガラスコーティング処理から選ばれる請求項6記載の光触媒反応装置。7. The photocatalytic reactor according to claim 6, wherein the insulating coating treatment is selected from anodic oxidation, chemical conversion treatment and glass coating treatment. 光触媒が酸化ジルコニウムもしくは酸化チタンである請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the photocatalyst is zirconium oxide or titanium oxide. コーティング膜の厚さが3〜500μmである請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the thickness of the coating film is 3 to 500 µm. 構造体がハニカム、波板および/または平板より構成される請求項1記載の光触媒反応装置。2. The photocatalytic reactor according to claim 1, wherein the structure comprises a honeycomb, a corrugated plate and / or a flat plate. 加工が接着、切削もしくは切断である請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the processing is bonding, cutting, or cutting. 接着が無機接着剤による請求項1記載の光触媒反応装置。The photocatalytic reactor according to claim 1, wherein the adhesion is performed by an inorganic adhesive. 光触媒体の表面粗さが50nmRa以下である請求項1記載の光触媒反応装置。The photocatalyst reactor according to claim 1, wherein the surface roughness of the photocatalyst is 50 nmRa or less.
JP2002213001A 2002-07-22 2002-07-22 Photocatalytic reaction apparatus Pending JP2004050100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213001A JP2004050100A (en) 2002-07-22 2002-07-22 Photocatalytic reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213001A JP2004050100A (en) 2002-07-22 2002-07-22 Photocatalytic reaction apparatus

Publications (1)

Publication Number Publication Date
JP2004050100A true JP2004050100A (en) 2004-02-19

Family

ID=31935758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213001A Pending JP2004050100A (en) 2002-07-22 2002-07-22 Photocatalytic reaction apparatus

Country Status (1)

Country Link
JP (1) JP2004050100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122220A (en) * 2004-10-27 2006-05-18 Gunma Prefecture Manufacturing method of electrode for odor material decomposition and odor decomposition method using the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108138A (en) * 1993-10-12 1995-04-25 Agency Of Ind Science & Technol Device for removing harmful gas
JPH1190237A (en) * 1997-07-23 1999-04-06 Toshiba Lighting & Technology Corp Photocatalytic body, its production, deodorization device and lighting fixture
JPH11262340A (en) * 1998-03-16 1999-09-28 Bio Oriented Technol Res Advancement Inst Deodorizing device for livestock excreta
JP2000087259A (en) * 1998-09-16 2000-03-28 Sumitomo Metal Ind Ltd Stainless steel sheet and its production
JP2000093807A (en) * 1998-09-25 2000-04-04 Sharp Corp Photocatalyst body, and heat exchanger and purifying device using the same
JP2000107566A (en) * 1998-10-08 2000-04-18 Mitsubishi Paper Mills Ltd Photocatalyst member
JP2000135755A (en) * 1998-07-17 2000-05-16 Toto Ltd Hydrophilic composite material
JP2000218132A (en) * 1999-01-28 2000-08-08 Nippon Light Metal Co Ltd Filter for purifying air
JP2000312830A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Photocatalyst composite material and production thereof
JP2001019573A (en) * 1999-07-09 2001-01-23 Toto Ltd Glazed product and its production
JP2002113369A (en) * 2000-10-11 2002-04-16 Seiko Epson Corp Photocatalyst and method of manufacturing the same
JP2002177790A (en) * 2000-12-13 2002-06-25 Mitsubishi Alum Co Ltd Photocatalyst precoated molding material and photocatalyst precoated molding and photocatalyst precoated fin

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108138A (en) * 1993-10-12 1995-04-25 Agency Of Ind Science & Technol Device for removing harmful gas
JPH1190237A (en) * 1997-07-23 1999-04-06 Toshiba Lighting & Technology Corp Photocatalytic body, its production, deodorization device and lighting fixture
JPH11262340A (en) * 1998-03-16 1999-09-28 Bio Oriented Technol Res Advancement Inst Deodorizing device for livestock excreta
JP2000135755A (en) * 1998-07-17 2000-05-16 Toto Ltd Hydrophilic composite material
JP2000087259A (en) * 1998-09-16 2000-03-28 Sumitomo Metal Ind Ltd Stainless steel sheet and its production
JP2000093807A (en) * 1998-09-25 2000-04-04 Sharp Corp Photocatalyst body, and heat exchanger and purifying device using the same
JP2000107566A (en) * 1998-10-08 2000-04-18 Mitsubishi Paper Mills Ltd Photocatalyst member
JP2000218132A (en) * 1999-01-28 2000-08-08 Nippon Light Metal Co Ltd Filter for purifying air
JP2000312830A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Photocatalyst composite material and production thereof
JP2001019573A (en) * 1999-07-09 2001-01-23 Toto Ltd Glazed product and its production
JP2002113369A (en) * 2000-10-11 2002-04-16 Seiko Epson Corp Photocatalyst and method of manufacturing the same
JP2002177790A (en) * 2000-12-13 2002-06-25 Mitsubishi Alum Co Ltd Photocatalyst precoated molding material and photocatalyst precoated molding and photocatalyst precoated fin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122220A (en) * 2004-10-27 2006-05-18 Gunma Prefecture Manufacturing method of electrode for odor material decomposition and odor decomposition method using the same

Similar Documents

Publication Publication Date Title
JP2918787B2 (en) Photocatalyst and method for producing the same
WO1994011092A1 (en) Air treating method using photocatalyst under interior illumination
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
KR20020088349A (en) Discharge electrode and photonic catalyst reactor
JP5474612B2 (en) Photocatalyst sheet and method for producing the same
JPH06205977A (en) Production of photocatalystic composition and photocatalystic composition
WO2002100633A1 (en) Antifogging element and method for forming the same
JP2000312830A (en) Photocatalyst composite material and production thereof
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
JP3027739B2 (en) Photocatalyst and method for producing the same
JP2004050100A (en) Photocatalytic reaction apparatus
JP2002085967A (en) Photocatalyst membrane and method of producing the same
JP2004050101A (en) Manufacturing method for photocatalyst body
JP4063577B2 (en) Method for producing composite material having photocatalytic coating
JP2004089912A (en) Method for washing photocatalyst body
JP2001286749A (en) Chemical transducer
JP2004050102A (en) Photocatalytic reaction apparatus
JP2004016832A (en) Photocatalyst filter
US20120270722A1 (en) Ultra-Porous Photocatalytic Material, Method for the Manufacture and the Uses Thereof
JP3867036B2 (en) Method for producing composite material with photocatalytic coating
JPH11188272A (en) Photocatalytic body and its production
JP2000290779A (en) Titania film-formed member and its production
JP2002361095A (en) Photocatalyst body, photocatalytically deodorizing device and photocatalytically water-purifying device, using the same
JP2002085978A (en) Photocatalytic member
KR102698180B1 (en) Gold deposition method using photodeposition and titanium dioxide coated plate on which gold is deposited by the deposition method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909