JP2004047555A - Polymer ptc compound and polymer ptc element - Google Patents

Polymer ptc compound and polymer ptc element Download PDF

Info

Publication number
JP2004047555A
JP2004047555A JP2002200107A JP2002200107A JP2004047555A JP 2004047555 A JP2004047555 A JP 2004047555A JP 2002200107 A JP2002200107 A JP 2002200107A JP 2002200107 A JP2002200107 A JP 2002200107A JP 2004047555 A JP2004047555 A JP 2004047555A
Authority
JP
Japan
Prior art keywords
polymer ptc
polymer
ptc element
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002200107A
Other languages
Japanese (ja)
Inventor
Mitsumune Kataoka
片岡 光宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002200107A priority Critical patent/JP2004047555A/en
Publication of JP2004047555A publication Critical patent/JP2004047555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve response characteristics for temperature rise in a polymeric PTC element in a constitution with electrodes are allocated on both surfaces of a sheet-type molded body of the polymeric PTC composition, having dispersed conductive particles consisting of metal carbide to a binder containing crystal polymers. <P>SOLUTION: Thermal conductivity of the polymer PTC composition can be improved and the response characteristic for temperature rise as the polymer PTC element can also be improved by adding, as in aluminum nitride, the particles of a material, having a thermal conductivity which is higher than that of metal carbide, to the polymer PTC composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特定の温度領域に達した際に、急激に抵抗が上昇する正温度特性、いわゆるPTC(Positive Temperature Coefficient)特性を有するPTC素子に関し、特に結晶性高分子に導電性粉末を充填したPTC組成物からなる成形体に、電極を設けた構造の高分子PTC素子に関するものである。
【0002】
【従来の技術】
特定の温度領域において、電気抵抗が急激に増大する正の温度特性を示すPTC素子は、自動的に温度を制御するヒータや、自己復帰型の過電流保護素子などとして多用されている。そして、PTC素子に用いる組成物としては、酸化イットリウム(Y)を微量添加したチタン酸バリウム(BaTiO)などのセラミックス系PTC組成物、カーボンブラックなどの導電性粒子を結晶性高分子中に分散した高分子PTC組成物が知られている。
【0003】
セラミックス系PTC組成物を用いたPTC素子では、キュリー点での急激な抵抗値上昇を利用しているが、定常状態における抵抗率が、約100Ω・cmと高いために、数A程度の比較的大きな電流を流すことができない。このことは、セラミックス系PTC組成物を用いたPTC素子が、過電流保護素子として利用するのが困難であることを意味している。また、セラミックス系PTC組成物は、所望の形状に成形、加工するのに多くの工程を要し、耐衝撃性に劣るという問題がある。
【0004】
これに対し、高分子PTC組成物を用いた高分子PTC素子では、室温における抵抗が低いために、過電流保護素子に適していて、耐衝撃性が優れ、成形、加工が容易である。
【0005】
高分子PTC素子の動作原理は、結晶性高分子の結晶融点での大きな熱膨張を利用して、室温でネットワークを形成している導電性粉末の粒子を切り離すことによるものである。このために、規定値以上の電流により過度に発熱した際に、結晶融点近傍の温度で、抵抗率が急激に上昇し、室温に戻ると、導電性粉末のネットワークが再形成され、抵抗率も低下する。
【0006】
そして、高分子PTC素子の一般的な製造方法には、ロールなどを用いて結晶性高分子に導電性粉末を分散させて高分子PTC組成物を得、これを加熱プレスやロールなどでシート成形し、金属箔などからなる電極を圧着した後、所要の形状に打ち抜くという、乾式法がある。
【0007】
また、高分子PTC組成物のシートを得る方法として、結晶性高分子の溶液に導電性粉末を分散させたペーストを用いて成膜する湿式法もあり、この場合は、電極を構成する金属箔の上に成膜して、成膜した側を対向させて一体化するという方法もある。
【0008】
そして、近年の二次電池を始めとする、電気電子機器やそれらに用いられる部品の小型化が進むに従い、高分子PTC素子についても、抵抗の低減が要求され、導電性粉末として、カーボン系に替えて、金属や金属炭化物が用いられていて、その中でも炭化チタンのような金属炭化物が、導電性が高いことや凝集が生じ難いことなどから多用される傾向にある。
【0009】
しかし、二次電池を始めとする部品や、電気機器、電子機器の小型化が進むに従い、高分子PTC素子自体が過電流検出機能と温度検出機能を兼ね備え、かつ、より低い抵抗率を持つことが、新たに要求されている。
【0010】
ところが、高分子PTC組成物は、熱伝導性が低い高分子材料のマトリックスに、導電性粉末を分散させているので、元来熱伝導性が低い上に、従来のカーボン系導電性粉末に替えて、金属系導電性粉末を用いることで、熱伝導性がより低下することが避けられない。ちなみに、高分子PTC組成物に導電性粉末として用いられる炭化チタンの熱伝導率は、約20W/m・Kであり、カーボン系材料の約1/5である。
【0011】
【発明が解決しようとする課題】
熱伝導性の低下は、急激な温度変化に対応して、PTC素子の電気抵抗上昇、即ちスイッチング動作が必ずしも確実に起こらないことに繋がる。つまり、温度検出機能の低下に直結することになる。そこで、本発明の技術的な課題は、常温での電気抵抗値が小さく、かつ、温度変化に対する応答性が高い高分子PTC組成物、及びそれを用いた高分子PTC素子を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、前記の課題解決のため、高分子PTC組成物に、熱伝導率が高く、かつ、高分子材料への分散性が高い、粉末を添加することを検討した結果なされたものである。
【0013】
即ち、本発明は、結晶性高分子を含む結合材に金属系導電性粉末を分散してなる高分子PTC組成物に、粉砕前のバルクの熱伝導率が10W/m・K以上の無機化合物の粉末を添加してなることを特徴とする高分子PTC組成物である。
【0014】
また、本発明は、前記の高分子PTC組成物において、前記無機化合物の粉末の添加量は、前記結合材100重量部に対して1〜40重量部であることを特徴とする高分子PTC組成物である。
【0015】
また、本発明は、前記の高分子PTC組成物のシート状成形体の両面に、電極が配置されてなることを特徴とする高分子PTC素子である。
【0016】
本発明の高分子PTC素子は、熱伝導率が高い粉末を含むため、温度上昇に対する応答性が、従来のものよりも向上することができる。本発明に用いる無機化合物の熱伝導率を、粉砕前の状態で、10W/m・K以上に限定したのは、熱伝導率がこれに満たない場合は、その効果をほとんど期待できないからである。
【0017】
また、本発明で無機化合物の混合率を、結合材が100重量部に対して1〜40重量部に限定したのは、混合率がこの範囲に満たない場合では、その効果がほとんど期待できず、この範囲を超える領域では、常温における抵抗など、必要な電気的特性を有する高分子PTC素子が得られないからである。
【0018】
そして、本発明の目的から、無機化合物の熱伝導率は、なるべく高いことが望ましく、具体的には、100W/m・K以上の熱伝導率を有する窒化アルミニウムなどが望ましい。また、近年、窒化ケイ素セラミックを特殊な条件で焼結することで、150W/m・Kという熱伝導率を発現することが見出され、注目されているが、このような材料も好適である。これらの材料は、高分子PTC素子に要求される特性や、製造コストを勘案して、適宜選択する。
【0019】
【発明の実施の形態】
次に、具体的な例を挙げ、本発明の実施の形態について説明する。
【0020】
融点が137℃の高密度ポリエチレン(三菱化学製、商品名;HY540)を100重量部、平均粒径が1.5μmの炭化チタン粉末(日本新金属製)を525重量部、やはり平均粒径が1.5μmの高純度窒化アルミニウム(トクヤマ製;商品名;TypeH、以下AlNと記す)粉末を30重量部、それぞれ秤量し、高密度ポリエチレンの融点以上の160℃に温度を設定したロールを用いて均一になるまで混練し、高分子PTC組成物を得た。
【0021】
次いで、片面を粗面加工した厚さ25μmのニッケル箔を準備し、粗面化加工を施した側を対向させた状態で、間に前記導電性組成物を挟み、厚さ300μmになるように200℃で10分熱プレスを施して電極を形成した。電極を形成した後、5mm×10mmの大きさに切断し、電極にリード線を接合して本発明の高分子PTC素子の試料とした。
【0022】
そして、前記の高分子PTC素子の試料を、100個調製し、特性の評価を行った。評価項目は、室温における初期抵抗値と温度応答性である。温度応答性の評価は、試料を80℃及び100℃の温度に保持したオイルバスに投入し、抵抗値が10Ωに到達するまでの時間を測定するという方法で行った。また、比較に供するために、AlN粉末を加えなかった他は、前記とまったく同様にして、高分子PTC素子の比較例の試料も調製し、同様に特性を評価した。表1は、これら本発明と比較例の試料の評価結果をまとめて示したものである。
【0023】
【表1】

Figure 2004047555
【0024】
表1に示した結果によれば、本発明の試料の抵抗値の平均値は、17mΩであった。また、その標準偏差は0.2であった。一方、比較例として調製した、AlN粉末を加えていない試料の抵抗値は、平均が17mΩ、標準偏差が0.2であった。また、温度応答性の評価結果は、本発明の試料が、80℃で7.5秒、140℃で4.8秒、比較例の試料が、80℃で8.3秒、140℃で5.5秒と、AlN粉末の添加により、高分子PTC素子の温度応答性に著しい効果が見られた。
【0025】
次に、AlN粉末の混合比の適正値を、検証するためにAlN粉末の混合比を1〜50重量部として検討した結果について説明する。ここでは、平均粒径が1.5μmのAlN(トクヤマ製;商品名;TypeH)粉末を用い、混合比を1重量部、10重量部、20重量部、30重量部、40重量部、50重量部として、融点が137℃の高密度ポリエチレン(三菱化学製 商品名;HY540)を100重量部、平均粒径が1.5μmの炭化チタン粉末(日本新金属製)を525重量部、それぞれ秤量して、高分子PTC組成物を調製した。
【0026】
その後は、前記の場合と同様にして、高分子PTC素子の試料を作製し、抵抗値と温度応答性を評価した。それらの結果を、表2に示した。また、図1には、AlN粉末の混合比について、高分子PTC素子の温度応答性をプロットした結果を示した。
【0027】
【表2】
Figure 2004047555
【0028】
表2及び図1に示したように、AlN粉末の混合比が1重量部でも、温度応答性には明らかな違いが認められる。一方、50重量部の混合比では、40重量部の場合と比較して、温度応答性について顕著な差が認められないばかりでなく、抵抗値が増加する傾向が見受けられ、AlN粉末の混合比の適性値が1〜40重量部であることが分かる。
【0029】
また、ここでは、結合材として高密度ポリエチレン、導電性粉末として炭化チタンを用いた例を示したが、他の材料を用いた場合でも、本発明が効果を奏することは、勿論である。
【0030】
【発明の効果】
以上に説明したように、本発明によれば、金属炭化物系の導電性粉末を用いた場合においても、温度変化に対する応答性が優れた高分子PTC組成物及び高分子PTC素子を得ることが可能となる。
【図面の簡単な説明】
【図1】AlN粉末の混合比について高分子PTC素子の温度応答性をプロットした結果を示す図。
【符号の説明】
1  温度が80℃の結果
2  温度が140℃の結果[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a PTC element having a positive temperature characteristic in which resistance rapidly increases when a specific temperature range is reached, that is, a PTC element having a so-called PTC (Positive Temperature Coefficient) characteristic, in particular, a crystalline polymer filled with conductive powder. The present invention relates to a polymer PTC element having a structure in which electrodes are provided on a molded body made of a PTC composition.
[0002]
[Prior art]
2. Description of the Related Art PTC elements exhibiting a positive temperature characteristic in which electric resistance rapidly increases in a specific temperature range are widely used as heaters for automatically controlling temperature, self-recovering overcurrent protection elements, and the like. Examples of the composition used for the PTC element include ceramic-based PTC compositions such as barium titanate (BaTiO 3 ) to which a small amount of yttrium oxide (Y 2 O 3 ) is added, and conductive particles such as carbon black. Polymer PTC compositions dispersed therein are known.
[0003]
A PTC element using a ceramic-based PTC composition utilizes a sharp increase in resistance at the Curie point. However, since the resistivity in a steady state is as high as about 100 Ω · cm, a relatively small resistance of about several A is required. A large current cannot flow. This means that it is difficult to use a PTC element using a ceramic PTC composition as an overcurrent protection element. In addition, the ceramic-based PTC composition requires many steps for molding and processing into a desired shape, and has a problem of poor impact resistance.
[0004]
On the other hand, a polymer PTC device using a polymer PTC composition has low resistance at room temperature, is suitable for an overcurrent protection device, has excellent impact resistance, and is easy to mold and process.
[0005]
The operation principle of the polymer PTC element is based on the fact that the particles of the conductive powder forming the network at room temperature are separated by utilizing the large thermal expansion at the crystal melting point of the crystalline polymer. For this reason, when excessive heat is generated by a current equal to or higher than the specified value, the resistivity sharply increases at a temperature near the crystal melting point, and when the temperature returns to room temperature, a network of conductive powder is reformed, and the resistivity also increases. descend.
[0006]
In a general method for manufacturing a polymer PTC element, a conductive powder is dispersed in a crystalline polymer using a roll or the like to obtain a polymer PTC composition, which is formed into a sheet by a hot press or a roll. Then, there is a dry method in which an electrode made of a metal foil or the like is pressed and then punched into a required shape.
[0007]
As a method for obtaining a sheet of the polymer PTC composition, there is also a wet method in which a film is formed using a paste in which a conductive powder is dispersed in a solution of a crystalline polymer. In this case, a metal foil constituting an electrode is used. There is also a method in which a film is formed on a substrate, and the film-formed sides are opposed to be integrated.
[0008]
In recent years, as electric and electronic devices such as secondary batteries and components used for them have become smaller, the resistance of polymer PTC elements has also been required to be reduced. Instead, a metal or a metal carbide is used, and among them, a metal carbide such as titanium carbide tends to be frequently used because of its high conductivity and hardly causing aggregation.
[0009]
However, as the miniaturization of components such as secondary batteries, electrical equipment, and electronic equipment progresses, the polymer PTC element itself must have both an overcurrent detection function and a temperature detection function, and have a lower resistivity. Are newly required.
[0010]
However, in the polymer PTC composition, since the conductive powder is dispersed in a matrix of a polymer material having a low thermal conductivity, the thermal conductivity is originally low, and in addition to the conventional carbon-based conductive powder, it can be replaced with a conventional carbon-based conductive powder. Therefore, it is inevitable that the thermal conductivity is further reduced by using the metal-based conductive powder. Incidentally, the thermal conductivity of titanium carbide used as the conductive powder in the polymer PTC composition is about 20 W / m · K, which is about 1/5 of the carbon-based material.
[0011]
[Problems to be solved by the invention]
A decrease in thermal conductivity leads to an increase in the electrical resistance of the PTC element, that is, a switching operation that does not always occur in response to a rapid temperature change. That is, this directly leads to a decrease in the temperature detection function. Therefore, a technical problem of the present invention is to provide a polymer PTC composition having a small electric resistance at room temperature and a high response to a temperature change, and a polymer PTC element using the same. .
[0012]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and has been made as a result of studying the addition of a powder having a high thermal conductivity and a high dispersibility in a polymer material to a polymer PTC composition. .
[0013]
That is, the present invention provides a polymer PTC composition obtained by dispersing a metal-based conductive powder in a binder containing a crystalline polymer, an inorganic compound having a bulk thermal conductivity of 10 W / m · K or more before pulverization. A polymer PTC composition characterized by adding a powder of
[0014]
In addition, the present invention provides the polymer PTC composition, wherein the amount of the inorganic compound powder is 1 to 40 parts by weight based on 100 parts by weight of the binder. Things.
[0015]
Further, the present invention is a polymer PTC element, wherein electrodes are arranged on both surfaces of a sheet-shaped molded body of the polymer PTC composition.
[0016]
Since the polymer PTC element of the present invention contains a powder having a high thermal conductivity, the responsiveness to a temperature rise can be improved as compared with the conventional one. The reason why the thermal conductivity of the inorganic compound used in the present invention is limited to 10 W / m · K or more before the pulverization is that when the thermal conductivity is less than this, the effect is hardly expected. .
[0017]
In the present invention, the mixing ratio of the inorganic compound is limited to 1 to 40 parts by weight with respect to 100 parts by weight of the binder. When the mixing ratio is less than this range, the effect is hardly expected. This is because a polymer PTC element having necessary electric characteristics such as resistance at room temperature cannot be obtained in a region exceeding this range.
[0018]
For the purpose of the present invention, it is desirable that the thermal conductivity of the inorganic compound be as high as possible, specifically, aluminum nitride having a thermal conductivity of 100 W / m · K or more is desirable. Also, in recent years, it has been found that by sintering silicon nitride ceramics under special conditions, a thermal conductivity of 150 W / m · K is developed, which has attracted attention, but such materials are also suitable. . These materials are appropriately selected in consideration of the characteristics required for the polymer PTC element and the manufacturing cost.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to specific examples.
[0020]
100 parts by weight of high-density polyethylene having a melting point of 137 ° C. (manufactured by Mitsubishi Chemical Corporation; trade name: HY540); 525 parts by weight of titanium carbide powder (manufactured by Nippon Shinkin) having an average particle size of 1.5 μm; 30 parts by weight of 1.5 μm high-purity aluminum nitride (manufactured by Tokuyama; trade name; TypeH; hereinafter, referred to as AlN) powder was weighed, and each was weighed using a roll whose temperature was set to 160 ° C. which was equal to or higher than the melting point of high-density polyethylene. The mixture was kneaded until it became uniform to obtain a polymer PTC composition.
[0021]
Next, a nickel foil having a thickness of 25 μm obtained by roughening one surface is prepared, and the conductive composition is interposed therebetween in a state where the roughened side faces each other so that the thickness becomes 300 μm. The electrode was formed by hot pressing at 200 ° C. for 10 minutes. After forming the electrode, it was cut into a size of 5 mm × 10 mm, and a lead wire was joined to the electrode to obtain a sample of the polymer PTC element of the present invention.
[0022]
Then, 100 samples of the polymer PTC element were prepared, and the characteristics were evaluated. The evaluation items are the initial resistance value at room temperature and the temperature responsiveness. The evaluation of the temperature responsiveness was performed by placing the sample in an oil bath maintained at a temperature of 80 ° C. and 100 ° C. and measuring the time until the resistance value reached 10Ω. Further, for comparison, a sample of a comparative example of a polymer PTC element was prepared in the same manner as described above except that the AlN powder was not added, and the characteristics were similarly evaluated. Table 1 collectively shows the evaluation results of the samples of the present invention and the comparative examples.
[0023]
[Table 1]
Figure 2004047555
[0024]
According to the results shown in Table 1, the average resistance value of the sample of the present invention was 17 mΩ. The standard deviation was 0.2. On the other hand, the resistance value of a sample prepared as a comparative example to which no AlN powder was added had an average of 17 mΩ and a standard deviation of 0.2. The evaluation results of the temperature responsiveness were as follows: the sample of the present invention was 7.5 seconds at 80 ° C., 4.8 seconds at 140 ° C., and the sample of the comparative example was 8.3 seconds at 80 ° C. and 5 seconds at 140 ° C. With the addition of the AlN powder for 0.5 seconds, a remarkable effect on the temperature response of the polymer PTC element was observed.
[0025]
Next, the result of studying the mixing ratio of AlN powder as 1 to 50 parts by weight in order to verify the proper value of the mixing ratio of AlN powder will be described. Here, AlN (manufactured by Tokuyama; trade name; Type H) powder having an average particle size of 1.5 μm is used, and the mixing ratio is 1 part by weight, 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight. 100 parts by weight of high-density polyethylene having a melting point of 137 ° C. (trade name: HY540, manufactured by Mitsubishi Chemical Corporation) and 525 parts by weight of titanium carbide powder having an average particle size of 1.5 μm (manufactured by Nippon Shinkin) were weighed as parts. Thus, a polymer PTC composition was prepared.
[0026]
Thereafter, a sample of the polymer PTC element was prepared in the same manner as described above, and the resistance value and the temperature response were evaluated. The results are shown in Table 2. FIG. 1 shows the results of plotting the temperature responsiveness of the polymer PTC element with respect to the mixing ratio of the AlN powder.
[0027]
[Table 2]
Figure 2004047555
[0028]
As shown in Table 2 and FIG. 1, even when the mixing ratio of the AlN powder is 1 part by weight, a clear difference is recognized in the temperature response. On the other hand, at a mixing ratio of 50 parts by weight, not only a remarkable difference in temperature responsiveness was not observed but also a tendency that the resistance value increased compared to the case of 40 parts by weight, and the mixing ratio of AlN powder was observed. It can be seen that the suitability value of is 1 to 40 parts by weight.
[0029]
Although an example using high-density polyethylene as the binder and titanium carbide as the conductive powder has been described here, it goes without saying that the present invention is also effective when other materials are used.
[0030]
【The invention's effect】
As described above, according to the present invention, even when a metal carbide-based conductive powder is used, it is possible to obtain a polymer PTC composition and a polymer PTC element having excellent responsiveness to temperature changes. It becomes.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of plotting the temperature responsiveness of a polymer PTC element with respect to the mixing ratio of AlN powder.
[Explanation of symbols]
1 Result of 80 ° C 2 Result of 140 ° C

Claims (3)

結晶性高分子を含む結合材に金属系導電性粉末を分散してなる高分子PTC組成物に、粉砕前のバルクの熱伝導率が10W/m・K以上の無機化合物の粉末を添加してなることを特徴とする高分子PTC組成物。A powder of an inorganic compound having a bulk thermal conductivity of 10 W / m · K or more before pulverization is added to a polymer PTC composition obtained by dispersing a metal-based conductive powder in a binder containing a crystalline polymer. A polymer PTC composition, characterized in that: 請求項1に記載の高分子PTC組成物において、前記無機化合物の粉末の添加量は、前記結合材100重量部に対して1〜40重量部であることを特徴とする高分子PTC組成物。2. The polymer PTC composition according to claim 1, wherein the amount of the inorganic compound powder is 1 to 40 parts by weight based on 100 parts by weight of the binder. 3. 請求項1または請求項2のいずれかに記載の高分子PTC組成物のシート状成形体の両面に、電極が配置されてなることを特徴とする高分子PTC素子。3. A polymer PTC element, wherein electrodes are arranged on both surfaces of a sheet-shaped molded body of the polymer PTC composition according to claim 1.
JP2002200107A 2002-07-09 2002-07-09 Polymer ptc compound and polymer ptc element Pending JP2004047555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200107A JP2004047555A (en) 2002-07-09 2002-07-09 Polymer ptc compound and polymer ptc element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200107A JP2004047555A (en) 2002-07-09 2002-07-09 Polymer ptc compound and polymer ptc element

Publications (1)

Publication Number Publication Date
JP2004047555A true JP2004047555A (en) 2004-02-12

Family

ID=31707061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200107A Pending JP2004047555A (en) 2002-07-09 2002-07-09 Polymer ptc compound and polymer ptc element

Country Status (1)

Country Link
JP (1) JP2004047555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517101A (en) * 2017-04-07 2020-06-11 エルテック・ソチエタ・ペル・アツィオーニEltek S.P.A. PTC effect composite material, corresponding production method and heating device containing such material
CN115101274A (en) * 2022-07-27 2022-09-23 成都顺康三森电子有限责任公司 Functional material composition of linear temperature sensor and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517101A (en) * 2017-04-07 2020-06-11 エルテック・ソチエタ・ペル・アツィオーニEltek S.P.A. PTC effect composite material, corresponding production method and heating device containing such material
JP7177080B2 (en) 2017-04-07 2022-11-22 エルテック・ソチエタ・ペル・アツィオーニ PTC effect composite materials, corresponding production methods and heating devices containing such materials
CN115101274A (en) * 2022-07-27 2022-09-23 成都顺康三森电子有限责任公司 Functional material composition of linear temperature sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
TW312794B (en)
JP2004047555A (en) Polymer ptc compound and polymer ptc element
TW200940475A (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JP2000331804A (en) Ptc composition
JP2002353003A (en) High polymer ptc element and manufacturing method therfor
JP5263668B2 (en) Semiconductor porcelain composition
JP2016219467A (en) Ptc thermistor member and ptc thermistor element
KR102459951B1 (en) Thermo electric thim film and thermo electric element comprising the same
JP2003282307A (en) Polymer ptc composition and polymer ptc device using the same
JP2003318008A (en) Polymer ptc composition and polymer ptc element
JP2004022799A (en) Coated conductive powder, its manufacturing method, and polymer ptc device using the same
JP2003318006A (en) Polymer ptc composition and polymer ptc element
JP2003347107A (en) High polymer ptc composition and high polymer ptc element
JP2003332102A (en) Polymer ptc composition and polymer ptc element
JP2024030943A (en) Thermistor element and its manufacturing method
JP5737634B2 (en) Method for producing semiconductor porcelain composition
JP2004014776A (en) Conductive powder with coating film, its producing method, and high molecular ptc element using the same
WO1998026433A1 (en) Overcurrent protective circuit element
JP3841238B2 (en) Method for manufacturing positive thermistor material
JP2002208503A (en) High-molecular ptc device and its manufacturing method
JP2002208504A (en) Polymer ptc device and method of manufacturing the same
JP2003100503A (en) High-molecular ptc composition and high-molecular ptc device
JPS63139055A (en) Low resistor
JP2005079411A (en) Polymer ptc element and its manufacturing method
JPH10214704A (en) Polymer ptc thermistor and manufacturing method thereof