JP2003178987A - Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device - Google Patents

Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device

Info

Publication number
JP2003178987A
JP2003178987A JP2001379407A JP2001379407A JP2003178987A JP 2003178987 A JP2003178987 A JP 2003178987A JP 2001379407 A JP2001379407 A JP 2001379407A JP 2001379407 A JP2001379407 A JP 2001379407A JP 2003178987 A JP2003178987 A JP 2003178987A
Authority
JP
Japan
Prior art keywords
compound semiconductor
nitride
nitrogen
hydrogen
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001379407A
Other languages
Japanese (ja)
Inventor
Tsuneaki Fujikura
序章 藤倉
Yoshikatsu Morishima
嘉克 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001379407A priority Critical patent/JP2003178987A/en
Publication of JP2003178987A publication Critical patent/JP2003178987A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method, ensuring higher mass-productivity, of manufacturing a p-type nitride system compound semiconductor having high hole concentration and assuring higher flatness of the surface. <P>SOLUTION: There is provided the method of manufacturing nitride compound semiconductor to form, with chemical vapor deposition, a nitride system compound semiconductor lamination structure having a p-type layer including at least acceptor atom. In this manufacturing method, the formed structure is cooled after the chemical vapor deposition under the atmosphere of nitrogen raw material (for example, trymethylhydrazine) in which hydrogen is never released when nitrogen is released due to the dissociation, or under the mixed gas atmosphere of the nitrogen raw material atmosphere in which hydrogen is never leased when nitrogen is released due to the dissociation and the inert gas. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物系化合物半
導体の製造方法及び窒化物系化合物半導体ウェハ並びに
窒化物系化合物半導体デバイスに関し、特に、高濃度の
正孔濃度を有し表面の平坦性の高いp型窒化物系化合物
半導体の量産性の高い製造方法と、これにより得られる
半導体ウェハおよび半導体デバイスに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nitride compound semiconductor, a nitride compound semiconductor wafer, and a nitride compound semiconductor device, and more particularly to a high hole concentration and a flat surface. The present invention relates to a method for manufacturing a highly p-type nitride compound semiconductor with high mass productivity, and a semiconductor wafer and a semiconductor device obtained by the method.

【0002】[0002]

【従来の技術】GaN、AlGaN、InGaNなどの
窒化物系化合物半導体は、赤色から紫外線の発光が可能
な発光素子材料として注目を集めている。
2. Description of the Related Art Nitride-based compound semiconductors such as GaN, AlGaN, and InGaN have been attracting attention as light-emitting element materials capable of emitting red to ultraviolet light.

【0003】窒化物系化合物半導体を用いてデバイスを
構成する場合、伝導形、および正孔あるいは電子密度の
制御が非常に重要となる。
When a device is formed by using a nitride compound semiconductor, it is very important to control the conduction type and the hole or electron density.

【0004】例えば、発光ダイオード(LED)や半導
体レーザなどを製造する場合には、AlGaN、InG
aN、GaNなどを多層に積層し、発光層(活性層)を
n型クラッド層およびp型クラッド層によりはさんだ構
造を形成する必要がある。
For example, when manufacturing a light emitting diode (LED), a semiconductor laser, etc., AlGaN, InG
It is necessary to stack aN, GaN, and the like in multiple layers to form a structure in which the light emitting layer (active layer) is sandwiched by the n-type cladding layer and the p-type cladding layer.

【0005】また、ヘテロ・バイポーラ・トランジスタ
(HBT)においても、AlGaN、InGaN、Ga
Nなどを多層に積層し、npnあるいはpnp接合を形
成する必要がある。
Also in a hetero bipolar transistor (HBT), AlGaN, InGaN, Ga
It is necessary to stack N or the like in multiple layers to form an npn or pnp junction.

【0006】従来、有機金属化学気相成長(MOCV
D)法などの気相成長法により、例えばp型GaN層を
成長させるには、水素(H2)またはH2と窒素(N2
との混合ガス中において、Ga原料としてのトリメチル
ガリウム(TMG、Ga(CH 33)、N原料としての
アンモニア(NH3)およびp型ドーパントとしてのシ
クロペンタジエニルマグネシウム(CP2Mg)等を、
加熱されたサファイア基板、SiC基板、GaAs基板
などの上に供給し、熱分解反応によって、MgドープG
aN層を成長させる。
Conventionally, metal organic chemical vapor deposition (MOCV)
For example, a p-type GaN layer is formed by a vapor phase growth method such as D).
To grow, hydrogen (H2) Or H2And nitrogen (N2)
Trimethyl as a Ga raw material in a mixed gas of
Gallium (TMG, Ga (CH 3)3), As N raw material
Ammonia (NH3) And as a p-type dopant
Clopentadienyl magnesium (CP2Mg) etc.,
Heated sapphire substrate, SiC substrate, GaAs substrate
, Mg-doped G by thermal decomposition reaction
Grow an aN layer.

【0007】このMgドープGaN層はそのままでは高
抵抗層であり、成長後に真空中または不活性ガス中にお
いて熱処理を行うことにより、始めてp型の電気伝導性
を示す。
This Mg-doped GaN layer is a high-resistance layer as it is, and exhibits p-type electrical conductivity for the first time when it is heat-treated in a vacuum or an inert gas after growth.

【0008】この場合、この熱処理により、GaN中の
Mgと結合していた水素が、アニールにより解離し、G
aN結晶表面から排出され、Mgがアクセプタとして作
用するようになり、p型化するものとされている。
In this case, by this heat treatment, hydrogen bonded to Mg in GaN is dissociated by annealing, and G
It is said that Mg is discharged from the surface of the aN crystal, Mg acts as an acceptor, and becomes p-type.

【0009】[0009]

【発明が解決しようとする課題】ところが、上述の成長
後のアニールにより得られるp型GaN層のキャリア濃
度は現状では4×1017cm-3程度であり、その抵抗率は
高い。このため、例えば窒化物系III−V族化合物半導
体を用いた発光素子においては、p型コンタクト層にお
ける電圧損失、発熱による劣化等の問題が不可避であっ
た。また、上述のように従来の窒化物系化合物半導体の
製造方法では、成長後の半導体ウェハのアニールが必須
であったため、製造工程が複雑化し、量産性が落ちると
いう問題があった。
However, the carrier concentration of the p-type GaN layer obtained by the above-mentioned annealing after growth is currently about 4 × 10 17 cm −3 , and its resistivity is high. Therefore, for example, in a light emitting device using a nitride-based III-V group compound semiconductor, problems such as voltage loss in the p-type contact layer and deterioration due to heat generation are unavoidable. Further, as described above, in the conventional method for manufacturing a nitride-based compound semiconductor, since it is essential to anneal the semiconductor wafer after growth, there is a problem that the manufacturing process is complicated and mass productivity is deteriorated.

【0010】また、成長後の冷却を不活性ガス雰囲気中
で行うという手法も試みられてはいたが、この場合、窒
化物系化合物半導体の表面が、活性なN分圧の低い状態
で高温に晒されるため、表面の平坦性が劣化するという
問題があった。
Although a method of cooling after growth in an inert gas atmosphere has been attempted, in this case, the surface of the nitride-based compound semiconductor is heated to a high temperature while the active N partial pressure is low. Since it is exposed, there is a problem that the flatness of the surface deteriorates.

【0011】したがって、本発明の目的は、p型窒化物
系化合物半導体の製造方法および半導体ウェハならびに
半導体デバイスに関し、特に、高濃度の正孔濃度を有し
表面の平坦性の高い窒化物系化合物半導体の量産性の高
い製造方法と、これにより得られる半導体ウェハおよび
半導体デバイスを提供することにある。
Therefore, an object of the present invention relates to a method for producing a p-type nitride compound semiconductor, a semiconductor wafer, and a semiconductor device, and particularly to a nitride compound having a high hole concentration and a high surface flatness. It is an object of the present invention to provide a method of manufacturing a semiconductor with high mass productivity and a semiconductor wafer and a semiconductor device obtained by the method.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、次のように構成したものである。
In order to achieve the above object, the present invention is configured as follows.

【0013】請求項1の発明に係る窒化物系化合物半導
体の製造方法は、少なくともアクセプタ原子を含むp層
を有する窒化物系化合物半導の体積層構造の形成を気相
成長により行う窒化物系化合物半導体の製造方法におい
て、成長終了後の冷却を、解離による窒素放出時に水素
を放出しない窒素原料雰囲気中で行うことを特徴とす
る。
In the method for manufacturing a nitride-based compound semiconductor according to the present invention, a nitride-based compound semiconductor body laminated structure having a p-layer containing at least acceptor atoms is formed by vapor phase epitaxy. In the method of manufacturing a compound semiconductor, cooling after the growth is performed in a nitrogen source atmosphere in which hydrogen is not released when nitrogen is released by dissociation.

【0014】請求項2の発明に係る窒化物系化合物半導
体の製造方法は、少なくともアクセプタ原子を含むp層
を有する窒化物系化合物半導体の積層構造の形成を気相
成長により行う窒化物系化合物半導体の製造方法におい
て、成長終了後の冷却を、解離による窒素放出時に水素
を放出しない窒素原料雰囲気と不活性ガスの混合気体中
で行うことを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing a nitride-based compound semiconductor, wherein a nitride-based compound semiconductor having a p-layer containing at least an acceptor atom is formed by vapor phase epitaxy. In the manufacturing method described above, cooling after the growth is performed in a mixed gas of an inert gas and a nitrogen source atmosphere that does not release hydrogen when releasing nitrogen by dissociation.

【0015】請求項3の発明に係る窒化物系化合物半導
体の製造方法は、少なくともアクセプタ原子を含むp層
を最表面に有する窒化物系化合物半導体の積層構造の形
成を気相成長により行う窒化物系化合物半導体の製造方
法において、p層の最表面側の少なくとも一部の成長
と、成長終了後の冷却を、解離による窒素放出時に水素
を放出しない窒素原料雰囲気中で行うことを特徴とす
る。
According to a third aspect of the present invention, there is provided a method for producing a nitride compound semiconductor, wherein a nitride compound semiconductor layered structure having a p-layer containing at least acceptor atoms on the outermost surface is formed by vapor phase epitaxy. In the method for manufacturing a compound semiconductor, the growth of at least a part of the outermost surface of the p layer and the cooling after the growth are performed in a nitrogen source atmosphere in which hydrogen is not released when nitrogen is released by dissociation.

【0016】請求項4の発明に係る窒化物系化合物半導
体の製造方法は、少なくともアクセプタ原子を含むp層
を最表面に有する窒化物系化合物半導体の積層構造の形
成を気相成長により行う窒化物系化合物半導体の製造方
法において、p層の最表面側の少なくとも一部の成長
と、成長終了後の冷却を、解離による窒素放出時に水素
を放出しない窒素原料雰囲気と不活性ガスの混合気体中
で行うことを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for producing a nitride compound semiconductor, wherein a nitride compound semiconductor layered structure having at least a p-layer containing acceptor atoms on its outermost surface is formed by vapor phase epitaxy. In the method for producing a compound semiconductor, the growth of at least a part of the outermost surface of the p layer and the cooling after the growth are performed in a mixed gas of a nitrogen source atmosphere and an inert gas that does not release hydrogen when nitrogen is released by dissociation. It is characterized by performing.

【0017】請求項5の発明は、請求項1〜4のいずれ
かに記載の製造方法において、上記窒素原料が、アミン
系化合物、ヒドラジン系化合物またはアジド系化合物で
あることを特徴とする。
A fifth aspect of the present invention is characterized in that, in the production method according to any one of the first to fourth aspects, the nitrogen raw material is an amine compound, a hydrazine compound or an azide compound.

【0018】請求項6の発明は、請求項1〜4に記載の
製造方法において、上記窒素原料が、トリメチルアミ
ン、ジメチルアミン、トリエチルアミン、ジエチルアミ
ン、フェニルメチルアミン、トリメチルヒドラジンのい
ずれかであることを特徴とする。
According to a sixth aspect of the present invention, in the production method according to the first to fourth aspects, the nitrogen raw material is any one of trimethylamine, dimethylamine, triethylamine, diethylamine, phenylmethylamine and trimethylhydrazine. And

【0019】請求項7の発明は、請求項1〜6のいずれ
かに記載の製造方法において、上記窒化物系化合物半導
体が、一般式、BwAlxInyGazabAsc(w,
x,y,z≧0、w+x+y+z=1、a>0,b,c≧
0、a+b+c=1)で表わされることを特徴とする。
[0019] The invention of claim 7 is the method according to any one of claims 1 to 6, the nitride-based compound semiconductor, the general formula, B w Al x In y Ga z N a P b As c (W,
x, y, z ≧ 0, w + x + y + z = 1, a> 0, b, c ≧
0, a + b + c = 1).

【0020】請求項8の発明は、請求項1〜7のいずれ
かに記載の製造方法において、解離過程において水素放
出を伴う、アンモニア等の窒素源から、上記解離による
窒素放出時に水素を放出しない窒素原料又はこれと不活
性ガスの混合気体への切り替えを、成長終了直後に行う
ことを特徴とする。
According to an eighth aspect of the present invention, in the manufacturing method according to any one of the first to seventh aspects, hydrogen is not released from the nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, when the nitrogen is released by the dissociation. It is characterized in that switching to the nitrogen raw material or a mixed gas of this and an inert gas is performed immediately after the growth is completed.

【0021】請求項9の発明は、請求項1〜7のいずれ
かに記載の製造方法において、解離過程において水素放
出を伴う、アンモニア等の窒素源から、上記解離による
窒素放出時に水素を放出しない窒素原料又はこれと不活
性ガスの混合気体への切り替えを、成長終了後の冷却
時、基板温度が900℃以上で行うことを特徴とする。
According to a ninth aspect of the present invention, in the production method according to any of the first to seventh aspects, hydrogen is not released from the nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, when the nitrogen is released by the dissociation. The method is characterized in that switching to the nitrogen raw material or a mixed gas of this and an inert gas is performed at a substrate temperature of 900 ° C. or higher during cooling after the growth.

【0022】請求項10の発明は、請求項1〜7のいず
れかに記載の製造方法において、解離過程において水素
放出を伴う、アンモニア等の窒素源から、上記解離によ
る窒素放出時に水素を放出しない窒素原料又はこれと不
活性ガスの混合気体への切り替えを、成長終了後の冷却
時、基板温度が700℃以上で行うことを特徴とする。
According to a tenth aspect of the present invention, in the manufacturing method according to any one of the first to seventh aspects, hydrogen is not released from the nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, when the nitrogen is released by the dissociation. The method is characterized in that switching to the nitrogen raw material or a mixed gas of this and an inert gas is carried out at a substrate temperature of 700 ° C. or higher during cooling after the growth.

【0023】請求項11の発明は、請求項1〜7のいず
れかに記載の製造方法において、解離過程において水素
放出を伴う、アンモニア等の窒素源から、上記解離によ
る窒素放出時に水素を放出しない窒素原料又はこれと不
活性ガスの混合気体への切り替えを、成長終了後の冷却
時、基板温度が400℃以上で行うことを特徴とする。
According to the eleventh aspect of the present invention, in the manufacturing method according to any one of the first to seventh aspects, hydrogen is not released from the nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, when the nitrogen is released by the dissociation. It is characterized in that the nitrogen source or the mixed gas of the nitrogen source and the inert gas is switched at a substrate temperature of 400 ° C. or higher during cooling after the growth.

【0024】請求項12の発明は、請求項1〜7のいず
れかに記載の製造方法において、解離過程において水素
放出を伴う、アンモニア等の窒素源から、上記解離によ
る窒素放出時に水素を放出しない窒素原料又はこれと不
活性ガスの混合気体への切り替えを、成長終了後の冷却
時、基板温度が室温以上で行うことを特徴とする。
According to a twelfth aspect of the present invention, in the manufacturing method according to any one of the first to seventh aspects, hydrogen is not released from the nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, when the nitrogen is released by the dissociation. It is characterized in that the nitrogen source or the mixed gas of the nitrogen source and the inert gas is switched to a substrate temperature of room temperature or higher during cooling after the growth.

【0025】請求項13の発明は、請求項1〜12のい
ずれかに記載の製造方法において、上記気相成長に、p
型不純物としてII族元素を用いることを特徴とする。
The thirteenth aspect of the invention is the production method according to any one of the first to twelfth aspects, wherein the vapor phase growth is performed by adding p
It is characterized in that a group II element is used as a type impurity.

【0026】請求項14の発明は、請求項13記載の製
造方法において、II族元素としてMg、Zn、Cdのい
ずれかを用いることを特徴とする。
The invention according to claim 14 is characterized in that, in the manufacturing method according to claim 13, any one of Mg, Zn and Cd is used as the group II element.

【0027】請求項15の発明は、請求項2又は4〜1
4のいずれかに記載の製造方法において、上記不活性ガ
スが、窒素、ヘリウム、アルゴンのいずれかであること
を特徴とする。
The invention of claim 15 relates to claim 2 or 4 to 1.
4. The production method according to any one of 4 above, wherein the inert gas is any one of nitrogen, helium, and argon.

【0028】請求項16の発明は、請求項1、3、5〜
15のいずれかに記載の製造方法において、上記解離に
よる窒素放出時に水素を放出しない窒素原料中に、10
0ppm以下の水素を含むことを特徴とする。
The invention as claimed in claim 16 is as follows.
15. In the manufacturing method according to any one of 15 above, 10 are added to the nitrogen raw material that does not release hydrogen when releasing nitrogen by the dissociation.
It is characterized by containing 0 ppm or less of hydrogen.

【0029】請求項17の発明は、請求項2、4〜15
のいずれかに記載の製造方法において、上記解離による
窒素放出時に水素を放出しない窒素原料と不活性ガスの
混合気体中に、100ppm以下の水素を含むことを特
徴とする。
The invention of claim 17 is based on claims 2, 4 to 15
In the manufacturing method described in any one of 1 to 3, 100 ppm or less of hydrogen is contained in the mixed gas of the nitrogen raw material and the inert gas that does not release hydrogen when nitrogen is released by the dissociation.

【0030】請求項18の発明は、請求項1〜17のい
ずれかに記載の製造方法において、有機金属化学気相成
長法により上記窒化物系化合物半導体を気相成長させる
ことを特徴とする。
The invention of claim 18 is characterized in that, in the manufacturing method according to any one of claims 1 to 17, the nitride compound semiconductor is vapor-grown by a metal organic chemical vapor deposition method.

【0031】請求項19の発明に係る半導体ウェハは、
請求項1〜18のいずれかに記載の方法により製造され
たことを特徴とする。
A semiconductor wafer according to the invention of claim 19 is
It manufactured by the method in any one of Claims 1-18.

【0032】請求項20の発明に係る半導体デバイス
は、請求項1〜18のいずれかに記載の方法により製造
された半導体ウェハを用いて作製したことを特徴とす
る。
A semiconductor device according to a twentieth aspect of the invention is characterized by being manufactured using the semiconductor wafer manufactured by the method according to any one of the first to eighteenth aspects.

【0033】<作用>本発明者等は、上述の技術的課題
を解決するためには、窒化物系化合物半導体の成長終了
後の冷却過程において、雰囲気中に活性水素が存在しな
いようにすることが重要であり、この観点から窒素原料
およびキャリアガスを選定することが極めて重要である
ことを見出し、次のような結論に至った。
<Operation> In order to solve the above-mentioned technical problem, the inventors of the present invention ensure that active hydrogen does not exist in the atmosphere in the cooling process after the growth of the nitride-based compound semiconductor. Is important, and from this point of view, it is extremely important to select the nitrogen raw material and the carrier gas, and the following conclusions have been reached.

【0034】(1)結晶への水素の取り込みを抑制する
ためには、少なくとも成長終了後の冷却過程は、解離に
よる窒素放出時に水素を放出する従来の窒素原料、例え
ばアンモニア、および、キャリアガスとしての水素の無
い状態で行うことが好ましい。
(1) In order to suppress the incorporation of hydrogen into the crystal, at least in the cooling process after completion of growth, a conventional nitrogen source that releases hydrogen when releasing nitrogen by dissociation, such as ammonia, and a carrier gas are used. It is preferable to carry out in the absence of hydrogen.

【0035】(2)また、上述の、不活性ガス中での冷
却における表面平坦性の劣化を避けるためには、従来の
窒素原料に代えて、解離による窒素放出時に水素を放出
しない窒素原料のみ、あるいは、この窒素原料とキャリ
アガスとしての不活性気体、例えば窒素、ヘリウム、ア
ルゴン等の混合気体雰囲気中で行うことが好ましい。
(2) Further, in order to avoid the above-mentioned deterioration of the surface flatness upon cooling in an inert gas, only a nitrogen source which does not release hydrogen when releasing nitrogen by dissociation is used instead of the conventional nitrogen source. Alternatively, it is preferable to carry out in a mixed gas atmosphere of this nitrogen raw material and an inert gas as a carrier gas, for example, nitrogen, helium, argon or the like.

【0036】(3)上述の解離による窒素放出時に水素
を放出しない窒素原料としては、トリメチルヒドラジ
ン、ジエチルアミン、フェニルメチルアミン等がある。
後述する実施例においては、トリメチルヒドラジンを用
いた。
(3) Trimethylhydrazine, diethylamine, phenylmethylamine and the like can be used as the nitrogen source which does not release hydrogen when nitrogen is released by the above dissociation.
Trimethylhydrazine was used in Examples described later.

【0037】(4)上述の、解離による窒素放出時に水
素を放出する従来の窒素原料から、解離による窒素放出
時に水素を放出しない窒素原料への切り替えは、窒化物
系化合物半導体の成長終了後、あるいは、成長終了後に
最表面となる層の成長途中においてなされるのが好まし
い。
(4) The above-mentioned conventional nitrogen source that releases hydrogen when nitrogen is released by dissociation is switched to a nitrogen source that does not release hydrogen when nitrogen is released by dissociation after the growth of the nitride-based compound semiconductor is completed. Alternatively, it is preferably performed during the growth of the outermost layer after the growth is completed.

【0038】(5)上述の窒素原料を切り替えるのに最
適なタイミングは、成長層の構造および、半導体ウェハ
の用途によって決定される。すなわち、例えば、成長中
に切り替える場合、窒素原料の切り替えにより伝導特性
以外の窒化物系化合物系半導体結晶特性も変化すること
があり、これが最終的な素子特性に悪影響を及ぼす場合
には、成長終了後に窒素原料の切り替えを行うのが好ま
しいし、むしろ良い影響を与える場合には、成長中から
窒素原料の切り替えを行う方が好ましい。
(5) The optimum timing for switching the above nitrogen source is determined by the structure of the growth layer and the application of the semiconductor wafer. That is, for example, when switching during growth, switching of the nitrogen source may change the nitride-based compound semiconductor crystal characteristics other than the conduction characteristics. If this adversely affects the final device characteristics, the growth end It is preferable to switch the nitrogen raw material later, and it is more preferable to switch the nitrogen raw material during the growth if it gives a good effect.

【0039】さらに、成長装置自身の制約により、切り
替え後の窒素原料に起因する実効的な活性窒素密度が、
切り替え前の実効的な活性窒素密度よりも低くなるた
め、成長中あるいは成長終了直後に窒素原料を切り替え
ると表面の平坦性の劣化をきたす場合には、成長終了後
にある程度温度が低下した後に、窒素原料の切り替えを
行うことが好ましい場合もある。
Further, due to the restriction of the growth apparatus itself, the effective active nitrogen density resulting from the nitrogen raw material after switching is
Since the effective active nitrogen density before switching will be lower than that, if switching the nitrogen source during or immediately after the growth causes the deterioration of the surface flatness, the temperature will drop to a certain degree after the growth and It may be preferable to switch the raw materials.

【0040】(6)しかしながら、後述の実施例にある
ように、上記窒素原料の切り替えが基板温度400℃の
場合にもある程度のアクセプタの活性化率を得ることが
出来るが、基板温度が700℃以上で行うことにより高
いアクセプタの活性化率を得ることができ、またより好
ましくは900℃以上で行うべきであり、さらに好まし
くは、装置上の制約が無い限り、成長直後に行うべきで
ある。
(6) However, as will be described later in Examples, a certain degree of acceptor activation rate can be obtained even when the nitrogen source is switched at a substrate temperature of 400 ° C., but the substrate temperature is 700 ° C. By performing the above, a high activation rate of the acceptor can be obtained, more preferably it should be performed at 900 ° C. or higher, and further preferably, it should be performed immediately after the growth unless there is a restriction on the device.

【0041】(7)上述の解離による窒素放出時に水素
を放出しない窒素原料、あるいは、この窒素原料と不活
性ガスの混合気体中に、若干量(<100ppm)の水
素が混入していても、ある程度高いアクセプタの活性化
率が得られる。
(7) Even if a small amount (<100 ppm) of hydrogen is mixed in the nitrogen raw material that does not release hydrogen when releasing nitrogen by the above-mentioned dissociation, or in the mixed gas of the nitrogen raw material and the inert gas, A somewhat high acceptor activation rate can be obtained.

【0042】本発明において、典型的には、窒化物系化
合物半導体は一般式、BwAlxInyGazabAsc
(w,x,y,z≧0、w+x+y+z=1、a>0,b,
c≧0、a+b+c=1)であらわされる。いくつか例を
挙げると、BN、GaN、GaNAs、GaNP、Al
GaN、InGaN、InAlGaNなどである。
[0042] In the present invention, typically, the nitride-based compound semiconductor represented by the general formula, B w Al x In y Ga z N a P b As c
(W, x, y, z ≧ 0, w + x + y + z = 1, a> 0, b,
c ≧ 0, a + b + c = 1). BN, GaN, GaNAs, GaNP, Al to name a few.
GaN, InGaN, InAlGaN and the like.

【0043】本発明において、p型の窒化物系化合物半
導体のp型不純物としては、II族元素、例えばMg、Z
n、Cdなどが用いられる。
In the present invention, the p-type impurity of the p-type nitride compound semiconductor is a group II element such as Mg or Z.
n, Cd, etc. are used.

【0044】本発明においては、典型的には、有機金属
化学気相成長法(MOVPE)、あるいは、水素化物気
相成長法(HVPE)により窒化物系化合物半導体を気
相成長させる。
In the present invention, typically, a nitride compound semiconductor is vapor-grown by metal organic chemical vapor deposition (MOVPE) or hydride vapor phase epitaxy (HVPE).

【0045】上述のように構成された本発明により、窒
化物系化合物半導体の成長終了後の冷却過程において雰
囲気中に多量の活性水素が存在しないようにすることに
より、高濃度の正孔濃度を有し表面の平坦性の高い窒化
物系化合物半導体の量産性の高い製造方法と、これによ
り得られる半導体ウェハおよび半導体デバイスが提供さ
れる。
According to the present invention configured as described above, a high concentration of holes can be obtained by preventing a large amount of active hydrogen from existing in the atmosphere during the cooling process after the growth of the nitride-based compound semiconductor. Provided is a method for manufacturing a nitride-based compound semiconductor having high surface flatness with high mass productivity, and a semiconductor wafer and a semiconductor device obtained by the method.

【0046】[0046]

【発明の実施の形態】次に、本発明による、p形窒化物
系化合物半導体の製造方法と、これにより得られる半導
体ウェハならびに半導体デバイス製造の実施形態につい
て説明する。なお、以下の実施例における成長装置とし
ては、MOVPE装置を使用した。試料構造を図1に示
す。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a method for manufacturing a p-type nitride compound semiconductor according to the present invention and a semiconductor wafer and a semiconductor device manufactured by the method will be described. A MOVPE apparatus was used as the growth apparatus in the following examples. The sample structure is shown in FIG.

【0047】<実施例1、2>以下の実施例では、c面
サファイア基板1上にp型GaN層3を成長させる前
に、このc面サファイア基板上に従来のアンモニアを窒
素原料として用いたMOVPE法により、ガリウム原料
としてTMGを用いてアンドープのGaNバッファ層2
を成長させたものを「基板」として用いた。
<Examples 1 and 2> In the following Examples, prior to growing the p-type GaN layer 3 on the c-plane sapphire substrate 1, conventional ammonia was used as a nitrogen source on the c-plane sapphire substrate. Undoped GaN buffer layer 2 using TMG as a gallium raw material by MOVPE method
The grown substrate was used as a "substrate".

【0048】「基板」は以下のようにして、準備した。
まず、常圧MOVPE装置の反応炉内に0.25度オフ
c面サファイア基板1を入れ、1200℃で熱処理した
後に、基板温度を500℃に下げ、InGaNバッファ
層を20nmの厚さに成長する。次に、基板温度を11
00℃まで上昇した後に、アンドープGaN層2を2μ
m成長する。その後、アンモニア雰囲気中で、基板温度
を室温まで下げ、成長装置より取り出した。
The "substrate" was prepared as follows.
First, a 0.25 degree off c-plane sapphire substrate 1 is placed in a reaction furnace of an atmospheric pressure MOVPE apparatus, heat-treated at 1200 ° C., then the substrate temperature is lowered to 500 ° C., and an InGaN buffer layer is grown to a thickness of 20 nm. . Next, the substrate temperature is set to 11
After the temperature is increased to 00 ° C., the undoped GaN layer 2 is 2 μm thick.
grow. Then, the substrate temperature was lowered to room temperature in an ammonia atmosphere, and the substrate was taken out from the growth apparatus.

【0049】上記のサファイア基板上のアンドープGa
Nを基板として用い、p−GaN層成長前に、アンドー
プ層のみの特性を評価することにより、ほぼ同一の特性
を有する基板上へp−GaN層の成長を行っていること
を事前に確認した。この確認により、本実施例において
は、成長条件の微妙な変化に敏感な低温成長バッファ層
の特性の影響を除外できている。
Undoped Ga on the above sapphire substrate
By using N as the substrate and evaluating the characteristics of only the undoped layer before growing the p-GaN layer, it was confirmed in advance that the p-GaN layer was grown on the substrate having almost the same characteristics. . From this confirmation, in the present embodiment, the influence of the characteristics of the low temperature growth buffer layer, which is sensitive to subtle changes in growth conditions, can be excluded.

【0050】また、本発明を単結晶窒化物系化合物半導
体基板上への窒化物系化合物半導体成長にも適用可能で
あることも明らかである。
It is also apparent that the present invention can be applied to the growth of a nitride compound semiconductor on a single crystal nitride compound semiconductor substrate.

【0051】上記「基板」上への成長は、以下のように
して行った。まず、常圧あるいは減圧MOVPE装置の
反応炉内に「基板」を導入し、アンモニア雰囲気中で1
100℃まで加熱する。この昇温過程において基板温度
が約1000℃になった時点で、p−GaN層3の成長
を開始する。その際のキャリアガスは水素(流量は10
l/分)であり、アンモニア流量は0.4mol/分、
TMG流量は180μmol/分、CP2Mg流量は2
50nmol/分とした。この場合のp−GaNの成長
速度は3600nm/時であり、p−GaNの成長時間
を30分として、1800nmのp−GaN層3を成長
した。
The growth on the "substrate" was performed as follows. First, the "substrate" is introduced into the reaction furnace of an atmospheric or reduced pressure MOVPE apparatus, and the
Heat to 100 ° C. The growth of the p-GaN layer 3 is started when the substrate temperature reaches about 1000 ° C. in the temperature rising process. The carrier gas at that time is hydrogen (flow rate is 10
1 / min), the ammonia flow rate is 0.4 mol / min,
TMG flow rate is 180 μmol / min, CP 2 Mg flow rate is 2
It was set to 50 nmol / min. In this case, the growth rate of p-GaN was 3600 nm / hour, and the p-GaN layer 3 having a thickness of 1800 nm was grown with the growth time of p-GaN being 30 minutes.

【0052】本実施例において成長したp−GaN試料
のうち一部(試料A、実施例1)は、上記アンモニアを
用いて成長したp−GaN層3上にさらに、アンモニア
の代わりに、解離による窒素放出時に水素を放出しない
窒素原料としてトリメチルヒドラジン(4mmol/
分)を用い、水素キャリアの代わりに、窒素キャリア
(流量は10l/分)を用いて、p−GaN層4を更に
0〜600nm(ゼロに近い膜厚から600nm)の間
の様々な膜厚で成長し、その後、トリメチルヒドラジン
および窒素雰囲気下で室温まで冷却したものである。
Part of the p-GaN sample grown in this example (Sample A, Example 1) was further dissociated on the p-GaN layer 3 grown using the above-mentioned ammonia, instead of ammonia. Trimethylhydrazine (4mmol /
Min) and a nitrogen carrier (flow rate is 10 l / min) instead of a hydrogen carrier, and the p-GaN layer 4 is further varied in thickness between 0 and 600 nm (from near zero to 600 nm). At room temperature and then cooled to room temperature under a trimethylhydrazine and nitrogen atmosphere.

【0053】また、本実施例において成長したp−Ga
N試料のうち別の一部(試料B、実施例2)は、p−G
aN層4の膜厚が0の場合、すなわち上記アンモニアを
用いて成長したp−GaN層3成長終了後に、p−Ga
N層4を成長せずに、アンモニアおよび水素雰囲気下で
試料の冷却を開始し、成長温度(1100℃)〜200
℃の間の様々な温度で、雰囲気を水素を含まないトリメ
チルヒドラジンおよび窒素の混合ガスに切り替えたもの
である。
Further, the p-Ga grown in this example is
Another part of the N samples (Sample B, Example 2) was p-G.
When the film thickness of the aN layer 4 is 0, that is, after the growth of the p-GaN layer 3 grown using the above ammonia is completed, p-Ga
Without growing the N layer 4, cooling of the sample is started under an atmosphere of ammonia and hydrogen, and the growth temperature (1100 ° C.) to 200
The atmosphere was switched to a hydrogen-free mixed gas of trimethylhydrazine and nitrogen at various temperatures between ° C.

【0054】上記のいずれのp−GaN試料(試料A、
B、実施例1、2)も、平坦な表面を有しており、従来
の不活性ガスのみの雰囲気で冷却した場合に見られたよ
うな表面荒れは生じていなかった。
Any of the above p-GaN samples (Sample A,
B and Examples 1 and 2) also have a flat surface, and the surface roughness as seen in the case of cooling in a conventional atmosphere containing only an inert gas did not occur.

【0055】このようにして成長したp−GaN試料
(試料A、B、実施例1、2)を、成長後の活性化アニ
ールを施さずに、5mm角に分割し、その四つの角にNi
/Auドットからなる電極を形成してファンデルポー
(Van der Pauw)法によりホール(Hal
l)測定を室温で行い、p−GaN層5のキャリア濃度
(正孔濃度)を求めた。
The p-GaN samples (Samples A and B, Examples 1 and 2) thus grown were divided into 5 mm squares without post-growth activation annealing, and Ni was divided into four corners.
/ Au dots are formed to form holes (Hal) by the van der Pauw method.
l) The measurement was performed at room temperature to determine the carrier concentration (hole concentration) of the p-GaN layer 5.

【0056】トリメチルヒドラジンを用いたp−GaN
層4を成長した試料(試料A、実施例1)の正孔濃度
を、p−GaN層4の膜厚の関数として図2に示す。ま
た、p−GaN層4の膜厚が0の場合、すなわちp−G
aN層3成長終了時点で、窒素源とキャリアガスを切り
替え、そのままp−GaN層4を成長せずに、冷却した
試料(試料B、実施例2)(図2の右はじの点)では、
正孔濃度は3×1018cm-3であり、成長後に不純物の
活性化のための熱処理を行わないでも、従来(成長・冷
却共にアンモニア中で行い、成長後に活性化アニールを
行った試料。正孔濃度は4×1017cm-3程度)より高い
キャリア濃度が得られた。また、図2示すように、トリ
メチルヒドラジンを用いて成長したp−GaN層4の膜
厚が増えるに従い、正孔濃度は徐々に減少した。しかし
ながら、トリメチルヒドラジンを用いて成長したp−G
aN層4の膜厚が600nmの試料でも、活性化アニー
ル無しで1×1017cm-3程度の正孔濃度を示した。この
正孔濃度の減少は、トリメチルヒドラジンを用いて成長
したp−GaN層の結晶性が、アンモニアを用いて成長
したp−GaN層よりも劣っていることが原因と考えら
れる。
P-GaN using trimethylhydrazine
The hole concentration of the sample on which the layer 4 is grown (Sample A, Example 1) is shown in FIG. 2 as a function of the thickness of the p-GaN layer 4. When the film thickness of the p-GaN layer 4 is 0, that is, p-G
At the time when the growth of the aN layer 3 was completed, the nitrogen source and the carrier gas were switched, and the p-GaN layer 4 was not grown as it was and cooled (Sample B, Example 2) (point on the right edge of FIG. 2).
The hole concentration is 3 × 10 18 cm −3 , and even if the heat treatment for activating the impurities is not performed after the growth, the sample is conventionally (both growth and cooling are performed in ammonia, and activation annealing is performed after the growth. The carrier concentration was higher than the hole concentration of about 4 × 10 17 cm -3 . Moreover, as shown in FIG. 2, the hole concentration gradually decreased as the film thickness of the p-GaN layer 4 grown using trimethylhydrazine increased. However, p-G grown with trimethylhydrazine
Even the sample in which the film thickness of the aN layer 4 was 600 nm showed a hole concentration of about 1 × 10 17 cm −3 without activation annealing. This decrease in hole concentration is considered to be caused by the crystallinity of the p-GaN layer grown using trimethylhydrazine being inferior to that of the p-GaN layer grown using ammonia.

【0057】次に、p−GaN層4を成長せずに、p−
GaN層3成長終了後の冷却過程において、窒素源の切
り替えを行った試料(試料B、実施例2)の正孔濃度
を、窒素源切り替え時の基板温度の関数として、図3に
示す。切り替え時の温度が1100〜900℃の間で
は、従来より高いキャリア濃度が得られた。
Then, without growing the p-GaN layer 4, p-
FIG. 3 shows the hole concentration of the sample (Sample B, Example 2) in which the nitrogen source was switched in the cooling process after the growth of the GaN layer 3 as a function of the substrate temperature when the nitrogen source was switched. When the temperature at the time of switching was between 1100 and 900 ° C, a higher carrier concentration than before was obtained.

【0058】しかしながら、切り替え温度の低下ととも
に、正孔濃度は徐々に減少していき、また約700℃を
境に急激に正孔濃度が減少する。しかしながら、切り替
え温度が200℃付近でも若千の伝導性は残っていた。
However, the hole concentration gradually decreases as the switching temperature decreases, and the hole concentration sharply decreases at about 700 ° C. However, even when the switching temperature was around 200 ° C, the conductivity of Wakasen remained.

【0059】以上のように、本実施例1、2の形態によ
れば、成長後に不純物の活性化のためのアニールを行わ
ないでも、伝導性を有するp−GaN層が得られ、さら
に、トリメチルヒドラジンを用いて成長したp−GaN
層4が薄い場合、および、冷却時の窒素源およびキャリ
アガスの切り替え温度が900℃以上の場合、従来に比
べて高キャリア濃度のp−GaN層を得ることができ
る。このp−GaN層は、例えばGaN系半導体レーザ
におけるp側電極のコンタクト層として好適である。
As described above, according to the embodiments 1 and 2, the p-GaN layer having conductivity can be obtained without performing annealing for activating the impurities after the growth, and further, the trimethyl layer is formed. P-GaN grown using hydrazine
When the layer 4 is thin, and when the switching temperature of the nitrogen source and the carrier gas during cooling is 900 ° C. or higher, it is possible to obtain a p-GaN layer having a higher carrier concentration than the conventional one. This p-GaN layer is suitable as a contact layer for the p-side electrode in a GaN-based semiconductor laser, for example.

【0060】<実施例3>実施例3として、p−GaN
層3成長直後に窒素源とキャリアガスを切り替え、p−
GaN層4を成長せずに冷却を開始した場合(試料B、
実施例2)において、冷却雰囲気であるトリメチルヒド
ラジンと窒素の混合ガス中に、水素を0〜200ppm
の範囲で添加した雰囲気下で冷却を行った。
Example 3 As Example 3, p-GaN is used.
Immediately after the growth of the layer 3, the nitrogen source and the carrier gas are switched to p-
When cooling is started without growing the GaN layer 4 (Sample B,
In Example 2), 0 to 200 ppm of hydrogen was added in a mixed gas of trimethylhydrazine and nitrogen, which is a cooling atmosphere.
It cooled in the atmosphere added in the range of.

【0061】図4に、上記p−GaN試料の正孔濃度を
雰囲気ガス中の水素濃度の関数として示す。水素濃度の
増加に伴い、正孔濃度は徐々に減少するが、水素濃度が
100ppm以下では、ある程度の正孔濃度を得ること
が可能である。
FIG. 4 shows the hole concentration of the above p-GaN sample as a function of the hydrogen concentration in the atmosphere gas. Although the hole concentration gradually decreases as the hydrogen concentration increases, it is possible to obtain a certain hole concentration when the hydrogen concentration is 100 ppm or less.

【0062】<実施例4>図5は、本発明による半導体
ウェハを用いたLEDの構造である。実施例1で述べた
「基板(サファイア基板1とアンドープGaN層2を含
む)」20上に、シリコンをドープしたn−GaN層3
0を1100℃で成長し、その上にシリコンドープIn
GaN層40を低温の800℃で成長し、その後成長温
度を再び1100℃まで上昇しp−GaN層5を成長す
る。p−GaN層5は、窒素源としてアンモニアを用
い、水素キャリアを用いて成長した。p−GaN層成長
終了直後に、窒素源とキャリアガスをそれぞれ、トリメ
チルヒドラジンと窒素に切り替えて試料を冷却した。
<Embodiment 4> FIG. 5 shows the structure of an LED using a semiconductor wafer according to the present invention. On the "substrate (including the sapphire substrate 1 and the undoped GaN layer 2)" 20 described in Example 1, the n-GaN layer 3 doped with silicon is provided.
0 was grown at 1100 ° C., and silicon-doped In was grown on it.
The GaN layer 40 is grown at a low temperature of 800 ° C., and then the growth temperature is raised again to 1100 ° C. to grow the p-GaN layer 5. The p-GaN layer 5 was grown using ammonia as a nitrogen source and hydrogen carriers. Immediately after the growth of the p-GaN layer, the nitrogen source and the carrier gas were switched to trimethylhydrazine and nitrogen, respectively, to cool the sample.

【0063】上記の半導体ウェハ表面をRIE(Rea
ctive Ion Etching)により部分的に
除去して、n−GaN層30の一部を露出させ、露出し
た部分にTi/Al電極6を形成する一方、p−GaN
層5の表面にNi/Au電極7を形成した。
RIE (Rea
Part of the n-GaN layer 30 is exposed by partially removing it by active ion etching, and the Ti / Al electrode 6 is formed in the exposed part, while p-GaN is formed.
The Ni / Au electrode 7 was formed on the surface of the layer 5.

【0064】以上の実施例4の構成のLEDと、成長中
と冷却中の窒素源として一貫してアンモニアを用いて成
長した従来型の半導体ウェハを用いた同様の構成のLE
Dとを対象に、その発光出力を測定したところ、20m
A通電時の光出力が、本発明の実施例4の構成のLED
では5mWであったのに対して、従来型の半導体ウェハ
を用いたLEDでは、1mWであった。両者の間には5
倍の差が認められ、本発明の効果が顕著に現れている。
An LE having a similar structure using the LED having the structure of Example 4 described above and a conventional semiconductor wafer grown using ammonia as a nitrogen source during growth and cooling
The emission output was measured for D and 20m.
The light output when energized A is the LED having the configuration of the fourth embodiment of the present invention.
Was 5 mW, whereas it was 1 mW for an LED using a conventional semiconductor wafer. 5 between both
A double difference is recognized, and the effect of the present invention is remarkably exhibited.

【0065】以上、本発明の実施形態について具体的に
説明したが、本発明は、上述の実施形態に限定されるも
のではなく、本発明の技術的思想に基づく各種の変形が
可能である。
The embodiments of the present invention have been specifically described above, but the present invention is not limited to the above-mentioned embodiments, and various modifications can be made based on the technical idea of the present invention.

【0066】例えば、上述の実施形態において挙げた数
値はあくまでも例に過ぎず、必要に応じてこれと異なる
数値を用いてもよい。
For example, the numerical values given in the above embodiments are merely examples, and different numerical values may be used if necessary.

【0067】[0067]

【発明の効果】以上説明したように、本発明による窒化
物系化合物半導体の製造方法によれば、窒素放出過程に
おいて水素を放出しない窒素原料を用いていることによ
り、窒化物系化合物半導体結晶中に活性水素が取り込ま
れてキャリアが不活性化されるのを防止することがで
き、これによって成長後に不純物の活性化のための熱処
理を行わないでも、高キャリア濃度のp型窒化物系化合
物半導体を得ることができる。
As described above, according to the method for producing a nitride-based compound semiconductor of the present invention, since a nitrogen source that does not release hydrogen during the nitrogen-releasing process is used, It is possible to prevent carriers from being deactivated by taking active hydrogen into the p-type nitride compound semiconductor having a high carrier concentration without heat treatment for activating impurities after growth. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるp形窒化物系化合物半導体の製造
方法を説明するための層構造を示す断面図である。
FIG. 1 is a cross-sectional view showing a layer structure for explaining a method for manufacturing a p-type nitride compound semiconductor according to the present invention.

【図2】本発明の実施例1、2において、トリメチルヒ
ドラジンを用いたp−GaN層4を成長した試料の正孔
濃度とp−GaN層4の膜厚の関係を示した図である。
FIG. 2 is a diagram showing the relationship between the hole concentration and the film thickness of the p-GaN layer 4 of the sample in which the p-GaN layer 4 using trimethylhydrazine was grown in Examples 1 and 2 of the present invention.

【図3】本発明の実施例2において、p−GaN層4を
成長せずに、p−GaN層3の成長終了後の冷却過程に
おいて、窒素源の切り替えを行った試料に対する、正孔
濃度と窒素源切り替え時の基板温度の関係を示す図であ
る。
FIG. 3 shows the hole concentration of the sample in which the nitrogen source was switched in the cooling process after the growth of the p-GaN layer 3 without growing the p-GaN layer 4 in Example 2 of the present invention. It is a figure which shows the relationship between the substrate temperature at the time of switching a nitrogen source.

【図4】本発明の実施例3における、p−GaN試料の
正孔濃度と冷却時の雰囲気ガス中の水素濃度の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between a hole concentration of a p-GaN sample and a hydrogen concentration in an atmosphere gas at the time of cooling in Example 3 of the present invention.

【図5】本発明の実施例4による半導体デバイスの構造
を示す図である。
FIG. 5 is a diagram showing a structure of a semiconductor device according to a fourth embodiment of the invention.

【符号の説明】[Explanation of symbols]

1 c面サファイア基板 2 アンドープGaN層 3 p−GaN層(アンモニアを用いたp型GaN層) 4 p−GaN層(トリメチルヒドラジンを用いたp型
GaN層) 5 p−GaN層 6、7 電極 20 基板 30 n−GaN層 40 n−InGaN層
1 c-plane sapphire substrate 2 undoped GaN layer 3 p-GaN layer (p-type GaN layer using ammonia) 4 p-GaN layer (p-type GaN layer using trimethylhydrazine) 5 p-GaN layer 6, 7 electrode 20 Substrate 30 n-GaN layer 40 n-InGaN layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA24 AA42 AA44 CA04 CA40 CA53 CA57 CA65 CA74 CA77 CB11 5F045 AA04 AB09 AB14 AC08 AC09 AC15 AC16 AC17 AC19 AD11 AD13 AD14 AD15 AF09 CA10 DA66 5F073 CA02 CB10 CB19 DA05 DA35 EA28    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5F041 AA24 AA42 AA44 CA04 CA40                       CA53 CA57 CA65 CA74 CA77                       CB11                 5F045 AA04 AB09 AB14 AC08 AC09                       AC15 AC16 AC17 AC19 AD11                       AD13 AD14 AD15 AF09 CA10                       DA66                 5F073 CA02 CB10 CB19 DA05 DA35                       EA28

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】少なくともアクセプタ原子を含むp層を有
する窒化物系化合物半導体の積層構造の形成を気相成長
により行う窒化物系化合物半導体の製造方法において、
成長終了後の冷却を、解離による窒素放出時に水素を放
出しない窒素原料雰囲気中で行うことを特徴とする窒化
物系化合物半導体の製造方法。
1. A method for manufacturing a nitride-based compound semiconductor, which comprises forming a laminated structure of a nitride-based compound semiconductor having a p-layer containing at least acceptor atoms by vapor phase epitaxy,
A method for manufacturing a nitride-based compound semiconductor, characterized in that cooling after the growth is performed in a nitrogen source atmosphere that does not release hydrogen when nitrogen is released by dissociation.
【請求項2】少なくともアクセプタ原子を含むp層を有
する窒化物系化合物半導体の積層構造の形成を気相成長
により行う窒化物系化合物半導体の製造方法において、
成長終了後の冷却を、解離による窒素放出時に水素を放
出しない窒素原料雰囲気と不活性ガスの混合気体中で行
うことを特徴とする窒化物系化合物半導体の製造方法。
2. A method for manufacturing a nitride-based compound semiconductor, which comprises forming a laminated structure of a nitride-based compound semiconductor having a p-layer containing at least acceptor atoms by vapor phase epitaxy,
A method for producing a nitride-based compound semiconductor, characterized in that cooling after the completion of growth is performed in a mixed gas of an inert gas and a nitrogen source atmosphere that does not release hydrogen when releasing nitrogen by dissociation.
【請求項3】少なくともアクセプタ原子を含むp層を最
表面に有する窒化物系化合物半導体の積層構造の形成を
気相成長により行う窒化物系化合物半導体の製造方法に
おいて、p層の最表面側の少なくとも一部の成長と、成
長終了後の冷却を、解離による窒素放出時に水素を放出
しない窒素原料雰囲気中で行うことを特徴とする窒化物
系化合物半導体の製造方法。
3. A method for manufacturing a nitride-based compound semiconductor, comprising: forming a laminated structure of a nitride-based compound semiconductor having a p-layer containing at least acceptor atoms on the outermost surface by vapor phase epitaxy. A method for producing a nitride compound semiconductor, wherein at least a part of growth and cooling after the growth are performed in a nitrogen source atmosphere in which hydrogen is not released when nitrogen is released by dissociation.
【請求項4】少なくともアクセプタ原子を含むp層を最
表面に有する窒化物系化合物半導体の積層構造の形成を
気相成長により行う窒化物系化合物半導体の製造方法に
おいて、p層の最表面側の少なくとも一部の成長と、成
長終了後の冷却を、解離による窒素放出時に水素を放出
しない窒素原料雰囲気と不活性ガスの混合気体中で行う
ことを特徴とする窒化物系化合物半導体の製造方法。
4. A method for manufacturing a nitride-based compound semiconductor, comprising: forming a laminated structure of a nitride-based compound semiconductor having a p-layer containing at least acceptor atoms on the outermost surface by vapor phase epitaxy. A method for producing a nitride-based compound semiconductor, wherein at least a part of growth and cooling after completion of growth are performed in a mixed gas of a nitrogen source atmosphere that does not release hydrogen when releasing nitrogen by dissociation and an inert gas.
【請求項5】上記窒素原料が、アミン系化合物、ヒドラ
ジン系化合物またはアジド系化合物であることを特徴と
する請求項1〜4のいずれかに記載の窒化物系化合物半
導体の製造方法。
5. The method for producing a nitride compound semiconductor according to claim 1, wherein the nitrogen raw material is an amine compound, a hydrazine compound or an azide compound.
【請求項6】上記窒素原料が、トリメチルアミン、ジメ
チルアミン、トリエチルアミン、ジエチルアミン、フェ
ニルメチルアミン、トリメチルヒドラジンのいずれかで
あることを特徴とする請求項1〜4記載の窒化物系化合
物半導体の製造方法。
6. The method for producing a nitride compound semiconductor according to claim 1, wherein the nitrogen raw material is any one of trimethylamine, dimethylamine, triethylamine, diethylamine, phenylmethylamine and trimethylhydrazine. .
【請求項7】上記窒化物系化合物半導体が、一般式、B
wAlxInyGazabAsc(w,x,y,z≧0、
w+x+y+z=1、a>0,b,c≧0、a+b+c=1)
で表わされることを特徴とする請求項1〜6のいずれか
に記載の窒化物系化合物半導体の製造方法。
7. The nitride-based compound semiconductor is represented by the general formula: B
w Al x In y Ga z N a P b As c (w, x, y, z ≧ 0,
w + x + y + z = 1, a> 0, b, c ≧ 0, a + b + c = 1)
The method for producing a nitride-based compound semiconductor according to any one of claims 1 to 6, wherein:
【請求項8】解離過程において水素放出を伴う、アンモ
ニア等の窒素源から、上記解離による窒素放出時に水素
を放出しない窒素原料又はこれと不活性ガスの混合気体
への切り替えを、成長終了直後に行うことを特徴とする
請求項1〜7のいずれかに記載の窒化物系化合物半導体
の製造方法。
8. A method of switching from a nitrogen source such as ammonia, which accompanies hydrogen release in the dissociation process, to a nitrogen source or a mixed gas of this and an inert gas, which does not release hydrogen when nitrogen is released by the dissociation, immediately after the growth is completed. The method for manufacturing a nitride-based compound semiconductor according to claim 1, wherein the method is performed.
【請求項9】解離過程において水素放出を伴う、アンモ
ニア等の窒素源から、上記解離による窒素放出時に水素
を放出しない窒素原料又はこれと不活性ガスの混合気体
への切り替えを、成長終了後の冷却時、基板温度が90
0℃以上で行うことを特徴とする請求項1〜7のいずれ
かに記載の窒化物系化合物半導体の製造方法。
9. A method for switching from a nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, to a nitrogen raw material or a mixed gas of this and an inert gas, which does not release hydrogen at the time of nitrogen release by the dissociation, after completion of growth. When cooled, the substrate temperature is 90
It carries out at 0 degreeC or more, The manufacturing method of the nitride type compound semiconductor in any one of Claims 1-7 characterized by the above-mentioned.
【請求項10】解離過程において水素放出を伴う、アン
モニア等の窒素源から、上記解離による窒素放出時に水
素を放出しない窒素原料又はこれと不活性ガスの混合気
体への切り替えを、成長終了後の冷却時、基板温度が7
00℃以上で行うことを特徴とする請求項1〜7のいず
れかに記載の窒化物系化合物半導体の製造方法。
10. A method for switching from a nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, to a nitrogen source or a mixed gas of this and an inert gas, which does not release hydrogen at the time of nitrogen release by the dissociation, after the growth is completed. When cooled, the substrate temperature is 7
The method for producing a nitride-based compound semiconductor according to claim 1, wherein the method is performed at a temperature of 00 ° C. or higher.
【請求項11】解離過程において水素放出を伴う、アン
モニア等の窒素源から、上記解離による窒素放出時に水
素を放出しない窒素原料又はこれと不活性ガスの混合気
体への切り替えを、成長終了後の冷却時、基板温度が4
00℃以上で行うことを特徴とする請求項1〜7のいず
れかに記載の窒化物系化合物半導体の製造方法。
11. A method of switching from a nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, to a nitrogen raw material or a mixed gas of this and an inert gas, which does not release hydrogen at the time of nitrogen release by the dissociation, after completion of growth. When cooled, the substrate temperature is 4
The method for producing a nitride-based compound semiconductor according to claim 1, wherein the method is performed at a temperature of 00 ° C. or higher.
【請求項12】解離過程において水素放出を伴う、アン
モニア等の窒素源から、上記解離による窒素放出時に水
素を放出しない窒素原料又はこれと不活性ガスの混合気
体への切り替えを、成長終了後の冷却時、基板温度が室
温以上で行うことを特徴とする請求項1〜7のいずれか
に記載の窒化物系化合物半導体の製造方法。
12. Switching from a nitrogen source such as ammonia, which is accompanied by hydrogen release in the dissociation process, to a nitrogen source or a mixed gas of this and an inert gas, which does not release hydrogen at the time of nitrogen release by the dissociation, after the growth is completed. The method for producing a nitride-based compound semiconductor according to any one of claims 1 to 7, wherein the cooling is performed at a substrate temperature of room temperature or higher.
【請求項13】上記気相成長に、p型不純物としてII族
元素を用いることを特徴とする請求項1〜12のいずれ
かに記載の窒化物系化合物半導体の製造方法。
13. The method for producing a nitride-based compound semiconductor according to claim 1, wherein a Group II element is used as a p-type impurity in the vapor phase growth.
【請求項14】II族元素としてMg、Zn、Cdのいず
れかを用いることを特徴とする請求項13記載の窒化物
系化合物半導体の製造方法。
14. The method for producing a nitride-based compound semiconductor according to claim 13, wherein any one of Mg, Zn and Cd is used as the group II element.
【請求項15】上記不活性ガスが、窒素、ヘリウム、ア
ルゴンのいずれかであることを特徴とする請求項2又は
4〜14のいずれかに記載の窒化物系化合物半導体の製
造方法。
15. The method for producing a nitride compound semiconductor according to claim 2, wherein the inert gas is any one of nitrogen, helium, and argon.
【請求項16】上記解離による窒素放出時に水素を放出
しない窒素原料中に、100ppm以下の水素を含むこ
とを特徴とする請求項1、3、5〜15のいずれかに記
載の窒化物系化合物半導体の製造方法。
16. The nitride compound according to claim 1, wherein the nitrogen raw material that does not release hydrogen when releasing nitrogen by dissociation contains 100 ppm or less of hydrogen. Semiconductor manufacturing method.
【請求項17】上記解離による窒素放出時に水素を放出
しない窒素原料と不活性ガスの混合気体中に、100p
pm以下の水素を含むことを特徴とする請求項2、4〜
15のいずれかに記載の窒化物系化合物半導体の製造方
法。
17. A mixed gas of a nitrogen source and an inert gas, which does not release hydrogen when releasing nitrogen due to the dissociation, is added with 100 p
The hydrogen gas of pm or less is contained, and the hydrogen generating method according to claim 2 or 4.
16. The method for manufacturing a nitride-based compound semiconductor according to any one of 15.
【請求項18】有機金属化学気相成長法により上記窒化
物系化合物半導体を気相成長させることを特徴とする請
求項1〜17のいずれかに記載の窒化物系化合物半導体
の製造方法。
18. The method for producing a nitride compound semiconductor according to claim 1, wherein the nitride compound semiconductor is vapor-grown by a metal organic chemical vapor deposition method.
【請求項19】請求項1〜18のいずれかに記載の方法
により製造されたことを特徴とする窒化物系化合物半導
体ウェハ。
19. A nitride-based compound semiconductor wafer manufactured by the method according to any one of claims 1 to 18.
【請求項20】請求項1〜18のいずれかに記載の方法
により製造された半導体ウェハを用いて作製したことを
特徴とする窒化物系化合物半導体デバイス。
20. A nitride-based compound semiconductor device manufactured by using the semiconductor wafer manufactured by the method according to claim 1.
JP2001379407A 2001-12-13 2001-12-13 Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device Pending JP2003178987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379407A JP2003178987A (en) 2001-12-13 2001-12-13 Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379407A JP2003178987A (en) 2001-12-13 2001-12-13 Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device

Publications (1)

Publication Number Publication Date
JP2003178987A true JP2003178987A (en) 2003-06-27

Family

ID=19186798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379407A Pending JP2003178987A (en) 2001-12-13 2001-12-13 Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device

Country Status (1)

Country Link
JP (1) JP2003178987A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022655A1 (en) * 2003-09-03 2005-03-10 Epivalley Co., Ltd. Algainn based optical device and fabrication method thereof
JP2007042944A (en) * 2005-08-04 2007-02-15 Rohm Co Ltd Method of manufacturing nitride semiconductor element
JP2008078186A (en) * 2006-09-19 2008-04-03 Mitsubishi Chemicals Corp Method of growing crystal of nitride compound semiconductor
JP2009260267A (en) * 2008-03-18 2009-11-05 Mitsubishi Electric Corp Nitride semiconductor stacked structure, optical semiconductor device, and manufacturing method thereof
WO2010041485A1 (en) 2008-10-07 2010-04-15 住友電気工業株式会社 Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer
US7763486B2 (en) 2007-07-02 2010-07-27 Mitsubishi Electric Corporation Method for manufacturing nitride semiconductor stacked structure and semiconductor light-emitting device
US7825012B2 (en) 2008-09-24 2010-11-02 Mitsubishi Electric Corporation Method for manufacturing nitride semiconductor device
US20110198566A1 (en) * 2009-02-24 2011-08-18 Sumitomo Electric Industries, Ltd. Method for manufacturing light emitting element and light emitting element
CN103972332A (en) * 2013-01-31 2014-08-06 山东浪潮华光光电子股份有限公司 P-type gallium nitride material hole activating method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022655A1 (en) * 2003-09-03 2005-03-10 Epivalley Co., Ltd. Algainn based optical device and fabrication method thereof
US7863178B2 (en) 2003-09-03 2011-01-04 Epivalley Co., Ltd. Method for manufacturing a GaN based optical device
JP2007042944A (en) * 2005-08-04 2007-02-15 Rohm Co Ltd Method of manufacturing nitride semiconductor element
JP2008078186A (en) * 2006-09-19 2008-04-03 Mitsubishi Chemicals Corp Method of growing crystal of nitride compound semiconductor
US7763486B2 (en) 2007-07-02 2010-07-27 Mitsubishi Electric Corporation Method for manufacturing nitride semiconductor stacked structure and semiconductor light-emitting device
US7923742B2 (en) 2008-03-18 2011-04-12 Mitsubishi Electric Corporation Method for production of a nitride semiconductor laminated structure and an optical semiconductor device
JP2009260267A (en) * 2008-03-18 2009-11-05 Mitsubishi Electric Corp Nitride semiconductor stacked structure, optical semiconductor device, and manufacturing method thereof
US7825012B2 (en) 2008-09-24 2010-11-02 Mitsubishi Electric Corporation Method for manufacturing nitride semiconductor device
WO2010041485A1 (en) 2008-10-07 2010-04-15 住友電気工業株式会社 Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer
US7879636B2 (en) 2008-10-07 2011-02-01 Sumitomo Electric Industries, Ltd. Method of forming p-type gallium nitride based semiconductor, method of forming nitride semiconductor device, and method of forming epitaxial wafer
KR101146024B1 (en) 2008-10-07 2012-05-14 스미토모덴키고교가부시키가이샤 Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer
US8815621B2 (en) 2008-10-07 2014-08-26 Sumitomo Electric Industries, Ltd. Method of forming p-type gallium nitride based semiconductor, method of forming nitride semiconductor device, and method of forming epitaxial wafer
US20110198566A1 (en) * 2009-02-24 2011-08-18 Sumitomo Electric Industries, Ltd. Method for manufacturing light emitting element and light emitting element
CN103972332A (en) * 2013-01-31 2014-08-06 山东浪潮华光光电子股份有限公司 P-type gallium nitride material hole activating method

Similar Documents

Publication Publication Date Title
JPH05183189A (en) Manufacture of p-type gallium nitride based compound semiconductor
JP3243111B2 (en) Compound semiconductor device
KR100806262B1 (en) Method for manufacturing p-type group iii nitride semiconductor, and group iii niride semiconductor light-emitting device
KR100841269B1 (en) Group ¥² nitride semiconductor multilayer structure
JP2003178987A (en) Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device
JP2008288532A (en) Nitride semiconductor device
JP3497790B2 (en) Method for manufacturing p-type gallium nitride based semiconductor and light emitting device using p-type gallium nitride based semiconductor
JPH09167857A (en) Semiconductor device and its manufacture
JP4416044B1 (en) Method for fabricating p-type gallium nitride based semiconductor, method for fabricating nitride based semiconductor element, and method for fabricating epitaxial wafer
JP2002033279A (en) Manufacturing method of p-type nitride semiconductor
US20120244686A1 (en) Method for fabricating semiconductor device
WO2008056632A1 (en) GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2002208732A (en) Compound semiconductor device
JP2006140530A (en) Method of manufacturing p-type nitride semiconductor
US8268706B2 (en) Semiconductor device manufacturing method
JP3340415B2 (en) Compound semiconductor device and method of manufacturing the same
JP2003309074A (en) Method for manufacturing gallium aluminum nitride layer, iii nitride semiconductor light emitting element and method for manufacturing the same
JP4333092B2 (en) Manufacturing method of nitride semiconductor
JP2006024903A (en) Gallium nitride based semiconductor multilayer structure
JP2013016863A (en) P-type compound semiconductor layer formation method
JP2000277440A (en) Nitride iii-v compound semiconductor crystal film, semiconductor device, and semiconductor laser using the same
JP3505167B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JP3780984B2 (en) Manufacturing method of nitride semiconductor
JP2002203798A (en) P-type nitride semiconductor and its manufacturing method
JP4293061B2 (en) Gallium nitride compound semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222