JP4458223B2 - Compound semiconductor device and manufacturing method thereof - Google Patents

Compound semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4458223B2
JP4458223B2 JP2003022685A JP2003022685A JP4458223B2 JP 4458223 B2 JP4458223 B2 JP 4458223B2 JP 2003022685 A JP2003022685 A JP 2003022685A JP 2003022685 A JP2003022685 A JP 2003022685A JP 4458223 B2 JP4458223 B2 JP 4458223B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor element
buffer layer
gan
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003022685A
Other languages
Japanese (ja)
Other versions
JP2004235473A (en
Inventor
由佳里 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003022685A priority Critical patent/JP4458223B2/en
Publication of JP2004235473A publication Critical patent/JP2004235473A/en
Application granted granted Critical
Publication of JP4458223B2 publication Critical patent/JP4458223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、化合物半導体素子及びその製造方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平5−110138号公報
【特許文献2】
特開平5−206513号公報
【0003】
化合物半導体の多層構造は、周知の通り、MESFET(Metal-Semiconductor Field Effect Transistor)やHEMT(High Electron Mobility Transistor)などの超高速トランジスタや、発光ダイオードやレーザーなどの発光素子に応用され、多くの需要を獲得するに至っている。近年注目を集めている半導体多層構造に、GaN系化合物系半導体を用いたヘテロ接合構造がある。GaN系化合物系半導体は室温におけるバンドギャップが2.0eV〜6.2eVまで変化可能であり、化学的にも安定であることから、青色等の発光素子に応用され、普及しつつある。また、GaN系化合物系半導体はバンドギャップの広さに加え、高い電子移動度を有し、かつヘテロ接合形成が容易であることから、高温環境での動作が可能であり、より高速・高出力の次世代型超高速トランジスタへの応用も注目されており、研究が重ねられている。
【0004】
GaN系化合物系半導体は、GaAs系化合物などと異なり、ホモエピタキシャル成長を可能とする半絶縁性単結晶基板を製造することが困難であるため、ヘテロ接合構造を有する素子層を形成するに際しては、SiC単結晶基板やサファイア(単結晶アルミナ)基板が使用されている。この際、GaN(特許文献1)あるいはAlNをバッファ層として単結晶基板上に成長させ、その後、素子層をヘテロエピタキシャル成長させることにより、素子層の品質を高めることがなされている。
【0005】
【発明が解決しようとする課題】
GaN系化合物系半導体のヘテロエピタキシャル成長においては、単結晶基板として用いるSiCあるいはサファイアとGaNとの格子定数差が非常に大きい(SiCでは約5%、サファイアでは約15%)。従って、成長に用いるバッファ層は、この格子定数差を吸収ないし緩和できるものでなければ、高品質の素子層を安定して製造することはできない。また、単結晶基板と化合物半導体層とは線膨張係数の差が大きいので(特に、絶縁性のサファイア基板を用いた場合)、これに由来した熱応力により、結晶欠陥の発生や成長がより助長されやすい傾向にあるので、注意が必要である。
【0006】
従来、バッファ層の材料として使用されてきたGaNは、基板との格子定数差が大きいため、バッファ層と基板との境界付近から結晶欠陥が生じやすい傾向にある。他方、AlNは基板との格子定数差はGaNよりも縮小するものの、逆にGaN系化合物系半導体よりなる素子層との格子不整合率が大きくなるので、バッファ層と素子層との境界ないし素子層内に結晶欠陥が生じやすくなる。なお、特許文献2に開示されているように、GaN層とAlN層とが交互に積層されたバッファ層、あるいはGaNとAlNとの混晶よりなるバッファ層を用いる方法も考えられるが、GaNとAlNとの組合せを用いる限り、バッファ層と素子層との格子不整合に由来した結晶欠陥の発生は避け難い。
【0007】
本発明の課題は、バッファ層と素子層との境界において結晶欠陥が発生しにくく、ひいては高品質の素子層を安定的に実現できる半導体素子構造とその製造方法とを提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の化合物半導体素子は、InGaAl1−x−yN(ただし、0≦x<1、0≦y≦1、0<x+y≦1)よりなる半導体素子層が、層厚方向の少なくとも一部区間がAl1−aInN(aはInN混晶比、0<a<1)よりなるAlInN層とされたバッファ層を介して、SiC及びサファイアのいずれかよりなる単結晶基板上にエピタキシャル成長されてなり、
バッファ層中の前記AlInN層は、単結晶基板側の境界から半導体素子層側の境界に向けて、InN混晶比aが段階的又は連続的に増加し、
バッファ層は、AlInN層と半導体素子層との間に、GaN層と、InGaAlN層とが交互に積層された補助層が、前記AlInN層及び前記半導体素子層と接するように配置されていることを特徴とする。このようなバッファ層を用いて半導体素子層を成長することにより、結晶欠陥密度の低い高品質の素子層を安定的に実現できる。
また、バッファ層中のAlInN層は、単結晶基板側の境界から半導体素子層側の境界に向けて、InN混晶比aが段階的(好ましくは3段階以上)又は連続的に増加するものとして形成することにより、バッファ層は層厚方向において、単結晶基板側から半導体素子層側に向けて格子定数が漸増し、格子定数が途中で不連続に大きく増加することがない。その結果、バッファ層の層厚方向の特定位置に格子定数変化に基づく応力が集中しにくくなり、結晶欠陥発生をより効果的に防止することができる。
さらに、バッファ層は、AlInN層と半導体素子層との間に、GaN層と、InGaAlN層とが交互に積層された補助層が、AlInN層及び半導体素子層と接するように配置されているものとして形成することにより、半導体素子層に、基板との格子不整合に由来した結晶欠陥が発生する不具合をより効果的に防止することができる。
【0009】
バッファ層中のAlInN層は、半導体素子層との境界側にて単結晶基板との境界側よりもInN混晶比aが大となるように形成することができ、該バッファ層を介して半導体素子層を、SiC、サファイア及びシリコンのいずれかよりなる単結晶基板上にエピタキシャル成長することができる。
【0010】
上記構成によると、SiC、サファイア及びシリコンのいずれかよりなる単結晶基板上にInGaAl1−x−yNにより構成された半導体素子層をヘテロエピタキシャル成長させるに際して、半導体素子層との境界側にて単結晶基板との境界側よりもInN混晶比aが大となるように形成されたAl1−aInN層をバッファ層として用いる。InNはGaNよりも格子定数が大であり、InN混晶比aを調整することにより、GaNやAlN又はそれらを組合せた従来のバッファ層と比較して、半導体素子層との境界側にてバッファ層の格子定数を半導体素子層の格子定数により近づけることができる。その結果、バッファ層と素子層との境界において結晶欠陥が発生しにくくなり、ひいては高品質の素子層を安定的に実現できる。特に、SiC単結晶基板を用いる場合は、バッファ層の基板側InN混晶比aを減ずることで、単結晶基板との格子定数差も効果的に縮小できる。
【0011】
InGaAl1−x−yNよりなる半導体素子層は、InN混晶比x、GaN混晶比y及びAlN混晶比1−x−yの調整により、格子定数とバンドギャップエネルギーとを所望の値に調整可能である。例えばGaN系化合物を用いたHEMT構造においては、二次元電子ガス層形成のため、n型にドープしたGaAlN電子供給層に、GaNチャネル層をヘテロ接合したものが多く試みられている。また、電子供給層は、さらにGaNチャネル層との格子整合性を高めるために、InGaAlN層として形成されることもある。
【0012】
半導体素子層が、GaNとの格子定数差が±1%以内となるように、InN混晶比x、GaN混晶比y及びAlN混晶比1−x−yが調整されたものである場合(例えば、GaNチャネル層の場合はy=1、x=0である)、バッファ層中のAlInN層は、半導体素子層との境界を含む部分が、InN混晶比aが0.1以上0.25以下に調整されたAl1−aInNよりなるものとすることで、当該境界にて半導体素子層と格子定数を略一致させることができる。これにより、バッファ層と半導体素子層との境界付近での結晶欠陥発生をより効果的に防止できる。
【0013】
バッファ層中のAlInN層は、単結晶基板側の境界から半導体素子層側の境界に向けて、InN混晶比aが段階的(好ましくは3段階以上)又は連続的に増加するものとして形成することが望ましい。このようにすると、バッファ層は層厚方向において、単結晶基板側から半導体素子層側に向けて格子定数が漸増し、格子定数が途中で不連続に大きく増加することがない。その結果、バッファ層の層厚方向の特定位置に格子定数変化に基づく応力が集中しにくくなり、結晶欠陥発生をより効果的に防止することができる。
【0014】
なお,本発明においては、半導体素子層の結晶性を改善するためにAlInN層を有するバッファ層を使用することもできる。この場合、AlInN層は非晶質であってもよい。
【0015】
また、本発明の化合物半導体素子の製造方法は、
SiC及びサファイアのいずれかよりなる単結晶基板上に、層厚方向の少なくとも一部区間がAl1−aInN(aはInN混晶比、0<a<1)であり前記単結晶基板側の境界からInN混晶比aを段階的又は連続的に増加させたAlInN層と、このAlInN層上にGaN層とInGaAlN層とが交互に積層された補助層と、を有するバッファ層をエピタキシャル成長する工程と、
InGaAl1−x−yN(ただし、0≦x<1、0≦y≦1、0<x+y≦1)よりなる半導体素子層を、前記バッファ層上にエピタキシャル成長する工程と、
を含むことを特徴とする。このようなバッファ層を用いて半導体素子層を成長することにより、結晶欠陥密度の低い高品質の素子層を有した化合物半導体素子を簡便かつ安定的に製造できる。
【0016】
【発明の実施の形態】
図1は、本発明の半導体素子をHEMTとして構成した例を示す。該HEMT200は、SiCからなる単結晶基板101上に、バッファ層102を介して、半導体素子層103を、MOVPE法を用いたヘテロエピタキシャル成長法により形成したものである。なお、単結晶基板101は、SiC基板に代えてサファイア基板あるいはシリコン基板を用いてもよい。
【0017】
半導体素子層103は、バッファ層102に近い側から、ノンドープのGaNチャネル層119、ノンドープのGaAlNスペーサ層105、Si等によりn型にドープされたGaAlN電子供給層110、電極とのコンタクト層として機能するn型GaN層111がこの順序にて積層されたものである。そして、n型GaN層111上には、ドレイン電極106、ソース電極107が形成され、n型GaN層111の非形成領域に露出するn型GaAlN層110にゲート電極108が形成されている。ドレイン電極106とソース電極107とはn型GaN層111との間でオーミック接合を形成する金属(例えばTi/Al)により、ゲート電極108はn型GaAlN電子供給層110との間でショットキー(Schottky)接合を形成する金属(例えばPd/Au)により、それぞれ構成されている。GaAlNスペーサ層105は、n型GaAlN電子供給層110を成長する際に、すでに形成されているGaNチャネル層119にn型ドーパントであるSi等の不純物が拡散することを防止するためのものである。
【0018】
GaAlNスペーサ層105とGaNチャネル層119との間には、電子移動度の高い二次元電子ガス(2DEG)層が形成される。そして、ドレイン電極106とソース電極107との間に電圧を印加し、ゲート電極108でその電流値を制御しながら、ドレイン電極106とソース電極107との間でGaNチャネル層119を経由した通電を行なうことができる。
【0019】
次に、バッファ層102は、少なくとも該半導体素子層103との境界を含む部分がAl1−aInN(aはInN混晶比、0<a<1)とされ、かつ半導体素子層103との境界側にてSiC単結晶基板101との境界側よりもInN混晶比aが大となるように形成されている。本実施形態においては、図2に示すように、それぞれInN混晶比aがa1,a2,‥,an(ただし、a1<a2<‥<an)とされたAl1−aInNよりなる単位層2−1,2−2,‥,2−nが、基板101側からこの順序に積層されている。これにより、例えば図3に示すように、バッファ層102は、層厚方向においてInN混晶比aが、基板101との境界側での値a1(本実施形態では0である)から半導体素子層103側での値an(本実施形態では0.17である)に向けて、階段状に増加する分布を有したものとなる。なお、単位層の数nは3以上であり、個々の単位層の厚さは例えばバッファ層102の層厚が50nm〜200nmとなるように、単位層の数に応じて適宜定められる。
【0020】
以下、上記のHEMT200の製造方法について説明する。バッファ層102及び半導体素子層103の形成は、公知のMOVPE法あるいはMBE(Molecular Beam Epitaxy)法を用いた気相成長法により行なうことができる。MOVPE法を採用する場合、原料ガスとしては次のようなものを用いることができる。・Ga源:トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など
・In源:トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・Al源;トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など;
・N源:アンモニア(NH)など。
また、p型ドーパント源及びn型ドーパント源となるドーパントガスは、以下のものが使用可能である。
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Si源:シランなどのシリコン水素化物など;
なお、本実施例においては、ドーパント元素としてSiおよびMgを採用しているが、n型ドーパントとしてC、Ge、SnなどのIV族元素を、p型ドーパントとしてCa、Sr、ZnなどのII族元素を用いることができる。
上記の各原料ガスは、キャリアガス(例えば窒素ガス)により適度に希釈した形で、基板101を配置した反応容器内に供給される。
【0021】
具体的には、SiC単結晶基板(結晶主軸が[0001]のもの)1の主表面上に、図2に示すバッファ層102を、上記のMOVPE法を用いて成長させる。バッファ層102の各単位層2−1,2−2,‥,2−nは、InN混晶比aの違いに応じて、層毎にIn源及びAl源となる有機金属ガスの流量比を、マスフローコントローラ等により段階的に変化するように制御する。なお、バッファ層102の少なくとも最初の1層ないし複数層は、多結晶層あるいはアモルファス層となっていてもよい。また、バッファ層102の最後の1層ないし複数の単位層は、半導体素子層103のエピタキシャル成長に適した単結晶となっていることが望ましい(単位層は、形成を繰り返す毎に結晶性が順次向上する)。
【0022】
結晶性改善の観点から、InNは比較的低温での成長(例えば400℃以上900℃以下)が望ましいとされ、AlNは逆に比較的高温での成長(例えば900℃以上1100℃以下)が望ましいとされている。従って、両者の混晶よりなるバッファ層2は、その中間の温度域である500℃以上1000℃以下で成長を行なうことが望ましい。
【0023】
次に、バッファ層102の形成が終了すれば、反応容器内にて引き続き、原料ガス及びドーパントガスとなる有機金属ガスの流量比を層毎に調整することにより、GaNチャネル層119、GaAlNスペーサ層105、GaAlN電子供給層110及びn型GaN層111を順次エピタキシャル成長させる。その後、n型GaN層111の一部をフォトリソグラフィー等により一部除去し、露出したGaAlN電子供給層110にゲート電極108を、また、残留したn型GaN層111上にドレイン電極106及びソース電極107を形成する。その後、基板101とともにダイシングしてチップとなし、各電極に導通するリードフレームとともに樹脂モールドすることにより、最終的なHEMT200となる。
【0024】
上記方法により得られるHEMT200は、半導体素子層103が、GaNとの格子定数差が±1%以内のInGaAl1−x−yNにより構成されている。そして、バッファ層102は、該半導体素子層103と接する単位層2−n(図2)が、InN混晶比aが0.1以上0.25以下のAl1−aInNよりなる。該単位層2−nは、半導体素子層103と格子定数が略一致するものとり、バッファ層102と半導体素子層103との境界付近での結晶欠陥発生を効果的に防止できる。また、バッファ層102のSiC単結晶基板101と接する単位層2−1(図2)を、InN混晶比aが0のAl1−aInN、すなわちAlN層とすることで、SiC単結晶基板101との格子定数差が縮小し、ひいては、SiC単結晶基板101との境界付近において結晶欠陥が発生することを効果的に抑制できる。
【0025】
以下、本発明の種々の変形例について説明する。
バッファ層102のInN混晶比aは、図4に示すように、層厚方向において連続的に変化するものとしてもよい。このようなバッファ層102を形成するには、MOVPE法による成長時に、In源及びAl源となる有機金属ガスの流量比を、マスフローコントローラ等により連続的に変化するように制御すればよい。
【0026】
また、バッファ層102は、図5に示すように、基板(単結晶基板)との境界近傍におけるInN混晶比をa1とし、半導体素子層との境界近傍におけるInN混晶比をan(ただし、an>a1)として、層厚方向のInN混晶比aの分布が、an−a1よりも小さい変動幅にて増加と減少とを繰り返しながら、単結晶基板側から半導体素子層側に向けて増加傾向を示すものとなるように形成することもできる。半導体素子層側に向けて、先行する層上に、それよりもInN混晶比の高い層を形成すると、InN混晶比の増分だけ格子定数が拡大するので、先行する層にはある程度強い引張応力が作用する。この引張応力レベルが高いと、隣接する層間にてクラックや剥離などの結晶欠陥を生じやすくなる。そこで、InN混晶比の高い層を形成したあと、該層上に格子定数の縮小した低InN混晶比の層を成長すれば、該層による圧縮応力により、先の高InN混晶比の層による引張応力が相殺され、層間での結晶欠陥の発生をより生じにくくすることができる。図5のバッファ層は、具体的には、各々InN混晶比が一定の複数の単位層が、半導体素子層側に向けて、InN混晶比が交互に増減を繰り返す形で積層された構造となっている。
【0027】
また、上記実施形態においてバッファ層2は、いずれも基板101との境界近傍がAlNとなっている以外は、そのほぼ全体がAlInN層として構成され、かつ該AlInN層が、半導体素子層と接して配置されていたが、図6に示すように、バッファ層は、AlInN層と半導体素子層との間に、GaN層と、InGaAlN層とが交互に積層された補助層を有するものとして形成することもできる。これにより、半導体素子層に、基板との格子不整合に由来した結晶欠陥が発生する不具合をより効果的に防止することができる。
【0028】
以上説明した実施形態では、化合物半導体素子をHEMTとして構成したが、それ以外の超高速トランジスタ、例えばMESFET(Metal-Semiconductor Field Effect Transistor)やHBT(Hetero Bipolar Transistor)などにも本発明を適用することもできる。さらに、化合物半導体素子を、図7に示すような発光素子として構成することもできる。該発光素子1(要部の模式断面にて示す)は、単結晶基板としてのサファイア基板(以下、単に基板ともいう)1上にバッファ層2を介して、InGaAl1−x−yN(ただし、0≦x<1、0≦y≦1、0<x+y≦1)よりなる半導体素子層50を形成したものである。このバッファ層2は、図2、図3、図4あるいは図5に示したバッファ層102と同様に構成されるものである。半導体素子層50の要部をなすのは、InGaAl1−a−bN活性層(ノンドープ)5を、p型InGaAl1−x−yNクラッド層(p型ドーパントは例えばMg:以下、p型クラッド層ともいう)6及びn型InGaAl1−x−yN層(n型ドーパントは例えばSi:以下、n型クラッド層ともいう)4にて挟み込んだダブルへテロ構造よりなる発光層部24である。p型クラッド層6及びn型クラッド層4は、本実施形態ではAlNを含有するものとされ、GaN活性層5に対して該活性層5へのキャリア閉じ込めに有利に作用するポテンシャル障壁を形成している。
【0029】
なお、本実施形態ではp型クラッド層6側から光が取り出されるようになっており、p型クラッド層6上には、該p型クラッド層6よりもp型ドーパント濃度の高い電流拡散層(例えばGaNよりなる:半導体素子層50の一部をなすものとみなす)7が形成され、電流拡散層7上に発光駆動用の電極9が設けられている。他方、バッファ層2とn型クラッド層4との間には、n型クラッド層4よりもn型ドーパント濃度の高い裏面低抵抗層(例えばGaNよりなる:半導体素子層50の一部をなすものとみなす)3が配置されている。裏面低抵抗層3は、基板1の主表面上にて発光層部24の面内方向外側に延出し、その延出領域に、発光駆動用の電極15が設けられている。
【0030】
また、図7の発光素子100においては、サファイア基板1が素子構造の一部として取り込まれる形となっているが、絶縁性のサファイア基板1を剥離して、発光層部の剥離面側に電極形成した素子構造とすることもできる。
【0031】
また、サファイア基板1に代えてSiC基板を用いてもよい。SiC基板は導電性が高いので、裏面低抵抗層3を省略する一方、SiC基板の裏面に電極15を設け、SiC基板の厚さ方向に導通経路を形成する形で発光駆動のための通電を行なうことが可能である。
【図面の簡単な説明】
【図1】本発明の化合物半導体素子の一例であるHEMTを模式的に示す断面図。
【図2】図1のHEMTの、バッファ層の詳細を示す模式断面図。
【図3】図2のバッファ層の、InN混晶比の層厚方向分布を示す模式図。
【図4】バッファ層のInN混晶比の、層厚方向分布の第一変形例を示す模式図。
【図5】バッファ層のInN混晶比の、層厚方向分布の第二変形例を示す模式図。
【図6】バッファ層のさらに別の変形例を示す模式図。
【図7】本発明の化合物半導体素子の別例である発光素子を模式的に示す断面図。
【符号の説明】
1 サファイア基板(単結晶基板)
2 バッファ層
50,103 半導体素子層
100 発光素子(化合物半導体素子)
101 SiC単結晶基板
200 HEMT(化合物半導体素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compound semiconductor device and a manufacturing method thereof.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-110138 [Patent Document 2]
Japanese Patent Laid-Open No. 5-206513
As is well known, multilayer structures of compound semiconductors are applied to ultra-high-speed transistors such as MESFET (Metal-Semiconductor Field Effect Transistor) and HEMT (High Electron Mobility Transistor), and light-emitting elements such as light-emitting diodes and lasers. Has led to the acquisition. A semiconductor multi-layer structure that has attracted attention in recent years includes a heterojunction structure using a GaN-based compound semiconductor. GaN-based compound semiconductors have a band gap that can be changed from 2.0 eV to 6.2 eV at room temperature and are chemically stable, and thus are being applied to light-emitting elements such as blue and are becoming popular. In addition to the wide band gap, GaN-based compound semiconductors have high electron mobility and are easy to form heterojunctions, so they can operate in high-temperature environments, resulting in higher speed and higher output. Its application to next-generation ultra-high-speed transistors is also attracting attention and has been studied.
[0004]
GaN-based compound semiconductors, unlike GaAs-based compounds, are difficult to manufacture a semi-insulating single crystal substrate capable of homoepitaxial growth, so when forming an element layer having a heterojunction structure, SiC Single crystal substrates and sapphire (single crystal alumina) substrates are used. At this time, the quality of the element layer is improved by growing GaN (Patent Document 1) or AlN on the single crystal substrate as a buffer layer and then heteroepitaxially growing the element layer.
[0005]
[Problems to be solved by the invention]
In heteroepitaxial growth of a GaN-based compound semiconductor, the lattice constant difference between SiC or sapphire used as a single crystal substrate and GaN is very large (about 5% for SiC and about 15% for sapphire). Therefore, a high-quality element layer cannot be stably manufactured unless the buffer layer used for growth can absorb or relax this lattice constant difference. In addition, since the difference in coefficient of linear expansion between the single crystal substrate and the compound semiconductor layer is large (especially when an insulating sapphire substrate is used), the generation and growth of crystal defects are further promoted by the thermal stress derived therefrom. Because it tends to be easy to be done, attention is necessary.
[0006]
Conventionally, GaN, which has been used as a material for the buffer layer, has a large lattice constant difference from the substrate, and thus tends to cause crystal defects near the boundary between the buffer layer and the substrate. On the other hand, although the lattice constant difference between AlN and the substrate is smaller than that of GaN, on the other hand, the lattice mismatch rate with the element layer made of a GaN-based compound semiconductor increases, so the boundary between the buffer layer and the element layer or the element Crystal defects are likely to occur in the layer. As disclosed in Patent Document 2, a method using a buffer layer in which GaN layers and AlN layers are alternately stacked, or a buffer layer made of a mixed crystal of GaN and AlN is also conceivable. As long as the combination with AlN is used, it is difficult to avoid the occurrence of crystal defects due to lattice mismatch between the buffer layer and the element layer.
[0007]
An object of the present invention is to provide a semiconductor element structure and a method for manufacturing the same, in which crystal defects are unlikely to occur at the boundary between a buffer layer and an element layer, and thus a high-quality element layer can be stably realized.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above-described problems, the compound semiconductor device of the present invention is based on In x Ga y Al 1-xy N (where 0 ≦ x <1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1). The semiconductor element layer to be formed is connected to a SiC layer through a buffer layer in which at least a part of the layer thickness direction is an AlInN layer made of Al 1-a In a N (a is an InN mixed crystal ratio, 0 <a <1). And epitaxially grown on a single crystal substrate made of either sapphire or sapphire,
In the AlInN layer in the buffer layer, the InN mixed crystal ratio a increases stepwise or continuously from the boundary on the single crystal substrate side toward the boundary on the semiconductor element layer side,
The buffer layer is arranged such that an auxiliary layer in which GaN layers and InGaAlN layers are alternately stacked is disposed between the AlInN layer and the semiconductor element layer so as to be in contact with the AlInN layer and the semiconductor element layer. Features. By growing the semiconductor element layer using such a buffer layer, a high-quality element layer having a low crystal defect density can be stably realized.
In the AlInN layer in the buffer layer, the InN mixed crystal ratio a increases stepwise (preferably three or more steps) or continuously from the boundary on the single crystal substrate side to the boundary on the semiconductor element layer side. By forming the buffer layer, the lattice constant gradually increases from the single crystal substrate side to the semiconductor element layer side in the layer thickness direction, and the lattice constant does not increase discontinuously. As a result, stress based on the change in lattice constant is less likely to concentrate at a specific position in the layer thickness direction of the buffer layer, and crystal defects can be prevented more effectively.
Further, the buffer layer is arranged such that an auxiliary layer in which GaN layers and InGaAlN layers are alternately stacked is in contact with the AlInN layer and the semiconductor element layer between the AlInN layer and the semiconductor element layer. By forming the semiconductor element layer, it is possible to more effectively prevent a problem that a crystal defect due to lattice mismatch with the substrate occurs in the semiconductor element layer.
[0009]
The AlInN layer in the buffer layer can be formed so that the InN mixed crystal ratio a is larger at the boundary side with the semiconductor element layer than at the boundary side with the single crystal substrate, and the semiconductor is interposed through the buffer layer. The element layer can be epitaxially grown on a single crystal substrate made of any one of SiC, sapphire, and silicon.
[0010]
According to the above configuration, when heteroepitaxially growing a semiconductor element layer made of In x Ga y Al 1-xy N on a single crystal substrate made of SiC, sapphire, or silicon, the boundary with the semiconductor element layer On the side, an Al 1-a In a N layer formed so that the InN mixed crystal ratio a is larger than the boundary side with the single crystal substrate is used as a buffer layer. InN has a larger lattice constant than GaN, and by adjusting the InN mixed crystal ratio a, a buffer is provided on the boundary side with the semiconductor element layer as compared with a conventional buffer layer combining GaN, AlN, or a combination thereof. The lattice constant of the layer can be made closer to the lattice constant of the semiconductor element layer. As a result, crystal defects are less likely to occur at the boundary between the buffer layer and the element layer, and as a result, a high-quality element layer can be stably realized. In particular, when an SiC single crystal substrate is used, the lattice constant difference from the single crystal substrate can be effectively reduced by reducing the substrate-side InN mixed crystal ratio a of the buffer layer.
[0011]
The semiconductor element layer made of In x Ga y Al 1-xy N has a lattice constant, a band gap energy, and an energy ratio adjusted by adjusting the InN mixed crystal ratio x, the GaN mixed crystal ratio y, and the AlN mixed crystal ratio 1-xy. Can be adjusted to a desired value. For example, in a HEMT structure using a GaN-based compound, many attempts have been made to heterojunction a GaN channel layer to an n-type doped GaAlN electron supply layer in order to form a two-dimensional electron gas layer. In addition, the electron supply layer may be formed as an InGaAlN layer in order to further enhance lattice matching with the GaN channel layer.
[0012]
When the semiconductor element layer has the InN mixed crystal ratio x, the GaN mixed crystal ratio y, and the AlN mixed crystal ratio 1-xy adjusted so that the lattice constant difference with GaN is within ± 1%. (For example, y = 1 and x = 0 in the case of a GaN channel layer) In the AlInN layer in the buffer layer, the portion including the boundary with the semiconductor element layer has an InN mixed crystal ratio a of 0.1 or more and 0. By using Al 1-a In a N adjusted to .25 or less, the semiconductor element layer and the lattice constant can be substantially matched at the boundary. Thereby, the generation of crystal defects in the vicinity of the boundary between the buffer layer and the semiconductor element layer can be more effectively prevented.
[0013]
The AlInN layer in the buffer layer is formed such that the InN mixed crystal ratio a increases stepwise (preferably three or more steps) or continuously from the boundary on the single crystal substrate side toward the boundary on the semiconductor element layer side. It is desirable. By doing so, the lattice constant of the buffer layer increases gradually from the single crystal substrate side to the semiconductor element layer side in the layer thickness direction, and the lattice constant does not increase discontinuously. As a result, stress based on the change in lattice constant is less likely to concentrate at a specific position in the layer thickness direction of the buffer layer, and crystal defects can be prevented more effectively.
[0014]
In the present invention, a buffer layer having an AlInN layer can also be used in order to improve the crystallinity of the semiconductor element layer. In this case, the AlInN layer may be amorphous.
[0015]
In addition, the method for producing the compound semiconductor element of the present invention includes:
On the single crystal substrate made of either SiC or sapphire, at least a partial section in the layer thickness direction is Al 1-a In a N (where a is an InN mixed crystal ratio, 0 <a <1), and the single crystal substrate Epitaxially growing a buffer layer having an AlInN layer in which the InN mixed crystal ratio a is increased stepwise or continuously from the side boundary, and an auxiliary layer in which a GaN layer and an InGaAlN layer are alternately stacked on the AlInN layer And a process of
A step of epitaxially growing a semiconductor element layer made of In x Ga y Al 1-xy N (where 0 ≦ x <1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) on the buffer layer;
It is characterized by including. By growing a semiconductor element layer using such a buffer layer, a compound semiconductor element having a high-quality element layer with a low crystal defect density can be easily and stably manufactured.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example in which the semiconductor element of the present invention is configured as a HEMT. The HEMT 200 is obtained by forming a semiconductor element layer 103 on a single crystal substrate 101 made of SiC through a buffer layer 102 by a heteroepitaxial growth method using a MOVPE method. Note that the single crystal substrate 101 may be a sapphire substrate or a silicon substrate instead of the SiC substrate.
[0017]
The semiconductor element layer 103 functions from the side close to the buffer layer 102 as a contact layer with an undoped GaN channel layer 119, an undoped GaAlN spacer layer 105, a GaAlN electron supply layer 110 doped n-type with Si or the like, and an electrode. N-type GaN layers 111 to be laminated in this order. A drain electrode 106 and a source electrode 107 are formed on the n-type GaN layer 111, and a gate electrode 108 is formed on the n-type GaAlN layer 110 exposed in a region where the n-type GaN layer 111 is not formed. The drain electrode 106 and the source electrode 107 are made of a metal (for example, Ti / Al) that forms an ohmic junction with the n-type GaN layer 111, and the gate electrode 108 is Schottky (with the n-type GaAlN electron supply layer 110). Each of them is made of a metal (for example, Pd / Au) forming a Schottky junction. The GaAlN spacer layer 105 is for preventing impurities such as Si as an n-type dopant from diffusing into the already formed GaN channel layer 119 when the n-type GaAlN electron supply layer 110 is grown. .
[0018]
A two-dimensional electron gas (2DEG) layer with high electron mobility is formed between the GaAlN spacer layer 105 and the GaN channel layer 119. Then, a voltage is applied between the drain electrode 106 and the source electrode 107, and the current value is controlled by the gate electrode 108, while energization is performed between the drain electrode 106 and the source electrode 107 via the GaN channel layer 119. Can be done.
[0019]
Next, in the buffer layer 102, at least a portion including the boundary with the semiconductor element layer 103 is Al 1−a In a N (a is an InN mixed crystal ratio, 0 <a <1), and the semiconductor element layer 103 The InN mixed crystal ratio a is larger on the boundary side than that on the boundary side with the SiC single crystal substrate 101. In the present embodiment, as shown in FIG. 2, each of InN mixed crystal ratios a1, a2,..., An (where a1 <a2 <... <An) is made of Al 1-a In a N. Unit layers 2-1, 2-2,..., 2-n are laminated in this order from the substrate 101 side. Thereby, for example, as shown in FIG. 3, the buffer layer 102 has a semiconductor element layer in which the InN mixed crystal ratio a in the layer thickness direction is a value a1 (0 in the present embodiment) on the boundary side with the substrate 101. The distribution increases stepwise toward the value an on the 103 side (0.17 in this embodiment). The number n of unit layers is 3 or more, and the thickness of each unit layer is appropriately determined according to the number of unit layers so that the layer thickness of the buffer layer 102 is 50 nm to 200 nm, for example.
[0020]
Hereinafter, the manufacturing method of said HEMT200 is demonstrated. The buffer layer 102 and the semiconductor element layer 103 can be formed by a vapor phase growth method using a known MOVPE method or MBE (Molecular Beam Epitaxy) method. When the MOVPE method is employed, the following can be used as the source gas. Ga source: trimethylgallium (TMGa), triethylgallium (TEGa), etc. In source: trimethylindium (TMIn), triethylindium (TEIn), etc.
-Al source; trimethylaluminum (TMAl), triethylaluminum (TEAl), etc .;
N source: ammonia (NH 3 ), etc.
Moreover, the following can be used for dopant gas used as a p-type dopant source and an n-type dopant source.
Mg source: biscyclopentadienyl magnesium (Cp 2 Mg), etc.
-Si source: silicon hydride such as silane;
In this embodiment, Si and Mg are used as dopant elements, but group IV elements such as C, Ge, and Sn are used as n-type dopants, and group II elements such as Ca, Sr, and Zn are used as p-type dopants. Elements can be used.
Each of the above source gases is supplied into a reaction vessel in which the substrate 101 is disposed in a form that is appropriately diluted with a carrier gas (for example, nitrogen gas).
[0021]
Specifically, the buffer layer 102 shown in FIG. 2 is grown on the main surface of the SiC single crystal substrate (having the crystal main axis [0001]) by using the MOVPE method. Each of the unit layers 2-1, 2-2,..., 2-n of the buffer layer 102 has a flow rate ratio of the organometallic gas serving as the In source and Al source for each layer according to the difference in the InN mixed crystal ratio a. Control is performed in a stepwise manner by a mass flow controller or the like. Note that at least the first one or more layers of the buffer layer 102 may be a polycrystalline layer or an amorphous layer. In addition, it is desirable that the last layer or the plurality of unit layers of the buffer layer 102 be a single crystal suitable for epitaxial growth of the semiconductor element layer 103 (the crystallinity of the unit layer is improved sequentially with repeated formation). To do).
[0022]
From the viewpoint of improving crystallinity, InN is desirably grown at a relatively low temperature (eg, 400 ° C. or more and 900 ° C. or less), and AlN is desirably grown at a relatively high temperature (eg, 900 ° C. or more and 1100 ° C. or less). It is said that. Therefore, it is desirable that the buffer layer 2 made of the mixed crystal of both is grown at a temperature range between 500 ° C. and 1000 ° C., which is an intermediate temperature range.
[0023]
Next, when the formation of the buffer layer 102 is finished, the GaN channel layer 119, the GaAlN spacer layer are continuously adjusted in the reaction vessel by adjusting the flow rate ratio of the organic metal gas serving as the source gas and the dopant gas for each layer. 105, GaAlN electron supply layer 110 and n-type GaN layer 111 are epitaxially grown sequentially. Thereafter, a part of the n-type GaN layer 111 is partially removed by photolithography or the like, the gate electrode 108 is formed on the exposed GaAlN electron supply layer 110, and the drain electrode 106 and the source electrode are formed on the remaining n-type GaN layer 111. 107 is formed. After that, dicing together with the substrate 101 to form a chip, and resin molding together with a lead frame conducting to each electrode, a final HEMT 200 is obtained.
[0024]
In the HEMT 200 obtained by the above method, the semiconductor element layer 103 is composed of In x Ga y Al 1-xy N having a lattice constant difference with GaN within ± 1%. In the buffer layer 102, the unit layer 2-n (FIG. 2) in contact with the semiconductor element layer 103 is made of Al 1-a In a N having an InN mixed crystal ratio a of 0.1 or more and 0.25 or less. The unit layer 2-n has substantially the same lattice constant as that of the semiconductor element layer 103, and can effectively prevent generation of crystal defects near the boundary between the buffer layer 102 and the semiconductor element layer 103. Further, the unit layer 2-1 (FIG. 2) in contact with the SiC single crystal substrate 101 of the buffer layer 102 is an Al 1-a In a N having an InN mixed crystal ratio a of 0, that is, an AlN layer, so that an SiC single layer is obtained. It is possible to effectively suppress the occurrence of crystal defects near the boundary with the SiC single crystal substrate 101 by reducing the lattice constant difference with the crystal substrate 101.
[0025]
Hereinafter, various modifications of the present invention will be described.
The InN mixed crystal ratio a of the buffer layer 102 may be continuously changed in the layer thickness direction as shown in FIG. In order to form such a buffer layer 102, the flow rate ratio of the organometallic gas serving as the In source and the Al source may be controlled to be continuously changed by a mass flow controller or the like during growth by the MOVPE method.
[0026]
As shown in FIG. 5, the buffer layer 102 has an InN mixed crystal ratio near the boundary with the substrate (single crystal substrate) as a1, and an InN mixed crystal ratio near the boundary with the semiconductor element layer an (wherein, an> a1), the distribution of the InN mixed crystal ratio a in the layer thickness direction increases and decreases from the single crystal substrate side toward the semiconductor element layer side while repeatedly increasing and decreasing with a fluctuation range smaller than an-a1. It can also be formed to show a tendency. When a layer having a higher InN mixed crystal ratio is formed on the preceding layer toward the semiconductor element layer side, the lattice constant is increased by an increment of the InN mixed crystal ratio. Stress acts. When the tensile stress level is high, crystal defects such as cracks and peeling are likely to occur between adjacent layers. Therefore, after a layer having a high InN mixed crystal ratio is formed, if a layer having a low InN mixed crystal ratio with a reduced lattice constant is grown on the layer, the above-mentioned high InN mixed crystal ratio is increased by the compressive stress caused by the layer. The tensile stress due to the layers is offset, and the generation of crystal defects between the layers can be made more difficult to occur. Specifically, the buffer layer of FIG. 5 has a structure in which a plurality of unit layers each having a constant InN mixed crystal ratio are laminated in such a manner that the InN mixed crystal ratio alternately increases and decreases toward the semiconductor element layer side. It has become.
[0027]
Further, in the above embodiment, the buffer layer 2 is almost entirely configured as an AlInN layer except that the vicinity of the boundary with the substrate 101 is AlN, and the AlInN layer is in contact with the semiconductor element layer. As shown in FIG. 6, the buffer layer is formed as having an auxiliary layer in which a GaN layer and an InGaAlN layer are alternately stacked between the AlInN layer and the semiconductor element layer. You can also. As a result, it is possible to more effectively prevent the semiconductor element layer from having a crystal defect due to lattice mismatch with the substrate.
[0028]
In the embodiment described above, the compound semiconductor element is configured as a HEMT. However, the present invention is also applied to other ultrahigh-speed transistors such as MESFET (Metal-Semiconductor Field Effect Transistor) and HBT (Hetero Bipolar Transistor). You can also. Further, the compound semiconductor element can be configured as a light emitting element as shown in FIG. The light-emitting element 1 (shown in a schematic cross section of the main part) is formed of In x Ga y Al 1-x- via a buffer layer 2 on a sapphire substrate (hereinafter also simply referred to as a substrate) 1 as a single crystal substrate. The semiconductor element layer 50 made of yN (where 0 ≦ x <1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) is formed. The buffer layer 2 is configured in the same manner as the buffer layer 102 shown in FIG. 2, FIG. 3, FIG. 4, or FIG. The main part of the semiconductor element layer 50 is composed of an In a Ga b Al 1-ab N active layer (non-doped) 5, a p-type In x Ga y Al 1-xy N clad layer (p-type dopant). Is sandwiched between 6 and n-type In x Ga y Al 1-xy N layer (where n-type dopant is Si: hereinafter also referred to as n-type cladding layer) 4, for example. This is a light emitting layer portion 24 having a double hetero structure. In this embodiment, the p-type cladding layer 6 and the n-type cladding layer 4 contain AlN, and form a potential barrier that advantageously acts on the GaN active layer 5 to confine carriers in the active layer 5. ing.
[0029]
In this embodiment, light is extracted from the p-type cladding layer 6 side. On the p-type cladding layer 6, a current diffusion layer (p-type dopant concentration higher than that of the p-type cladding layer 6) ( 7 is formed, and an electrode 9 for light emission drive is provided on the current diffusion layer 7. On the other hand, between the buffer layer 2 and the n-type cladding layer 4, a backside low-resistance layer having a higher n-type dopant concentration than the n-type cladding layer 4 (for example, made of GaN: a part of the semiconductor element layer 50) 3) is arranged. The back surface low resistance layer 3 extends outward in the in-plane direction of the light emitting layer portion 24 on the main surface of the substrate 1, and an electrode 15 for light emission driving is provided in the extending region.
[0030]
In the light emitting device 100 of FIG. 7, the sapphire substrate 1 is incorporated as part of the device structure, but the insulating sapphire substrate 1 is peeled off and an electrode is formed on the peeled surface side of the light emitting layer portion. The formed element structure can also be used.
[0031]
Further, a SiC substrate may be used instead of the sapphire substrate 1. Since the SiC substrate has high conductivity, the back surface low resistance layer 3 is omitted, while an electrode 15 is provided on the back surface of the SiC substrate, and energization for light emission driving is performed by forming a conduction path in the thickness direction of the SiC substrate. It is possible to do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a HEMT which is an example of a compound semiconductor device of the present invention.
2 is a schematic cross-sectional view showing details of a buffer layer in the HEMT of FIG. 1. FIG.
3 is a schematic diagram showing a layer thickness direction distribution of InN mixed crystal ratio in the buffer layer of FIG. 2; FIG.
FIG. 4 is a schematic diagram showing a first modification of the distribution in the layer thickness direction of the InN mixed crystal ratio of the buffer layer.
FIG. 5 is a schematic diagram showing a second modification of the distribution in the layer thickness direction of the InN mixed crystal ratio of the buffer layer.
FIG. 6 is a schematic diagram showing still another modified example of the buffer layer.
FIG. 7 is a cross-sectional view schematically showing a light emitting element which is another example of the compound semiconductor element of the present invention.
[Explanation of symbols]
1 Sapphire substrate (single crystal substrate)
2 Buffer layers 50 and 103 Semiconductor element layer 100 Light emitting element (compound semiconductor element)
101 SiC single crystal substrate 200 HEMT (compound semiconductor device)

Claims (2)

InGaAl1−x−yN(ただし、0≦x<1、0≦y≦1、0<x+y≦1)よりなる半導体素子層が、層厚方向の少なくとも一部区間がAl1−aInN(aはInN混晶比、0<a<1)よりなるAlInN層とされたバッファ層を介して、SiC及びサファイアのいずれかよりなる単結晶基板上にエピタキシャル成長されてなり、
前記バッファ層中の前記AlInN層は、前記単結晶基板側の境界から前記半導体素子層側の境界に向けて、InN混晶比aが段階的又は連続的に増加し、
前記バッファ層は、前記AlInN層と前記半導体素子層との間に、GaN層と、InGaAlN層とが交互に積層された補助層が、前記AlInN層及び前記半導体素子層と接するように配置されていることを特徴とする化合物半導体素子。
The semiconductor element layer made of In x Ga y Al 1-xy N (where 0 ≦ x <1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) has at least a partial section in the layer thickness direction of Al 1. -A In a N (a is an InN mixed crystal ratio, 0 <a <1), and is epitaxially grown on a single crystal substrate made of either SiC or sapphire through a buffer layer made of an AlInN layer,
In the AlInN layer in the buffer layer, the InN mixed crystal ratio a increases stepwise or continuously from the boundary on the single crystal substrate side toward the boundary on the semiconductor element layer side,
The buffer layer is disposed between the AlInN layer and the semiconductor element layer such that an auxiliary layer in which a GaN layer and an InGaAlN layer are alternately stacked is in contact with the AlInN layer and the semiconductor element layer. compound semiconductor device, characterized in that there.
SiC及びサファイアのいずれかよりなる単結晶基板上に、層厚方向の少なくとも一部区間がAl1−aInN(aはInN混晶比、0<a<1)であり前記単結晶基板側の境界からInN混晶比aを段階的又は連続的に増加させたAlInN層と、このAlInN層上にGaN層とInGaAlN層とが交互に積層された補助層と、を有するバッファ層をエピタキシャル成長する工程と、
InGaAl1−x−yN(ただし、0≦x<1、0≦y≦1、0<x+y≦1)よりなる半導体素子層を、前記バッファ層上にエピタキシャル成長する工程と、
を含むことを特徴とする化合物半導体素子の製造方法。
On the single crystal substrate made of either SiC or sapphire, at least a partial section in the layer thickness direction is Al 1-a In a N (where a is an InN mixed crystal ratio, 0 <a <1), and the single crystal substrate Epitaxially growing a buffer layer having an AlInN layer in which the InN mixed crystal ratio a is increased stepwise or continuously from the side boundary, and an auxiliary layer in which a GaN layer and an InGaAlN layer are alternately stacked on the AlInN layer And a process of
A step of epitaxially growing a semiconductor element layer made of In x Ga y Al 1-xy N (where 0 ≦ x <1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) on the buffer layer;
The manufacturing method of the compound semiconductor element characterized by the above-mentioned.
JP2003022685A 2003-01-30 2003-01-30 Compound semiconductor device and manufacturing method thereof Expired - Lifetime JP4458223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022685A JP4458223B2 (en) 2003-01-30 2003-01-30 Compound semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022685A JP4458223B2 (en) 2003-01-30 2003-01-30 Compound semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004235473A JP2004235473A (en) 2004-08-19
JP4458223B2 true JP4458223B2 (en) 2010-04-28

Family

ID=32951695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022685A Expired - Lifetime JP4458223B2 (en) 2003-01-30 2003-01-30 Compound semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4458223B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661708B1 (en) * 2004-10-19 2006-12-26 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
JP2006351640A (en) * 2005-06-13 2006-12-28 Furukawa Co Ltd Group iii nitride semiconductor substrate
JP4482490B2 (en) * 2005-06-13 2010-06-16 古河機械金属株式会社 Group III nitride semiconductor substrate and group III nitride semiconductor substrate manufacturing method
JP4939014B2 (en) 2005-08-30 2012-05-23 国立大学法人徳島大学 Group III nitride semiconductor light emitting device and method for manufacturing group III nitride semiconductor light emitting device
JP5116977B2 (en) * 2006-02-17 2013-01-09 古河電気工業株式会社 Semiconductor element
JP4908886B2 (en) * 2006-03-23 2012-04-04 日本電信電話株式会社 Semiconductor device
JP2008085123A (en) * 2006-09-28 2008-04-10 Covalent Materials Corp Substrate for compound semiconductor device, and the compound semiconductor device using the same
JP5466505B2 (en) * 2007-06-27 2014-04-09 ルネサスエレクトロニクス株式会社 FIELD EFFECT TRANSISTOR AND MULTILAYER EPITAXIAL FILM FOR MANUFACTURING THE FIELD EFFECT TRANSISTOR
JP4514063B2 (en) * 2007-08-30 2010-07-28 古河電気工業株式会社 ED type inverter circuit and integrated circuit element
JP5477685B2 (en) * 2009-03-19 2014-04-23 サンケン電気株式会社 Semiconductor wafer, semiconductor element and manufacturing method thereof
KR101384071B1 (en) * 2009-03-20 2014-04-10 주식회사 엘지실트론 Nitride semiconductor substrate, method for fabricating the substrate and light emitting diode including the substrate
JP2011049271A (en) * 2009-08-26 2011-03-10 Sanken Electric Co Ltd Semiconductor apparatus
JP2012004283A (en) * 2010-06-16 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JP5672926B2 (en) * 2010-10-08 2015-02-18 富士通株式会社 Compound semiconductor device and manufacturing method thereof
KR101790054B1 (en) * 2011-05-13 2017-11-20 엘지이노텍 주식회사 Light emitting device
TWI544628B (en) 2011-05-16 2016-08-01 Renesas Electronics Corp Field effect transistor and semiconductor device
JP5495069B2 (en) * 2011-05-17 2014-05-21 古河電気工業株式会社 Semiconductor device and manufacturing method thereof
KR101824879B1 (en) * 2011-07-29 2018-03-14 엘지이노텍 주식회사 Light emitting device
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9583574B2 (en) * 2012-09-28 2017-02-28 Intel Corporation Epitaxial buffer layers for group III-N transistors on silicon substrates
JP2015095605A (en) * 2013-11-13 2015-05-18 住友電気工業株式会社 Semiconductor device and semiconductor substrate
CN116978997B (en) * 2023-09-25 2023-12-15 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Also Published As

Publication number Publication date
JP2004235473A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4458223B2 (en) Compound semiconductor device and manufacturing method thereof
CN1249820C (en) Nitride semiconductor device and manufacture thereof
JP3836697B2 (en) Semiconductor element
JP5100900B2 (en) Semiconductor light emitting device
TWI476947B (en) An epitaxial wafer, a gallium nitride-based semiconductor device, a gallium nitride-based semiconductor device, and a gallium oxide wafer
US8772831B2 (en) III-nitride growth method on silicon substrate
US8835983B2 (en) Nitride semiconductor device including a doped nitride semiconductor between upper and lower nitride semiconductor layers
JP4332720B2 (en) Method for manufacturing plate-like substrate for forming semiconductor element
US20130140525A1 (en) Gallium nitride growth method on silicon substrate
JP2005167275A (en) Semiconductor device
JP2008205514A (en) Iii-v nitride semiconductor device
JP2008182284A (en) Light emitting device using nitride semiconductor and fabrication method of the same
JPWO2005015642A1 (en) Semiconductor device and manufacturing method thereof
WO2008012877A1 (en) COMPOUND SEMICONDUCTOR DEVICE EMPLOYING SiC SUBSTRATE AND PROCESS FOR PRODUCING THE SAME
WO2012137781A1 (en) Semiconductor stacked body, method for manufacturing same, and semiconductor element
WO2013168371A1 (en) Epitaxial substrate, semiconductor device, and semiconductor device manufacturing method
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
JP5013238B2 (en) Semiconductor multilayer structure
JP4725763B2 (en) Method for manufacturing plate-like substrate for forming semiconductor element
US20100051939A1 (en) Nitride based semiconductor device and method of manufacturing the same
JP6089122B2 (en) Nitride semiconductor laminate, method for manufacturing the same, and nitride semiconductor device
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP2000188260A (en) Nitride-based compound semiconductor element, crystal growth of the nitride-based compound semiconductor, and manufacture of the element
JPH05243613A (en) Light-emitting device and its manufacture
JP3987360B2 (en) Epitaxial substrate, epitaxial substrate for electronic device, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4458223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term