WO1998026433A1 - Overcurrent protective circuit element - Google Patents

Overcurrent protective circuit element

Info

Publication number
WO1998026433A1
WO1998026433A1 PCT/JP1996/003628 JP9603628W WO9826433A1 WO 1998026433 A1 WO1998026433 A1 WO 1998026433A1 JP 9603628 W JP9603628 W JP 9603628W WO 9826433 A1 WO9826433 A1 WO 9826433A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
circuit element
protection circuit
overcurrent protection
ptc
Prior art date
Application number
PCT/JP1996/003628
Other languages
French (fr)
Japanese (ja)
Inventor
Kihachiro Nishiuchi
Taro Yamazaki
Original Assignee
Otsuka Kagaku Kabushiki Kaisya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP7147798A priority Critical patent/JPH099482A/en
Application filed by Otsuka Kagaku Kabushiki Kaisya filed Critical Otsuka Kagaku Kabushiki Kaisya
Priority to PCT/JP1996/003628 priority patent/WO1998026433A1/en
Publication of WO1998026433A1 publication Critical patent/WO1998026433A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Definitions

  • the present invention relates to the field of conductive compositions exhibiting a positive temperature coefficient (PTC; positive temperature coefficient) (hereinafter referred to as “PTC conductive composition”), and in particular, to overcurrent using a PTC conductive composition.
  • PTC conductive composition a positive temperature coefficient
  • the present invention relates to a protection circuit element.
  • the PTC conductive composition, Y 2 0 3 or the like barium titanate was added small amount of (B a T i 0 3) or the like of the inorganic composition and the organic composition obtained by dispersing conductive particles in crystalline organic polymer one Matorittasu (For example, see Japanese Patent Application Laid-Open No. 46-27224).
  • the conductive particles while at a temperature lower than the crystal melting point of polymer matrix, the conductive particles exist only in the amorphous region of the polymer matrix and are connected to the conductive particles. Shows lower resistivity for electrons traveling through the chain.
  • the volume of the amorphous phase increases relative to the volume of the amorphous phase while maintaining the viscosity of the polymer matrix, so that the concentration of the conductive particles in the amorphous phase partially increases. Decreases, resulting in an increase in resistivity (positive temperature characteristic).
  • the viscosity of the polymer matrix decreases, and the conductive particles move freely around the entire amorphous state and rearrange to show sufficient conductivity (negative temperature characteristic) .
  • the positive temperature characteristic of the PTC conductive composition is generated in a temperature range where the polymer matrix starts to melt (referred to as switching temperature). By utilizing this positive temperature characteristic, the PTC conductive composition is Used for various resistance heating elements.
  • the resistance value varies due to slight variations in film thickness in the manufacturing process, variations in dispersion of conductive particles, and variations in curing and drying conditions.
  • the quality and characteristics were changed, many defects occurred, and the yield was poor.
  • circuit elements using PTC conductive compositions can be made small and thin, and have a large current capacity.For example, they can be incorporated inside the battery to prevent overdischarge of the battery. It is most suitable for the use to do. For this reason, attention has been paid recently, and the emergence of a device with stable operation is desired.
  • an object of the present invention is to provide a circuit element for overcurrent heating protection which exhibits a low resistivity at room temperature and has a good switching ratio.
  • Still another object of the present invention is to provide a circuit element for overcurrent heating protection that is stable against repeated use and has a PTC effect with good reproducibility.
  • An overcurrent protection circuit element of the present invention for achieving the above object is a overcurrent protection circuit element having a PTC conductive composition and at least two electrodes in contact with the PTC conductive composition.
  • the electrode is a nickel foil, and the nickel foil is provided with a roughened nickel plating on a contact surface with the PTC conductive composition (Claim 1).
  • the overcurrent protection circuit element of the present invention comprises: a PTC conductive composition; An overcurrent protection circuit element having two electrodes, wherein the electrode is a nickel foil, and a conductive thin film not exhibiting PTC characteristics is interposed between the nickel foil and the PTC conductive composition.
  • the nickel foil may be provided with a roughened nickel plating on a contact surface with the conductive thin film (claim 2).
  • the use of the roughened nickel plating electrode significantly lowers the resistance at room temperature as compared with the conventional overcurrent protection circuit element using a simple metal foil. Power loss is reduced.
  • the resistance value changes rapidly, indicating high resistance, and the difference from that at normal temperature is further increased, so that the effect of preventing current runaway increases. Therefore, the shape can be made thin.
  • an overcurrent protection circuit element that has a stable resistance value change even when used for some time, so that it can be incorporated in various electric and electronic circuits requiring high reliability.
  • the shape can be made into a thin compact, it can be easily incorporated into a primary battery or a secondary battery, and the battery circuit can be designed to be compact. Can be improved in reliability.
  • the overcurrent protection circuit element of the present invention is a protection circuit element that protects against overheating due to overcurrent
  • the resistance at room temperature must be lower than that of a normal heating element.
  • the specific resistance of the overcurrent protection circuit element of the present invention at a normal temperature of 25 ° C. must be smaller than 10 ⁇ ⁇ cm, preferably smaller than 3 ⁇ ⁇ cm.
  • the choice of the PTC conductive composition is not a matter of choice, and the choice of the electrode is a major factor.
  • a nickel foil which has not been hitherto used and has been subjected to a roughened nickel plating is used.
  • a nickel foil having a roughened nickel plating is, for example, a nickel foil having a thickness of about 10 to 300 ⁇ m, preferably about 15 to 80 ⁇ m, and having a nickel plating on one side and further having irregularities. It has been applied in the form of attachment.
  • the surface feels uneven when touched, and is visually black.
  • the contact area between the PTC conductive composition and the electrode can be increased, and the adhesion is improved, so that an overcurrent protection circuit element with lower resistance than before can be obtained.
  • This roughened nickel plating means that a metal mesh, non-leaching metal, A resin sheet or the like used for clean printing is fixed in close contact, and nickel plating is applied by an electric plating method or a chemical plating method.
  • the porosity (the ratio of the area of the holes to the total area) of the wire mesh, punched metal, resin sheet used for screen printing, etc. may be adjusted in advance with ink or paint.
  • the electric plating method is performed by adjusting a bath of an aqueous solution of nickel sulfate, nickel chloride, or boric acid, or an aqueous solution of nickel sulfate, ammonium chloride, boric acid, or the like, and passing an electric current under acidic and predetermined temperature conditions.
  • the chemical plating method uses a chemical plating bath containing a small amount of nickel sulfate, sodium hypophosphite, and in some cases, lactic acid, propionic acid, sodium citrate, sodium acetate, and sodium chloride. Perform under conditions.
  • the wire mesh After the construction, the wire mesh. It removes metal sheet, resin sheet used for screen printing, etc.
  • the pitch of the irregularities is determined by the pitch of the holes in the wire netting, bunching metal, resin sheet used for screen printing, and the like, and the pitch is 22 ⁇ m-5 mm. Preferably, 30 urn-850 m It is about.
  • the depth of the unevenness is 2 to 15 m, preferably 3 to 8 zm, and more preferably about 5 ⁇ m.
  • the conductive thin film having no PTC element used in the present invention is used to form a thin film such as a carbon paste, a graphite paste, a silver paste or the like usually used for a membrane switch or the like, and the thickness of the film is usually 1-3. 0 ⁇ m, preferably about 2 to 15 jam.
  • the PTC conductive composition, Y 2 0 3, etc. BAT i 0 3 was added in a small amount of, B a PbT i 0 3, BaSrT i 0 3 or the like of the inorganic composition and the organic composition and the like.
  • the organic composition is a composition in which conductive particles are dispersed in a thermoplastic resin, and exhibits a positive temperature coefficient (PTC) in a temperature range slightly lower than the crystalline melting point of the polymer (Claim 4). .
  • the thermoplastic resin includes, for example, polyolefins such as polyethylene and polypropylene, vinyl chloride, vinyl acetate, acrylic acid ester, ABS, polyamide, polyarylenes, PPS, PES.PEEK, polyoxymethylene, polyethylene terephthalate, Polyesters such as polybutylene terephthalate, wholly aromatic polyethylene, polycarbonates, polytetrafluoroethylene, polyvinylidene fluoride, a homopolymer selected from copolymers of thermoplastic resins and graft modified products thereof, or A mixture of two or more polymers can be provided. When polyolefins are used, the composition may be subjected to electron beam crosslinking.
  • polyolefins such as polyethylene and polypropylene, vinyl chloride, vinyl acetate, acrylic acid ester, ABS, polyamide, polyarylenes, PPS, PES.PEEK, polyoxymethylene, polyethylene terephthalate, Polyesters such as polybutylene terephthal
  • the conductive particles are preferably made of one or more of conductive carbon black, which is an amorphous carbon particle, graphite, which is a crystalline carbon particle, expanded graphite, and fibrous graphite (claim 5). .
  • the conductive black is, for example, Ketchin black, acetylene black, furnace black or the like.
  • the graphite is, for example, spherical graphite, flake graphite, expanded graphite, fibrous graphite and the like. Expanded graphite is obtained by expanding the volume of graphite by heating graphite, and is usually used by being crushed to a particle size of about 2 to 100 m. ⁇ Since graphite has a low bulk density and a small surface area, it has good dispersibility and wettability, and can obtain a very homogeneous PTC conductive composition, realizing a thin overcurrent protection circuit element. This can be expected.
  • the present invention comprises a mixture of one or more of these conductive particles, and the particle size of the conductive particles is about 0.1 m to 100 m, preferably about 0.3 m to 50 m. It is.
  • the conductive particles are obtained by cutting or crushing a carbon fiber shortly and graphitizing black. It may be lead (claim 6).
  • graphite whiskers are generally used, which is obtained by cutting or crushing a carbon fiber shortly and then graphitizing it in a non-oxidizing atmosphere at 200 ° C or more. is there.
  • the graphite particles have a particle diameter of about 2 to 50 rn, and have a low resistance value and a small variation.
  • thermoplastic resin having a melting point different from that of the thermoplastic resin
  • the conductive coating is obtained by coating (encapsulating) conductive particles very thinly with a thermoplastic resin according to a known method (see Japanese Patent Application Laid-Open No. 6-157787).
  • the capsule expands in volume by heating and has the effect of converting the PTC conductive composition into an insulator in a very short time.Also, even if the temperature changes mainly due to the surface tension of the encapsulating material, the Maintains shape and does not release conductive material. Therefore, by incorporating the PTC material into the force-pressing composition, superior temperature controllability and aging stability can be obtained as compared with the conventional PTC composition in which the PTC material is simply dispersed in a resin matrix. Therefore, it is expected that a highly reliable overcurrent protection circuit element whose resistance value change is stable even after use over time can be realized.
  • the encapsulating material include various soft resins, rubbers, elastomers, higher fatty acids, esters, and the like.
  • Soft resins include, for example, silicone resin, polyester resin, fluorine resin, urethane resin, polyethylene resin, polypropylene resin, vinyl acetate resin, vinyl chloride resin, polystyrene resin, polyisoprene resin, and modification of the above resins. And copolymers.
  • the rubber include fluorine rubber, silicone rubber, urethane rubber, acryl rubber, cyclized natural rubber, butadiene rubber, chloroprene rubber, butadiene latex, acrylonitrile butadiene rubber latex, and acrylic butadiene latex.
  • the elastomer examples include polyester elastomer, urethane elastomer, and the like.
  • the distribution ratio of the graphite particles and the encapsulating material is not particularly limited and is wide and can be appropriately selected from the range.
  • the function required for the capsule (the function of sharpening the self-temperature control and the flow of current) Considering the function as a conductive material)
  • the encapsulation method is not particularly limited, and known methods can be applied.
  • a method in which an encapsulating resin and graphite particles are melted or dispersed in an appropriate solvent and sprayed (b) A method of dissolving the encapsulated resin by heating, adding a conductive material to the mixture, kneading the mixture, and pulverizing the powder.
  • the size of the capsule is not particularly limited, and may be appropriately selected depending on the purpose of use, the active ingredient, and the like. Usually, the particle size is about 1 m to 200 zm, preferably 5 ⁇ m-100 m. It should be about degree.
  • the PTC conductive composition may be one in which conductive particles are dispersed in a thermosetting resin (Claim 9).
  • Thermosetting resins are characterized by low thermal degradation even when temperature rises and falls repeatedly, and excellent reproducibility even when used repeatedly, so that excellent temperature controllability and stability over time can be obtained.
  • it can be expected to realize a highly reliable overcurrent protection circuit element having a stable resistance value change even after use over time.
  • thermosetting resin preferably contains a thermosetting crosslinked polyorganosiloxane resin.
  • thermosetting crosslinked polyorganosiloxane resin contains at least one or more substituent groups such as hydrogen, vinyl group, aryl group, hydroxyl group, alkoxy group having 1 to 4 carbon atoms, amino group, and mercapto group.
  • substituent groups such as hydrogen, vinyl group, aryl group, hydroxyl group, alkoxy group having 1 to 4 carbon atoms, amino group, and mercapto group.
  • straight silicone resins such as polydimethylsiloxane, polydiphenylsiloxane, polymethylphenylsiloxane, and straight silicone resins such as copolymers thereof, and polyacryloxyalkylalkoxysilane-based and polyvinylsilane-based resins.
  • -Modified epoxy resin obtained by reacting epoxy resin with epoxy resin; polyester-modified silicone resin consisting of condensate of straight silicone resin with polybasic acid and polyhydric alcohol; condensation of straight silicone resin with fatty acid, polybasic acid and polyhydric alcohol Object or straight silicon resin
  • Aruki' de modified silicone resin obtained by reacting Aruki' de resin, storage Amino resin such as melamine formaldehyde resin, urea formaldehyde resin, benzoguanamine, acetoguanamine, etc. Used as rubber, silicone resin, silicone adhesive, silicone coating.
  • each step of (i) adjustment of the material, (ii) formation of the material and bonding with the electrode, and (Mi) shape adjustment are usually employed.
  • the adjustment of the material in the present invention is to adjust the PTC conductive composition.
  • the PTC conductive composition can be adjusted, for example, by mixing a thermoplastic resin and conductive particles, heating the mixture, and kneading the mixture.
  • thermoplastic resin for example, graphite particles coated with a thermoplastic resin
  • thermosetting resin for example, a polyorganosiloxane resin
  • additives such as a dispersant, a viscosity adjuster, and a stabilizer may be mixed and adjusted.
  • the electrodes are, as mentioned above, a wire mesh on the nickel foil surface.
  • An etching metal, a resin sheet used for screen printing, or the like may be adhered and fixed, and a roughened nickel plating may be applied by an electric plating method or a chemical plating method, and the sheet may be peeled off.
  • a material obtained by applying or printing a conductive thin film that does not exhibit the above-mentioned PTC characteristic on the roughened nickel plating surface and then drying it may be used.
  • the material may be formed by drying the sheet-like material obtained by extrusion molding, and then applying heat and pressure to the electrode and directly applying or printing the melted material on the electrode.
  • the electrode may be applied with a roll, and for printing, for example, a screen printing method may be used.
  • the film thickness is not particularly limited, and is a force selected by the overcurrent protection circuit element to be obtained, usually about 10 to 250 m, preferably about 20 to 150 // m (after drying) Film thickness).
  • the material may be formed by coating or printing on the electrode itself and drying. To apply, the electrode may be applied with a roll, and for printing, for example, a screen printing method may be used.
  • a polyorganosiloxane resin having no solvent may be used.
  • the heat-curing temperature is preferably as low as possible to prevent oxidation of the nickel foil.
  • the shape is adjusted by appropriately cutting to the design dimensions required for the overcurrent protection circuit element.For example, when used inside a dry cell, a disk shape with holes as shown in Fig. 3 is used. To cut. Care is taken so that the electrodes do not touch each other during cutting.
  • FIG. 1 is a cross-sectional view showing the internal configuration of the overcurrent protection circuit element.
  • (A) shows a case without a conductive thin film
  • (b) shows a structure with a conductive thin film.
  • FIG. 2 is a cross-sectional view of a nickel foil subjected to roughening nickel plating.
  • FIG. 3 is an external perspective view showing the shape of the overcurrent protection circuit element used inside the dry battery.
  • FIG. 4 is a circuit diagram showing a method for measuring the resistivity of the overcurrent protection circuit element.
  • a resin sheet used for screen printing is closely adhered to one side of a nickel foil having a thickness of 20 ⁇ m and fixed, and nickel plating is performed by an electric plating method or a chemical plating method to perform a rough nickel plating.
  • the electroplating method is as follows: nickel sulfate 220-380 g. Nickel chloride 30-60 / boric acid 30-40 g aqueous solution of Z_g, nickel sulfate 150 / ammonium chloride 15 g /, Adjust the bath of an aqueous solution such as boric acid 15 gZ ⁇ to adjust pH Under the conditions of 4-5 and temperature of 40 ° C-55, a current of 18 AZ dm 2 in current density is passed for a predetermined time.
  • the chemical plating method is performed in a chemical plating bath containing a small amount of nickel sulfate 2 OgZ, sodium hypophosphite 10-25 g, and a small amount of lactic acid, propionic acid, sodium citrate, sodium acetate, and sodium chloride. H 4-6 or 8-9.5, temperature 30 ° C-90, for a predetermined time.
  • Example 5 35% by weight of graphite resin (manufactured by Nippon Carbon Co., Ltd.) and 20% by weight of spherical carbon (manufactured by Kanebo Co., Ltd.) were added to 45% by weight of polypropylene resin (manufactured by Mitsui Petrochemical Industries, Ltd.). The mixture was heated and kneaded in the same manner and extruded into a sheet having a thickness of 200 ⁇ m. This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and pressed with a pressure machine of about 10 O KgZcm 2 at a pressure of about 10 O Og ( Figure 1 (a)).
  • Example 1 45% by weight of the polyethylene resin used in Example 1 crushed with 45% by weight of carbon fiber and graphitized under a reducing atmosphere of about 900 ° C. (hereinafter referred to as “graphitized carbon fiber”) Then, 20% by weight of graphite powder was extruded into a sheet having a thickness of 200 m in the same manner as in Example 1.
  • This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at about 170 ° C. at a pressure of about 10 O KgZcm 2 with a press machine provided with heating and pressing plates at the top and bottom. Thermocompression bonding was performed for 5 minutes (see Fig. 1 (a)).
  • a vinylidene chloride resin was previously dissolved in 45% by weight of the polypropylene resin used in Example 2 with a mixed solvent of xylene and butyl acetate, and then graphitized carbon fibers were added thereto (about 20% by weight of the vinylidene chloride resin, The amount of graphitized carbon fiber was adjusted to about 80% by weight.) Mixed, cooled, dried under reduced pressure, and crushed and adjusted. 35% by weight of encapsulated graphitized carbon fiber, similarly encapsulated spherical carbon powder 20%. % By weight and extruded into a 200 m thick sheet as in Example 1.
  • This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at about 170 ° C. at a pressure of about 10 O KgZcm 2 with a press machine provided with heating and pressing plates at the top and bottom. Thermocompression bonding was performed for 5 minutes (see Fig. 1 (a)).
  • the sheet is inserted between the roughened sides of the nickel-plated roughened nickel foil, and is heated at a pressure of about 10 O Kg / cm 2 by a press machine provided with a heating press plate on the upper and lower sides for about 17 times.
  • Thermocompression bonding was performed at 0 ° C for 5 minutes (see Fig. 1 (a)).
  • Example 4 40% by weight of polypropylene resin used in Example 2, 25% by weight of encapsulated expanded graphite prepared in the same manner as in Example 4, 25% by weight of encapsulated graphite powder, and 10% by weight of ketchin black The mixture was kneaded in the same manner as in Example 5, and extruded into a sheet having a thickness of 200 m using an extruder.
  • This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at about 170 ° C. at a pressure of about 10 O KgZcm 2 with a press machine provided with heating and pressing plates at the top and bottom. Thermocompression bonding was performed for 5 minutes (see Fig. 1 (a)).
  • Example 7 Example 1 2
  • This conductive paste was screen-printed and applied to the rough surface of the nickel plating roughened nickel foil used in Example 16 and dried to obtain a film having a thickness of about 1 Om.
  • a sheet prepared in the same manner as in Example 16 was heated and pressed in the same manner as in Example 1-6, with the sheet interposed between the coating films (see FIG. 1 (b)).
  • the sheets prepared in Examples 1 to 6 were interposed between two non-stick nickel foils (manufactured by Fukuda Metal Foil & Powder Co., Ltd.) having a thickness of 20 m. In the same manner, the thermocompression bonding was performed.
  • a conductive paste is applied to two unplated nickel foils having a thickness of 20 m in the same manner as in Example 7-12, dried, and the sheet prepared in Example 1_6 is sandwiched. It was heat-pressed.
  • Example 11 The resistance measurement of the example 11 and the comparative example 11 was performed by the circuit shown in FIG. 4, and the results are shown in Table 1.
  • a 12.8 1 24.0 Temperature 25 ° C, unit ⁇ cm According to Table 1, a nickel-plated element with rough nickel-plated nickel foil is simply nickel foil. It can be seen that the resistivity at room temperature (25 ° C) is on average about 60% lower than that of the element used in (1). Also, it can be seen that the resistivity of the device in which the conductive paste was sandwiched between the electrode and the PTC conductive composition was lower than that of the device in which the conductive paste was not sandwiched.
  • Overcurrent protection circuit device of the present invention does not change the resistance value from room temperature to around 9 0 ° C ⁇ 5 ° C , 1 20 ° C ⁇ 1 0 ° at least 1 0 3 times more resistance value C around near It shows that the resistance change is stable even if the temperature rises and falls repeatedly.
  • a resin sheet used for screen printing is adhered and fixed to one side of a nickel foil having a thickness of 20 ⁇ m, and nickel plating is applied by an electric plating method or a chemical plating method to perform a rough nickel plating.
  • the electroplating method is based on an aqueous solution of nickel sulfate 220-380 / ⁇ , nickel chloride 30-600 / borate 30-40 gZ ⁇ , nickel sulfate 150- / ⁇ ⁇ chloride ammonium 15 gZ_g
  • a bath of an aqueous solution of boric acid 15 or the like is adjusted, and a current having a current density of 11 to 8 AZdm 2 is passed under a condition of pH 4 to 5 and a temperature of 40 to 55 ° C for a predetermined time.
  • the chemical plating method is as follows: Nickel sulfate 20 Sodium hypophosphite 10—25 g / ⁇ , optionally, a small amount of lactic acid, propionic acid, sodium citrate, sodium acetate, and sodium chloride. 6 or 8-9.9.5, at a temperature of 30 ° C-90 ° C for a predetermined time.
  • the wire mesh, metal, metal sheet, resin sheet used for screen printing, etc. are removed to obtain a nickel-plated metal surface with a rough surface and a single-sided surface with a thickness of about 5 m (Fukuda Metal Co., Ltd.) Foil Powder Industry Co., Ltd.)
  • Silicon rubber manufactured by Dow Corning Co., Ltd. Q4
  • graphitized carbon fiber 35 A carbon fiber crushed to 35% by weight and graphitized in a reducing atmosphere at about 290 ° C (hereinafter referred to as “graphitized carbon fiber”) 50
  • graphitized carbon fiber 35 A carbon fiber crushed to 35% by weight and graphitized in a reducing atmosphere at about 290 ° C
  • silicone adhesive Q9 manufactured by Die Corning Co.
  • 50% by weight of graphitized carbon fiber and 15% by weight of graphite powder were coarsely mixed in advance with a Shinagawa mixer, and then mixed in three holes.
  • the PTC composition was prepared.
  • This PTC composition was applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 100 m, and then the rough surface of another roughened nickel foil was overlapped.
  • the coated surfaces were combined using a press machine with upper and lower plates mounted on top and bottom, and heat-pressed at a pressure of about 10 OKg / cm 2 at about 130 ° C for 1 hour (see Fig. 1 (a)).
  • Polyethylene is charged and dissolved in a xylene / methanol mixed solvent before heating, and then graphitized carbon fiber is charged (about 20% by weight of polyethylene, 80% by weight of graphitized carbon fiber), cooled, and crushed and adjusted.
  • Example 13 50% by weight of the encapsulated graphitized carbon fiber, 15% by weight of the similarly encapsulated graphite powder, and 35% by weight of the silicone rubber used in Example 13 were roughly mixed with a Shinagawa mixer beforehand.
  • the PTC composition was prepared by mixing with this roll.
  • This PTC composition was applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 100 m, and then the roughened surface of another roughened nickel foil was overlaid and heated.
  • the plates were heated and pressed at about 130 ° C for 1 hour at a pressure of about 10 O KgZcm 2 , with the coated surfaces being combined by a press machine provided above and below (see Fig. 1 (a)).
  • This PTC composition was applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 100 m, and then the roughened surface of another roughened nickel foil was overlaid and heated.
  • the coated surfaces were combined with a press machine provided with ⁇ on the top and bottom, and heated and pressed at about 130 ° C. for 1 hour at a pressure of about 10 O KgZcm 2 (see Fig. 1 (a)).
  • Example 14 50% by weight of the silicone pressure-sensitive adhesive used in Example 14 was added to 25% by weight of the graphitized carbon fiber adjusted in Example 15; 15% by weight of the encapsulated graphite powder; and the force adjusted in Example 16 10% by weight of expanded graphite was roughly mixed in advance with a Shinagawa mixer, and then mixed with three rolls to prepare a PTC composition.
  • This PTC composition is applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 10 and then overlaid with another roughened nickel foil.
  • the coating surfaces were combined using a press machine with upper and lower plates mounted on top and bottom, and heat-pressed at about 130 ° C for 1 hour at a pressure of about 10 OKgZcm 2 (see Fig. 1 (a)).
  • a conductive paste was prepared.
  • This conductive paste was screen-printed and applied to the roughened surface of the nickel plating roughened nickel foil used in Examples 13 to 17 and dried to obtain a film having a thickness of about 10 ⁇ m.
  • Example 13 The PTC composition prepared in the same manner as in 3—17 was applied to the conductive paste surface with an applicator so as to have a thickness of about 100 mm, and then another roughened nickel foil was applied. superimposed conductive paste surface, the heated press plate in the form of combined in a press applying surface provided vertically, about 1 0 0 Kg / cm 2 pressure of about 1 30 ° C, for 1 hour thermocompression bonding (Figure 1 ) See).
  • Example 13 A PTC composition prepared in the same manner as in Example 3-17 was coated on a non-plated nickel foil having a thickness of 20 zm (manufactured by Fukuda Metal Foil & Powder Co., Ltd.) for about 100 m. after coating with the applique Isseki one so that the thickness, overlapping the face of another nickel foil, in the form of combined application surface in a press provided with heated press plates above and below, a pressure of about 1 0 OKgZcm 2 At about 130 ° (for 1 hour.
  • the conductive paste prepared in the same manner as in Example 18-22 was screen-printed on the non-plated nickel foil used in Comparative Example 13-17, and dried to about 10 ⁇ m. Was obtained.
  • Example 13 A PTC composition prepared in the same manner as in 3—17 was applied all over the conductive paste surface so as to have a thickness of about 100 ⁇ m, and then another nickel foil conductive paste was applied. The surfaces were overlapped, and the coated surfaces were combined by a press machine provided with a heated press plate on the upper and lower sides, and heat-pressed at a pressure of about 10 OKgZcm 2 at about 130 ° C for 1 hour.
  • the resistance of nickel-plated nickel-plated electrodes at room temperature is higher than that of nickel-plated electrodes. You can see that the rate is on average 60% lower. Also, it can be seen that the resistivity of the device in which the conductive paste was sandwiched between the electrode and the PTC conductive composition was lower than that of the device in which the conductive paste was not sandwiched. Furthermore, a PTC composition in which graphite particles coated with a thermoplastic resin were dispersed in a thermosetting resin (Examples 15-17) was used. The graphite particles were simply dispersed in the thermosetting resin. It can also be seen that the resistivity was lower than that using the PTC composition (Examples 13 and 14).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemically Coating (AREA)
  • Thermistors And Varistors (AREA)

Abstract

An overcurrent protective circuit element comprising a PTC conductive composition (1) and at least two electrodes (2) being in contact with the composition (1), wherein the electrodes (2) are composed of nickel foil. The contacting surface of each nickel foil with the composition is plated with nickel for roughening the surface. When the roughed nickel-plated electrodes (2) are used, the power loss of the circuit element can be reduced, because the resistance of the element becomes remarkably lower at a normal temperature as compared with an overcurrent protective element using simple metallic foil. When the temperature becomes higher, in addition, the resistance value of the element abruptly rises to a high value from the resistance value at the normal temperature so as to prevent current from becoming out of control.

Description

明 細 書 過電流保護回路素子  Description Overcurrent protection circuit element
ぐ技術分野 > Technical field>
本発明は、 正温度係数 (P T C ; Posi t ive Temperature Coeff icient) を示す 導電性組成物 (以下 「P T C導電性組成物」 という) の分野に関し、 特に、 P T C導電性組成物を用いた過電流保護回路素子に関するものである。  The present invention relates to the field of conductive compositions exhibiting a positive temperature coefficient (PTC; positive temperature coefficient) (hereinafter referred to as “PTC conductive composition”), and in particular, to overcurrent using a PTC conductive composition. The present invention relates to a protection circuit element.
く背景技術 > Background technology>
P T C導電性組成物には、 Y 2 03 等を微量添加したチタン酸バリウム (B a T i 03 ) 等の無機組成物や、 結晶性有機ポリマ一マトリッタスに導電性粒子を 分散した有機組成物 (例えば特開昭 4 6 - 2 7 2 4号公報参照) がある。 The PTC conductive composition, Y 2 0 3 or the like barium titanate was added small amount of (B a T i 0 3) or the like of the inorganic composition and the organic composition obtained by dispersing conductive particles in crystalline organic polymer one Matorittasu (For example, see Japanese Patent Application Laid-Open No. 46-27224).
有機組成物を例にとって説明すれば、 ポリマーマトリッタスの結晶融点よりも 低い温度にある間は、 導電性粒子はボリマ一マトリックスの非結晶領域のみに存 在し、 導電性粒子相互に接続された鎖を通って移動する電子により低い抵抗率を 示す。 温度が上昇しポリマーマトリックスが溶融し始めると、 ポリマ一マトリツ タスの粘度を保ったまま非結晶相の体積カ湘対的に増加するため、 非結晶相の導 電性粒子の濃度が部分的に減少し、 その結果抵抗率が上昇する (正温度特性) 。 さらに温度が上昇すると、 ポリマーマトリックスの粘度が減少し、 導電性粒子は 全体的に非結晶になった中を自由に動き回り、 再配列して十分な導電性を示すよ うになる (負温度特性) 。  Taking the organic composition as an example, while at a temperature lower than the crystal melting point of polymer matrix, the conductive particles exist only in the amorphous region of the polymer matrix and are connected to the conductive particles. Shows lower resistivity for electrons traveling through the chain. When the temperature rises and the polymer matrix begins to melt, the volume of the amorphous phase increases relative to the volume of the amorphous phase while maintaining the viscosity of the polymer matrix, so that the concentration of the conductive particles in the amorphous phase partially increases. Decreases, resulting in an increase in resistivity (positive temperature characteristic). As the temperature rises further, the viscosity of the polymer matrix decreases, and the conductive particles move freely around the entire amorphous state and rearrange to show sufficient conductivity (negative temperature characteristic) .
P T C導電性組成物の正温度特性は、 前記のポリマーマトリックスが溶融し始 める温度領域 (スイッチング温度という) で生じるもので、 この正温度特性を利 用して、 P T C導電性組成物は、 各種抵抗発熱体に利用されている。  The positive temperature characteristic of the PTC conductive composition is generated in a temperature range where the polymer matrix starts to melt (referred to as switching temperature). By utilizing this positive temperature characteristic, the PTC conductive composition is Used for various resistance heating elements.
P T C導電性組成物に関する基礎的な文献としては、 例えばポリマー ·ェンジ ニアリング.アンド 'サイエンス, Vol 13, No. 6 November, 1973 があり、 製造 方法まで詳細に開示した文献として特公昭 6 4 - 3 3 2 2号公報がある。 後者の 文献では、 導電性粒子としてカーボンブラックを用い、 ポリマーマトリックスと して結晶性熱可塑性ポリマー (例えば、 ポリエチレン、 エチレンノアクリル酸コ ポリマー、 ポリプロピレン、 ポリビニリデンフルオリ ド) を用いた P T C導電性 組成物を開示している。 The basic literature on PTC conductive compositions is, for example, Polymer Engineering and 'Science, Vol. 13, No. 6 November, 1973. There is 322 publication. In the latter literature, PTC conductivity using carbon black as conductive particles and a crystalline thermoplastic polymer (eg, polyethylene, ethylenenoacrylate copolymer, polypropylene, polyvinylidene fluoride) as the polymer matrix A composition is disclosed.
しかしながら、 P T C導電性組成物はマトリッタスの温度による体積変化が大 きいため、 温度が変わると、 導電性粒子のマトリックス中での接触状態や配列状 態に変化を生じる。 この傾向は繰り返し使用することによって、 時として一層顕 著に現れ、 その結果、 スイッチング温度が変わって、 所期の特性を示さなくなつ たり、 スイッチング温度以下での室温抵抗率が悪化 (上昇) して素子が昇温し制 御性が低下して発火したりするという問題があつた。  However, since the volumetric change of the matrices due to temperature of the PTC conductive composition is large, when the temperature changes, the contact state and the arrangement state of the conductive particles in the matrix are changed. This tendency sometimes becomes more pronounced with repeated use, and as a result, the switching temperature changes, the desired characteristics are not exhibited, and the room temperature resistivity below the switching temperature deteriorates (increases). Therefore, there was a problem that the temperature of the element was increased, controllability was reduced, and fire occurred.
また、 かかる従来の P T C導電性組成物に電極を接触させた回路素子において は、 その製造工程でのわずかな膜厚のバラツキ、 導電性粒子の分散のバラツキ、 硬化乾燥条件のバラツキなどで抵抗値や特性に変化を生じ、 多くの不良が発生し 歩留りが悪し、という問題点もあった。  In addition, in a circuit element in which an electrode is brought into contact with such a conventional PTC conductive composition, the resistance value varies due to slight variations in film thickness in the manufacturing process, variations in dispersion of conductive particles, and variations in curing and drying conditions. In addition, there was a problem that the quality and characteristics were changed, many defects occurred, and the yield was poor.
したがって、 サーミス夕等の回路素子としての利用には難点があり、 従来では、 面状発熱体等の限られた用途しか展開できなかった (特開平 6— 1 5 7 8 2 7号 公報参照) 。  Therefore, there is a difficulty in using it as a circuit element for a thermistor or the like, and in the past, it was only possible to develop a limited use of a planar heating element or the like (see Japanese Patent Application Laid-Open No. Hei 6-157787). .
しかし、 P T C導電性組成物を使用したサ一ミス夕等の回路素子は、 小型で肉 薄に作ることができ、 電流容量も大きいので、 例えば、 電池の内部に組み込んで 電池の過放電を防止するという用途に最適である。 このため、 最近では注目され ており、 動作の安定したものの出現が望まれている。  However, circuit elements using PTC conductive compositions, such as ceramics, can be made small and thin, and have a large current capacity.For example, they can be incorporated inside the battery to prevent overdischarge of the battery. It is most suitable for the use to do. For this reason, attention has been paid recently, and the emergence of a device with stable operation is desired.
そこで、 本発明の目的は、 室温では低い抵抗率を示し、 かつ良好なスィッチン グ比を有する過電流加熱保護のための回路素子を提供することである。  Accordingly, an object of the present invention is to provide a circuit element for overcurrent heating protection which exhibits a low resistivity at room temperature and has a good switching ratio.
さらに本発明の他の目的は、 繰り返し使用に対して安定で、 かつ再現性の良好 な P T C効果を有する過電流加熱保護のための回路素子を提供することにある。 ぐ発明の開示 >  Still another object of the present invention is to provide a circuit element for overcurrent heating protection that is stable against repeated use and has a PTC effect with good reproducibility. Invention disclosure>
前記の目的を達成するための本発明の過電流保護回路素子は、 P T C導電性組 成物と、 P T C導電性組成物に接触した少なくとも 2つの電極を有してなる過電 流保護回路素子において、 前記電極がニッケル箔であり、 前記ニッケル箔には、 P T C導電性組成物との接触面に、 粗面化ニッケルメツキが施されているもので ある (請求項 1 ) 。  An overcurrent protection circuit element of the present invention for achieving the above object is a overcurrent protection circuit element having a PTC conductive composition and at least two electrodes in contact with the PTC conductive composition. The electrode is a nickel foil, and the nickel foil is provided with a roughened nickel plating on a contact surface with the PTC conductive composition (Claim 1).
また、 本発明の過電流保護回路素子は、 P T C導電性組成物と、 少なくとも 2 つの電極を有してなる過電流保護回路素子であって、 前記電極がニッケル箔であ り、 前記ニッケル箔と P T C導電性組成物との間に、 P T C特性を示さない導電 性薄膜が介在され、 前記ニッケル箔には、 導電性薄膜との接触面に、 粗面化ニッ ケルメツキが施されているものであってもよい (請求項 2 ) 。 Further, the overcurrent protection circuit element of the present invention comprises: a PTC conductive composition; An overcurrent protection circuit element having two electrodes, wherein the electrode is a nickel foil, and a conductive thin film not exhibiting PTC characteristics is interposed between the nickel foil and the PTC conductive composition. The nickel foil may be provided with a roughened nickel plating on a contact surface with the conductive thin film (claim 2).
本発明の過電流保護回路素子によれば、 粗面化ニッケルメツキ電極を使用する ことで、 これまでの単なる金属箔を使用した過電流保護回路素子と比べて常温時 に著しく低抵抗となるので、 電力ロスが小さくなる。 また、 高温になると抵抗値 が急激に変化して高抵抗を示し、 常温時との差がさらに大きくなり、 電流の暴走 を防ぐ効果が大きくなる。 したがって形状を薄肉コンパク卜にできる。  According to the overcurrent protection circuit element of the present invention, the use of the roughened nickel plating electrode significantly lowers the resistance at room temperature as compared with the conventional overcurrent protection circuit element using a simple metal foil. Power loss is reduced. In addition, when the temperature rises, the resistance value changes rapidly, indicating high resistance, and the difference from that at normal temperature is further increased, so that the effect of preventing current runaway increases. Therefore, the shape can be made thin.
また、 ある程度経年使用しても、 抵抗値変化が安定している過電流保護回路素 子を提供することができるので、 信頼性の要求される各種電気 ·電子回路に組み 込むことができる。  In addition, it is possible to provide an overcurrent protection circuit element that has a stable resistance value change even when used for some time, so that it can be incorporated in various electric and electronic circuits requiring high reliability.
特に、 形状が薄肉コンパク 卜にできるから、 一次電池又は二次電池の内部に組 み込むことが容易にでき、 当該電池回路をコンパク 卜に設計することが可能にな り、 かつ、 当該電池回路の信頼性を向上させることができる。  In particular, since the shape can be made into a thin compact, it can be easily incorporated into a primary battery or a secondary battery, and the battery circuit can be designed to be compact. Can be improved in reliability.
本発明の過電流保護回路素子は、 過電流による過熱を保護する保護回路素子で あるので、 常温での抵抗は、 通常の発熱素子よりさらに低抵抗にする必要がある。 本発明の過電流保護回路素子の常温 2 5 °Cにおける固有抵抗率は 1 0 Ω · c mよ りも小さく、 好ましくは 3 Ω · c mよりも小さいものを必要とする。 そのために は P T C導電性組成物の選択はレ、うに及ばず、 電極の選択が大きレ、要素となる。 本発明では、 これまでに従来用いられていなかった、 粗面化ニッケルメツキを施 したニッケル箔を使用する。 粗面化ニッケルメツキを施したニッケル箔とは、 例 えば厚さ 1 0— 3 0 0〃m程度、 好ましくは 1 5— 8 0〃m程度のニッケル箔の 片面にニッケルメツキをことさらに凹凸をつけた形で施したものである。  Since the overcurrent protection circuit element of the present invention is a protection circuit element that protects against overheating due to overcurrent, the resistance at room temperature must be lower than that of a normal heating element. The specific resistance of the overcurrent protection circuit element of the present invention at a normal temperature of 25 ° C. must be smaller than 10 Ω · cm, preferably smaller than 3 Ω · cm. To that end, the choice of the PTC conductive composition is not a matter of choice, and the choice of the electrode is a major factor. In the present invention, a nickel foil which has not been hitherto used and has been subjected to a roughened nickel plating is used. A nickel foil having a roughened nickel plating is, for example, a nickel foil having a thickness of about 10 to 300 μm, preferably about 15 to 80 μm, and having a nickel plating on one side and further having irregularities. It has been applied in the form of attachment.
凹凸があるために表面の指触ではばらつきを感じ、 目視では喑黒色である。 こ の処理電極を用いることにより、 P T C導電性組成物と電極との接触面積を大き くでき、 密着性が良好になるために従来よりも低抵抗の過電流保護回路素子が得 られる。  Due to the irregularities, the surface feels uneven when touched, and is visually black. By using this treated electrode, the contact area between the PTC conductive composition and the electrode can be increased, and the adhesion is improved, so that an overcurrent protection circuit element with lower resistance than before can be obtained.
この粗面化ニッケルメツキとは、 ニッケル箔面に金網、 ノ ンチングメタル、 ス クリーン印刷に用いる樹脂シート等を密着させて固定し、 電気メツキ法又は化学 メツキ法でニッケルメツキを施したものである。 This roughened nickel plating means that a metal mesh, non-leaching metal, A resin sheet or the like used for clean printing is fixed in close contact, and nickel plating is applied by an electric plating method or a chemical plating method.
前記金網、 パンチングメタル、 スクリーン印刷に用いる樹脂シート等は、 あら かじめインキや塗料で空隙率 (全体の面積に対する孔の面積の割合) を調整して おいてもよい。  The porosity (the ratio of the area of the holes to the total area) of the wire mesh, punched metal, resin sheet used for screen printing, etc. may be adjusted in advance with ink or paint.
電気メツキ法は、 硫酸ニッケル、 塩化ニッケル、 ほう酸の水溶液や、 硫酸ニッ ゲル、 塩化アンモニゥ厶、 ほう酸等の水溶液の浴を調整して、 酸性、 所定温度条 件下で、 電流を流して行う。 化学メツキ法は、 硫酸ニッケル、 次亜りん酸ナトリ ゥム、 場合により乳酸、 プロピオン酸、 クェン酸ナトリウム、 酢酸ナトリウム、 塩化ナトリゥムを少量添加した化学メツキ浴で酸性又はアル力リ性、 所定温度の 条件下で行う。  The electric plating method is performed by adjusting a bath of an aqueous solution of nickel sulfate, nickel chloride, or boric acid, or an aqueous solution of nickel sulfate, ammonium chloride, boric acid, or the like, and passing an electric current under acidic and predetermined temperature conditions. The chemical plating method uses a chemical plating bath containing a small amount of nickel sulfate, sodium hypophosphite, and in some cases, lactic acid, propionic acid, sodium citrate, sodium acetate, and sodium chloride. Perform under conditions.
メツキ施工後、 前記金網、 ノ、。ンチングメタル、 スクリーン印刷に用いる樹脂シ 一ト等を剝がす。  After the construction, the wire mesh. It removes metal sheet, resin sheet used for screen printing, etc.
この結果、 図 2に示すように、 ニッケル箔面に細かな凹凸が付着し、 光を乱反 射させるようになる。 この凹凸のピッチは、 前記金網、 バンチングメタル、 スク リーン印刷に用いる樹脂シート等の孔のピッチで決まり、 このピッチは、 2 2〃 m— 5 mm. 好ましくは 3 0 u rn - 8 5 0 m程度である。 また、 凹凸の深さは 2 - 1 5 m, 好ましくは 3— 8 z m、 より好ましくは 5〃m程度である。 前記請求項 2記載の過電流保護回路素子にぉレ、て、 P T C特性を示さなレ、導電 性薄膜が、 導電性物質とバインダーからなり、 P T C導電性組成物やニッケル箔 にコーティングされて薄膜となることが低抵抗の過電流保護回路素子を得るため には、 好ましい (請求項 3 )。  As a result, as shown in FIG. 2, fine irregularities adhere to the nickel foil surface, causing light to diffusely reflect. The pitch of the irregularities is determined by the pitch of the holes in the wire netting, bunching metal, resin sheet used for screen printing, and the like, and the pitch is 22〃m-5 mm. Preferably, 30 urn-850 m It is about. The depth of the unevenness is 2 to 15 m, preferably 3 to 8 zm, and more preferably about 5 μm. The overcurrent protection circuit element according to claim 2, wherein the conductive thin film does not show PTC characteristics, and the conductive thin film is made of a conductive material and a binder, and is coated on a PTC conductive composition or a nickel foil to form a thin film. Is preferable in order to obtain a low-resistance overcurrent protection circuit element (claim 3).
本発明で用いる P T C要素を持たなレ、導電性薄膜とは通常メンブレンスイッチ 等に用いられるカーボンペースト、 グラフアイトペースト、 銀ペースト等の薄膜 を形成させるものであり、 膜の厚みは通常 1 ー 3 0〃m好ましくは 2— 1 5 ja m 程度である。  The conductive thin film having no PTC element used in the present invention is used to form a thin film such as a carbon paste, a graphite paste, a silver paste or the like usually used for a membrane switch or the like, and the thickness of the film is usually 1-3. 0〃m, preferably about 2 to 15 jam.
この薄膜の存在のために、 P T C導電性組成物やニッケル箔とのォーミック接 触がより容易に実現され、 常温での過電流保護回路素子の低抵抗化を実現するこ とが期待できる。 前記 PTC導電性組成物には、 Y2 03 等を微量添加した BaT i 03 , B a PbT i 03 , BaSrT i 03 等の無機組成物や、 有機組成物があげられる。 有機組成物は、 熱可塑性樹脂に導電性粒子が分散された組成物であって、 ポリマ 一の結晶融点よりも少し低い温度範囲において正温度係数 (PTC) を示すもの である (請求項 4)。 Due to the presence of this thin film, ohmic contact with the PTC conductive composition and nickel foil can be more easily realized, and it can be expected that the resistance of the overcurrent protection circuit element at room temperature can be reduced. Wherein the PTC conductive composition, Y 2 0 3, etc. BAT i 0 3 was added in a small amount of, B a PbT i 0 3, BaSrT i 0 3 or the like of the inorganic composition and the organic composition and the like. The organic composition is a composition in which conductive particles are dispersed in a thermoplastic resin, and exhibits a positive temperature coefficient (PTC) in a temperature range slightly lower than the crystalline melting point of the polymer (Claim 4). .
前記熱可塑性樹脂は、 例えばポリエチレン、 ポリプロピレン等のポリオレフィ ン類、 塩化ビニル、 酢酸ビュル、 アクリル酸エステル、 ABS、 ポリアミ ド、 ポ リアリレン類、 PPS、 PES. PEEK, ポリオキシメチレン、 ポリエチレン テレフ夕レート、 ポロブチレンテレフ夕レート、 全芳香族ポリエチレン等のポリ エステル類、 ポリカーボネート類、 ポリテトラフルォロエチレン、 ポリビニリデ ンフルオラィド、 それら熱可塑性樹脂のコポリマ一類及びグラフト変成物の中か ら選ばれる単一ポリマー若しくは 2種若しくはそれ以上のポリマ一の混合物をあ げることができる。 なお、 ポリオレフイン類を使用する場合には、 本組成物に電 子線架橋を施すこともできる。  The thermoplastic resin includes, for example, polyolefins such as polyethylene and polypropylene, vinyl chloride, vinyl acetate, acrylic acid ester, ABS, polyamide, polyarylenes, PPS, PES.PEEK, polyoxymethylene, polyethylene terephthalate, Polyesters such as polybutylene terephthalate, wholly aromatic polyethylene, polycarbonates, polytetrafluoroethylene, polyvinylidene fluoride, a homopolymer selected from copolymers of thermoplastic resins and graft modified products thereof, or A mixture of two or more polymers can be provided. When polyolefins are used, the composition may be subjected to electron beam crosslinking.
前記導電性粒子は、 無定形炭素粒子である導電性カーボンブラック、 結晶性炭 素粒子である黒鉛、 膨張黒鉛又は繊維状黒鉛の 1又は 2種以上からなることが好 ましい (請求項 5)。  The conductive particles are preferably made of one or more of conductive carbon black, which is an amorphous carbon particle, graphite, which is a crystalline carbon particle, expanded graphite, and fibrous graphite (claim 5). .
前記導電性力一ボンブラックは、 例えばケッチンブラック、 アセチレンブラッ ク、 ファーネスブラック等である。  The conductive black is, for example, Ketchin black, acetylene black, furnace black or the like.
前記黒鉛は、 例えば球伏黒鉛、 鳞片上黒鉛、 膨張黒鉛、 繊維状黒鉛等である。 膨張黒鉛は黒鉛を加熱することによって黒鉛の体積を膨張させたもので通常 2 - 1 00 m程度の粒径に紛砕して用いられる。 鳞片上黒鉛は、 嵩密度が低く抑え られ、 表面積も小さいので、 分散性や濡れ性がよく、 極めて均質な PTC導電性 組成物を得ることができるので、 薄肉の過電流保護回路素子を実現することが期 待できる。  The graphite is, for example, spherical graphite, flake graphite, expanded graphite, fibrous graphite and the like. Expanded graphite is obtained by expanding the volume of graphite by heating graphite, and is usually used by being crushed to a particle size of about 2 to 100 m.鳞 Since graphite has a low bulk density and a small surface area, it has good dispersibility and wettability, and can obtain a very homogeneous PTC conductive composition, realizing a thin overcurrent protection circuit element. This can be expected.
本発明は、 これらの導電性粒子の 1種以上の混合物からなり、 当該導電性粒子 の粒径は 0. 1 m— 100〃m程度であり、 好ましくは 0. 3〃m— 50〃m 程度である。  The present invention comprises a mixture of one or more of these conductive particles, and the particle size of the conductive particles is about 0.1 m to 100 m, preferably about 0.3 m to 50 m. It is.
前記導電性粒子は、 カーボンファイバ一を短く切断又は紛砕し、 黒鉛化した黒 鉛であってもよい (請求項 6 ) 。 The conductive particles are obtained by cutting or crushing a carbon fiber shortly and graphitizing black. It may be lead (claim 6).
本発明に用いられる繊維状黒鉛粒子は一般に黒鉛ウイスカ一が用いられるが、 これはカーボンファイバーを短く切断又は紛砕した後、 2 0 0 0 °C以上の非酸化 雰囲気で黒鉛化したもの等である。 当該黒鉛粒子の形状は粒子径が 2— 5 0 rn 程度であり、 抵抗値が低くバラツキが小さいものが用いられる。  As the fibrous graphite particles used in the present invention, graphite whiskers are generally used, which is obtained by cutting or crushing a carbon fiber shortly and then graphitizing it in a non-oxidizing atmosphere at 200 ° C or more. is there. The graphite particles have a particle diameter of about 2 to 50 rn, and have a low resistance value and a small variation.
前記 P T C導電性組成物は、 導電性粒子の一部又は全部が、 前記熱可塑性樹脂 とは融点の異なる別種類の熱可塑性樹脂により被覆されていることが好ましい (請求項 7 , 8 ) 。  In the PTC conductive composition, it is preferable that part or all of the conductive particles be covered with another type of thermoplastic resin having a melting point different from that of the thermoplastic resin (claims 7 and 8).
導電性被覆物とは、 公知の方法 (特開平 6 - 1 5 7 8 2 7号公報参照) に従つ て導電性粒子を熱可塑性樹脂によりごく薄く被覆 (カプセル化) したものである。 当該カプセルは、 加熱により体積膨張し、 ごく短時間で P T C導電性組成物を絶 縁体に変換するという作用を奏するとともに、 主にカプセル化用素材の表面張力 により、 温度変化が起こってもその形状を保ち、 導電性素材を離すことがない。 従つて、 当該力プセル組成物に組み入れることによって P T C素材を単に樹脂マ トリックスに分散させた従来の P T C組成物に比べて、 優れた温度制御性及び経 時安定性を得ることができる。 したがって、 経年使用しても、 抵抗値変化が安定 した、 信頼性の高い過電流保護回路素子を実現することが期待できる。  The conductive coating is obtained by coating (encapsulating) conductive particles very thinly with a thermoplastic resin according to a known method (see Japanese Patent Application Laid-Open No. 6-157787). The capsule expands in volume by heating and has the effect of converting the PTC conductive composition into an insulator in a very short time.Also, even if the temperature changes mainly due to the surface tension of the encapsulating material, the Maintains shape and does not release conductive material. Therefore, by incorporating the PTC material into the force-pressing composition, superior temperature controllability and aging stability can be obtained as compared with the conventional PTC composition in which the PTC material is simply dispersed in a resin matrix. Therefore, it is expected that a highly reliable overcurrent protection circuit element whose resistance value change is stable even after use over time can be realized.
カプセル化用素材の具体例としては、 例えば、 各種軟質樹脂、 ゴム、 エラスト マ一、 高級脂肪酸、 エステル等をあげることができる。 軟質樹旨としては、 例え ば、 シリコン樹脂、 ポリエステル樹脂、 フッソ系樹脂、 ウレタン樹脂、 ポリェチ レン樹脂、 ポリプロピレン樹脂、 酢酸ビニル樹脂、 塩化ビニル樹脂、 ポリスチレ ン樹脂、 ポリイソプレン樹脂及び上記樹脂類の変性体、 共重合体をあげることが できる。 ゴムとしては、 例えば、 フッソゴム、 シリコンゴム、 ウレタンゴム、 ァ クリルゴム、 環化天然ゴム、 ブタジエンゴム、 クロロプレンゴム、 ブタジエンラ テックス、 アクリロニトリルブタジエンゴムラテックス、 アクリルブタジエンラ テックス等をあげることができる。 エラストマ一としては、 例えば、 ポリエステ ルエラストマ一、 ウレタンエラストマ一等をあげることができる。 当該黒鉛粒子 とカプセル化用素材の配分割合は特に制限はなく広し、範囲から適宜選択できるが、 当該カプセルに要求される働き (自己温度制御を鋭敏にする働き及び電流を流す 導電性素材としての働き) を考慮すると、 導電性素材 1 0 0重量部に対して通常 力プセル化用素材を 5 - 5 0重量部程度、 好ましくは 1 0— 4 0重量部程度配合 するのがよい。 また、 カプセル化方法としては、 特に制限はなく公知の方法が適 用できるが、 例えば、 (a ) カプセル化用樹脂と黒鉛粒子を適当な溶剤に溶融又 は分散させて噴霧する方法 (b ) カプセル化樹脂を加熱により溶解し、 これに導 電性素材を加えて練り混み、 粉体化する方法 (c ) 界面重合法等をあげることが できる。 当該カプセルの寸法は特に制限されず、 使用目的、 使用原体等に応じて 適宜選択すればよいが、 通常粒径が 1 m— 2 0 0 z m程度、 好ましくは 5 ^ m - 1 0 0 m程度とすればよし、。 Specific examples of the encapsulating material include various soft resins, rubbers, elastomers, higher fatty acids, esters, and the like. Soft resins include, for example, silicone resin, polyester resin, fluorine resin, urethane resin, polyethylene resin, polypropylene resin, vinyl acetate resin, vinyl chloride resin, polystyrene resin, polyisoprene resin, and modification of the above resins. And copolymers. Examples of the rubber include fluorine rubber, silicone rubber, urethane rubber, acryl rubber, cyclized natural rubber, butadiene rubber, chloroprene rubber, butadiene latex, acrylonitrile butadiene rubber latex, and acrylic butadiene latex. Examples of the elastomer include polyester elastomer, urethane elastomer, and the like. The distribution ratio of the graphite particles and the encapsulating material is not particularly limited and is wide and can be appropriately selected from the range. However, the function required for the capsule (the function of sharpening the self-temperature control and the flow of current) Considering the function as a conductive material), it is necessary to add about 5 to 50 parts by weight, and preferably about 10 to 40 parts by weight, of the material for forming a forcepsel to 100 parts by weight of the conductive material. Is good. The encapsulation method is not particularly limited, and known methods can be applied. For example, (a) a method in which an encapsulating resin and graphite particles are melted or dispersed in an appropriate solvent and sprayed (b) A method of dissolving the encapsulated resin by heating, adding a conductive material to the mixture, kneading the mixture, and pulverizing the powder. The size of the capsule is not particularly limited, and may be appropriately selected depending on the purpose of use, the active ingredient, and the like. Usually, the particle size is about 1 m to 200 zm, preferably 5 ^ m-100 m. It should be about degree.
前記請求項 1又は 2記載の過電流保護回路素子において、 P T C導電性組成物 は、 導電性粒子が熱硬化性樹脂に分散されてなるものであってもよい (請求項 9 ) o  In the overcurrent protection circuit element according to claim 1 or 2, the PTC conductive composition may be one in which conductive particles are dispersed in a thermosetting resin (Claim 9).
熱硬化性樹脂は、 温度の上昇下降を繰り返しても、 熱劣化が少なく、 繰り返し 使用しても再現性に優れるという特徴があるので、 優れた温度制御性及び経時安 定性を得ることができるという前記カプセル組成の特徴と合わせて、 経年使用し ても、 抵抗値変化が安定した、 信頼性の高い過電流保護回路素子を実現すること が期待できる。  Thermosetting resins are characterized by low thermal degradation even when temperature rises and falls repeatedly, and excellent reproducibility even when used repeatedly, so that excellent temperature controllability and stability over time can be obtained. In addition to the characteristics of the capsule composition, it can be expected to realize a highly reliable overcurrent protection circuit element having a stable resistance value change even after use over time.
熱硬化性樹脂は、 熱硬化性架橋型ポリオルガノシロキサン樹脂を含むことが好 ましい。  The thermosetting resin preferably contains a thermosetting crosslinked polyorganosiloxane resin.
熱硬化性架橋型ポリオルガノシロキサン樹脂は、 水素、 ビニル基、 ァリル基、 ヒドロキシル基、 炭素数 1〜4のアルコキシ基、 アミノ基、 メルカブト基等の置 換基が少なくとも 1個以上含まれているポリジメチルシロキサン、 ポリジフエ二 ルシロキサン、 ポリメチルフエニルシロキサン、 及びこれらの共重合体等のスト レートシリコン樹脂、 ポリアクリルォキシアルキルアルコキシシラン系、 ポリビ ニルシラン系等があり、 また、 当該ストレートシリコン樹脂とエポキシ樹脂を反 応させたエポキシ変性シリコン樹脂、 ストレートシリコン樹脂と多塩基酸及び多 価アルコールの縮合物からなるポリエステル変性シリコン樹脂、 ストレートシリ コン樹脂と脂肪酸、 多塩基酸及び多価アルコールの縮合物又はストレ一トシリコ ン樹脂とアルキッ ド樹脂を反応させたアルキッ ド変性シリコーン樹脂、 ストレー トシリコン樹脂とメラミンホルムアルデヒド樹脂、 尿素ホルムアルデヒド樹脂、 ベンゾグァナミン、 ァセトグァナミン等とホルムアルデヒドを反応させたグァナ ミン樹脂及びフヱノールホルムアルデヒド樹脂等のアミノ樹脂とを反応させたァ ミノ樹脂変性シリコン樹脂などであり、 シリコンゴム、 シリコン樹脂、 シリコン 粘着剤、 シリコンコーティング剤として用いられる。 The thermosetting crosslinked polyorganosiloxane resin contains at least one or more substituent groups such as hydrogen, vinyl group, aryl group, hydroxyl group, alkoxy group having 1 to 4 carbon atoms, amino group, and mercapto group. There are straight silicone resins such as polydimethylsiloxane, polydiphenylsiloxane, polymethylphenylsiloxane, and straight silicone resins such as copolymers thereof, and polyacryloxyalkylalkoxysilane-based and polyvinylsilane-based resins. -Modified epoxy resin obtained by reacting epoxy resin with epoxy resin; polyester-modified silicone resin consisting of condensate of straight silicone resin with polybasic acid and polyhydric alcohol; condensation of straight silicone resin with fatty acid, polybasic acid and polyhydric alcohol Object or straight silicon resin Aruki' de modified silicone resin obtained by reacting Aruki' de resin, storage Amino resin such as melamine formaldehyde resin, urea formaldehyde resin, benzoguanamine, acetoguanamine, etc. Used as rubber, silicone resin, silicone adhesive, silicone coating.
本発明の過電流保護回路素子を製造するには通常、 ( i ) 素材の調整、 (ϋ ) 素材の形成及び電極との接合、 (Mi) 形状調製の各工程が採用される。  In order to manufacture the overcurrent protection circuit element of the present invention, each step of (i) adjustment of the material, (ii) formation of the material and bonding with the electrode, and (Mi) shape adjustment are usually employed.
( i ) 素材の調整  (i) Material adjustment
本発明における素材の調整は、 P T C導電性組成物を調整することである。 P T C導電性組成物は、 例えば熱可塑性樹脂と導電性粒子とを混合して加熱し、 練 り込んで調整すればできる。  The adjustment of the material in the present invention is to adjust the PTC conductive composition. The PTC conductive composition can be adjusted, for example, by mixing a thermoplastic resin and conductive particles, heating the mixture, and kneading the mixture.
また、 熱硬化性樹脂、 例えばポリオルガノシロキサン樹脂に、 熱可塑性樹脂に より被覆された導電性粒子、 例えば熱可塑性樹脂により被覆された黒鉛粒子を、 通常塗料用 3本口一ルで混合し、 塗料化して調整してもよい。  Also, conductive particles coated with a thermoplastic resin, for example, graphite particles coated with a thermoplastic resin, are mixed with a thermosetting resin, for example, a polyorganosiloxane resin, usually in a three-port unit for paint, It may be adjusted by coating.
調整時に各種添加剤、 例えば、 分散剤、 粘度調整剤、 安定剤等を混合調整して もよい。  At the time of adjustment, various additives such as a dispersant, a viscosity adjuster, and a stabilizer may be mixed and adjusted.
電極は、 前述したように、 ニッケル箔面に金網、 ノ、。ンチングメタル、 スクリー ン印刷に用いる樹脂シ一ト等を密着させて固定し、 電気メツキ法又は化学メツキ 法で粗面化ニッケルメツキを施し、 シートを剝がして形成すればよい。  The electrodes are, as mentioned above, a wire mesh on the nickel foil surface. An etching metal, a resin sheet used for screen printing, or the like may be adhered and fixed, and a roughened nickel plating may be applied by an electric plating method or a chemical plating method, and the sheet may be peeled off.
また、 この粗面化ニッケルメツキ面に、 前述した P T C特性を示さない導電性 薄膜を塗布又は印刷して乾燥させたものを用いてもよい。  Further, a material obtained by applying or printing a conductive thin film that does not exhibit the above-mentioned PTC characteristic on the roughened nickel plating surface and then drying it may be used.
(ϋ ) 素材の形成及び電極との接合  (ϋ) Material formation and bonding with electrodes
素材の形成は、 押出し成形で得たシート状物を乾燥させた後、 電極に加熱圧着 する力、、 溶けた素材を電極に直接塗布又は印刷すればよい。 塗布するには、 電極 にロールで塗り付ければよく、 印刷するには、 例えばスクリーン印刷の方法を使 用すればよい。  The material may be formed by drying the sheet-like material obtained by extrusion molding, and then applying heat and pressure to the electrode and directly applying or printing the melted material on the electrode. To apply, the electrode may be applied with a roll, and for printing, for example, a screen printing method may be used.
膜厚は特に制限されず、 得ようとする過電流保護回路素子によって選択される 力、 通常 1 0— 2 5 0 m好ましくは 2 0— 1 5 0 // m程度の厚さ (乾燥後の膜 厚) とすればよい。 導電性粒子が熱硬化性樹脂に分散されてなる P T C導電性組成物の場合 (請求 項 9 ) は、 素材の形成は電極それ自体に塗布又は印刷し、 乾燥させればよい。 塗 布するには、 電極にロールで塗り付ければよく、 印刷するには、 例えばスクリー ン印刷の方法を使用すればよい。 比較的厚膜の場合は、 ポリオルガノシロキサン 樹脂は無溶剤夕ィプのものを使用してもよい。 The film thickness is not particularly limited, and is a force selected by the overcurrent protection circuit element to be obtained, usually about 10 to 250 m, preferably about 20 to 150 // m (after drying) Film thickness). In the case of a PTC conductive composition in which conductive particles are dispersed in a thermosetting resin (Claim 9), the material may be formed by coating or printing on the electrode itself and drying. To apply, the electrode may be applied with a roll, and for printing, for example, a screen printing method may be used. In the case of a relatively thick film, a polyorganosiloxane resin having no solvent may be used.
電極との接合については、 乾燥後に塗布面を合わせて圧着させ加熱硬化させる c 加熱硬化温度はニッケル箔の酸化防止のため、 できるだけ低温であることが好ま しい。  Regarding the bonding with the electrode, after drying, the coated surfaces are pressed together and heat-cured. C The heat-curing temperature is preferably as low as possible to prevent oxidation of the nickel foil.
(iii) 形状調製  (iii) Shape preparation
形状の調製は、 過電流保護回路素子に要求される設計寸法に適宜裁断して行う 例えば、 乾電池のセルの内部に使用する場合は、 図 3に示すように、 孔の開いた 円板形状に裁断する。 裁断時に電極同士が接触しないように注意する。  The shape is adjusted by appropriately cutting to the design dimensions required for the overcurrent protection circuit element.For example, when used inside a dry cell, a disk shape with holes as shown in Fig. 3 is used. To cut. Care is taken so that the electrodes do not touch each other during cutting.
<図面の簡単な説明 >  <Brief description of drawings>
図 1は過電流保護回路素子の内部構成を示す断面図であり、 (a) は導電性薄膜 のないもの、 (b) 導電性薄膜を有するものを示す。  FIG. 1 is a cross-sectional view showing the internal configuration of the overcurrent protection circuit element. (A) shows a case without a conductive thin film, and (b) shows a structure with a conductive thin film.
図 2は粗面化二ッケルメツキを施したニッケル箔の断面図である。  FIG. 2 is a cross-sectional view of a nickel foil subjected to roughening nickel plating.
図 3は乾電池の内部に用いる過電流保護回路素子の形状を示す外観斜視図であ る。  FIG. 3 is an external perspective view showing the shape of the overcurrent protection circuit element used inside the dry battery.
図 4は過電流保護回路素子の抵抗率の測定方法を示す回路図である。  FIG. 4 is a circuit diagram showing a method for measuring the resistivity of the overcurrent protection circuit element.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
以下、 本発明を実施するための最良の形態を詳細に説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail.
A. まず、 導電性粒子が熱可塑性樹脂に分散された P T C導電性組成物を使用す る場合の実施例、 比較例を説明する。 A. First, Examples and Comparative Examples in the case of using a PTC conductive composition in which conductive particles are dispersed in a thermoplastic resin will be described.
厚さ 2 0〃mのニッケル箔の片面にスクリーン印刷で用いる樹脂シ一トを密着 させて固定し、 電気メツキ法又は化学メツキ法でニッケルメツキを施し粗面化二 ッケルメツキを行う。  A resin sheet used for screen printing is closely adhered to one side of a nickel foil having a thickness of 20 μm and fixed, and nickel plating is performed by an electric plating method or a chemical plating method to perform a rough nickel plating.
電気メツキ法は、 硫酸ニッケル 2 2 0 - 3 8 0 g . 塩化ニッケル 3 0 - 6 0 / ほう酸 3 0— 4 0 gZ_gの水溶液や、 硫酸ニッケル 1 5 0 / 塩 化アンモニゥ厶 1 5 g / 、 ほう酸 1 5 gZ^等の水溶液の浴を調整して、 p H 4— 5、 温度 4 0 °C - 5 5での条件下で、 電流密度 1 一 8 AZ d m 2 の電流を流 して所定時間行う。 化学メツキ法は、 硫酸ニッケル 2 O g Z 、 次亜りん酸ナト リウム 1 0— 2 5 g 場合により乳酸、 プロピオン酸、 クェン酸ナトリウム、 酢酸ナトリウム、 塩化ナトリゥ厶を少量添加した化学メッキ浴で p H 4— 6又は 8 - 9 . 5、 温度 3 0 °C— 9 0ての条件下で所定時間行う。 The electroplating method is as follows: nickel sulfate 220-380 g. Nickel chloride 30-60 / boric acid 30-40 g aqueous solution of Z_g, nickel sulfate 150 / ammonium chloride 15 g /, Adjust the bath of an aqueous solution such as boric acid 15 gZ ^ to adjust pH Under the conditions of 4-5 and temperature of 40 ° C-55, a current of 18 AZ dm 2 in current density is passed for a predetermined time. The chemical plating method is performed in a chemical plating bath containing a small amount of nickel sulfate 2 OgZ, sodium hypophosphite 10-25 g, and a small amount of lactic acid, propionic acid, sodium citrate, sodium acetate, and sodium chloride. H 4-6 or 8-9.5, temperature 30 ° C-90, for a predetermined time.
メッキ施工後、 前記金網、 パンチングメタル、 スクリーン印刷に用いる樹脂シ —ト等を剝がすと、 約 5 mの厚みの表面の粗い、 片面粗面化ニッケルメツキ面 が得られる (福田金属箔粉工業 (株)製) 。  After plating, the wire mesh, punched metal, resin sheet used for screen printing, etc. are removed to obtain a roughly 5 m thick, one-side roughened nickel plating surface (Fukuda Metal Foil Powder) Industrial Co., Ltd.)
実施例 1 Example 1
ポリエチレン樹脂 (三井石油化学工業 (株)製) 4 5重量%に黒鉛粉 (日本力 一ボン(株)製) 3 5重量%、 球伏カーボン (カネボウ(株)製) 2 0重量%を 加熱混練押出し装置により加熱混練し、 2 0 0 mの厚さのシ一ト状に押出した。 このシートを、 前記ニッケルメツキ粗面化ニッケル箔の粗面側同士の間に挿み、 加熱プレス板を上下に設けたプレス機で約 1 0 O Kg/cm2 の圧力で約 1 7 0 °C、 5分加熱圧着した (図 1 (a) 参照) 。 Polyethylene resin (manufactured by Mitsui Petrochemical Industry Co., Ltd.) 45% by weight of graphite powder (manufactured by Nippon Power Ichibon Co., Ltd.) 35% by weight, and Kabuki Carbon (manufactured by Kanebo Co., Ltd.) 20% by weight The mixture was heated and kneaded by a kneading extruder and extruded into a sheet having a thickness of 200 m. This sheet is inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at a pressure of about 10 O Kg / cm 2 at a pressure of about 10 Kg / cm 2 by a press machine having upper and lower heating press plates. C, thermocompression bonding for 5 minutes (see Fig. 1 (a)).
実施例 2 Example 2
ポリプロピレン樹脂 (三井石油化学工業 (株)製) 4 5重量%に黒鉛粉 (日本 カーボン(株)製) 3 5重量%、 球状カーボン (カネボウ(株)製) 2 0重量% を実施例 1 と同じ方法で加熱混練し、 2 0 0〃mの厚さのシート状に押出した。 このシートを、 前記ニッケルメツキ粗面化ニッケル箔の粗面側同士の間に挿み、 加熱プレス板を上下に設けたプレス機で約 1 0 O KgZcm2 の圧力で約 1 7 0て、 5分加熱圧着した (図 1 (a) 参照) 。 Example 5 35% by weight of graphite resin (manufactured by Nippon Carbon Co., Ltd.) and 20% by weight of spherical carbon (manufactured by Kanebo Co., Ltd.) were added to 45% by weight of polypropylene resin (manufactured by Mitsui Petrochemical Industries, Ltd.). The mixture was heated and kneaded in the same manner and extruded into a sheet having a thickness of 200 μm. This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and pressed with a pressure machine of about 10 O KgZcm 2 at a pressure of about 10 O Og (Figure 1 (a)).
実施例 3 Example 3
実施例 1で使用したポリエチレン樹脂 4 5重量%に炭素繊維を紛砕し、 約 2 9 0 0 °Cの還元雰囲気下で黒鉛化したもの (以下 「黒鉛化炭素繊維」 という) 3 5 重量%、 黒鉛粉 2 0重量%を実施例 1 と同じ方法で 2 0 0 mの厚さのシート状 に押出した。  45% by weight of the polyethylene resin used in Example 1 crushed with 45% by weight of carbon fiber and graphitized under a reducing atmosphere of about 900 ° C. (hereinafter referred to as “graphitized carbon fiber”) Then, 20% by weight of graphite powder was extruded into a sheet having a thickness of 200 m in the same manner as in Example 1.
このシートを、 前記ニッケルメツキ粗面化ニッケル箔の粗面側同士の間に挿み、 加熱プレス板を上下に設けたプレス機で約 1 0 O KgZcm2 の圧力で約 1 7 0 °C、 5分加熱圧着した (図 1 (a) 参照) 。 This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at about 170 ° C. at a pressure of about 10 O KgZcm 2 with a press machine provided with heating and pressing plates at the top and bottom. Thermocompression bonding was performed for 5 minutes (see Fig. 1 (a)).
実施例 4 Example 4
実施例 2で使用したポリプロピレン樹脂 4 5重量%にあらかじめ塩化ビニリデ ン樹脂をキシレン '酢酸ブチル混合溶剤で加熱溶解させた後、 黒鉛化炭素繊維を 投入し (塩化ビニリデン樹脂が約 2 0重量%、 黒鉛化炭素繊維が約 8 0重量%に なるように調整) 混合、 冷却後減圧乾燥させて紛砕調整したカプセル化黒鉛化炭 素繊維 3 5重量%、 同様にカプセル化した球状カーボン粉 2 0重量%を生成し、 実施例 1 と同様に 2 0 0 mの厚みのシ一トに押出した。  A vinylidene chloride resin was previously dissolved in 45% by weight of the polypropylene resin used in Example 2 with a mixed solvent of xylene and butyl acetate, and then graphitized carbon fibers were added thereto (about 20% by weight of the vinylidene chloride resin, The amount of graphitized carbon fiber was adjusted to about 80% by weight.) Mixed, cooled, dried under reduced pressure, and crushed and adjusted. 35% by weight of encapsulated graphitized carbon fiber, similarly encapsulated spherical carbon powder 20%. % By weight and extruded into a 200 m thick sheet as in Example 1.
このシートを、 前記ニッケルメツキ粗面化ニッケル箔の粗面側同士の間に挿み、 加熱プレス板を上下に設けたプレス機で約 1 0 O KgZcm2 の圧力で約 1 7 0 °C、 5分加熱圧着した (図 1 (a) 参照) 。 This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at about 170 ° C. at a pressure of about 10 O KgZcm 2 with a press machine provided with heating and pressing plates at the top and bottom. Thermocompression bonding was performed for 5 minutes (see Fig. 1 (a)).
実施例 5 Example 5
塩化ビニリデン樹脂 4 0重量%に黒鉛化炭素繊維 3 5重量%、 カプセル化球状 カーボン 2 5重量%をバンバリ一ミキサーで加熱混練した後、 紛砕して押出し機 で 2 0 0〃m厚みのシ一ト状に押出した。  40% by weight of vinylidene chloride resin, 35% by weight of graphitized carbon fiber, and 25% by weight of encapsulated spherical carbon were heated and kneaded with a Banbury mixer, crushed, and extruded to a thickness of 200 m with an extruder. Extruded in one piece.
このシ一トを、 前記ニッケルメツキ粗面化ニッケル箔の粗面側同士の間に挿み、 加熱プレス板を上下に設けたプレス機で約 1 0 O Kg/cm2 の圧力で約 1 7 0 °C、 5分加熱圧着した (図 1 (a) 参照) 。 The sheet is inserted between the roughened sides of the nickel-plated roughened nickel foil, and is heated at a pressure of about 10 O Kg / cm 2 by a press machine provided with a heating press plate on the upper and lower sides for about 17 times. Thermocompression bonding was performed at 0 ° C for 5 minutes (see Fig. 1 (a)).
実施例 6 Example 6
実施例 2で使用したポリプロピレン樹脂 4 0重量%、 実施例 4と同様な方法で 調整したカプセル化膨張黒鉛 2 5重量%、 カプセル化黒鉛粉 2 5重量%、 ケツチ ンブラック 1 0重量%を実施例 5と同様に混練し、 押出し機で 2 0 0 mの厚み のシート状に押出した。  40% by weight of polypropylene resin used in Example 2, 25% by weight of encapsulated expanded graphite prepared in the same manner as in Example 4, 25% by weight of encapsulated graphite powder, and 10% by weight of ketchin black The mixture was kneaded in the same manner as in Example 5, and extruded into a sheet having a thickness of 200 m using an extruder.
このシートを、 前記ニッケルメツキ粗面化ニッケル箔の粗面側同士の間に挿み、 加熱プレス板を上下に設けたプレス機で約 1 0 O KgZcm2 の圧力で約 1 7 0 °C、 5分加熱圧着した (図 1 (a) 参照) 。 This sheet was inserted between the roughened sides of the nickel plating roughened nickel foil, and heated at about 170 ° C. at a pressure of about 10 O KgZcm 2 with a press machine provided with heating and pressing plates at the top and bottom. Thermocompression bonding was performed for 5 minutes (see Fig. 1 (a)).
実施例 7 —実施例 1 2 Example 7 — Example 1 2
ケッチンブラック 2 0重量%、 球状黒鉛 (大阪ガス(株)製メソカーボン) 5 5重量%をゥレ夕ン樹脂 2 5重量%に適宜溶剤を加えて 3本ロールで混練して、 導電ペーストを調製した。 20% by weight of ketchin black and 55% by weight of spheroidal graphite (Mesocarbon manufactured by Osaka Gas Co., Ltd.) are mixed with 25% by weight of resin and appropriately kneaded with three rolls. A conductive paste was prepared.
この導電ペーストを実施例 1 一 6で用いたニッケルメツキ粗面化ニッケル箔の 粗面にスクリーン印刷 ·塗布し、 乾燥させて約 1 O mの厚さの膜を得た。 この上に、 実施例 1 一 6と同様な方法で調整したシ一トを当該塗膜同士の間に 介在させて実施例 1 ― 6と同様に加熱圧着した (図 1 (b) 参照) 。  This conductive paste was screen-printed and applied to the rough surface of the nickel plating roughened nickel foil used in Example 16 and dried to obtain a film having a thickness of about 1 Om. On this, a sheet prepared in the same manner as in Example 16 was heated and pressed in the same manner as in Example 1-6, with the sheet interposed between the coating films (see FIG. 1 (b)).
比較例 1 -比較例 6 Comparative Example 1-Comparative Example 6
実施例 1 — 6で調整したシートを、 厚さ 2 0 mの 2枚の、 メツキしていない ニッケル箔 (福田金属箔粉工業 (株)製) の間に介在させ、 実施例 1 一 6と同様 に加熱圧着した。  The sheets prepared in Examples 1 to 6 were interposed between two non-stick nickel foils (manufactured by Fukuda Metal Foil & Powder Co., Ltd.) having a thickness of 20 m. In the same manner, the thermocompression bonding was performed.
比較例 7 -比較例 1 2 Comparative Example 7-Comparative Example 1 2
厚さ 2 0 mの 2枚の、 メツキしていないニッケル箔に、 導電ペーストを実施 例 7— 1 2と同様にして塗布し、 乾燥させ、 実施例 1 _ 6で調整したシートを挟 み、 加熱圧着した。  A conductive paste is applied to two unplated nickel foils having a thickness of 20 m in the same manner as in Example 7-12, dried, and the sheet prepared in Example 1_6 is sandwiched. It was heat-pressed.
実施例 1 一 1 2及び比較例 1 一 1 2の抵抗測定を、 図 4に示す回路により行つ たので、 その結果を表 1に掲載する。 Example 11 The resistance measurement of the example 11 and the comparative example 11 was performed by the circuit shown in FIG. 4, and the results are shown in Table 1.
表 1 実施例 抵 ί几 率 比較例 抵 抗 率 Table 1 Example geometric ratio Comparative example Resistance ratio
(粗面化ニッケルメツキ) (メッキなし) 導 1 1 . 3 1 4 . 0  (Roughened nickel plating) (No plating)
電 2 2 . 0 2 4 . 6  2 2 .0 2 4 .6
性 3 1 . 8 3 4 . 4  Sex 3 1. 8 3 4. 4
4 1 . 7 4 3 . 9 膜 5 2 . 1 5 4 . 3  4 1 .7 4 3 .9 membrane 5 2 .1 5 4 .3
な 6 2 . 2 6 4 . 6  6 2. 2 6 4. 6
し 導 7 . 1 7 4 . 0  7.1 74.0
電 8 . 7 8 3 . 9  Denki 8.7 8 3.9
性 9 . 5 9 4 . 1  Sex 9.5 5 4.1
1 0 . 4 1 0 3 . 7  10. 4 1 0 3 .7
膜 1 1 . 8 1 1 4 . 0  Membrane 1 1.8 1 1 4.0
あ 1 2 . 8 1 2 4 . 0 温度 25°C, 単位 Ω · cm 表 1によれば、 粗面化二ッケルメッキを施した二ッケル箔を電極に使用した素 子は、 単にニッケル箔を電極に使用した素子と比べて、 常温 (25°C) での抵抗 率が、 平均して 6 0%ほど低くなつていることが分かる。 また、 電極と PTC導 電性組成物との間に導電ペーストを挟んだ素子は、 挟まなかった素子よりも抵抗 率がさらに低下していることが分かる。  A 12.8 1 24.0 Temperature 25 ° C, unit Ωcm According to Table 1, a nickel-plated element with rough nickel-plated nickel foil is simply nickel foil. It can be seen that the resistivity at room temperature (25 ° C) is on average about 60% lower than that of the element used in (1). Also, it can be seen that the resistivity of the device in which the conductive paste was sandwiched between the electrode and the PTC conductive composition was lower than that of the device in which the conductive paste was not sandwiched.
本発明の過電流保護回路素子は、 常温から 9 0°C± 5°C付近まで抵抗値が変化 せず、 1 20°C± 1 0°C付近傍で少なくとも 1 03 倍以上の抵抗値を示し、 温度 の上昇、 下降を繰り返しても、 抵抗値変化が安定している。 Overcurrent protection circuit device of the present invention does not change the resistance value from room temperature to around 9 0 ° C ± 5 ° C , 1 20 ° C ± 1 0 ° at least 1 0 3 times more resistance value C around near It shows that the resistance change is stable even if the temperature rises and falls repeatedly.
B. 次に、 導電性粒子が熱硬化性樹脂に分散された PTC導電性組成物を使った 場合の実施例、 比較例を説明する。 B. Next, Examples and Comparative Examples in the case of using a PTC conductive composition in which conductive particles are dispersed in a thermosetting resin will be described.
まず、 厚さ 2 0〃mのニッケル箔の片面にスクリーン印刷で用いる樹脂シート を密着させて固定し、 電気メツキ法又は化学メツキ法でニッケルメツキを施し粗 面化ニッケルメツキを行う。 電気メツキ法は、 硫酸ニッケル 220 - 3 8 0 / ί、 塩化ニッケル 3 0― 6 0 / ヽ ほう酸 3 0— 4 0 gZ^の水溶液や、 硫酸ニッケル 1 5 0 / ίヽ 塩 化アンモニゥム 1 5 gZ_g、 ほう酸 1 5 等の水溶液の浴を調整して、 pH 4— 5、 温度 4 0°C— 5 5°Cの条件下で、 電流密度 1一 8AZdm2 の電流を流 して所定時間行う。 化学メツキ法は、 硫酸ニッケル 20 次亜りん酸ナト リウム 1 0— 25 g/^、 場合により乳酸、 プロピオン酸、 クェン酸ナトリウム、 酢酸ナトリウム、 塩化ナトリゥムを少量添加した化学メッキ浴で p H 4— 6又は 8 - 9. 5、 温度 3 0 °C— 9 0 °Cの条件下で所定時間行う。 First, a resin sheet used for screen printing is adhered and fixed to one side of a nickel foil having a thickness of 20 μm, and nickel plating is applied by an electric plating method or a chemical plating method to perform a rough nickel plating. The electroplating method is based on an aqueous solution of nickel sulfate 220-380 / ί, nickel chloride 30-600 / borate 30-40 gZ ^, nickel sulfate 150- / ί ヽ chloride ammonium 15 gZ_g A bath of an aqueous solution of boric acid 15 or the like is adjusted, and a current having a current density of 11 to 8 AZdm 2 is passed under a condition of pH 4 to 5 and a temperature of 40 to 55 ° C for a predetermined time. The chemical plating method is as follows: Nickel sulfate 20 Sodium hypophosphite 10—25 g / ^, optionally, a small amount of lactic acid, propionic acid, sodium citrate, sodium acetate, and sodium chloride. 6 or 8-9.9.5, at a temperature of 30 ° C-90 ° C for a predetermined time.
メツキ施工後、 前記金網、 ノ、 °ンチングメタル、 スクリーン印刷に用いる樹脂シ ート等を剝がすと、 約 5 mの厚みの表面の粗い、 片面粗面化ニッケルメツキ面 が得られる (福田金属箔粉工業 (株)製) 。  After metal plating, the wire mesh, metal, metal sheet, resin sheet used for screen printing, etc. are removed to obtain a nickel-plated metal surface with a rough surface and a single-sided surface with a thickness of about 5 m (Fukuda Metal Co., Ltd.) Foil Powder Industry Co., Ltd.)
実施例 1 3 Example 13
シリコンゴム (ダウコ一ニング社製 Q 4) 3 5重量%に炭素繊維を紛砕し約 2 9 0 0 °Cで還元雰囲気下で黒鉛化したもの (以下 「黒鉛化炭素繊維」 という) 5 0重量%、 黒鉛粉 1 5 %をあらかじめ品川式ミキサーで粗混合した後、 3本ロー ルで混合して P T C組成物を調整した。  Silicon rubber (manufactured by Dow Corning Co., Ltd. Q4) 35 A carbon fiber crushed to 35% by weight and graphitized in a reducing atmosphere at about 290 ° C (hereinafter referred to as “graphitized carbon fiber”) 50 By weight, 15% of graphite powder was roughly mixed in advance with a Shinagawa mixer, and then mixed with three rolls to prepare a PTC composition.
この PTC組成物を、 粗面化ニッケル箔の粗面に約 1 0 0 zm厚みになるよう にアプリケ一ターで塗布した後、 別の粗面化ニッケル箔の粗面を重ね、 加熱プレ ス板を上下に設けたプレス機で塗布表面を合わせた形で、 約 1 0 OKgZcm2 の圧 力で約 1 3 0て、 1時間加熱圧着した (図 1 (a) 参照) 。 After applying this PTC composition to the roughened nickel foil on the roughened surface with an applicator so as to have a thickness of about 100 zm, another roughened nickel foil is coated on the roughened surface, and a heating press plate is applied. Then, the coated surfaces were combined by a press machine provided on the upper and lower sides, and pressed under a pressure of about 10 OKgZcm 2 for about 1 hour and heat-pressed for 1 hour (see Fig. 1 (a)).
実施例 1 4 Example 14
シリコン粘着剤 (ダイコーニング社製 Q 9) 3 5重量%に、 黒鉛化炭素繊維 5 0重量 、 黒鉛粉 1 5 %をあらかじめ品川式ミキサーで粗混合した後、 3本口一 ルで混合して P T C組成物を調整した。  35% by weight of silicone adhesive (Q9 manufactured by Die Corning Co.), 50% by weight of graphitized carbon fiber and 15% by weight of graphite powder were coarsely mixed in advance with a Shinagawa mixer, and then mixed in three holes. The PTC composition was prepared.
この PTC組成物を、 粗面化ニッケル箔の粗面に約 1 0 0〃m厚みになるよう にアプリケ一夕一で塗布した後、 別の粗面化ニッケル箔の粗面を重ね、 加熱プレ ス板を上下に設けたプレス機で塗布表面を合わせた形で、 約 1 0 OKg/cm2 の圧 力で約 1 3 0°C、 1時間加熱圧着した (図 1 (a) 参照) 。 あらかじめポリエチレンをキシレン · メタノール混合溶剤を加熱した中に投入、 溶解させた後に、 黒鉛化炭素繊維を投入し (ポリエチレン約 2 0重量%、 黒鉛化 炭素繊維 8 0重量%) 、 冷却し、 粉砕調整したカプセル化黒鉛化炭素繊維 5 0重 量%、 同様にカプセル化した黒鉛粉 1 5 %、 実施例 1 3で使用したシリコンゴム 3 5重量%を、 あらかじめ品川式ミキサーで粗混合した後、 3本ロールで混合し て P T C組成物を調整した。 This PTC composition was applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 100 m, and then the rough surface of another roughened nickel foil was overlapped. The coated surfaces were combined using a press machine with upper and lower plates mounted on top and bottom, and heat-pressed at a pressure of about 10 OKg / cm 2 at about 130 ° C for 1 hour (see Fig. 1 (a)). Polyethylene is charged and dissolved in a xylene / methanol mixed solvent before heating, and then graphitized carbon fiber is charged (about 20% by weight of polyethylene, 80% by weight of graphitized carbon fiber), cooled, and crushed and adjusted. 50% by weight of the encapsulated graphitized carbon fiber, 15% by weight of the similarly encapsulated graphite powder, and 35% by weight of the silicone rubber used in Example 13 were roughly mixed with a Shinagawa mixer beforehand. The PTC composition was prepared by mixing with this roll.
この P T C組成物を、 粗面化ニッケル箔の粗面に約 1 0 0 m厚みになるよう にアプリケ一夕一で塗布した後、 別の粗面化ニッケル箔の粗面を重ね、 加熱プレ ス板を上下に設けたプレス機で塗布表面を合わせた形で、 約 1 0 O KgZcm2 の圧 力で約 1 3 0 °C、 1時間加熱圧着した (図 1 (a) 参照) 。 This PTC composition was applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 100 m, and then the roughened surface of another roughened nickel foil was overlaid and heated. The plates were heated and pressed at about 130 ° C for 1 hour at a pressure of about 10 O KgZcm 2 , with the coated surfaces being combined by a press machine provided above and below (see Fig. 1 (a)).
実施例 1 6 Example 16
塩化ビニリデンをキシレン ·酢酸ビュル混合溶剤で加熱溶解させた後、 膨張黒 鉛粉末を投入し (塩化ビニリデン約 2 0重量%、 膨張黒鉛粉末 8 0重量 になる ように調整) 、 スプレードライで乾燥し調整したもの 1 5重量%、 実施例 1 5で 調整したカプセル化黒鉛化炭素繊維 2 5重量%、 同じく実施例 1 5で調整した力 プセル化黒鉛粉 1 5重量%、 実施例 1 4で使用したシリコン粘着剤 4 5重量%を、 あらかじめ品川式ミキサ一で粗混合した後、 3本 π—ルで混合して p T C組成物 を調整した。  After dissolving vinylidene chloride by heating with a mixed solvent of xylene and butyl acetate, add expanded graphite powder (adjust to about 20% by weight of vinylidene chloride and 80% of expanded graphite powder) and dry by spray drying. Adjusted 15% by weight, Encapsulated graphitized carbon fiber adjusted in Example 15 25% by weight, same adjusted in Example 15 Forced graphite powder 15% by weight, used in Example 14 45% by weight of the silicone adhesive thus obtained was roughly mixed in advance with a Shinagawa mixer, and then mixed with three pieces of π-yl to prepare a pTC composition.
この P T C組成物を、 粗面化ニッケル箔の粗面に約 1 0 0 m厚みになるよう にアプリケ一夕一で塗布した後、 別の粗面化ニッケル箔の粗面を重ね、 加熱プレ ス扳を上下に設けたプレス機で塗布表面を合わせた形で、 約 1 0 O KgZcm2 の圧 力で約 1 3 0 °C、 1時間加熱圧着した (図 1 (a) 参照) 。 This PTC composition was applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 100 m, and then the roughened surface of another roughened nickel foil was overlaid and heated. The coated surfaces were combined with a press machine provided with 扳 on the top and bottom, and heated and pressed at about 130 ° C. for 1 hour at a pressure of about 10 O KgZcm 2 (see Fig. 1 (a)).
実施例 1 7 Example 17
実施例 1 4で用いたシリコン粘着剤 5 0重量 に、 実施例 1 5で調整した黒鉛 化炭素繊維 2 5重量%、 カプセル化黒鉛粉 1 5重量%、 実施例 1 6で調整した力 プセル化膨張黒鉛 1 0重量%を、 あらかじめ品川式ミキサーで粗混合した後、 3 本ロールで混合して P T C組成物を調整した。  50% by weight of the silicone pressure-sensitive adhesive used in Example 14 was added to 25% by weight of the graphitized carbon fiber adjusted in Example 15; 15% by weight of the encapsulated graphite powder; and the force adjusted in Example 16 10% by weight of expanded graphite was roughly mixed in advance with a Shinagawa mixer, and then mixed with three rolls to prepare a PTC composition.
この P T C組成物を、 粗面化ニッケル箔の粗面に約 1 0 厚みになるよう にアプリケ一夕一で塗布した後、 別の粗面化ニッケル箔の粗面を重ね、 加熱プレ ス板を上下に設けたプレス機で塗布表面を合わせた形で、 約 1 0 OKgZcm2 の圧 力で約 1 3 0 °C、 1時間加熱圧着した (図 1 (a) 参照) 。 This PTC composition is applied to the rough surface of the roughened nickel foil over the entire surface so as to have a thickness of about 10 and then overlaid with another roughened nickel foil. The coating surfaces were combined using a press machine with upper and lower plates mounted on top and bottom, and heat-pressed at about 130 ° C for 1 hour at a pressure of about 10 OKgZcm 2 (see Fig. 1 (a)).
実施例 1 8 -実施例 22 Example 18-Example 22
球状カーボン (カネボウ(株)製ベルバール) 6 0重量%、 球状黒鉛 (大阪瓦 斯 (株)製メソカーボン) 2 0重量%、 ウレタン樹脂 20重量%に適宜溶剤を加 えて、 3本ロールで混合して、 導電ペーストを調製した。  60% by weight of spherical carbon (Belvar, manufactured by Kanebo Co., Ltd.), 20% by weight of spherical graphite (Mesocarbon, manufactured by Osaka Gas Co., Ltd.), 20% by weight of urethane resin, appropriately mixed with a solvent, and mixed with three rolls Thus, a conductive paste was prepared.
この導電べ一ストを実施例 1 3— 1 7で用いたニッケルメツキ粗面化ニッケル 箔の粗面にスクリーン印刷 '塗布し、 乾燥させて約 1 0〃mの厚さの膜を得た。 実施例 1 3— 1 7と同様な方法で調整した PTC組成物を、 導電ペースト面に 約 1 0 0 ΙΉ厚みになるようにアプリケ一ターで塗布した後、 別の粗面化ニッケ ル箔の導電ペースト面を重ね、 加熱プレス板を上下に設けたプレス機で塗布表面 を合わせた形で、 約 1 0 0 Kg/cm2 の圧力で約 1 30°C、 1時間加熱圧着した (図 1 ) 参照) 。 This conductive paste was screen-printed and applied to the roughened surface of the nickel plating roughened nickel foil used in Examples 13 to 17 and dried to obtain a film having a thickness of about 10 μm. Example 13 The PTC composition prepared in the same manner as in 3—17 was applied to the conductive paste surface with an applicator so as to have a thickness of about 100 mm, and then another roughened nickel foil was applied. superimposed conductive paste surface, the heated press plate in the form of combined in a press applying surface provided vertically, about 1 0 0 Kg / cm 2 pressure of about 1 30 ° C, for 1 hour thermocompression bonding (Figure 1 ) See).
比較例 1 3 -比較例 1 Ί Comparative Example 13-Comparative Example 1
実施例 1 3 - 1 7と同様な方法で調整した PTC組成物を、 厚さ 20 zmのメ ツキしていないニッケル箔 (福田金属箔粉工業 (株)製) の面に約 1 0 0 m厚 みになるようにアプリケ一夕一で塗布した後、 別のニッケル箔の面を重ね、 加熱 プレス板を上下に設けたプレス機で塗布表面を合わせた形で、 約 1 0 OKgZcm2 の圧力で約 1 3 0 ° (、 1時間加熱圧着した。 Example 13 A PTC composition prepared in the same manner as in Example 3-17 was coated on a non-plated nickel foil having a thickness of 20 zm (manufactured by Fukuda Metal Foil & Powder Co., Ltd.) for about 100 m. after coating with the applique Isseki one so that the thickness, overlapping the face of another nickel foil, in the form of combined application surface in a press provided with heated press plates above and below, a pressure of about 1 0 OKgZcm 2 At about 130 ° (for 1 hour.
比較例 1 8 比較例 22 Comparative Example 1 8 Comparative Example 22
実施例 1 8— 22と同様な方法で調整した導電ペーストを、 比較例 1 3— 1 7 で用いたメツキしていないニッケル箔の面にスクリーン印刷 '塗布し、 乾燥させ て約 1 0〃mの厚さの膜を得た。  The conductive paste prepared in the same manner as in Example 18-22 was screen-printed on the non-plated nickel foil used in Comparative Example 13-17, and dried to about 10〃m. Was obtained.
実施例 1 3— 1 7と同様な方法で調整した PTC組成物を、 導電ペースト面に 約 1 0 0〃m厚みになるようにアプリケ一夕一で塗布した後、 別のニッケル箔の 導電ペースト面を重ね、 加熱プレス板を上下に設けたプレス機で塗布表面を合わ せた形で、 約 1 0 OKgZcm2 の圧力で約 1 3 0°C、 1時間加熱圧着した。 Example 13 A PTC composition prepared in the same manner as in 3—17 was applied all over the conductive paste surface so as to have a thickness of about 100 μm, and then another nickel foil conductive paste was applied. The surfaces were overlapped, and the coated surfaces were combined by a press machine provided with a heated press plate on the upper and lower sides, and heat-pressed at a pressure of about 10 OKgZcm 2 at about 130 ° C for 1 hour.
実施例 1 3— 22及び比較例 1 3 - 22の抵抗測定を、 図 4に示す回路により 行ったので、 その結果を表 2に掲載する。 表 2 The resistances of Examples 13-22 and Comparative Examples 13-22 were measured using the circuit shown in Fig. 4. The results are shown in Table 2. Table 2
Figure imgf000019_0001
Figure imgf000019_0001
温度 2 5て, 単位 Ω - cm  Temperature 25, unit Ω-cm
表 2によれば、 粗面化二ッケルメッキを施した二ッケル箔を電極に使用した素 子は、 単にニッケル箔を電極に使用した素子と比べて、 常温 (2 5°C程度) での 抵抗率が、 平均して 6 0 %ほど低くなつていることか分かる。 また、 電極と PT C導電性組成物との間に導電ペーストを挟んだ素子は、 挟まなかった素子よりも 抵抗率がさらに低下していることが分かる。 さらに、 熱可塑性樹脂により被覆さ れた黒鉛粒子を熱硬化性樹脂に分散させた P T C組成物を使用したもの (実施例 1 5 - 1 7) のほう力 黒鉛粒子を単に熱硬化性樹脂に分散させた PTC組成物 を使用したもの (実施例 1 3, 1 4) よりも、 抵抗率が低くなつていることも分 かる。 According to Table 2, the resistance of nickel-plated nickel-plated electrodes at room temperature (about 25 ° C) is higher than that of nickel-plated electrodes. You can see that the rate is on average 60% lower. Also, it can be seen that the resistivity of the device in which the conductive paste was sandwiched between the electrode and the PTC conductive composition was lower than that of the device in which the conductive paste was not sandwiched. Furthermore, a PTC composition in which graphite particles coated with a thermoplastic resin were dispersed in a thermosetting resin (Examples 15-17) was used. The graphite particles were simply dispersed in the thermosetting resin. It can also be seen that the resistivity was lower than that using the PTC composition (Examples 13 and 14).

Claims

請 求 の 範 囲 The scope of the claims
1. PTC導電性組成物と、 PTC導電性組成物に接触した少なく とも 2つの 電極を有してなる過電流保護回路素子において、 1. An overcurrent protection circuit device having a PTC conductive composition and at least two electrodes in contact with the PTC conductive composition,
前記電極が二ッケル箔であり、  The electrode is a nickel foil,
前記ニッケル箔には、 PTC導電性組成物との接触面に、 粗面化ニッケルメッ キが施されていることを特徴とする過電流保護回路素子。  An overcurrent protection circuit element, wherein the nickel foil has a roughened nickel plating on a contact surface with the PTC conductive composition.
2. PTC導電性組成物と、 少なくとも 2つの電極を有してなる過電流保護回 路素子であって、  2. An overcurrent protection circuit device having a PTC conductive composition and at least two electrodes,
前記電極がニッケル箔であり、  The electrode is a nickel foil,
前記二ッケル箔と P T C導電性組成物との間に、 P T C特性を示さなレ、導電性 薄膜が介在され、  A conductive thin film that does not exhibit PTC characteristics is interposed between the nickel foil and the PTC conductive composition,
前記ニッケル箔には、 導電性薄膜との接触面に、 粗面化ニッケルメツキが施さ れていることを特徴とする過電流保護回路素子。  An overcurrent protection circuit element, wherein the nickel foil is provided with a roughened nickel plating on a contact surface with a conductive thin film.
3. 導電性薄膜が、 導電性物質とバインダーからなり、 PTC導電性組成物や ニッケル箔にコーティングされて薄膜となることを特徴とする請求項 2記載の過 電流保護回路素子。 3. The overcurrent protection circuit element according to claim 2, wherein the conductive thin film comprises a conductive substance and a binder, and is coated on the PTC conductive composition or nickel foil to form a thin film.
4. PTC導電性組成物は、 導電性粒子が熱可塑性樹脂に分散されていること を特徴とする請求項 1 , 2又は 3記載の過電流保護回路素子。  4. The overcurrent protection circuit element according to claim 1, wherein the PTC conductive composition has conductive particles dispersed in a thermoplastic resin.
5. 導電性粒子は、 5. The conductive particles
導電性カーボンブラック、 黒鉛、 膨張黒鉛又は繊維状黒鉛の 1又は 2種以上か らなることを特徴とする請求項 4記載の過電流保護回路素子。  5. The overcurrent protection circuit element according to claim 4, comprising one or more of conductive carbon black, graphite, expanded graphite and fibrous graphite.
6. 導電性粒子は、  6. The conductive particles
カーボンファイバ一を短く切断又は紛砕し、 黒鉛化した黒鉛であることを特徴 とする請求項 4記載の過電流保護回路素子。  5. The overcurrent protection circuit element according to claim 4, wherein the carbon fiber is made of graphite obtained by cutting or crushing a carbon fiber shortly and graphitizing it.
7. 導電性粒子の一部が、 前記熱可塑性樹脂とは融点の異なる別種類の熱可塑 性樹脂により被覆されていることを特徴とする請求項 4記載の過電流保護回路素 子。  7. The overcurrent protection circuit element according to claim 4, wherein a part of the conductive particles is coated with another kind of thermoplastic resin having a melting point different from that of the thermoplastic resin.
8. 導電性粒子の全部が、 前記熱可塑性樹脂とは融点の異なる別種類の熱可塑 性樹脂により被覆されていることを特徴とする請求項 4記載の過電流保護回路素 子。 8. All kinds of conductive particles have different melting point from the thermoplastic resin. 5. The overcurrent protection circuit element according to claim 4, wherein the element is covered with a conductive resin.
9 . P T C導電性組成物は、 導電性粒子が熱硬化性樹脂に分散されていること を特徴とする請求項 1又は 2記載の過電流保護回路素子。  9. The overcurrent protection circuit element according to claim 1, wherein the PTC conductive composition has conductive particles dispersed in a thermosetting resin.
1 0 . 導電性粒子は、 導電性カーボンブラック、 黒鉛、 膨張黒鉛又は繊維状黒 鉛の 1又は 2種以上からなることを特徴とする請求項 9記載の過電流保護回路素 子。  10. The overcurrent protection circuit element according to claim 9, wherein the conductive particles are made of one or more of conductive carbon black, graphite, expanded graphite, and fibrous graphite.
1 1 . 導電性粒子は、 カーボンファイバーを短く切断又は紛砕し、 黒鉛化した 黒鉛であることを特徴とする請求項 9記載の過電流保護回路素子。  11. The overcurrent protection circuit element according to claim 9, wherein the conductive particles are graphite obtained by cutting or crushing a carbon fiber into a short length and graphitizing it.
1 2 . 導電性粒子の一部が、 熱可塑性樹脂により被覆されていることを特徴と する請求項 9記載の過電流保護回路素子。  12. The overcurrent protection circuit element according to claim 9, wherein a part of the conductive particles is coated with a thermoplastic resin.
1 3 . 導電性粒子の全部が、 熱可塑性樹脂により被覆されていることを特徴と する請求項 9記載の過電流保護回路素子。  13. The overcurrent protection circuit element according to claim 9, wherein all of the conductive particles are coated with a thermoplastic resin.
PCT/JP1996/003628 1995-06-14 1996-12-11 Overcurrent protective circuit element WO1998026433A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7147798A JPH099482A (en) 1995-06-14 1995-06-14 Overcurrent protection element
PCT/JP1996/003628 WO1998026433A1 (en) 1995-06-14 1996-12-11 Overcurrent protective circuit element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7147798A JPH099482A (en) 1995-06-14 1995-06-14 Overcurrent protection element
PCT/JP1996/003628 WO1998026433A1 (en) 1995-06-14 1996-12-11 Overcurrent protective circuit element

Publications (1)

Publication Number Publication Date
WO1998026433A1 true WO1998026433A1 (en) 1998-06-18

Family

ID=26437278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003628 WO1998026433A1 (en) 1995-06-14 1996-12-11 Overcurrent protective circuit element

Country Status (2)

Country Link
JP (1) JPH099482A (en)
WO (1) WO1998026433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409322A (en) * 2011-11-16 2012-04-11 鞍山市中普仪表电子设备有限公司 Manufacturing process for chemically plating NiP-Cu electrode on partial surface of ceramic element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9707738B1 (en) * 2016-01-14 2017-07-18 Chang Chun Petrochemical Co., Ltd. Copper foil and methods of use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060701A (en) * 1983-09-14 1985-04-08 松下電器産業株式会社 Method of producing resistor
JPS6298601A (en) * 1985-10-15 1987-05-08 レイケム・コ−ポレイシヨン Electric device containing conductive polymer
JPS6358903A (en) * 1986-08-29 1988-03-14 松下電器産業株式会社 Method of leading out electrode of positive characteristic thermistor element
JPH05198404A (en) * 1992-01-20 1993-08-06 Tdk Corp Temperature coefficient organic positive characteristics thermistor
JPH05226113A (en) * 1992-02-17 1993-09-03 Idemitsu Kosan Co Ltd Manufacture of positive temperature-coefficient characteristic element
JPH05267008A (en) * 1992-03-23 1993-10-15 Tdk Corp Organic positive temperature coefficient thermistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060701A (en) * 1983-09-14 1985-04-08 松下電器産業株式会社 Method of producing resistor
JPS6298601A (en) * 1985-10-15 1987-05-08 レイケム・コ−ポレイシヨン Electric device containing conductive polymer
JPS6358903A (en) * 1986-08-29 1988-03-14 松下電器産業株式会社 Method of leading out electrode of positive characteristic thermistor element
JPH05198404A (en) * 1992-01-20 1993-08-06 Tdk Corp Temperature coefficient organic positive characteristics thermistor
JPH05226113A (en) * 1992-02-17 1993-09-03 Idemitsu Kosan Co Ltd Manufacture of positive temperature-coefficient characteristic element
JPH05267008A (en) * 1992-03-23 1993-10-15 Tdk Corp Organic positive temperature coefficient thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409322A (en) * 2011-11-16 2012-04-11 鞍山市中普仪表电子设备有限公司 Manufacturing process for chemically plating NiP-Cu electrode on partial surface of ceramic element

Also Published As

Publication number Publication date
JPH099482A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
JP4666760B2 (en) Electrical device using conductive polymer
JP3930905B2 (en) Conductive polymer composition and device
JP6598231B2 (en) Polymer conductive composite material and PTC element
US20040099846A1 (en) Ptc composition and ptc device comprising the same
JP2000188206A (en) Polymer ptc composition and ptc device
WO1998026433A1 (en) Overcurrent protective circuit element
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
JP4459438B2 (en) Method for manufacturing an electrical device and method for manufacturing a battery assembly
JPH099481A (en) Overcurrent protection circuit element
TW463443B (en) A PTC circuit protection device
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JPS6134235B2 (en)
KR100470906B1 (en) Very low resistance ptc device and continuous manufacturing method thereof
WO2001006521A1 (en) Ptc device and method for producing the same
JPS63244702A (en) Ptc device and manufacture of the same
JPH09161952A (en) Sheet-form heating body
JP2002025757A (en) Portable low-voltage sheet-like heating element and its manufacturing method
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JP3197751B2 (en) Planar heating device
JP2010020990A (en) Planar heating element
JP2004193193A (en) High polymer ptc element
JP2003318008A (en) Polymer ptc composition and polymer ptc element
JP2004047555A (en) Polymer ptc compound and polymer ptc element
JP2525467Y2 (en) Planar heating element
JP2001060502A (en) Conductive resin composite for ptc thermistor and the ptc thermistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase