JP2002208504A - Polymer ptc device and method of manufacturing the same - Google Patents

Polymer ptc device and method of manufacturing the same

Info

Publication number
JP2002208504A
JP2002208504A JP2001001316A JP2001001316A JP2002208504A JP 2002208504 A JP2002208504 A JP 2002208504A JP 2001001316 A JP2001001316 A JP 2001001316A JP 2001001316 A JP2001001316 A JP 2001001316A JP 2002208504 A JP2002208504 A JP 2002208504A
Authority
JP
Japan
Prior art keywords
ptc
conductive particles
composition
polymer
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001001316A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamoto
晋一 坂本
Shinji Sato
新二 佐藤
Katsumi Sawada
勝実 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001001316A priority Critical patent/JP2002208504A/en
Publication of JP2002208504A publication Critical patent/JP2002208504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer PTC device which is capable of displaying suitable characteristics by adjusting physical properties such as the resistivity of an interface between the PTC composition and an electrode and PTC characteristics which are inversely changed, depending on the average grain diameter of the conductive particles, wherein the polymer PTC device is obtained by fixing electrodes on both the surfaces of a sheet of PTC composition composed of crystalline high molecules and conductive particles dispersed into the high molecules. SOLUTION: A plurality of PTC composition sheets which contain conductive particles that are different from each other in average grain diameter are so laminated as to indicate the fact that the conductive particles contained in the PTC compositions between the electrodes get larger in average grain diameter at the center than those contained in the PTC compositions close to the electrodes. By this setup, a polymer PTC device can be prevented from increasing in resistivity at room temperatures, and an interface between the electrode and the PTC composition can be prevented from increasing in resistivity due to an increase in the average grain diameter of the conductive particles, and the PTC device is restrained from deteriorating in PTC characteristics due to a decrease in the average grain diameter of the conductive particles at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶性高分子物質
に導電性粒子が分散された高分子PTC(Positive Te
mperature Coefficient:正温度係数)組成物にて形成
したPTC基板に電極を配置した高分子PTC素子に関
し、更に詳しくは電池や電子機器の回路などにおける異
常発生時に、過電流が流れるのを防止する過電流保護素
子として用いる高分子PTC素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer PTC (Positive Tes) comprising a crystalline polymer substance and conductive particles dispersed therein.
The present invention relates to a polymer PTC element in which electrodes are arranged on a PTC substrate formed of a mperature coefficient (positive temperature coefficient) composition, and more specifically, an overcurrent for preventing an overcurrent from flowing when an abnormality occurs in a battery or a circuit of an electronic device. The present invention relates to a polymer PTC element used as a current protection element.

【0002】[0002]

【従来の技術】従来、特定の温度領域において電気抵抗
が急激に増大する正の温度特性を示すPTC素子は、自
動的に温度を制御するヒータや、自己復帰型の過電流保
護素子などとして多用されている。そして、PTC素子
に用いる組成物としては、酸化イットリウム(Y
)を微量添加したチタン酸バリウム(BaTiO
)などのセラミックス系PTC組成物、カーボンブラ
ックなどの導電性粒子を結晶性高分子中に分散した高分
子PTC組成物が知られている。
2. Description of the Related Art Conventionally, a PTC element exhibiting a positive temperature characteristic in which electric resistance rapidly increases in a specific temperature range is frequently used as a heater for automatically controlling the temperature or a self-recovering type overcurrent protection element. Have been. As a composition used for the PTC element, yttrium oxide (Y
Barium titanate (BaTiO) to which a small amount of 2 O 3 ) is added
Ceramic PTC compositions such as 3 ) and polymer PTC compositions in which conductive particles such as carbon black are dispersed in a crystalline polymer are known.

【0003】セラミックス系PTC組成物を用いたPT
C 素子では、キュリー点での急激な抵抗値上昇を利用
しているが、定常状態における抵抗率が、約〜100Ω
・cmと高いために、数A程度の比較的大きな電流を流
すことができない。このことは、セラミック系PTC組
成物を用いたPTC素子が、過電流保護素子として利用
するのが困難であることを意味している。また、セラミ
ック系PTC組成物は、所望の形状に成形、加工するの
に多くの工程を要し、耐衝撃性に劣るという問題があ
る。
[0003] PT using ceramic PTC composition
In the C element, a rapid rise in resistance at the Curie point is used.
-A relatively large current of about several A cannot flow due to the high cm. This means that it is difficult to use a PTC element using a ceramic PTC composition as an overcurrent protection element. In addition, the ceramic PTC composition requires many steps to form and process into a desired shape, and has a problem of poor impact resistance.

【0004】これに対し、高分子PTC組成物を用いた
PTC素子では、室温での抵抗率が低いために、過電流
保護素子に適していて、耐衝撃性が優れ、成形、加工が
容易である。
On the other hand, a PTC device using a polymer PTC composition has a low resistivity at room temperature, so that it is suitable for an overcurrent protection device, has excellent impact resistance, and is easy to mold and process. is there.

【0005】高分子PTC素子の動作原理は、結晶性高
分子の結晶融点での大きな熱膨張を利用して、室温でネ
ットワークを形成している導電性粒子を切り離すことに
よるものである。このために、結晶性高分子の結晶融点
近傍の温度で、抵抗率が急激に上昇し、室温に戻ると、
導電性粒子のネットワークが再形成され、抵抗率も低下
する。
[0005] The operating principle of the polymer PTC element is based on the fact that conductive particles forming a network at room temperature are separated by utilizing a large thermal expansion at the crystal melting point of a crystalline polymer. For this reason, at a temperature near the crystalline melting point of the crystalline polymer, the resistivity rises sharply and returns to room temperature,
The network of conductive particles is reformed and the resistivity is reduced.

【0006】高分子PTC素子の一般的な製造方法は、
ロールなどを用いて結晶性高分子に導電性粒子を分散さ
せてPTC組成物を得、これを加熱プレスやロールなど
でシート成形し、金属箔などからなる電極を圧着した
後、所要の形状に打ち抜くというものである。図2は、
このようにして製造された高分子PTC素子の断面を模
式的に示したものであるが、電極24間のPTC基板2
1が単層であり、含まれる導電性粒子22の平均粒径は
必然的に単一となる。
A general method for producing a polymer PTC element is as follows.
Conductive particles are dispersed in a crystalline polymer using a roll or the like to obtain a PTC composition, which is formed into a sheet by a hot press or a roll, and an electrode made of a metal foil or the like is pressed and formed into a desired shape. It is punching. FIG.
FIG. 3 schematically shows a cross section of the polymer PTC element manufactured as described above.
Reference numeral 1 denotes a single layer, and the average particle diameter of the conductive particles 22 included inevitably becomes unitary.

【0007】そして、導電性粒子22の平均粒径が大き
過ぎると、導電性粒子22のネットワーク形成の度合い
が低くなるため、室温における抵抗率が高くなり、殊に
電極24とPTC基板21との界面の抵抗率が高くな
る。また、平均粒径が小さ過ぎると、結晶性高分子の結
晶融点近傍におけるネットワークの切断が進行し難くな
るため、好適なPTC特性が得られない。このように高
分子PTC素子においては、相反する特性が使用する導
電性粒子22の平均粒径に依存するという問題がある。
[0007] If the average particle size of the conductive particles 22 is too large, the degree of network formation of the conductive particles 22 decreases, and the resistivity at room temperature increases. The interface resistivity increases. On the other hand, if the average particle size is too small, it is difficult to cut the network near the crystalline melting point of the crystalline polymer, so that suitable PTC characteristics cannot be obtained. As described above, in the polymer PTC element, there is a problem that the contradictory characteristics depend on the average particle diameter of the conductive particles 22 used.

【0008】また、高分子PTCの導電性粒子として多
用されているカーボンブラック粉末は、金属炭化物など
に比較して凝集が起こりやすく、高分子PTC素子に用
いた場合、結晶融点近傍における抵抗率が低くなり、そ
れに伴って耐電圧が低くなるという問題がある。
Further, carbon black powder, which is frequently used as conductive particles of polymer PTC, tends to agglomerate as compared with metal carbide and the like, and when used in a polymer PTC element, the resistivity near the crystal melting point is low. Therefore, there is a problem that the withstand voltage decreases accordingly.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の技術
的な課題は、前記のように導電性粒子の平均粒径に依存
して、相反して変化する特性を調整し、優れた特性を有
する高分子PTC素子を提供することにある。
SUMMARY OF THE INVENTION Accordingly, the technical problem of the present invention is to adjust the characteristics that change contradictoryly depending on the average particle size of the conductive particles as described above, and to obtain excellent characteristics. To provide a polymer PTC element having the same.

【0010】[0010]

【課題を解決するための手段】本発明は、前記の課題を
解決するため、高分子PTC素子におけるPTC組成物
に、電極間の方向について、導電性粒子の最適な粒度分
布を付与することを検討した結果なされたものである。
In order to solve the above-mentioned problems, the present invention provides a PTC composition in a polymer PTC element with an optimal particle size distribution of conductive particles in a direction between electrodes. This is the result of an examination.

【0011】即ち、本発明は、高分子化合物に導電性粒
子が分散されたPTC組成物からなる略板状のPTC基
板の両面に、電極が配置されてなる高分子PTC素子に
おいて、前記PTC基板は、平均粒径が異なる導電性粒
子を含む複数のPTC組成物のシートを積層してなるこ
とを特徴とする高分子PTC素子である。
That is, the present invention relates to a polymer PTC element comprising electrodes disposed on both sides of a substantially plate-shaped PTC substrate made of a PTC composition in which conductive particles are dispersed in a polymer compound. Is a polymer PTC element obtained by laminating a plurality of sheets of a PTC composition containing conductive particles having different average particle diameters.

【0012】また、本発明は、前記の高分子PTC素子
において、前記PTC基板は、PTC組成物からなる第
1のシートの両面に、第1のシートとは平均粒径の異な
る導電性粒子を含むPTC組成物のシートがn(nは自
然数)層積層されてなり、第1のシートから数えてn番
目のPTC組成物のシートは両側とも同一組成であり、
かつn−1番目のPTC組成物のシートよりも平均粒径
の小さい導電性粒子を含むことを特徴とする高分子PT
C素子である。
The present invention also provides the above-mentioned polymer PTC element, wherein the PTC substrate comprises conductive particles having an average particle size different from that of the first sheet on both surfaces of the first sheet made of the PTC composition. N (where n is a natural number) sheets of the PTC composition sheet are laminated, and the nth PTC composition sheet counted from the first sheet has the same composition on both sides,
And a polymer PT containing conductive particles having an average particle size smaller than that of the sheet of the (n-1) th PTC composition.
C element.

【0013】また、本発明は、前記の高分子PTC素子
において、前記導電性粒子は、少なくとも1種の金属炭
化物、もしくは少なくとも1種の炭素を含む物質、もし
くは少なくとも1種の金属炭化物及び炭素を含む物質か
らなることを特徴とする高分子PTC素子である。
[0013] Further, according to the present invention, in the above polymer PTC element, the conductive particles include at least one kind of metal carbide, a substance containing at least one kind of carbon, or at least one kind of metal carbide and carbon. A polymer PTC element characterized by comprising a substance containing:

【0014】また、本発明は、高分子化合物に平均粒径
がn+1種類の導電性粒子をそれぞれ分散させたPTC
組成物をシート状に成形し、平均粒径が最も大きい導電
性粒子を含むPTC組成物のシートの両面に、n番目の
PTC組成物のシートに含まれる導電性粒子の平均粒径
が両側とも同一で、かつn−1番目のPTC組成物より
も小さくなるようにn層積層し、積層後のPTC組成物
のシート両面に電極を圧着した後、所要の形状に切断す
ることを特徴とする、前記の高分子PTC素子の製造方
法である。
The present invention also provides a PTC comprising a polymer compound and n + 1 types of conductive particles dispersed therein.
The composition is formed into a sheet, and the average particle size of the conductive particles contained in the n-th PTC composition sheet is on both sides of the PTC composition sheet containing the conductive particles having the largest average particle size. It is characterized in that n layers are laminated so as to be the same and smaller than the (n-1) th PTC composition, electrodes are pressed on both surfaces of the laminated PTC composition sheet, and then cut into a required shape. And a method for producing the polymer PTC element.

【0015】[0015]

【作用】本発明の高分子PTC素子は、電極間のPTC
基板に含まれる導電性粒子の粒径が中央部が大きく、電
極との界面部分が小さいという分布を有している。この
ため、本発明の高分子PTC素子は、室温における抵抗
率、特に電極とPTC基板との界面の抵抗率が低く、し
かも従来と同等のPTC特性を有する。また、複数の導
電性粒子を混合して使用することにより、耐電圧を従来
より向上することができる。
The polymer PTC element of the present invention has a PTC between electrodes.
The conductive particles contained in the substrate have a distribution in which the particle size is large at the center and small at the interface with the electrode. For this reason, the polymer PTC element of the present invention has low resistivity at room temperature, particularly the resistivity at the interface between the electrode and the PTC substrate, and has the same PTC characteristics as the conventional one. Further, by using a mixture of a plurality of conductive particles, the withstand voltage can be improved more than before.

【0016】ここで、本発明に用いることができる導電
性粒子を例示すると、金属炭化物としては、チタンカー
バイド(TiC)、タングステンカーバイド(WC、W
C)、ジルコニウムカーバイド(ZrC)、バナジウ
ムカーバイド(VC)、タンタルカーバイド(Ta
C)、モリブデンカーバイド(MoC)などが、炭素系
の粒子としては、ファーネスブラック、サーマルブラッ
ク、アセチレンブラックなどのカーボンブラック類やグ
ラファイト、カーボンファイバ、カーボンビーズ、カー
ボンナノチューブなどが挙げられる。
Here, as an example of the conductive particles that can be used in the present invention, titanium carbide (TiC), tungsten carbide (WC, W
2 C), zirconium carbide (ZrC), vanadium carbide (VC), tantalum carbide (Ta
C) and molybdenum carbide (MoC). Examples of carbon-based particles include carbon blacks such as furnace black, thermal black and acetylene black, graphite, carbon fiber, carbon beads, and carbon nanotubes.

【0017】また、本発明に用いられる高分子化合物と
しては、結晶性高分子が望ましく、結晶化度が10%以
上のもの、例えば、高密度ポリエチレン、中密度ポリエ
チレン、低密度ポリエチレン、ポリプロピレン、エチレ
ン/プロピレンコポリマー、ポリブタジエンなどのポリ
オレフィン、ポリテトラフルオロエチレン、ポリビニリ
デンフルオライドなどの含フッ素ポリマー、エチレン−
アクリル酸コポリマー、ポリエステル、各種ポリアミ
ド、各種ポリエチレンオキサイドなどが挙げられ、PT
C素子の動作温度によって適宜選択される。なお、これ
らの結晶性高分子物質は、単一または混合して用いるこ
ともできる。
The polymer compound used in the present invention is preferably a crystalline polymer having a crystallinity of 10% or more, such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, polypropylene, and ethylene. / Polyolefins such as propylene copolymer and polybutadiene, fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride, ethylene-
Acrylic acid copolymers, polyesters, various polyamides, various polyethylene oxides, etc.
It is appropriately selected according to the operating temperature of the C element. These crystalline polymer substances can be used alone or as a mixture.

【0018】そして、上記のような高分子PTC組成物
を用いて、高分子PTC素子を作製する際には、電極と
PTC基板との界面における接触抵抗を低減するため
に、電極の表面を公知の表面処理方法で、表面粗さが5
μm程度となるように表面を粗面化する。
When a polymer PTC element is manufactured using the above-described polymer PTC composition, the surface of the electrode is known to reduce the contact resistance at the interface between the electrode and the PTC substrate. Surface roughness of 5
The surface is roughened to about μm.

【0019】この電極間のPTC基板として、3層のも
のを用いる場合、例えば、中央の層には平均粒径が10
μmのTiCを分散させた高分子PTC組成物、両面に
圧着する層には平均粒径が5μmのTiCを分散させた
高分子PTC組成物を用いる。
When a three-layer PTC substrate is used between the electrodes, for example, the central layer has an average particle size of 10%.
A polymer PTC composition in which μm of TiC is dispersed is used, and a polymer PTC composition in which TiC having an average particle size of 5 μm is dispersed is used for layers to be pressed on both surfaces.

【0020】更に、5層の高分子PTC組成物からなる
PTC基板を用いる場合では、各層に分散されている導
電性粒子の平均粒径は、 (第1層=第5層)<(第2層=第4層)<第3層(中
心層) のように表すことができる。
Further, when a PTC substrate composed of five layers of the polymer PTC composition is used, the average particle size of the conductive particles dispersed in each layer is as follows: (first layer = fifth layer) <(second layer) Layer = fourth layer) <third layer (center layer).

【0021】また、電極表面の表面粗さと導電性粒子の
平均粒径については、 電極表面の表面粗さ≧導電性粒子の平均粒径 という関係があれば、一層好適であり、このように電極
の表面粗さと導電性粒子の平均粒径の関係を設定するこ
とより、電極とPTC基板の界面における接触抵抗を低
減することができる。
The surface roughness of the electrode surface and the average particle size of the conductive particles are more preferable if the relationship of surface roughness of the electrode surface ≧ average particle size of the conductive particles is satisfied. The contact resistance at the interface between the electrode and the PTC substrate can be reduced by setting the relationship between the surface roughness and the average particle size of the conductive particles.

【0022】[0022]

【実施例】次に、具体的な実施例を示し、本発明につい
て詳しく説明する。
Next, the present invention will be described in detail with reference to specific examples.

【0023】(実施例1)まず、電極として表面粗さを
3μmとした厚さ30μmのニッケル箔を準備した。次
に表1に示す組成となるように秤量した材料を、ロール
で均一になるまで混練し、No.1及びNo.2のPTC
組成物を得た。表1に示したように、本実施例では、導
電性粒子として、TiCとカーボンブラックを用いた。
そして、これら成形ロールを用いて厚さ80μmのシー
トとした。
Example 1 First, a 30 μm thick nickel foil having a surface roughness of 3 μm was prepared as an electrode. Next, the materials weighed so as to have the compositions shown in Table 1 were kneaded with a roll until uniform, and the PTCs of No. 1 and No. 2 were
A composition was obtained. As shown in Table 1, in this example, TiC and carbon black were used as the conductive particles.
Then, a sheet having a thickness of 80 μm was formed using these forming rolls.

【0024】[0024]

【表1】 [Table 1]

【0025】次に、No.2の高分子PTC組成物のシ
ートの両面に、No.1の高分子PTC組成物のシート
を配置し、更に、その両面に表面を粗面化した側を高分
子PTC組成物側に向けて電極を配置し、熱プレスを行
ない、シート及び電極を圧着した。このシートを1辺が
4mmの正方形に切断し、厚さ300μmの高分子PT
C素子とした。図1は、この高分子PTC素子の断面を
模式的に示したものである。なお、熱プレスの条件は、
温度が150℃、圧力が20MPa、時間が15分間で
ある。
Next, a sheet of the polymer PTC composition of No. 1 was placed on both sides of the sheet of the polymer PTC composition of No. 2, and the roughened surface was placed on both sides of the sheet. The electrode was arranged toward the molecular PTC composition side, hot pressed, and the sheet and the electrode were pressed. This sheet is cut into a square having a side of 4 mm, and a polymer PT having a thickness of 300 μm
C element was used. FIG. 1 schematically shows a cross section of the polymer PTC element. In addition, the conditions of heat press
The temperature is 150 ° C., the pressure is 20 MPa, and the time is 15 minutes.

【0026】(実施例2)電極として実施例1と同じニ
ッケル箔を準備した。そして、表2に示す組成となるよ
うに秤量した材料を、実施例1と同様にして、混練、シ
ート成形を行なった。表2に示したように、本実施例で
は、導電性粒子として、TiCのみを用いた。次に、や
はり実施例1と同様にして、No.4の高分子PTC組
成物のシートの両面に、No.3の高分子PTC組成物
のシート、電極の順に配置して、圧着、切断を行ない、
高分子PTC素子を得た。
Example 2 The same nickel foil as in Example 1 was prepared as an electrode. Then, the materials weighed so as to have the composition shown in Table 2 were kneaded and formed into a sheet in the same manner as in Example 1. As shown in Table 2, in this example, only TiC was used as the conductive particles. Next, in the same manner as in Example 1, the sheet of the polymer PTC composition of No. 3 and the electrode were placed in this order on both surfaces of the sheet of the polymer PTC composition of No. 4, and pressed and cut. Do,
A polymer PTC element was obtained.

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例3)電極として実施例1と同じニ
ッケル箔を準備した。そして、表3に示す組成となるよ
うに秤量した材料を、実施例1と同様にして、混練、シ
ート成形を行なった。表3に示したように、本実施例で
は、導電性粒子として、カーボンブラックのみを用い
た。次に、やはり実施例1と同様にして、No.6の高
分子PTC組成物のシートの両面に、No.5の高分子
PTC組成物のシート、電極の順に配置して、圧着、切
断を行ない、高分子PTC素子を得た。
Example 3 The same nickel foil as in Example 1 was prepared as an electrode. The materials weighed so as to have the compositions shown in Table 3 were kneaded and sheet-formed in the same manner as in Example 1. As shown in Table 3, in this example, only carbon black was used as the conductive particles. Next, in the same manner as in Example 1, the sheet of the polymer PTC composition of No. 5 and the electrode were arranged in this order on both surfaces of the sheet of the polymer PTC composition of No. 6, and pressed and cut. This was performed to obtain a polymer PTC element.

【0029】[0029]

【表3】 [Table 3]

【0030】(比較例)次に、前記実施例との比較に供
するために、単層のPTC基板と電極からなるPTC素
子を作製した。まず電極として、実施例1に用いたもの
と同じニッケル箔を準備した。そして、表4に示す組成
となるように秤量した材料を、実施例1と同様にして、
混練、シート成形を行ない、厚さ240μmのPTC組
成物のシートを得た。
(Comparative Example) Next, a PTC element comprising a single-layer PTC substrate and electrodes was prepared for comparison with the above-mentioned embodiment. First, the same nickel foil as that used in Example 1 was prepared as an electrode. The materials weighed so as to have the composition shown in Table 4 were obtained in the same manner as in Example 1.
The mixture was kneaded and formed into a sheet to obtain a 240 μm thick sheet of the PTC composition.

【0031】[0031]

【表4】 [Table 4]

【0032】このシートの両面に、粗面化した面をシー
ト側に向けてニッケル箔を配置し、実施例1と同様にし
て圧着、切断を行ない、厚さが300μmで1辺が4m
mの正方形の高分子PTC素子を得た。
Nickel foil was placed on both sides of the sheet with the roughened surface facing the sheet side, and pressed and cut in the same manner as in Example 1 to have a thickness of 300 μm and a side of 4 m.
m square polymer PTC element was obtained.

【0033】次に、実施例及び比較例で作製した高分子
PTC素子について、温度:25℃、相対湿度:40%
の条件での抵抗率:Rと、結晶融点以上、即ち、動作
温度における抵抗率:R、耐電圧:Vを測定した。そ
れらの結果を表5に示した。なお、ここでは、実施例、
比較例とも結合材として同一の塩素化ポリエチレンを用
いたが、動作温度は98℃であった。
Next, with respect to the polymer PTC elements manufactured in the examples and comparative examples, the temperature: 25 ° C., the relative humidity: 40%
, The resistivity: R 1 , the resistivity at the operating temperature or higher: R 2 , and the withstand voltage: V were measured. Table 5 shows the results. Note that, here, the embodiment,
In the comparative example, the same chlorinated polyethylene was used as the binder, but the operating temperature was 98 ° C.

【0034】[0034]

【表5】 [Table 5]

【0035】表5から明らかなように、実施例1及び実
施例2は、比較例と比較すると、R の値が低く、R
の値が高くなっていて、高分子PTC素子としての特性
が優れていることがわかる。また、実施例3において
も、比較例よりもRが低く、PTC組成物と電極間の
接触抵抗が改善されていることが明らかである。更に、
耐電圧:Vにおいては、実施例1及び実施例2の高分子
PTC素子は、比較例の約3倍である、110Vという
数値を示し、優れた特性が得られた。
As is clear from Table 5, Example 1 and Example
In Example 2, when compared with the comparative example, R 1Is low and R2
Is high, and the characteristics as a polymer PTC element
Is excellent. In the third embodiment,
Also, R1Low between the PTC composition and the electrode
It is clear that the contact resistance has been improved. Furthermore,
Withstand voltage: at V, the polymers of Examples 1 and 2
The PTC element has a voltage of 110 V, which is about three times that of the comparative example.
Numerical values were obtained, and excellent characteristics were obtained.

【0036】[0036]

【発明の効果】以上に説明したように、本発明によれ
ば、高分子PTC素子における、導電性粒子の平均粒径
が増加に起因する、室温における抵抗率の上昇、及び電
極とPTC組成物との界面の抵抗率の上昇、また、導電
性粒子の平均粒径の減少に起因する、PTC特性の低下
という相反して変化する特性を、電極間のPTC基板を
多層構造とすることで、調整することが可能となり、優
れた特性を有する高分子PTC素子を提供することがで
きる。
As described above, according to the present invention, in the polymer PTC element, the resistivity increases at room temperature due to the increase in the average particle size of the conductive particles, and the electrode and the PTC composition By increasing the resistivity of the interface between the electrodes and the characteristic that contradicts the decrease in the PTC characteristic due to the decrease in the average particle size of the conductive particles, the PTC substrate between the electrodes is formed into a multilayer structure. Adjustment is possible, and a polymer PTC element having excellent characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高分子PTC素子の断面を模式的に示
した図。
FIG. 1 is a diagram schematically showing a cross section of a polymer PTC element of the present invention.

【図2】従来の高分子PTC素子の断面を模式的に示し
た図。
FIG. 2 is a diagram schematically showing a cross section of a conventional polymer PTC element.

【符号の説明】[Explanation of symbols]

10,20 高分子PTC素子 11,12 PTC組成物のシート 13,21 PTC基板 14,15,22 導電性粒子 16,23 結合材 17,24 電極 10,20 Polymer PTC element 11,12 PTC composition sheet 13,21 PTC substrate 14,15,22 Conductive particle 16,23 Binding material 17,24 Electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子化合物に導電性粒子が分散された
PTC組成物からなる略板状のPTC基板の両面に、電
極が配置されてなる高分子PTC素子において、前記P
TC基板は、平均粒径が異なる導電性粒子を含む複数の
PTC組成物のシートを積層してなることを特徴とする
高分子PTC素子。
1. A polymer PTC element comprising electrodes disposed on both sides of a substantially plate-shaped PTC substrate comprising a PTC composition in which conductive particles are dispersed in a polymer compound.
A polymer PTC element, wherein the TC substrate is formed by laminating a plurality of sheets of a PTC composition containing conductive particles having different average particle sizes.
【請求項2】 請求項1に記載の高分子PTC素子にお
いて、前記PTC基板は、PTC組成物からなる第1の
シートの両面に、第1のシートとは平均粒径の異なる導
電性粒子を含むPTC組成物のシートがn(nは自然
数)層積層されてなり、第1のシートから数えてn番目
のPTC組成物のシートは両側とも同一組成であり、か
つn−1番目のPTC組成物のシートよりも平均粒径の
小さい導電性粒子を含むことを特徴とする高分子PTC
素子。
2. The polymer PTC element according to claim 1, wherein the PTC substrate has conductive particles having an average particle size different from that of the first sheet on both surfaces of a first sheet made of a PTC composition. N (n is a natural number) layers of PTC composition sheets containing the PTC composition, the nth PTC composition sheet counted from the first sheet has the same composition on both sides, and the (n-1) th PTC composition PTC comprising conductive particles having an average particle size smaller than that of a material sheet
element.
【請求項3】 請求項1もしくは請求項2のいずれかに
記載の高分子PTC素子において、前記導電性粒子は、
少なくとも1種の金属炭化物、もしくは少なくとも1種
の炭素を含む物質、もしくは少なくとも1種の金属炭化
物及び炭素を含む物質からなることを特徴とする高分子
PTC素子。
3. The polymer PTC element according to claim 1, wherein the conductive particles are:
A polymer PTC element comprising at least one metal carbide, a substance containing at least one carbon, or a substance containing at least one metal carbide and carbon.
【請求項4】 高分子化合物に平均粒径がn+1種類の
導電性粒子をそれぞれ分散させたPTC組成物をシート
状に成形し、平均粒径が最も大きい導電性粒子を含むP
TC組成物のシートの両面に、n番目のPTC組成物の
シートに含まれる導電性粒子の平均粒径が両側とも同一
で、かつn−1番目のPTC組成物よりも小さくなるよ
うにn層積層し、積層後のPTC組成物のシートの両面
に電極を圧着した後、所要の形状に切断することを特徴
とする請求項1ないし請求項3のいずれかに記載の高分
子PTC素子の製造方法。
4. A PTC composition in which n + 1 types of conductive particles each having an average particle size dispersed in a polymer compound is formed into a sheet, and the PTC composition containing the conductive particles having the largest average particle size is formed.
N layers on both sides of the TC composition sheet so that the average particle size of the conductive particles contained in the nth PTC composition sheet is the same on both sides and smaller than the (n-1) th PTC composition The polymer PTC element according to any one of claims 1 to 3, wherein the laminated PTC composition sheet is pressed into electrodes on both sides of the laminated PTC composition sheet, and then cut into a required shape. Method.
JP2001001316A 2001-01-09 2001-01-09 Polymer ptc device and method of manufacturing the same Pending JP2002208504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001316A JP2002208504A (en) 2001-01-09 2001-01-09 Polymer ptc device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001316A JP2002208504A (en) 2001-01-09 2001-01-09 Polymer ptc device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002208504A true JP2002208504A (en) 2002-07-26

Family

ID=18869972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001316A Pending JP2002208504A (en) 2001-01-09 2001-01-09 Polymer ptc device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002208504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004173A1 (en) * 2003-07-02 2005-01-13 Tyco Electronics Raychem K.K. Combined ptc device
JP2014099431A (en) * 2012-11-13 2014-05-29 Nobuhiko Ishida Composite ptc thermistor member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004173A1 (en) * 2003-07-02 2005-01-13 Tyco Electronics Raychem K.K. Combined ptc device
US7515032B2 (en) 2003-07-02 2009-04-07 Tyco Electronics Raychem K.K. Combined PTC device
JP2014099431A (en) * 2012-11-13 2014-05-29 Nobuhiko Ishida Composite ptc thermistor member

Similar Documents

Publication Publication Date Title
TWI281677B (en) Electrically conductive polymer composition
TWI330624B (en) Electronic device
US6144286A (en) PTCR-resistor
JP2000188206A (en) Polymer ptc composition and ptc device
TWI684188B (en) Hybrid device structures including negative temperature coefficient/positive temperature coefficient device
JP2002208504A (en) Polymer ptc device and method of manufacturing the same
JP2007036230A (en) Overcurrent protection element
JP2002343606A (en) Polymer ptc composition and polymer ptc element
EP2218082A1 (en) Ptc-resistor
JP4196582B2 (en) Electrical fuse element and manufacturing method thereof
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
JP4104760B2 (en) PTC thermistor
JP2002208503A (en) High-molecular ptc device and its manufacturing method
TWI241995B (en) semiconductor ceramic and resistance element using the same
JPH09153402A (en) Organic positive temperature coefficient thermistor
JP2007036045A (en) Ptc element and method for manufacturing the same
JP2003318008A (en) Polymer ptc composition and polymer ptc element
JP2004193193A (en) High polymer ptc element
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JP2002343603A (en) High polymer ptc element and manufacturing method therefor
JP2005038974A (en) Macromolecular ptc element and its manufacturing method
JP3841238B2 (en) Method for manufacturing positive thermistor material
JP2004023055A (en) Polymeric ptc element
JP2004047555A (en) Polymer ptc compound and polymer ptc element
JP2003332102A (en) Polymer ptc composition and polymer ptc element