JP2004047762A - Method for manufacturing nitride semiconductor, semiconductor wafer, and semiconductor device - Google Patents

Method for manufacturing nitride semiconductor, semiconductor wafer, and semiconductor device Download PDF

Info

Publication number
JP2004047762A
JP2004047762A JP2002203674A JP2002203674A JP2004047762A JP 2004047762 A JP2004047762 A JP 2004047762A JP 2002203674 A JP2002203674 A JP 2002203674A JP 2002203674 A JP2002203674 A JP 2002203674A JP 2004047762 A JP2004047762 A JP 2004047762A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
substrate
buffer layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203674A
Other languages
Japanese (ja)
Other versions
JP4333092B2 (en
Inventor
Tsuneaki Fujikura
藤倉 序章
Takamasa Suzuki
鈴木 貴征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002203674A priority Critical patent/JP4333092B2/en
Publication of JP2004047762A publication Critical patent/JP2004047762A/en
Application granted granted Critical
Publication of JP4333092B2 publication Critical patent/JP4333092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remarkably reduce the dislocation density of a nitride semiconductor formed on a substrate. <P>SOLUTION: A method for manufacturing the nitride semiconductor includes steps of epitaxially growing a III-V-IV mixed crystal buffer layer represented by a formula (In<SB>a</SB>Al<SB>b</SB>Ga<SB>c</SB>N)<SB>x</SB>Si<SB>y</SB>(a≥0, b≥0, c≥0, x>0, y>0, a+b+c=1, x+y=1) on a single-crystal insulating substate 1, and forming a nitride semiconductor layer 3 which has a crystal structure of a single crystal on the buffer layer 2 by an epitaxial growing method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低転位な窒化物半導体の製造方法およびそれを用いた半導体ウェハならびに半導体デバイスに関するものである。
【0002】
【従来の技術】
半導体エピタキシャル膜を得ようとする場合、最も容易な方法としては、成長しようとしている半導体と同一材料からなる単結晶基板を準備し、その上に気相成長する方法が考えられ、実際に色々な材料系で成功している。
【0003】
しかしながら、窒化ガリウムのように技術的に半導体単結晶基板を得ることが困難であったり、半導体単結晶基板が高価であるため産業的にはコスト面で用いれない等の理由により、異種基板上へ半導体を成長せざるをえない状況が多々存在する。代表例としては、シリコン基板上のGaAsや、サファイア及び炭化珪素基板上のGaNや、GaAs基板上のII−VI族半導体等が知られる。
【0004】
例えば、窒化ガリウム(GaN)は、青色から紫外域にかけての短波長発光ダイオード(LED)や半導体レーザ(LD)等の光デバイスの材料として、あるいは高出力電界効果トランジスタ(FET)や高電子移動度トランジスタ(HEMT)等の電子デバイス用の材料として重要であるが、窒化ガリウムはバルク単結晶基板を得ることができないため、基板材料としてサファイアやSiC基板が用いられ、この基板上へ、気相成長法(VPE法)(有機金属気相成長法(MOVPE法)を含む)によりGaNの成長が行われる。
【0005】
この様な異種基板上へ半導体を成長した場合、格子不整合、熱膨張係数の不整合、表面エネルギーの不整合等の様々な材料固有の特性の不整合により、成長した半導体エピタキシャル膜中に高密度の転位が導入される。半導体中の転位は、非発光再結合中心、散乱中心として働くため、このような転位を多く含む半導体を用いた光および電子デバイスの特性、安定性、寿命は転位を微量にしか含まないデバイスに比べて極めて劣ったものとなってしまう。
【0006】
上記GaNや、AlGaN、GaInNなどに代表される窒化物系化合物半導体も、単結晶基板が得られないためサファイアや炭化珪素などの異種基板上に成長が行われることから、同様に、初期の研究においては上述の転位の発生が深刻な問題となっていた。
【0007】
しかし、近年、MOVPE法を用いた「2段階成長法」によりこの問題は一部解決された。即ち、サファイア基板上に500〜600℃程度の低温でGaNあるいはAlNからなる低温バッファ層を成長し、その後、その上に1000℃程度の温度でGaNを成長する方法であり、これにより従来1010〜1011cm−2程度であったサファイア上GaNの転位密度を10〜10cm−2台に抑制することに成功している(特公平8−8217号公報)。
【0008】
【発明が解決しようとする課題】
しかしながら、窒化物半導体中の転位密度が10cm−2台であっても、窒化物半導体電子デバイスの耐圧低下や光デバイスの寿命短縮などの現象を引き起こす原因となり、これらのデバイスの実用化に対する大きな障害となっている。即ち、窒化物半導体の電子・光デバイスの実用化を達成するためには、窒化物半導体中の更なる転位密度の低減が必要である。ちなみに、窒化物半導体の次世代の製品ターゲットである青紫レーザーダイオードや紫外LEDの実現のためには、転位密度を10cm−2台以下にすることが要請される。
【0009】
そこで、本発明の目的は、上記課題を解決し、転位密度の更なる低減を実現する窒化物半導体の製造方法および半導体ウェハならびに半導体デバイスの構造を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0011】
請求項1の発明に係る窒化物半導体の製造方法は、基板上へ窒化物半導体層を形成するに当たり、単結晶の絶縁性基板上に、(InAlGaN)Si(a≧0、b≧0、c≧0、x>0、y>0、a+b+c=1、x+y=1)で表されるIII−V−IV族混晶バッファ層をエピタキシャル成長し、この混晶バッファ層上に、エピタキシャル成長法により単結晶の結晶構造を有する窒化物半導体層を形成することを特徴とする。
【0012】
本発明において基板とその上の窒化物半導体層の間に形成されるIII−V−IV族混晶バッファ層は、一般式、(InAlGaN)Si(a≧0、b≧0、c≧0、x>0、y>0、a+b+c=1、x+y=1)で表される。いくつか例を挙げると、InNSi、InAlNSi、AlNSi、AlGaNSi、GaNSi、InGaNSi、InAlGaNSiなどである。
【0013】
請求項2の発明は、請求項1に記載の窒化物半導体の製造方法において、上記基板として、サファイア基板、SiC基板、Si基板、あるいは、これらの基板上に窒化物半導体層を成長した複合基板を用いることを特徴とする。
【0014】
請求項3の発明は、請求項1又は2に記載の窒化物半導体の製造方法において、上記バッファ層の混晶半導体層を400〜1200℃の温度範囲で成長することを特徴とする。
【0015】
請求項4の発明は、請求項1〜3のいずれかに記載の窒化物半導体の製造方法において、上記窒化物半導体層を600〜1200℃の温度範囲で成長することを特徴とする。転位密度を低減する観点からは、好ましくは950〜1100℃、更に好ましくは1010〜1050℃の温度範囲で成長する。
【0016】
請求項5の発明は、請求項1〜4のいずれかに記載の窒化物半導体の製造方法において、上記混晶バッファ層を0.1分子層〜1μmの厚さで形成することを特徴とする。
【0017】
請求項6の発明は、請求項1〜5のいずれかに記載の窒化物半導体の製造方法において、上記窒化物半導体層の厚さを0.5〜10μm未満に形成することを特徴とする。これは本発明において好ましい上記窒化物半導体層の厚さである0.5〜500μmの範囲のうちの一部を特定したものである。
【0018】
請求項7の発明は、請求項1〜5のいずれかに記載の窒化物半導体の製造方法において、上記窒化物半導体層の厚さを10〜500μmに形成することを特徴とする。これは本発明において好ましい上記窒化物半導体層の厚さである0.5〜500μmの範囲のうちの一部を特定したものである。
【0019】
請求項8の発明に係る半導体ウェハは、請求項1〜7のいずれかに記載の方法により形成した窒化物半導体上へ、エピタキシャル成長法により窒化物半導体を形成し、窒化物半導体の積層構造を形成したことを特徴とする。これは、基板とその上に形成される窒化物半導体との間に、バッファ層として、(InAlGaN)Si(a≧0、b≧0、c≧0、x>0、y>0、a+b+c=1、x+y=1)で表されるIII−V−IV族混晶半導体層を形成した構造を持つ半導体ウェハである。基板としては、サファイア基板、SiC基板、Si基板、あるいは、これらの基板上に窒化物半導体層を成長した複合基板のいずれも使用できる。
【0020】
この半導体ウェハにおいて、混晶バッファ層上へ形成される窒化物半導体の積層構造(デバイス構造)としては、短波長発光ダイオード(LED)や半導体レーザ(LD)等の光デバイスの構造の他、高出力電界効果トランジスタ(FET)や高電子移動度トランジスタ(HEMT)、ヘテロ・バイポーラ・トランジスタ(HBT)等の電子デバイスの構造がある。具体的には、例えばLEDやLDなどを製造する場合には、AlGaN、InGaN、GaNなどを多層に積層し、発光層(活性層)をn型クラッド層およびp型クラッド層によりはさんだ構造を形成する必要がある。また、HBTにおいても、AlGaN、InGaN、GaNなどを多層に積層し、npnあるいはpnp接合を形成する必要がある。
【0021】
請求項9の発明は、請求項8に記載の半導体ウェハにおいて、上記窒化物半導体の積層構造が、上記混晶バッファ層上に形成した窒化物半導体層と、該窒化物半導体層上に形成した第1導電型の第1のクラッド層と、この第1のクラッド層上に形成した活性層と、この活性層上に形成され、前記第1導電型とは反対の第2導電型の第2のクラッド層とを備えることを特徴とする。これは、短波長発光ダイオード(LED)や半導体レーザ(LD)等の光デバイスを特定したものである。
【0022】
請求項10の発明は、請求項8に記載の半導体ウェハにおいて、上記窒化物半導体の積層構造が、上記混晶バッファ層上に形成したアンドープ窒化物半導体層と、該窒化物半導体層上に形成したn型の窒化物半導体層とを備えることを特徴とする。これはGaN系HEMTの構造を特定したものである。
【0023】
請求項11の発明に係る半導体デバイスは、上記請求項8〜10のいずれかに記載の半導体ウェハを用いて形成したことを特徴とする。これには、LEDやLD等の光デバイスだけでなく、FETやHEMT、HBT等の電子デバイスが含まれる。
【0024】
<発明の要点>
本発明者等は、上記課題を解決するべく、上記のAlN、GaN低温バッファに代わる新たなバッファ層材料を探索し、鋭意研究努力した結果、図1に示すように、(InAlGaN)Si(a≧0、b≧0、c≧0、x>0、y>0、a+b+c=1、x+y=1)で表されるIII−V−IV族混晶バッファ層2を、異種単結晶の絶縁性基板1とその上に成長する窒化物半導体層3との間に形成することにより、転位密度を10cm−2より小さくすることが可能であることを見出した。
【0025】
これは、SiC、Si等の異種基板上へ窒化物半導体を成長する場合、異種基板1上にまず上記バッファ層2の混晶半導体を成長しその上に窒化物半導体層3を成長すると、異種基板と窒化物半導体間の歪が効果的に緩和し、結果的に窒化物半導体中の転位が低減するためと考えられる。
【0026】
また、異種基板上にあらかじめ窒化物半導体層を成長した複合基板上へ窒化物半導体層を成長する場合にも、異種基板の影響により、あらかじめ成長した窒化物半導体は歪んでおり、転位を多く含んでいる。この場合にも、上記バッファ層の混晶半導体層を挿入する事により、その上に成長する窒化物半導体中の歪みが効果的に緩和し、結果的に窒化物半導体中の転位が低減する。
【0027】
【発明の実施の形態】
次に、本発明による窒化物半導体の製造方法と、これにより得られる半導体ウェハならびに半導体デバイス製造の実施形態について説明する。以下の実施例はMOVPE成長による場合の例であるが、HVPE成長(ハイドライド気相成長)あるいはMBE成長(分子線エピタキシー)による場合においても同様な結果を得ている。
【0028】
<実施例1>
本実施例においては、基板1としてサファイア基板を用い、これをまず1100℃で水素雰囲気中でクリーニングした後、その上に混晶バッファ層2として(GaN)Si1−xバッファ層を組成・膜厚を様々に変えて成長し、更にその上に窒化物半導体層3として約3μmのGaN層を成長している。
【0029】
表1に、GaNSiバッファ層とGaN層につき、その成長条件である膜厚、原料、キャリアガスの種類と量を示す。
【0030】
【表1】

Figure 2004047762
【0031】
表1に示すように、GaNSiバッファ層は、膜厚を0.1分子層〜1μmの範囲で変更した。このGaNSiバッファ層の成長中に供給した原料およびキャリアガスの種類と量は、III族原料であるトリメチルガリウム(TMG)を0.01〜60(μmol/m)、IV族原料であるテトラエチルシラン(TESi)を0.01〜60(μmol/m)、V族原料であるアンモニアを10(slm)とし、キャリアガスの水素/窒素の比率を0.3とした。また、このGaNSiバッファ層上に形成したGaN層は、膜厚を3μmとし、その成長中に供給した原料およびキャリアガスの種類と量は、III族原料であるトリメチルガリウムTMGを660(μmol/m)、V族原料であるアンモニアを20(slm)とし、キャリアガスの水素/窒素の比率を0.3とした。そして、成長時の圧力、総ガス流量、温度はGaNSiバッファ層とGaN層を通じて全て一定として、それぞれ、300Torr、100slm、1025℃である。
【0032】
なお、本実験に先立ち、約1μmの(GaN)Si1−x層をサファイア基板上へ直接成長し、X線回折測定により、その組成xが、原料ガスであるトリメチルガリウム(TMG)とテトラエチルシラン(TESi)の供給量で制御可能であることを見出している。
【0033】
図2に、膜厚0.1分子層の(GaN)Si1−x混晶バッファ層を、組成xを変えて成長した場合の、その上に成長したGaN層の転位密度(cm−2)の変化を示す。GaN組成xが0.01の場合に転位密度が最小の1×10cm−2となっており、また、GaN組成xが0.9においても、従来のAlNあるいはGaN低温バッファ層を用いた2段階成長法によるGaNよりも低い値である10cm−2台の転位密度が得られている。
【0034】
また、図3はGaN組成xが0.01の場合(つまりGaN0.01Si0.99の混晶バッファ層)の膜厚(nm)と転位密度(cm−2)の関係を示したものである。混晶バッファ層の膜厚を0.1分子層程度(0.025nm)とした図2の場合、転位密度の最小が1×10cm−2となっているが、他の膜厚との関係では、図3に示すように、混晶バッファ層の膜厚が1000nm以下で転位密度は2×10cm 以下であり、従来法によるGaNバッファ層よりも転位密度が低い。また混晶バッファ層の膜厚が100nm以下では転位密度が1×10cm−2以下となる。よって、混晶バッファ層は、0.1分子層〜1000nm(1μm)の厚さとするのがよく、更には0.1分子層〜100nmの厚さで形成するのが好ましいことが判る。
【0035】
<実施例2>
本実施例では、基板1として、SiC基板上にGaN層を約1μm成長した複合基板を用い、この複合基板上へ、実施例1と同様な条件でバッファ層2として(In0.1Ga0.5Al0.4N)0.1Si0.9混晶バッファ層を1分子層成長し、その上に窒化物半導体層3として、Al0.1Ga0.9Nを約2μm成長している。この結果、複合基板の段階では、GaN層の最表面で転位密度が1×10cm−2であったのが、Al0.1Ga0.9Nの表面では、転位密度が5×10cm−2にまで低減している。
【0036】
<実施例3>
本実施例では、その前提として、実施例1の(GaN)Si1−x混晶バッファ層のGaN組成xが0.01で、且つ膜厚が0.1分子層の場合において、混晶バッファ層の成長温度を200〜1300℃の範囲で変化させた実験を行っている。その結果、混晶バッファ層の成長温度が400〜1200℃の範囲内では、転位密度が、従来法によるGaNの転位密度以下となった。ことに、成長温度が800〜1100℃の範囲内では転位密度は5×10cm−2以下であり、また、1000〜1050℃の範囲内では転位密度は2×10cm−2以下にまで低減された。
【0037】
<実施例4>
本実施例では、その前提として、実施例1の(GaN)Si1−x混晶バッファ層のGaN組成xが0.01で、且つ膜厚が0.1分子層の場合において、混晶バッファ層上に成長するGaN層の成長温度を200〜1300℃の範囲で変化させた実験を行っている。その結果、成長温度が600〜1200℃の範囲内では、転位密度が、従来法によるGaNの転位密度以下となった。ことに、成長温度が950〜1100℃の範囲内では転位密度は5×10cm−2以下であり、また、1010〜1050℃の範囲内では転位密度は2×10cm−2以下にまで低減された。
【0038】
<実施例5>
上記実施例1〜4において、窒化物半導体層の膜厚としては0.5μm〜500μmが好適である。窒化物半導体層の膜厚が0.5μm未満の場合には、窒化物半導体の電気的・光学的特性に劣化がみられ、また、窒化物半導体層の膜厚が500μm以上の場合には、成長時間が長くなりすぎる。ことに、窒化物半導体層の膜厚が0.5μm〜10μm未満の場合には、低コスト、且つ低転位な窒化物半導体エピタキシャルウェハとして好適であり、また、窒化物半導体層の膜厚が10μm〜500μmの場合には、多少ウェハコストは高くなるが、より低転位な窒化物半導体エピタキシャルウェハとして好適である。
【0039】
<実施例6>
図4はMOCVD法を用いて、サファイア基板11上に、窒化ガリウム系化合物半導体のダブルヘテロ(DH)構造を積層成長した光放出半導体デバイス用ウェハの例である。このウェハWは、サファイア基板11上に、400〜1200℃の温度範囲でGaNSiバッファ層12を0.1分子層〜1μmの厚さで形成し、次に600〜1200℃の温度範囲でオーミック電極を付けるためのn型GaN層13を形成し、その上に、n型AlGaNクラッド層14(第1のクラッド層)、InGaN活性層15、及びp型AlGaNクラッド層16(第2のクラッド層)から成るダブルヘテロ構造を成長した後、p型のGaNコンタクト層17を成長させたものである。
【0040】
図5は上記半導体ウェハを用いて形成した半導体デバイスの例である。上記ウェハWの表面の一部を反応性イオンエッチング(RIE)法でエッチングして除去し、n型GaN層13を露出させた後、n型GaN層13の表面にチタン(Ti)とアルミニウム(Al)の積層構造から成るn型電極18を、またp型層の表面の一部にはニッケル(Ni)と金(Au)の積層構造から成るp型電極19を付けて、LEDチップ(窒化ガリウム系化合物半導体光放出半導体デバイス)を作製した。
【0041】
<実施例7>
図6はMOVPE法を用いて、サファイア基板21上に、400〜1200℃の温度範囲でGaNSiバッファ層22を0.1分子層〜1μmの厚さで形成し、次に600〜1200℃の温度範囲でアンドープGaN層23を形成し、その上に、n型AlGaN層24を形成して、GaN系HEMT用ウェハを構成した例である。GaNSiバッファ層22の働きにより、急峻なヘテロ界面が形成され、これにより高い電流密度が得られるものである。
【0042】
【発明の効果】
以上説明したように、本発明によれば、単結晶の絶縁性基板上へ窒化物半導体層を形成するに際し、基板と窒化物半導体層の間に、(InAlGaN)Si(a≧0、b≧0、c≧0、x>0、y>0、a+b+c=1、x+y=1)で表されるIII−V−IV族混晶バッファ層を形成しているので、従来以上に低転位な窒化物半導体を成長することが可能となる。これは、窒化物半導体層における転位密度を飛躍的に低減して10cm−2台以下にすることが実現できることを意味する。このため、本発明の窒化物半導体の製造方法および半導体ウェハならびに、半導体デバイスによれば、次世代の青紫レーザーダイオードや紫外LEDの実現を可能にすると共に、窒化物半導体電子デバイスの耐圧や光デバイスの寿命などを向上させ、実用に適した電子デバイスや光デバイスを得ることができる。
【図面の簡単な説明】
【図1】本発明の窒化物半導体の構造を示す図である。
【図2】本発明における混晶バッファ層の膜厚が0.1分子層の場合の組成と転位密度の関係を示す図である。
【図3】本発明における窒化物半導体の混晶バッファ層の膜厚と転位密度の関係を示す図である。
【図4】本発明により作成した光デバイス用ウェハの構造を示す断面図である。
【図5】本発明により図4のウェハを用いて作成した光デバイスの構造を示す断面図である。
【図6】本発明により作成したGaN系HEMT用ウェハの構造を示す断面図である。
【符号の説明】
1 基板
2 バッファ層
3 窒化物半導体層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a low dislocation nitride semiconductor, a semiconductor wafer using the same, and a semiconductor device.
[0002]
[Prior art]
When trying to obtain a semiconductor epitaxial film, the easiest method is to prepare a single crystal substrate made of the same material as the semiconductor to be grown, and then vapor-phase grow it on it. Successful in materials.
[0003]
However, because it is difficult to obtain a semiconductor single crystal substrate technically like gallium nitride, or because the semiconductor single crystal substrate is expensive, it is not industrially used in terms of cost. There are many situations in which semiconductors must be grown. Representative examples include GaAs on a silicon substrate, GaN on a sapphire and silicon carbide substrate, and II-VI group semiconductor on a GaAs substrate.
[0004]
For example, gallium nitride (GaN) is used as a material for optical devices such as short-wavelength light emitting diodes (LEDs) and semiconductor lasers (LDs) in the blue to ultraviolet range, or for high power field effect transistors (FETs) and high electron mobilities. Although important as a material for an electronic device such as a transistor (HEMT), gallium nitride cannot be used to obtain a bulk single crystal substrate, and thus a sapphire or SiC substrate is used as a substrate material. GaN is grown by a method (VPE method) (including a metal organic chemical vapor deposition method (MOVPE method)).
[0005]
When a semiconductor is grown on such a heterogeneous substrate, a high mismatch occurs in the grown semiconductor epitaxial film due to mismatches in various material-specific characteristics such as lattice mismatch, thermal expansion coefficient mismatch, and surface energy mismatch. Density dislocations are introduced. Since dislocations in semiconductors act as non-radiative recombination centers and scattering centers, the characteristics, stability, and lifetime of optical and electronic devices using semiconductors containing such dislocations are limited to devices containing only a small amount of dislocations. It is extremely inferior.
[0006]
Similarly, GaN, nitride-based compound semiconductors represented by AlGaN, GaInN, and the like are grown on heterogeneous substrates such as sapphire and silicon carbide because a single-crystal substrate cannot be obtained. In, the occurrence of the above-mentioned dislocation has been a serious problem.
[0007]
However, in recent years, this problem has been partially solved by the “two-stage growth method” using the MOVPE method. That is, to grow a low temperature buffer layer made of GaN or AlN at a low temperature of about 500 to 600 ° C. on a sapphire substrate, then, is a method of growing GaN at a temperature of about 1000 ° C. In addition, this by conventional 10 10 It has succeeded in suppressing the dislocation density of GaN on sapphire, which was about 10 to 10 11 cm -2, to the order of 10 8 to 10 9 cm -2 (JP-B-8-8217).
[0008]
[Problems to be solved by the invention]
However, even if the dislocation density in the nitride semiconductor is on the order of 10 8 cm −2 , it causes phenomena such as a decrease in the withstand voltage of the nitride semiconductor electronic device and a shortened life of the optical device. It is a major obstacle. That is, it is necessary to further reduce the dislocation density in the nitride semiconductor in order to achieve practical use of the electronic / optical device using the nitride semiconductor. Incidentally, in order to realize a blue-violet laser diode or an ultraviolet LED which is a next-generation product target of a nitride semiconductor, it is required to have a dislocation density of 10 7 cm −2 or less.
[0009]
Therefore, an object of the present invention is to solve the above problems and provide a method of manufacturing a nitride semiconductor, a semiconductor wafer, and a structure of a semiconductor device that realize further reduction in dislocation density.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0011]
Method of manufacturing a nitride semiconductor according to a first aspect of the invention, when forming a nitride semiconductor layer on a substrate, on an insulating substrate of single crystal, (In a Al b Ga c N) x Si y (a .Gtoreq.0, b.gtoreq.0, c.gtoreq.0, x> 0, y> 0, a + b + c = 1, x + y = 1) III-V-IV group mixed crystal buffer layer is epitaxially grown, and the mixed crystal buffer layer A nitride semiconductor layer having a single crystal structure is formed thereon by an epitaxial growth method.
[0012]
III-V-IV group mixed crystal buffer layer formed between the substrate and the nitride semiconductor layer thereon in the present invention have the general formula, (In a Al b Ga c N) x Si y (a ≧ 0, b ≧ 0, c ≧ 0, x> 0, y> 0, a + b + c = 1, x + y = 1). Some examples include InNSi, InAlNSi, AlNSi, AlGaNSi, GaNSi, InGaNSi, InAlGaNSi, and the like.
[0013]
According to a second aspect of the present invention, in the method of manufacturing a nitride semiconductor according to the first aspect, the substrate is a sapphire substrate, a SiC substrate, a Si substrate, or a composite substrate having a nitride semiconductor layer grown on these substrates. Is used.
[0014]
According to a third aspect of the present invention, in the method of manufacturing a nitride semiconductor according to the first or second aspect, the mixed crystal semiconductor layer of the buffer layer is grown in a temperature range of 400 to 1200 ° C.
[0015]
According to a fourth aspect of the present invention, in the method of manufacturing a nitride semiconductor according to any one of the first to third aspects, the nitride semiconductor layer is grown in a temperature range of 600 to 1200 ° C. From the viewpoint of reducing the dislocation density, the crystal is grown preferably at a temperature in the range of 950 to 1100 ° C, more preferably 1010 to 1050 ° C.
[0016]
According to a fifth aspect of the present invention, in the method for manufacturing a nitride semiconductor according to any one of the first to fourth aspects, the mixed crystal buffer layer is formed with a thickness of 0.1 molecular layer to 1 μm. .
[0017]
According to a sixth aspect of the present invention, in the method for manufacturing a nitride semiconductor according to any one of the first to fifth aspects, the thickness of the nitride semiconductor layer is formed to be less than 0.5 to 10 μm. This specifies a part of a range of 0.5 to 500 μm, which is a preferable thickness of the nitride semiconductor layer in the present invention.
[0018]
According to a seventh aspect of the present invention, in the method of manufacturing a nitride semiconductor according to any one of the first to fifth aspects, the nitride semiconductor layer is formed to have a thickness of 10 to 500 μm. This specifies a part of a range of 0.5 to 500 μm, which is a preferable thickness of the nitride semiconductor layer in the present invention.
[0019]
In the semiconductor wafer according to the invention of claim 8, a nitride semiconductor is formed by an epitaxial growth method on the nitride semiconductor formed by the method according to any one of claims 1 to 7, thereby forming a stacked structure of the nitride semiconductor. It is characterized by having done. This is between the nitride semiconductor formed on a substrate and thereon, as a buffer layer, (In a Al b Ga c N) x Si y (a ≧ 0, b ≧ 0, c ≧ 0, x> 0, y> 0, a + b + c = 1, x + y = 1) is a semiconductor wafer having a structure in which a group III-V-IV mixed crystal semiconductor layer is formed. As the substrate, any of a sapphire substrate, a SiC substrate, a Si substrate, and a composite substrate obtained by growing a nitride semiconductor layer on these substrates can be used.
[0020]
In this semiconductor wafer, as a laminated structure (device structure) of the nitride semiconductor formed on the mixed crystal buffer layer, in addition to the structure of an optical device such as a short wavelength light emitting diode (LED) and a semiconductor laser (LD), There are structures of electronic devices such as an output field effect transistor (FET), a high electron mobility transistor (HEMT), and a hetero bipolar transistor (HBT). Specifically, for example, in the case of manufacturing an LED or an LD, a structure in which AlGaN, InGaN, GaN, or the like is laminated in multiple layers, and a light emitting layer (active layer) is sandwiched between an n-type cladding layer and a p-type cladding layer. Need to be formed. Also in the HBT, it is necessary to form an npn or pnp junction by laminating AlGaN, InGaN, GaN, or the like in multiple layers.
[0021]
According to a ninth aspect of the present invention, in the semiconductor wafer according to the eighth aspect, the laminated structure of the nitride semiconductor is formed on the nitride semiconductor layer formed on the mixed crystal buffer layer and on the nitride semiconductor layer. A first cladding layer of a first conductivity type, an active layer formed on the first cladding layer, a second cladding layer formed on the active layer and having a second conductivity type opposite to the first conductivity type; And a cladding layer of This specifies an optical device such as a short wavelength light emitting diode (LED) or a semiconductor laser (LD).
[0022]
According to a tenth aspect of the present invention, in the semiconductor wafer according to the eighth aspect, the laminated structure of the nitride semiconductor is formed on the undoped nitride semiconductor layer formed on the mixed crystal buffer layer and on the nitride semiconductor layer. And an n-type nitride semiconductor layer. This specifies the structure of the GaN-based HEMT.
[0023]
A semiconductor device according to an eleventh aspect of the present invention is formed using the semiconductor wafer according to any one of the eighth to tenth aspects. This includes not only optical devices such as LEDs and LDs, but also electronic devices such as FETs, HEMTs, and HBTs.
[0024]
<The gist of the invention>
The present inventors have, to solve the above problems, the above AlN, to explore new buffer layer material to replace GaN low-temperature buffer, intensive research efforts result, as shown in FIG. 1, (In a Al b Ga cN ) x Si y (a ≧ 0, b ≧ 0, c ≧ 0, x> 0, y> 0, a + b + c = 1, x + y = 1) III-V-IV group mixed crystal buffer layer 2 Is formed between the insulating substrate 1 of a different kind of single crystal and the nitride semiconductor layer 3 grown thereon, it has been found that the dislocation density can be made smaller than 10 8 cm −2 . .
[0025]
This is because, when a nitride semiconductor is grown on a heterogeneous substrate such as SiC or Si, a mixed crystal semiconductor of the buffer layer 2 is first grown on the heterogeneous substrate 1 and a nitride semiconductor layer 3 is grown thereon. It is considered that the strain between the substrate and the nitride semiconductor is effectively relaxed, and as a result, dislocations in the nitride semiconductor are reduced.
[0026]
Also, when a nitride semiconductor layer is grown on a composite substrate in which a nitride semiconductor layer has been grown on a heterogeneous substrate in advance, the nitride semiconductor grown in advance is distorted due to the influence of the heterogeneous substrate and contains many dislocations. In. Also in this case, by inserting the mixed crystal semiconductor layer of the buffer layer, the strain in the nitride semiconductor grown thereon is effectively relaxed, and as a result, the dislocation in the nitride semiconductor is reduced.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a method for manufacturing a nitride semiconductor according to the present invention, and a semiconductor wafer and a semiconductor device manufactured by the method will be described. The following embodiment is an example in which MOVPE growth is used, but similar results are obtained in the case of HVPE growth (hydride vapor phase growth) or MBE growth (molecular beam epitaxy).
[0028]
<Example 1>
In the present embodiment, a sapphire substrate is used as the substrate 1, which is first cleaned at 1100 ° C. in a hydrogen atmosphere, and then a (GaN) x Si 1-x buffer layer is formed thereon as a mixed crystal buffer layer 2. A GaN layer having a thickness of about 3 μm is grown thereon as a nitride semiconductor layer 3 by varying the film thickness.
[0029]
Table 1 shows the growth conditions of the GaNSi buffer layer and the GaN layer, such as film thickness, raw material, and type and amount of carrier gas.
[0030]
[Table 1]
Figure 2004047762
[0031]
As shown in Table 1, the thickness of the GaNSi buffer layer was changed in the range of 0.1 molecular layer to 1 μm. The types and amounts of the raw material and the carrier gas supplied during the growth of the GaNSi buffer layer were 0.01 to 60 (μmol / m) of trimethylgallium (TMG) as a group III raw material and tetraethylsilane ( TESi) was set to 0.01 to 60 (μmol / m), ammonia as a group V raw material was set to 10 (slm), and the ratio of hydrogen / nitrogen in the carrier gas was set to 0.3. The GaN layer formed on the GaN Si buffer layer had a thickness of 3 μm, and the type and amount of the raw material and the carrier gas supplied during the growth were 660 (μmol / m 3) of trimethylgallium TMG which is a group III raw material. ), The ammonia as a group V raw material was set to 20 (slm), and the ratio of hydrogen / nitrogen of the carrier gas was set to 0.3. The pressure, the total gas flow rate, and the temperature during the growth are all constant throughout the GaN Si buffer layer and the GaN layer, and are 300 Torr, 100 slm, and 1025 ° C., respectively.
[0032]
Prior to this experiment, a (GaN) x Si 1-x layer of about 1 μm was directly grown on a sapphire substrate, and the composition x was determined by X-ray diffraction measurement to be trimethyl gallium (TMG) as a source gas and tetraethyl It has been found that it can be controlled by the supply amount of silane (TESi).
[0033]
FIG. 2 shows a dislocation density (cm −2) of a GaN layer grown thereon when a (GaN) x Si 1-x mixed crystal buffer layer having a thickness of 0.1 molecular layer was grown while changing the composition x. ). When the GaN composition x is 0.01, the dislocation density is 1 × 10 7 cm −2 , which is the minimum, and when the GaN composition x is 0.9, the conventional AlN or GaN low-temperature buffer layer is used. A dislocation density of the order of 10 7 cm −2, which is lower than GaN obtained by the two-step growth method, is obtained.
[0034]
FIG. 3 shows the relationship between the thickness (nm) and the dislocation density (cm −2 ) when the GaN composition x is 0.01 (that is, a mixed crystal buffer layer of GaN 0.01 Si 0.99 ). It is. In the case of FIG. 2 in which the thickness of the mixed crystal buffer layer is about 0.1 molecular layer (0.025 nm), the minimum dislocation density is 1 × 10 7 cm −2 . the relationship, as shown in FIG. 3, the dislocation density in the thickness of the mixed crystal buffer layer is 1000nm or less 2 × 10 8 cm - 2 or less, the dislocation density of less than GaN buffer layer by the conventional method. When the thickness of the mixed crystal buffer layer is 100 nm or less, the dislocation density is 1 × 10 8 cm −2 or less. Therefore, it is understood that the mixed crystal buffer layer preferably has a thickness of 0.1 molecular layer to 1000 nm (1 μm), and more preferably has a thickness of 0.1 molecular layer to 100 nm.
[0035]
<Example 2>
In the present embodiment, a composite substrate in which a GaN layer is grown on a SiC substrate by about 1 μm on a SiC substrate is used as the substrate 1, and (In 0.1 Ga 0 .5 Al 0.4 N) 0.1 Si 0.9 mixed crystal buffer layer grown one molecular layer, as the nitride semiconductor layer 3 thereon, Al 0.1 Ga 0.9 N to about 2μm growth ing. As a result, at the stage of the composite substrate, the dislocation density was 1 × 10 9 cm −2 on the outermost surface of the GaN layer, but the dislocation density was 5 × 10 9 on the surface of Al 0.1 Ga 0.9 N. It has been reduced to 7 cm -2 .
[0036]
<Example 3>
In the present embodiment, the premise is that the mixed crystal of the (GaN) x Si 1-x mixed crystal buffer layer of the first embodiment has a GaN composition x of 0.01 and a thickness of 0.1 molecular layer. An experiment was conducted in which the growth temperature of the buffer layer was changed in the range of 200 to 1300C. As a result, when the growth temperature of the mixed crystal buffer layer was in the range of 400 to 1200 ° C., the dislocation density was lower than that of GaN according to the conventional method. In particular, the dislocation density is 5 × 10 7 cm −2 or less when the growth temperature is in the range of 800 to 1100 ° C., and the dislocation density is 2 × 10 7 cm −2 or less in the range of 1000 to 1050 ° C. Was reduced to
[0037]
<Example 4>
In the present embodiment, the premise is that the mixed crystal of the (GaN) x Si 1-x mixed crystal buffer layer of the first embodiment has a GaN composition x of 0.01 and a thickness of 0.1 molecular layer. An experiment was performed in which the growth temperature of the GaN layer grown on the buffer layer was changed in the range of 200 to 1300 ° C. As a result, when the growth temperature was in the range of 600 to 1200 ° C., the dislocation density became equal to or less than the dislocation density of GaN according to the conventional method. In particular, the dislocation density is 5 × 10 7 cm −2 or less when the growth temperature is in the range of 950 to 1100 ° C., and the dislocation density is 2 × 10 7 cm −2 or less in the range of 1010 to 1050 ° C. Was reduced to
[0038]
<Example 5>
In Examples 1 to 4, the thickness of the nitride semiconductor layer is preferably 0.5 μm to 500 μm. When the thickness of the nitride semiconductor layer is less than 0.5 μm, the electrical and optical characteristics of the nitride semiconductor are deteriorated, and when the thickness of the nitride semiconductor layer is 500 μm or more, Growth time is too long. In particular, when the thickness of the nitride semiconductor layer is less than 0.5 μm to 10 μm, it is suitable as a low cost and low dislocation nitride semiconductor epitaxial wafer, and the thickness of the nitride semiconductor layer is 10 μm In the case of 500500 μm, the wafer cost is slightly higher, but it is suitable as a nitride semiconductor epitaxial wafer having lower dislocation.
[0039]
<Example 6>
FIG. 4 shows an example of a light emitting semiconductor device wafer in which a double hetero (DH) structure of a gallium nitride based compound semiconductor is grown on a sapphire substrate 11 by MOCVD. This wafer W has a GaN Si buffer layer 12 formed on a sapphire substrate 11 in a temperature range of 400 to 1200 ° C. in a thickness of 0.1 molecular layer to 1 μm, and then an ohmic electrode in a temperature range of 600 to 1200 ° C. An n-type GaN layer 13 is formed thereon, and an n-type AlGaN cladding layer 14 (first cladding layer), an InGaN active layer 15, and a p-type AlGaN cladding layer 16 (second cladding layer) are formed thereon. A p-type GaN contact layer 17 is grown after growing a double heterostructure consisting of
[0040]
FIG. 5 shows an example of a semiconductor device formed using the above-mentioned semiconductor wafer. A part of the surface of the wafer W is removed by etching by a reactive ion etching (RIE) method to expose the n-type GaN layer 13, and then titanium (Ti) and aluminum ( An n-type electrode 18 having a laminated structure of Al) and a p-type electrode 19 having a laminated structure of nickel (Ni) and gold (Au) are provided on a part of the surface of the p-type layer. Gallium-based compound semiconductor light emitting semiconductor device).
[0041]
<Example 7>
FIG. 6 shows that the GaNSi buffer layer 22 is formed on the sapphire substrate 21 with a thickness of 0.1 molecular layer to 1 μm on the sapphire substrate 21 using the MOVPE method at a temperature range of 400 to 1200 ° C., and then at a temperature of 600 to 1200 ° C. This is an example in which an undoped GaN layer 23 is formed within a range, and an n-type AlGaN layer 24 is formed thereon to form a GaN-based HEMT wafer. By the function of the GaNSi buffer layer 22, a steep hetero interface is formed, whereby a high current density can be obtained.
[0042]
【The invention's effect】
As described above, according to the present invention, when forming a nitride semiconductor layer into monocrystalline insulating substrate, between the substrate and the nitride semiconductor layer, (In a Al b Ga c N) x Si Since a group III-V-IV mixed crystal buffer layer represented by y (a ≧ 0, b ≧ 0, c ≧ 0, x> 0, y> 0, a + b + c = 1, x + y = 1) is formed, Thus, it becomes possible to grow a nitride semiconductor having a lower dislocation than before. This means that the dislocation density in the nitride semiconductor layer can be drastically reduced to 10 7 cm −2 or less. Therefore, according to the method for manufacturing a nitride semiconductor, the semiconductor wafer, and the semiconductor device of the present invention, it is possible to realize a next-generation blue-violet laser diode and an ultraviolet LED, as well as the breakdown voltage of the nitride semiconductor electronic device and the optical device. The life of the device can be improved, and an electronic device or optical device suitable for practical use can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a nitride semiconductor of the present invention.
FIG. 2 is a diagram showing the relationship between composition and dislocation density when the thickness of a mixed crystal buffer layer in the present invention is 0.1 molecular layer.
FIG. 3 is a diagram showing the relationship between the thickness of a mixed crystal buffer layer of a nitride semiconductor and the dislocation density in the present invention.
FIG. 4 is a cross-sectional view showing the structure of an optical device wafer prepared according to the present invention.
FIG. 5 is a cross-sectional view showing a structure of an optical device prepared by using the wafer of FIG. 4 according to the present invention.
FIG. 6 is a sectional view showing the structure of a GaN-based HEMT wafer prepared according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Buffer layer 3 Nitride semiconductor layer

Claims (11)

基板上へ窒化物半導体層を形成するに当たり、
単結晶の絶縁性基板上に、(InAlGaN)Si(a≧0、b≧0、c≧0、x>0、y>0、a+b+c=1、x+y=1)で表されるIII−V−IV族混晶バッファ層をエピタキシャル成長し、
この混晶バッファ層上に、エピタキシャル成長法により単結晶の結晶構造を有する窒化物半導体層を形成することを特徴とする窒化物半導体の製造方法。
In forming a nitride semiconductor layer on a substrate,
On an insulating substrate of single crystal, (In a Al b Ga c N) x Si y (a ≧ 0, b ≧ 0, c ≧ 0, x> 0, y> 0, a + b + c = 1, x + y = 1) Epitaxially growing a group III-V-IV mixed crystal buffer layer represented by
A method for manufacturing a nitride semiconductor, comprising forming a nitride semiconductor layer having a single crystal structure on the mixed crystal buffer layer by an epitaxial growth method.
上記基板として、サファイア基板、SiC基板、Si基板、あるいは、これらの基板上に窒化物半導体層を成長した複合基板を用いることを特徴とする請求項1に記載の窒化物半導体の製造方法。2. The method according to claim 1, wherein the substrate is a sapphire substrate, a SiC substrate, a Si substrate, or a composite substrate having a nitride semiconductor layer grown on these substrates. 上記バッファ層の混晶半導体層を400〜1200℃の温度範囲で成長することを特徴とする請求項1又は2に記載の窒化物半導体の製造方法。3. The method according to claim 1, wherein the mixed crystal semiconductor layer of the buffer layer is grown in a temperature range of 400 to 1200 ° C. 4. 上記窒化物半導体層を600〜1200℃の温度範囲で成長することを特徴とする請求項1〜3のいずれかに記載の窒化物半導体の製造方法。The method for manufacturing a nitride semiconductor according to any one of claims 1 to 3, wherein the nitride semiconductor layer is grown in a temperature range of 600 to 1200C. 上記混晶バッファ層を0.1分子層〜1μmの厚さで形成することを特徴とする請求項1〜4のいずれかに記載の窒化物半導体の製造方法。The method for producing a nitride semiconductor according to claim 1, wherein the mixed crystal buffer layer is formed with a thickness of 0.1 molecular layer to 1 μm. 上記窒化物半導体層の厚さを0.5〜10μm未満に形成することを特徴とする請求項1〜5のいずれかに記載の窒化物半導体の製造方法。The method for manufacturing a nitride semiconductor according to claim 1, wherein the thickness of the nitride semiconductor layer is less than 0.5 to 10 μm. 上記窒化物半導体層の厚さを10〜500μmに形成することを特徴とする請求項1〜5のいずれかに記載の窒化物半導体の製造方法。The method according to claim 1, wherein the nitride semiconductor layer has a thickness of 10 to 500 μm. 請求項1〜7のいずれかに記載の方法により形成した窒化物半導体上へ、エピタキシャル成長法により窒化物半導体を形成し、窒化物半導体の積層構造を形成したことを特徴とする半導体ウェハ。A semiconductor wafer comprising a nitride semiconductor formed by an epitaxial growth method on the nitride semiconductor formed by the method according to claim 1, thereby forming a nitride semiconductor laminated structure. 上記窒化物半導体の積層構造が、上記混晶バッファ層上に形成した窒化物半導体層と、該窒化物半導体層上に形成した第1導電型の第1のクラッド層と、この第1のクラッド層上に形成した活性層と、この活性層上に形成され、前記第1導電型とは反対の第2導電型の第2のクラッド層とを備えることを特徴とする請求項8に記載の半導体ウェハ。The laminated structure of the nitride semiconductor includes a nitride semiconductor layer formed on the mixed crystal buffer layer, a first cladding layer of a first conductivity type formed on the nitride semiconductor layer, and a first clad layer. 9. An active layer according to claim 8, comprising: an active layer formed on the layer; and a second cladding layer formed on the active layer and having a second conductivity type opposite to the first conductivity type. Semiconductor wafer. 上記窒化物半導体の積層構造が、上記混晶バッファ層上に形成したアンドープ窒化物半導体層と、該窒化物半導体層上に形成したn型の窒化物半導体層とを備えることを特徴とする請求項8に記載の半導体ウェハ。The multilayer structure of the nitride semiconductor includes an undoped nitride semiconductor layer formed on the mixed crystal buffer layer and an n-type nitride semiconductor layer formed on the nitride semiconductor layer. Item 9. A semiconductor wafer according to item 8. 上記請求項8〜10のいずれかに記載の半導体ウェハを用いて形成したことを特徴とする半導体デバイス。A semiconductor device formed using the semiconductor wafer according to claim 8.
JP2002203674A 2002-07-12 2002-07-12 Manufacturing method of nitride semiconductor Expired - Fee Related JP4333092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203674A JP4333092B2 (en) 2002-07-12 2002-07-12 Manufacturing method of nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203674A JP4333092B2 (en) 2002-07-12 2002-07-12 Manufacturing method of nitride semiconductor

Publications (2)

Publication Number Publication Date
JP2004047762A true JP2004047762A (en) 2004-02-12
JP4333092B2 JP4333092B2 (en) 2009-09-16

Family

ID=31709482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203674A Expired - Fee Related JP4333092B2 (en) 2002-07-12 2002-07-12 Manufacturing method of nitride semiconductor

Country Status (1)

Country Link
JP (1) JP4333092B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287673A (en) * 2009-06-10 2010-12-24 Sumitomo Electric Ind Ltd GaN SINGLE-CRYSTAL MASS AND METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP2012126641A (en) * 2012-03-19 2012-07-05 Sumitomo Electric Ind Ltd GaN SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
US8623515B2 (en) 2010-12-29 2014-01-07 Cheil Industries Inc. Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device including the liquid crystal alignment film
US11592875B2 (en) 2016-06-01 2023-02-28 Continental Automotive Gmbh Double lock design for polypropylene housing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206519A (en) * 1992-01-24 1993-08-13 Nichia Chem Ind Ltd Growing method for gallium nitride compound semiconductor
JPH09129920A (en) * 1995-10-27 1997-05-16 Sumitomo Chem Co Ltd Iii-v compound semiconductor for light emitting device and light emitting device
JPH1074980A (en) * 1996-06-25 1998-03-17 Sumitomo Electric Ind Ltd Semiconductor device
JPH11145057A (en) * 1997-11-07 1999-05-28 Toyoda Gosei Co Ltd Manufacture of gallium nitride compound semiconductor substrate
JP2000150388A (en) * 1998-11-05 2000-05-30 Fuji Electric Co Ltd Iii nitride semiconductor thin film and manufacture thereof
JP2000196146A (en) * 1998-12-28 2000-07-14 Japan Society For The Promotion Of Science Semiconductor light emitting element
JP2000223788A (en) * 1999-02-03 2000-08-11 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element
JP2001044209A (en) * 1999-07-27 2001-02-16 Furukawa Electric Co Ltd:The MANUFACTURE OF GaN-BASED SEMICONDUCTOR DEVICE
JP2001176804A (en) * 1999-12-14 2001-06-29 Inst Of Physical & Chemical Res Method for forming semiconductor layer
JP2003101149A (en) * 2001-09-19 2003-04-04 Toshiba Corp Semiconductor element and manufacturing method therefor
JP2003110197A (en) * 2001-09-28 2003-04-11 Toshiba Corp Nitride semiconductor light emission device, nitride semiconductor device and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206519A (en) * 1992-01-24 1993-08-13 Nichia Chem Ind Ltd Growing method for gallium nitride compound semiconductor
JPH09129920A (en) * 1995-10-27 1997-05-16 Sumitomo Chem Co Ltd Iii-v compound semiconductor for light emitting device and light emitting device
JPH1074980A (en) * 1996-06-25 1998-03-17 Sumitomo Electric Ind Ltd Semiconductor device
JPH11145057A (en) * 1997-11-07 1999-05-28 Toyoda Gosei Co Ltd Manufacture of gallium nitride compound semiconductor substrate
JP2000150388A (en) * 1998-11-05 2000-05-30 Fuji Electric Co Ltd Iii nitride semiconductor thin film and manufacture thereof
JP2000196146A (en) * 1998-12-28 2000-07-14 Japan Society For The Promotion Of Science Semiconductor light emitting element
JP2000223788A (en) * 1999-02-03 2000-08-11 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element
JP2001044209A (en) * 1999-07-27 2001-02-16 Furukawa Electric Co Ltd:The MANUFACTURE OF GaN-BASED SEMICONDUCTOR DEVICE
JP2001176804A (en) * 1999-12-14 2001-06-29 Inst Of Physical & Chemical Res Method for forming semiconductor layer
JP2003101149A (en) * 2001-09-19 2003-04-04 Toshiba Corp Semiconductor element and manufacturing method therefor
JP2003110197A (en) * 2001-09-28 2003-04-11 Toshiba Corp Nitride semiconductor light emission device, nitride semiconductor device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287673A (en) * 2009-06-10 2010-12-24 Sumitomo Electric Ind Ltd GaN SINGLE-CRYSTAL MASS AND METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
US8294245B2 (en) 2009-06-10 2012-10-23 Sumitomo Electric Industries, Ltd. GaN single-crystal mass and method of its manufacture, and semiconductor device and method of its manufacture
US8623515B2 (en) 2010-12-29 2014-01-07 Cheil Industries Inc. Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device including the liquid crystal alignment film
JP2012126641A (en) * 2012-03-19 2012-07-05 Sumitomo Electric Ind Ltd GaN SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
US11592875B2 (en) 2016-06-01 2023-02-28 Continental Automotive Gmbh Double lock design for polypropylene housing

Also Published As

Publication number Publication date
JP4333092B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US8502246B2 (en) Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
JP5379973B2 (en) Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic vapor phase epitaxy
US5729029A (en) Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices
JP2004047764A (en) Method for manufacturing nitride semiconductor, semiconductor wafer and semiconductor device
US20110266555A1 (en) Method of growing semiconductor heterostructures based on gallium nitride
US7935955B2 (en) Group III nitride semiconductor multilayer structure
WO2003072856A1 (en) Process for producing group iii nitride compound semiconductor
JP2006210578A (en) Nitride semiconductor element and method for growing nitride semiconductor crystal layer
JP2006313845A (en) Nitride semiconductor element and its fabrication process
JP2005167275A (en) Semiconductor device
JP4458223B2 (en) Compound semiconductor device and manufacturing method thereof
JP4554803B2 (en) Low dislocation buffer, method for producing the same, and device having low dislocation buffer
WO2007046465A1 (en) Nitride semiconductor device and method for manufacturing same
KR100583163B1 (en) Nitride semiconductor and fabrication method for thereof
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP5384783B2 (en) Reverse-polarized light-emitting region for semiconductor light-emitting devices
JP4333092B2 (en) Manufacturing method of nitride semiconductor
JP2003178987A (en) Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device
US10763395B2 (en) Light emitting diode element and method for manufacturing same
WO2007091653A1 (en) Nitride semiconductor device
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer
JP3454037B2 (en) GaN-based element substrate, method of manufacturing the same, and GaN-based element
JP2017168783A (en) Semiconductor device and manufacturing method of the same
JPH1075018A (en) Manufacture of semiconductor and semiconductor light-emitting device
JP2005136162A (en) Method for manufacturing compound semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4333092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees