JP2004014776A - Conductive powder with coating film, its producing method, and high molecular ptc element using the same - Google Patents

Conductive powder with coating film, its producing method, and high molecular ptc element using the same Download PDF

Info

Publication number
JP2004014776A
JP2004014776A JP2002165597A JP2002165597A JP2004014776A JP 2004014776 A JP2004014776 A JP 2004014776A JP 2002165597 A JP2002165597 A JP 2002165597A JP 2002165597 A JP2002165597 A JP 2002165597A JP 2004014776 A JP2004014776 A JP 2004014776A
Authority
JP
Japan
Prior art keywords
conductive powder
conductive
polyaniline
ptc element
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002165597A
Other languages
Japanese (ja)
Inventor
Mitsumune Kataoka
片岡 光宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002165597A priority Critical patent/JP2004014776A/en
Publication of JP2004014776A publication Critical patent/JP2004014776A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-molecular PTC element that is prevented from deteriorating its characteristics due to a thermal history or a change in properties with time and manufactured by a method wherein a mixture composed of a crystalline high-molecular material and conductive powder dispersed into it is formed into a sheet, and electrodes are arranged on both surfaces of the sheet. <P>SOLUTION: The conductive powder is subjected to surface treatment by the use of a conductive composition containing polyaniline, proton acid, and a solvent of low polarity so as to be coated with a conductive polyaniline coating film. By this setup, the high-molecular PTC element can be improved in characteristic stability by reducing the action of metal contained in the conductive powder to promote the oxidation of a binder without reducing the conductivity of the conductive powder itself. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電性を有する粉末とその製造方法、及び、前記導電性粉末と結晶性高分子を含む結合材からなる混和物をシート状に成形し、両面に電極を配置した、いわゆるPTC(Positive Temperature Coefficient;正温度係数)特性を有する高分子PTC素子に関するものである。
【0002】
【従来の技術】
特定の温度領域において、電気抵抗が急激に増大する正の温度特性を示すPTC素子は、自動的に温度を制御するヒータや、自己復帰型の過電流保護素子などとして多用されている。そして、PTC素子に用いる組成物としては、酸化イットリウム(Y)を微量添加したチタン酸バリウム(BaTiO)などのセラミックス系PTC組成物、カーボンブラックなどの導電性粒子を結晶性高分子中に分散した高分子PTC組成物が知られている。
【0003】
セラミックス系PTC組成物を用いたPTC素子では、キュリー点での急激な抵抗上昇を利用しているが、定常状態における抵抗率が、約100Ω・cmと高いために、数A程度の比較的大きな電流を流すことができない。このことは、セラミック系PTC組成物を用いたPTC素子が、過電流保護素子として利用するのが困難であることを意味している。また、セラミック系PTC組成物は、所望の形状に成形、加工するのに多くの工程を要し、耐衝撃性に劣るという問題がある。
【0004】
これに対し、高分子PTC組成物を用いた高分子PTC素子では、室温における抵抗率が低いために、過電流保護素子に適していて、耐衝撃性が優れ、成形、加工が容易である。
【0005】
高分子PTC素子の動作原理は、結晶性高分子の結晶融点での大きな熱膨張を利用して、室温でネットワークを形成している導電性粒子を切り離すことによるものである。このために、規定値以上の電流により過度に発熱した際に、結晶融点近傍の温度で、抵抗率が急激に上昇し、室温に戻ると、導電性粒子のネットワークが再形成され、抵抗率も低下する。
【0006】
そして、高分子PTC素子の一般的な製造方法には、ロールなどを用いて結晶性高分子に導電性粒子を分散させて高分子PTC組成物を得、これを加熱プレスやロールなどでシート成形し、金属箔などからなる電極を圧着した後、所要の形状に打ち抜くという、乾式法がある。
【0007】
また、高分子PTC組成物のシートを得る方法として、結晶性高分子の溶液に導電性フィラーを分散させたペーストを用いて成膜する湿式法もあり、この場合は、電極を構成する金属箔の上に成膜して、成膜した側を対向させて一体化するという方法もある。
【0008】
そして、近年の二次電池を始めとする、電気電子機器やそれらに用いられる部品の小型化が進むに従い、高分子PTC素子についても、抵抗値の低減が要求され、用いる導電性粉末として、カーボン系に替えて、金属や金属炭化物が用いられていて、その中でも炭化チタンのような金属炭化物が、導電性が高いことや凝集が生じ難いことなどから多用される傾向にある。
【0009】
このように金属を含む導電性粉末を用いる場合に問題となるのは、導電性粉末に含まれる金属が結合材の酸化を助長することである。つまり、これによって結合材の平均分子量の低下がひき起こされることで、結合材の体積が増加し、常温における高分子PTC素子の抵抗が上昇するという問題がある。
【0010】
このような現象を防止する手段の一つに、酸化防止剤の添加が挙げられるが、添加量の調整が難しく、酸化防止剤が導電性を持たないことに起因する、素子の抵抗増加が生じる場合がある。また、一般に酸化防止剤は高価なので、製造コストの上昇に繋がる。
【0011】
他の手段として、金属不活性化剤を添加するのも、結合材の劣化防止には、著しい効果を発現するが、この添加剤も導電性粉末表面に絶縁性の膜を形成するため、素子の抵抗を増加させる。また、これも一般に高価なので、製造コストを上昇させる。
【0012】
【発明が解決しようとする課題】
従って、本発明の技術的な課題は、前記の問題点を解決し、常温における抵抗が低く、しかも経時変化による抵抗の上昇が少ない高分子PTC素子と、それを実現するための導電性粉末を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、前記の問題を解決するために、金属を含む導電性粉末の表面に、導電性を有する被膜を形成し、導電性粉末自体の導電性を低下させることなく、導電性粉末に含まれる金属の、結合材の酸化を助長する作用を封じ込めることを検討した結果、なされたものである。
【0014】
即ち、本発明は、導電性粉末の表面に、ポリアニリン、プロトン酸、低極性の溶媒からなり、導電性被膜を与える溶液による表面処理が施されてなることを特徴とする、被覆を有する導電性粉末である。
【0015】
また、本発明は、前記の被覆を有する導電性粉末において、前記表面処理が施される導電性粉末が、炭化チタンを含むことを特徴とする、被覆を有する導電性粉末である。
【0016】
また、本発明は、前記の被覆を有する導電性粉末において、前記プロトン酸が、スルホン酸誘導体であることを特徴とする、被覆を有する導電性粉末である。
【0017】
また、本発明は、前記の被覆を有する導電性粉末において、前記スルホン酸誘導体が、カンファースルホン酸、ドデシルベンゼンスルホン酸の少なくともいずれかを含むことを特徴とする、被覆を有する導電性粉末である。
【0018】
また、本発明は、プロトン酸を添加したポリアニリンを、低極性の溶媒に溶解した溶液を用いて、表面処理を施すことを特徴とする、前記の被覆を有する導電性粉末の製造方法である。
【0019】
また、本発明は、前記の被覆を有する導電性粉末と結晶性高分子を含む結合材からなる混和物の、シート状成形体の両面に、電極を配置してなることを特徴とする、高分子PTC素子である。
【0020】
ポリアニリン、ポリフェニレンなどの芳香族系の高分子は、共役π電子に基づく導電性を有し、安定性に優れ、しかも比較的容易に安価な原料から合成できる。このため、二次電池の電極、コンデンサ、帯電防止剤、電波吸収体などの導電性を利用した、様々な用途が検討されている。
【0021】
これらの導電性高分子の適用が可能であれば、抵抗上昇をきたすことなく、導電性粉末の粒子表面に、被膜を形成することができる。つまり、このような導電性粉末を結晶性高分子が含まれる結合材に分散させることで、金属を含む導電性粉末を用いた場合でも、結合材の酸化が少ない高分子PTC組成物が得られることが期待できる。
【0022】
ところが、前記ポリアニリンなどの導電性高分子は、溶融しないことや、溶媒への溶解度が低いことなどから、粉末の粒子表面に薄膜を形成する用途に用いるのは、実質的に不可能であった。しかし、近年、ポリアニリンに、ある種のプロトン酸、特にカンファースルホン酸や、ドデシルベンゼンスルホン酸を添加したポリアニリンが、有機溶媒に可溶となることが見出されている。つまり、前記のような溶液を導電性粉末に加え、攪拌した後、溶媒を除去することで、導電性のポリアニリンからなる被覆を有する導電性粉末が得られる。
【0023】
この際用いる有機溶媒は、低極性のものが好適であるが、その理由は、極性が高い溶媒では、ポリアニリンに添加したカンファースルホン酸やドデシルベンゼンスルホン酸が、溶媒に溶出してしまうからである。従って、用いられる溶媒として、具体的には、クレゾールやキシレンが挙げられ、それらの比誘電率は、概ね、それぞれ11.5、2.5であるから、比誘電率が20以下の溶媒が好適である。
【0024】
【発明の実施の形態】
次に、具体的な例を挙げて、本発明の実施の形態について説明する。
【0025】
まず、ポリアニリンの合成例について説明する。試薬一級のアニリンを40ml、試薬一級の35%塩酸を50ml、蒸留水を400ml計量して混合し、溶液Aとした。また試薬一級の過硫酸アンモニウム46gを、蒸留水100mlに溶解し、溶液Bとした。
【0026】
次に、前記溶液Aを0℃に保持した状態で攪拌しながら、2時間で添加を終えるように溶液Bを一定速度で滴下した。その後、0℃に保持した状態で、攪拌を3時間継続した。次いで、生成物をろ過により分離し、蒸留水で洗浄し、さらにメタノール及びエーテルで洗浄を行った後、温度を50℃に保持した真空乾燥器で乾燥し、粉末状のポリアニリンを得た。
【0027】
次に前記ポリアニリン10gを、1000mlの3%アンモニア水に投入し、2時間攪拌した。次いで、アンモニア水で処理した前記ポリアニリンを、ろ過により分離し、蒸留水で洗浄した後、メタノール及びエーテルで洗浄し、温度を50℃に保持した真空乾燥器で乾燥して、粉末状の塩基性ポリアニリンを得た。得られた塩基性ポリアニリンの収率は、36%であり、重量平均分子量は、約100000であった。
【0028】
次に、前記の反応で得られた塩基性ポリアニリン0.5gと、試薬一級のドデシルベンゼンスルホン酸1.81gを、ビーカーに秤取し、窒素置換した容器内で混合した。この混合物に、m−キシレン20.8gを加え、超音波洗浄器で48時間攪拌した後、遠心分離器で不溶物を分離し、次いでデカンテーションで取り除き、導電性ポリアニリンの溶液を得た。ここでは、この溶液を溶液Cとした。
【0029】
次に、前記の反応で得られた塩基性ポリアニリン0.5gと、試薬一級のカンファースルホン酸0.65gを、ビーカーに秤取し、窒素置換した容器内で混合した。この混合物に、m−クレゾール10.35gを加え、超音波洗浄器で48時間攪拌した後、遠心分離器で不溶物を分離し、次いでデカンテーションで取り除き、導電性ポリアニリンの溶液を得た。ここでは、この溶液を溶液Dとした。
【0030】
次に、前記溶液C1gにm−キシレン9gを加え、均一に混合した。ここでは、この溶液を溶液Eとした。この溶液Eをポリエステルフィルムに塗布し、120℃で60分間乾燥して被膜を形成した。この被膜をアセトンで洗浄し、乾燥した後、デジタルマルチメータ((株)アドバンテスト製:TR6846)で導電率を測定した結果、導電率は80S/cmであった。
【0031】
また、前記溶液D1gにm−クレゾール9gを加え、均一に混合した。ここではこの溶液を溶液Fとした。この溶液Fをガラス基板に塗布し、150℃で60分間乾燥して被膜を形成した。この被膜の導電率は、150S/cmであった。
【0032】
ここで、比較のために、前記塩基性ポリアニリン0.5gと試薬一級の硫酸1.1gをビーカーに秤取し、窒素置換した容器内で混合し、さらに、m−キシレン12gを加え、超音波洗浄器で48時間攪拌したが、塩基性ポリアニリンは、ほとんど溶解しなかった。
【0033】
次に、前記の溶液を用いて、導電性粉末に表面処理を施し、この導電性粉末を用いて高分子PTC素子を作製した例について説明する。
【0034】
平均粒径が1.5μmの炭化チタン粉末1kgに、溶液E300mlを加えて均一に混合した後、ロータリーエバポレータで溶媒を減圧留去し、次いで窒素置換した防爆型の乾燥器を用いて、100℃で1時間乾燥した。これによって、ポリアニリンの被覆を有する導電性粉末を得た。
【0035】
次に、高密度ポリエチレン100重量部に対して、前記被覆を有する導電性粉末を525重量部秤量し、表面温度を160℃に保持したロールを用いて、均一に混練し、高分子PTC組成物を得た。ロールから高分子PTC組成物を取り出す際、厚さを1.1mmに設定し、シート状の予備成形体とした。
【0036】
次に、片面に粗面化加工を施した、厚さ70μmの銅箔を準備し、粗面化側を対向させた状態で、前記高分子PTC組成物のシート状予備成形体を挟み、全体の厚さが1.14mmとなるように、200℃で10分間プレスし、電極を形成した。電極を形成した後、5mm×10mmの形状に切断し、銅箔部にリード線を取り付け、高分子PTC素子の試料を得た。また、比較に供するため、表面に被覆を有しない、平均粒径1.5μmの炭化チタンを用い、前記とまったく同様にして高分子PTC素子の試料を調製した。
【0037】
これらの高分子PTC素子に、135℃まで昇温して5分間保持した後、室温まで放冷するというサイクルを100回繰り返して熱履歴を施し、抵抗の変化を測定した。表1には、これらの高分子PTC素子の初期抵抗、熱履歴後の抵抗の測定結果をまとめて示した。なお、抵抗の測定は、100個の試料について行った。
【0038】
【表1】

Figure 2004014776
【0039】
表1の結果によれば、表面にポリアニリンの被覆を有する導電性粉末を用いた高分子PTC素子は、被覆を設けていない導電性粉末を用いた場合よりも、初期抵抗の平均値、標準偏差ともに小さな数値を示していて、ポリアニリンの導電性が、高分子PTC素子の特性向上に寄与していることを示している。
【0040】
また、熱履歴後の結果を比較すると、ポリアニリンの被覆の有無により、抵抗の測定結果に顕著な差が認められ、ポリアニリンの被覆により、導電性粉末に含まれる金属の、結合材の酸化を助長する作用が、著しく低減されていることが明らかである。
【0041】
【発明の効果】
以上に説明したように、本発明によれば、結合材の酸化を抑制することにより、熱履歴や経時変化による特性劣化が、極めて少ない高分子PTC素子を得ることができる。これによって、信頼性の高い高分子PTC素子の提供が可能となり、その用途拡大に寄与するところには、大きいものがある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called PTC (PTC) in which a mixture having a conductive powder and a method for producing the same, and a mixture comprising the conductive powder and a binder containing a crystalline polymer are formed into a sheet and electrodes are arranged on both surfaces. The present invention relates to a polymer PTC element having a positive temperature coefficient (positive temperature coefficient) characteristic.
[0002]
[Prior art]
2. Description of the Related Art PTC elements exhibiting a positive temperature characteristic in which electric resistance rapidly increases in a specific temperature range are widely used as heaters for automatically controlling temperature, self-recovering overcurrent protection elements, and the like. Examples of the composition used for the PTC element include ceramic-based PTC compositions such as barium titanate (BaTiO 3 ) to which a small amount of yttrium oxide (Y 2 O 3 ) is added, and conductive particles such as carbon black. Polymer PTC compositions dispersed therein are known.
[0003]
A PTC element using a ceramic-based PTC composition utilizes a rapid increase in resistance at the Curie point. However, since the resistivity in a steady state is as high as about 100 Ω · cm, it is relatively large, about several A. No current can flow. This means that it is difficult to use a PTC element using a ceramic PTC composition as an overcurrent protection element. Further, the ceramic PTC composition requires many steps for molding and processing into a desired shape, and has a problem of poor impact resistance.
[0004]
On the other hand, a polymer PTC device using a polymer PTC composition is suitable for an overcurrent protection device because of its low resistivity at room temperature, has excellent impact resistance, and is easy to mold and process.
[0005]
The operation principle of the polymer PTC element is based on the fact that conductive particles forming a network at room temperature are separated by using a large thermal expansion at a crystal melting point of a crystalline polymer. For this reason, when excessive heat is generated by a current equal to or higher than the specified value, the resistivity sharply increases at a temperature near the crystal melting point, and when the temperature returns to room temperature, a network of conductive particles is reformed, and the resistivity also increases. descend.
[0006]
In a general method of manufacturing a polymer PTC element, a polymer PTC composition is obtained by dispersing conductive particles in a crystalline polymer using a roll or the like, and this is formed into a sheet by a hot press or a roll. Then, there is a dry method in which an electrode made of a metal foil or the like is pressed and then punched into a required shape.
[0007]
As a method for obtaining a sheet of the polymer PTC composition, there is also a wet method in which a film is formed using a paste in which a conductive filler is dispersed in a solution of a crystalline polymer, and in this case, a metal foil constituting an electrode is used. There is also a method in which a film is formed on a substrate, and the film-formed sides are opposed to be integrated.
[0008]
In recent years, as electric and electronic devices such as secondary batteries and components used for them have become smaller, the resistance of polymer PTC elements has also been required to be reduced. Metals and metal carbides are used in place of the system, and among them, metal carbides such as titanium carbide tend to be frequently used because of their high conductivity and difficulty in agglomeration.
[0009]
A problem when using a conductive powder containing a metal as described above is that the metal contained in the conductive powder promotes oxidation of the binder. In other words, this causes a decrease in the average molecular weight of the binder, thereby increasing the volume of the binder and increasing the resistance of the polymer PTC element at room temperature.
[0010]
One way to prevent such a phenomenon is to add an antioxidant. However, it is difficult to adjust the amount of the antioxidant, and the resistance of the element increases due to the lack of conductivity of the antioxidant. There are cases. Further, antioxidants are generally expensive, which leads to an increase in manufacturing costs.
[0011]
As another means, the addition of a metal deactivator also exerts a remarkable effect in preventing the deterioration of the binder, but this additive also forms an insulating film on the surface of the conductive powder. Increase the resistance. Also, this is generally expensive, which increases the manufacturing cost.
[0012]
[Problems to be solved by the invention]
Therefore, the technical problem of the present invention is to solve the above-mentioned problems, to provide a polymer PTC element having low resistance at room temperature and a small increase in resistance due to aging, and a conductive powder for realizing the same. To provide.
[0013]
[Means for Solving the Problems]
The present invention, in order to solve the above problems, to form a conductive coating on the surface of the conductive powder containing a metal, without reducing the conductivity of the conductive powder itself, contained in the conductive powder It was made as a result of studying to contain the effect of promoting the oxidation of the binding material of the metal used.
[0014]
That is, the present invention is characterized in that the surface of the conductive powder is made of polyaniline, protonic acid, and a low-polar solvent, and is subjected to a surface treatment with a solution that provides a conductive film. It is a powder.
[0015]
The present invention also provides a conductive powder having a coating, wherein the conductive powder to be subjected to the surface treatment contains titanium carbide.
[0016]
Further, the present invention is the conductive powder having a coating, wherein the protonic acid is a sulfonic acid derivative in the conductive powder having the coating.
[0017]
Further, the present invention is the conductive powder having a coating, wherein the sulfonic acid derivative contains at least one of camphorsulfonic acid and dodecylbenzenesulfonic acid in the conductive powder having the coating. .
[0018]
Further, the present invention is the method for producing a conductive powder having the above-mentioned coating, wherein the surface treatment is performed using a solution in which polyaniline to which a protonic acid is added is dissolved in a low-polarity solvent.
[0019]
Further, the present invention is characterized in that electrodes are arranged on both surfaces of a sheet-like molded product of a mixture comprising a conductive powder having the coating and a binder containing a crystalline polymer, It is a molecular PTC element.
[0020]
Aromatic polymers such as polyaniline and polyphenylene have conductivity based on conjugated π electrons, have excellent stability, and can be synthesized relatively easily from inexpensive raw materials. For this reason, various applications utilizing the conductivity of secondary battery electrodes, capacitors, antistatic agents, radio wave absorbers and the like are being studied.
[0021]
If these conductive polymers can be applied, a film can be formed on the surface of the particles of the conductive powder without increasing the resistance. That is, by dispersing such a conductive powder in a binder containing a crystalline polymer, a polymer PTC composition with less oxidation of the binder can be obtained even when a conductive powder containing a metal is used. We can expect that.
[0022]
However, since the conductive polymer such as the polyaniline does not melt or has low solubility in a solvent, it has been practically impossible to use it for forming a thin film on the surface of powder particles. . However, in recent years, it has been found that polyaniline obtained by adding a certain kind of protonic acid, particularly camphorsulfonic acid or dodecylbenzenesulfonic acid, to polyaniline becomes soluble in an organic solvent. That is, the above-described solution is added to the conductive powder, and after stirring, the solvent is removed to obtain a conductive powder having a coating made of conductive polyaniline.
[0023]
The organic solvent used at this time is preferably a low-polar one, because in a high-polarity solvent, camphorsulfonic acid or dodecylbenzenesulfonic acid added to polyaniline elutes in the solvent. . Therefore, as the solvent to be used, specifically, cresol and xylene are mentioned, and since their relative dielectric constants are approximately 11.5 and 2.5, respectively, a solvent having a relative dielectric constant of 20 or less is preferable. It is.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to specific examples.
[0025]
First, a synthesis example of polyaniline will be described. 40 ml of reagent primary aniline, 50 ml of 35% hydrochloric acid of primary reagent and 400 ml of distilled water were weighed and mixed to obtain a solution A. Also, 46 g of primary reagent ammonium persulfate was dissolved in 100 ml of distilled water to prepare a solution B.
[0026]
Next, while stirring the solution A while maintaining it at 0 ° C., the solution B was dropped at a constant rate so that the addition was completed in 2 hours. Thereafter, stirring was continued for 3 hours while maintaining the temperature at 0 ° C. Next, the product was separated by filtration, washed with distilled water, further washed with methanol and ether, and then dried with a vacuum drier keeping the temperature at 50 ° C. to obtain powdered polyaniline.
[0027]
Next, 10 g of the polyaniline was put into 1000 ml of 3% aqueous ammonia, and stirred for 2 hours. Next, the polyaniline treated with ammonia water is separated by filtration, washed with distilled water, washed with methanol and ether, and dried in a vacuum dryer maintained at a temperature of 50 ° C. to obtain a powdery basic material. Polyaniline was obtained. The yield of the obtained basic polyaniline was 36%, and the weight average molecular weight was about 100,000.
[0028]
Next, 0.5 g of the basic polyaniline obtained in the above reaction and 1.81 g of dodecylbenzenesulfonic acid of primary reagent were weighed into a beaker and mixed in a vessel purged with nitrogen. 20.8 g of m-xylene was added to this mixture, and the mixture was stirred for 48 hours with an ultrasonic cleaner, then insolubles were separated with a centrifuge, and then removed by decantation to obtain a conductive polyaniline solution. Here, this solution was used as solution C.
[0029]
Next, 0.5 g of the basic polyaniline obtained in the above reaction and 0.65 g of the primary reagent camphorsulfonic acid were weighed into a beaker and mixed in a vessel purged with nitrogen. To this mixture, 10.35 g of m-cresol was added, and the mixture was stirred for 48 hours with an ultrasonic cleaner, then insolubles were separated by a centrifugal separator, and then removed by decantation to obtain a conductive polyaniline solution. Here, this solution was referred to as solution D.
[0030]
Next, 9 g of m-xylene was added to 1 g of the solution C and uniformly mixed. Here, this solution was referred to as solution E. This solution E was applied to a polyester film and dried at 120 ° C. for 60 minutes to form a film. After this film was washed with acetone and dried, the conductivity was measured by a digital multimeter (trade name: TR6846, manufactured by Advantest Corporation). As a result, the conductivity was 80 S / cm.
[0031]
In addition, 9 g of m-cresol was added to 1 g of the solution D and mixed uniformly. Here, this solution was referred to as solution F. This solution F was applied to a glass substrate and dried at 150 ° C. for 60 minutes to form a film. The conductivity of this coating was 150 S / cm.
[0032]
Here, for comparison, 0.5 g of the above-mentioned basic polyaniline and 1.1 g of reagent-grade sulfuric acid were weighed into a beaker, mixed in a vessel purged with nitrogen, and further added with 12 g of m-xylene, After stirring in the washing machine for 48 hours, the basic polyaniline hardly dissolved.
[0033]
Next, an example will be described in which a conductive powder is subjected to a surface treatment using the above solution and a polymer PTC element is manufactured using the conductive powder.
[0034]
300 kg of solution E was added to 1 kg of titanium carbide powder having an average particle size of 1.5 μm and mixed uniformly, and then the solvent was distilled off under reduced pressure with a rotary evaporator. For 1 hour. Thus, a conductive powder having a polyaniline coating was obtained.
[0035]
Next, 525 parts by weight of the conductive powder having the coating was weighed with respect to 100 parts by weight of the high-density polyethylene, and uniformly kneaded using a roll whose surface temperature was maintained at 160 ° C. to obtain a polymer PTC composition. Got. When the polymer PTC composition was taken out from the roll, the thickness was set to 1.1 mm to obtain a sheet-shaped preform.
[0036]
Next, a copper foil having a thickness of 70 μm having a roughened surface on one side was prepared, and a sheet-shaped preform of the polymer PTC composition was sandwiched in a state where the roughened sides were opposed to each other. Was pressed at 200 ° C. for 10 minutes so that the thickness of the electrode was 1.14 mm to form an electrode. After forming the electrode, it was cut into a shape of 5 mm × 10 mm, and a lead wire was attached to the copper foil part to obtain a sample of a polymer PTC element. Further, for comparison, a sample of a polymer PTC element was prepared in exactly the same manner as described above, using titanium carbide having an average particle size of 1.5 μm having no coating on the surface.
[0037]
These polymer PTC devices were heated up to 135 ° C., held for 5 minutes, and then allowed to cool down to room temperature by repeating the heat history 100 times to measure the change in resistance. Table 1 summarizes the measurement results of the initial resistance and the resistance after thermal history of these polymer PTC elements. The measurement of the resistance was performed on 100 samples.
[0038]
[Table 1]
Figure 2004014776
[0039]
According to the results shown in Table 1, the average value and the standard deviation of the initial resistance of the polymer PTC element using the conductive powder having the polyaniline coating on the surface were higher than those using the conductive powder having no coating. Both show small numerical values, indicating that the conductivity of polyaniline contributes to the improvement of the characteristics of the polymer PTC element.
[0040]
Also, comparing the results after the thermal history, a remarkable difference was observed in the resistance measurement result depending on the presence or absence of the polyaniline coating, and the coating of the polyaniline promoted the oxidation of the metal contained in the conductive powder and the binder. It is evident that the effect of this is significantly reduced.
[0041]
【The invention's effect】
As described above, according to the present invention, by suppressing the oxidation of the binder, it is possible to obtain a polymer PTC element in which the characteristic deterioration due to heat history and aging is extremely small. This makes it possible to provide a highly reliable polymer PTC element, and there is a large element that contributes to the expansion of its use.

Claims (6)

導電性粉末の表面に、ポリアニリン、プロトン酸、低極性の溶媒からなり、導電性被膜を与える溶液による表面処理が施されてなることを特徴とする、被覆を有する導電性粉末。A conductive powder having a coating, wherein the surface of the conductive powder is made of polyaniline, a protonic acid, and a low-polar solvent, and is subjected to a surface treatment with a solution for providing a conductive film. 炭化チタンを含む導電性粉末に表面処理が施されてなることを特徴とする請求項1に記載の被覆を有する導電性粉末。The conductive powder having a coating according to claim 1, wherein the conductive powder containing titanium carbide is subjected to a surface treatment. 前記プロトン酸は、スルホン酸誘導体であることを特徴とする、請求項1もしくは請求項2のいずれかに記載の被覆を有する導電性粉末。The conductive powder having a coating according to claim 1, wherein the protonic acid is a sulfonic acid derivative. 前記スルホン酸誘導体は、カンファースルホン酸、ドデシルベンゼンスルホン酸の少なくともいずれかを含むことを特徴とする、請求項3に記載の被覆を有する導電性粉末。The conductive powder having a coating according to claim 3, wherein the sulfonic acid derivative contains at least one of camphorsulfonic acid and dodecylbenzenesulfonic acid. 前記プロトン酸を添加したポリアニリンを、前記低極性の溶媒に溶解した溶液を用いて、表面処理を施すことを特徴とする、請求項1ないし請求項4のいずれかに記載の、被覆を有する導電性粉末の製造方法。The conductive material having a coating according to any one of claims 1 to 4, wherein a surface treatment is performed using a solution in which the polyaniline to which the protonic acid is added is dissolved in the low-polarity solvent. Method for producing conductive powder. 請求項1ないし請求項4のいずれかに記載の、被覆を有する導電性粉末と、結晶性高分子を含む結合材からなる混和物の、シート状成形体の両面に、電極を配置してなることを特徴とする、高分子PTC素子。An electrode is arranged on both surfaces of a sheet-like molded product of the mixture comprising the conductive powder having a coating according to any one of claims 1 to 4 and a binder containing a crystalline polymer. A polymer PTC element, characterized in that:
JP2002165597A 2002-06-06 2002-06-06 Conductive powder with coating film, its producing method, and high molecular ptc element using the same Pending JP2004014776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165597A JP2004014776A (en) 2002-06-06 2002-06-06 Conductive powder with coating film, its producing method, and high molecular ptc element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165597A JP2004014776A (en) 2002-06-06 2002-06-06 Conductive powder with coating film, its producing method, and high molecular ptc element using the same

Publications (1)

Publication Number Publication Date
JP2004014776A true JP2004014776A (en) 2004-01-15

Family

ID=30433398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165597A Pending JP2004014776A (en) 2002-06-06 2002-06-06 Conductive powder with coating film, its producing method, and high molecular ptc element using the same

Country Status (1)

Country Link
JP (1) JP2004014776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035622A (en) * 2005-07-25 2007-02-08 Samsung Sdi Co Ltd Secondary battery provided with ptc element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035622A (en) * 2005-07-25 2007-02-08 Samsung Sdi Co Ltd Secondary battery provided with ptc element
JP4537355B2 (en) * 2005-07-25 2010-09-01 三星エスディアイ株式会社 Secondary battery with PTC element

Similar Documents

Publication Publication Date Title
Wang et al. Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles
EP2592628B1 (en) Conductive composite material with positive temperature coefficient of resistance and over-current protection component
Chwang et al. Synthesis and characterization of high dielectric constant polyaniline/polyurethane blends
JP6598231B2 (en) Polymer conductive composite material and PTC element
Yao et al. Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO 3 bulk ceramics for high energy density capacitor applications
WO2003038838A1 (en) Ag COMPOUND PASTE
US9443639B2 (en) Conductive polymer blend composition and manufacturing method thereof
Jiang et al. Low dielectric loss BST/PTFE composites for microwave applications
Singh et al. Dielectric and conducting behavior of pyrene functionalized PANI/P (VDF‐co‐HFP) blend
JP2004014776A (en) Conductive powder with coating film, its producing method, and high molecular ptc element using the same
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
US20100321147A1 (en) Vanadium sesquioxide nanocomposite
KR100985978B1 (en) polymer PTC thermistor and thereof.
JP2000331804A (en) Ptc composition
KR101153295B1 (en) High dielectric particle of conducting polymer core and polyimide shell, and process for preparing them
JP2002353003A (en) High polymer ptc element and manufacturing method therfor
KR100392882B1 (en) Heating element using conducting polymer film
Shi et al. Dielectric response of Mg0. 95Ca0. 05TiO3 ceramic filled HDPE composites with low dielectric loss
KR20020085761A (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP2003332102A (en) Polymer ptc composition and polymer ptc element
Diwald Zinc oxide nanoparticles for varistors
JP2004047555A (en) Polymer ptc compound and polymer ptc element
JP2003282307A (en) Polymer ptc composition and polymer ptc device using the same
JP2004022799A (en) Coated conductive powder, its manufacturing method, and polymer ptc device using the same
JPH1187106A (en) Manufacture of ptc element