JP2004022799A - Coated conductive powder, its manufacturing method, and polymer ptc device using the same - Google Patents

Coated conductive powder, its manufacturing method, and polymer ptc device using the same Download PDF

Info

Publication number
JP2004022799A
JP2004022799A JP2002175563A JP2002175563A JP2004022799A JP 2004022799 A JP2004022799 A JP 2004022799A JP 2002175563 A JP2002175563 A JP 2002175563A JP 2002175563 A JP2002175563 A JP 2002175563A JP 2004022799 A JP2004022799 A JP 2004022799A
Authority
JP
Japan
Prior art keywords
conductive powder
coating
polymer
polymer ptc
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175563A
Other languages
Japanese (ja)
Inventor
Mitsumune Kataoka
片岡 光宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002175563A priority Critical patent/JP2004022799A/en
Publication of JP2004022799A publication Critical patent/JP2004022799A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the stability of the resistance of a high polymer PTC device, having a structure where an electrode is disposed on the opposite surfaces of a sheet of a polymer PTC composition, comprising conductive powder containing metal and a coupling material containing a crystalline high polymer. <P>SOLUTION: A metal, contained in the conductive powder, reduces the action which aids oxidization of a coupling material by providing a coating on the surface of the conductive powder. As the coating, after the coarting of the high polymer material is introduced to the surface of the conductive powder, the high polymer coating is carbonized through heating. Since the coating of carbide is conductive, oxidization of the coupling member can be suppressed, without increasing the resistance of the high polymer PTC device. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電性を有する粉末、その製造方法、及び、前記導電性粉末と結晶性高分子を含む結合材からなる混和物をシート状に成形し、両面に電極を配置した、いわゆるPTC(Positive Temperature Coefficient;正温度係数)特性を有する高分子PTC素子に関するものである。
【0002】
【従来の技術】
特定の温度領域において、電気抵抗が急激に増大する正の温度特性を示すPTC素子は、自動的に温度を制御するヒータや、自己復帰型の過電流保護素子などとして多用されている。そして、PTC素子に用いる組成物としては、酸化イットリウム(Y)を微量添加したチタン酸バリウム(BaTiO)などのセラミックス系PTC組成物、カーボンブラックなどの導電性粒子を結晶性高分子中に分散した高分子PTC組成物が知られている。
【0003】
セラミックス系PTC組成物を用いたPTC素子では、キュリー点での急激な抵抗上昇を利用しているが、定常状態における抵抗が、約100Ω・cmと高いために、数A程度の比較的大きな電流を流すことができない。このことは、セラミック系PTC組成物を用いたPTC素子が、過電流保護素子として利用するのが困難であることを意味している。また、セラミック系PTC組成物は、所望の形状に成形、加工するのに多くの工程を要し、耐衝撃性に劣るという問題がある。
【0004】
これに対し、高分子PTC組成物を用いた高分子PTC素子では、室温における抵抗が低いために、過電流保護素子に適していて、耐衝撃性が優れ、成形、加工が容易である。
【0005】
高分子PTC素子の動作原理は、結晶性高分子の結晶融点での大きな熱膨張を利用して、室温でネットワークを形成している導電性粒子を切り離すことによるものである。このために、規定値以上の電流により過度に発熱した際に、結晶融点近傍の温度で、抵抗が急激に上昇し、室温に戻ると、導電性粒子のネットワークが再形成され、抵抗も低下する。
【0006】
そして、高分子PTC素子の一般的な製造方法には、ロールなどを用いて結晶性高分子に導電性粒子を分散させて高分子PTC組成物を得、これを加熱プレスやロールなどでシート成形し、金属箔などからなる電極を圧着した後、所要の形状に打ち抜くという、乾式法がある。
【0007】
また、高分子PTC組成物のシートを得る方法として、結晶性高分子の溶液に導電性フィラーを分散させたペーストを用いて成膜する湿式法もあり、この場合は、電極を構成する金属箔の上に成膜して、成膜した側を対向させて一体化するという方法もある。
【0008】
一方で、近年の二次電池を始めとする、電気電子機器やそれらに用いられる部品の小型が進むに従い、高分子PTC素子についても、抵抗の低減が要求され、用いる導電性粉末として、カーボン系に替えて、金属や金属炭化物が用いられていて、その中でも炭化チタンのような金属炭化物が、導電性が高いことや凝集が生じ難いことなどから多用される傾向にある。
【0009】
このように金属を含む導電性粉末を用いる場合に問題となるのは、導電性粉末に含まれる金属が結合材の酸化を助長することである。つまり、これによって結合材の平均分子量の低下がひき起こされることで、結合材の体積が増加し、常温における高分子PTC素子の抵抗が上昇するという問題がある。
【0010】
このような現象を防止する手段の一つに、酸化防止剤の添加が挙げられるが、添加量の調整が難しく、酸化防止剤の非導電性に起因する、素子の抵抗増加が生じる場合がある。また、一般に酸化防止剤は高価なので、製造コストの上昇に繋がる。
【0011】
他の手段として、金属不活性化剤を添加するのも、結合材の劣化防止には、著しい効果を発現するが、この物質も導電性粉末表面に絶縁性の膜を形成するため、素子の抵抗を増加させる。また、これも一般に高価なので、製造コストを上昇させる。
【0012】
【発明が解決しようとする課題】
従って、本発明の技術的な課題は、前記の問題点を解決し、常温における抵抗が低く、しかも経時変化や熱履歴による抵抗の上昇が少ない高分子PTC素子と、それを実現するための導電性粉末を、コスト上昇を伴うことなく提供することにある。
【0013】
【課題を解決するための手段】
本発明は、前記の問題を解決するために、金属を含む導電性粉末の表面に、導電性を有する被覆を形成し、導電性粉末自体の導電性を低下させることなく、結合材に対する金属の酸化促進作用を封じ込めることを検討した結果、なされたものである。
【0014】
即ち、本発明は、導電性粉末表面に、高分子化合物に起因する炭化物層を形成してなることを特徴とする、被覆を有する導電性粉末である。
【0015】
また、本発明は、前記の被覆を有する導電性粉末において、前記高分子化合物は、フェノール樹脂、フェノール樹脂誘導体の少なくともいずれかであることを特徴とする、被覆を有する導電性粉末である。
【0016】
また、本発明は、前記の被覆を有する導電性粉末において、前記導電性粉末は、炭化チタンを含むことを特徴とする、被覆を有する導電性粉末である。
【0017】
また、本発明は、前記導電性粉末の表面に前記高分子化合物の被覆を施した後、前記高分子化合物を炭化させることを特徴とする、前記の被覆を有する導電性粉末の製造方法である。
【0018】
また、本発明は、前記の被覆を有する導電性粉末と、結晶性高分子を含む結合材からなる混和物のシート状成形体の両面に、電極を配置してなることを特徴とする高分子PTC素子である。
【0019】
本発明の被覆を有する導電性粉末は、結晶性高分子を含む結合材に分散させても、表面に炭化物の被覆が形成されているので、導電性粉末自体の表面と結合材との接触面積が極めて小さくなる。このため、導電性粉末に金属が含まれる場合でも、金属が有する結合材の酸化促進作用を抑制することができる。
【0020】
従って、このような導電性粉末を用いた高分子PTC素子は、大電流の通電により温度が上昇した際の急激な抵抗上昇、即ち、スイッチング動作の繰り返しや、経時変化によってひき起こされる、常温における抵抗増加が極めて少なくなる。
【0021】
本発明における、導電性粉末表面の炭化物の形成は、表面に高分子材料を被覆させ、これに加熱などの処理を施すことで、高分子材料の脱水素反応を進行させるという方法で行う。導電性粉末表面への高分子材料の被覆は、硬化前の粘性係数が低い熱硬化性高分子材料を用いる場合では、所要量の導電性粉末と熱硬化性高分子を混合することで行える。硬化前の粘性係数が高い場合は、適宜溶媒で希釈してもよい。
【0022】
また、熱可塑性高分子材料を用いる場合では、材料を適当な溶媒に溶解するか、加熱溶融して、粘性係数が十分に低い状態として、導電性粉末と混合することで行える。このため、前記のような処理が可能な材料であれば、用いる高分子材料の材質は、特に限定されない。
【0023】
しかし、炭化のために加熱した際に、高分子材料が溶融しない方が、均一な被覆を形成できる。従って、作業性や価格などを考慮すると、低価格で、硬化前の粘性係数が適度に低いか、適当な溶媒に溶解する熱硬化性高分子材料が好ましく、フェノール樹脂が好適である。
【0024】
フェノール樹脂は、フェノールとホルムアルデヒドとの反応で得られ、酸触媒ではノボラック型、アルカリ触媒ではレゾール型が得られる。ノボラック型では、硬化の際にヘキサメチレンテトラミンのような硬化剤を必要とするのに対し、レゾール型では、加熱のみで硬化反応が起こるので、本発明には好適である。
【0025】
【発明の実施の形態】
次に、本発明の実施の形態について、例を挙げて説明する。
【0026】
まず被覆用の高分子材料として、レゾール型のフェノール樹脂を準備し、エチルアルコール100重量部に対し、フェノール樹脂20重量部を混合、攪拌して溶液とした。この溶液に、平均粒径が1.5μmの炭化チタン粉末を300重量部秤量して加え攪拌した。
【0027】
次に、この粉末を24時間放置して乾燥した後、焼結炉に装入して、アルゴン雰囲気で400℃、24時間熱処理を施した。このようにして、表面に炭化物の被覆を有する導電性粉末を調製した。
【0028】
次に、融点が137℃の高密度ポリエチレン100重量部に対して、前記被覆を有する導電性粉末を525重量部の比率で、それぞれ秤量し、双ロールを用いて均一になるまで混練し、高分子PTC組成物を得た。なお、双ロールから高分子PTC組成物を取り出す際は、厚さを約1.1mmとして、シート状の予備成形体とした。
【0029】
そして、片面に粗面化加工を施した厚さが70μmのニッケル箔の粗面化面を対向させた状態で、間に前記の高分子PTC組成物のシートを挟み、200℃で10分間プレスを行い、厚さが1.14mmの電極を取り付けた状態のシートとした。
【0030】
次に、前記電極を取り付けたシートを5mm×10mmの板状に切断し、電極部にリード線を取り付け、高分子PTC素子の試料を得、本発明の試料とした。この際、比較に供するために、導電性粉末として、表面に何ら被覆処理を施していない炭化チタンの粉末を用い、高密度ポリエチレン100重量部と、導電性粉末525重量部からなる高分子PTC組成物を調製し、同様に高分子PTC素子の試料を作製し、比較試料とした。
【0031】
これら本発明の試料及び比較試料について、135℃に設定した恒温槽に装入して5分間保持し、高温槽から取り出した後、室温で1時間放置した後、135℃に設定した恒温槽に再び装入するという操作を100回繰り返し、試料に熱履歴を施した。そして、熱履歴の前後の試料100個について、抵抗を測定した。また、試料から高分子PTC組成物を剥がし取って、DSCによる熱分析を行った。表1は、本発明の試料と、比較試料についての、抵抗の初期値、熱履歴後の抵抗をまとめて示したものである。
【0032】
【表1】

Figure 2004022799
【0033】
また、図1は、本発明の試料の高分子PTC素子から剥ぎ取った高分子PTC組成物の、熱履歴前後の熱分析結果を示したグラフである。また、図2は、比較試料の高分子PTC素子から剥ぎ取った高分子PTC組成物の、熱履歴前後の熱分析結果を示したグラフである。
【0034】
図1において、11は熱履歴前の測定結果、12は熱履歴後の測定結果である。また、図2において、21は熱履歴前の測定結果、22は熱履歴後の測定結果である。なお、これらは、150℃から30℃まで、20℃/分の降温速度で冷却した条件での結果である。
【0035】
表1に示した結果によると、本発明の試料の抵抗は、初期値においては、比較試料よりもやや高い値となった。しかし、熱履歴後では、本発明の試料の抵抗は増加が見られたものの、その増加率はわずかであるのに対し、比較試料の抵抗は著しく増加していて、高分子PTC組成物を構成する結合材の、酸化の影響が明らかである。
【0036】
また、図1に示した結果では、熱履歴前後で、差が認められず、導電性粉末表面の炭化物の作用で、導電性粉末に含まれる金属による、結合材の酸化が、極めて少ないことが推定される。
【0037】
しかし、図2に示した結果では、熱履歴後の発熱ピークが、熱履歴前よりも低温側に遷移し、しかも熱履歴後の発熱量が、熱履歴前に比較して減少している。これは、結合材の酸化に伴う結晶化度の低下を示したものと推定され、本発明による炭化物の被覆の効果が、顕著であることを示している。
【0038】
【発明の効果】
以上に説明したように、本発明によれば、金属を含む導電性粉末を用いた高分子PTC素子の、熱履歴や経時変化による抵抗の安定性低下を抑制することが可能となり、信頼性の高い高分子PTC素子を提供できる。
【図面の簡単な説明】
【図1】本発明の試料の高分子PTC素子から剥ぎ取った高分子PTC組成物の熱履歴前後の熱分析結果を示したグラフ。
【図2】比較試料の高分子PTC素子から剥ぎ取った高分子PTC組成物の熱履歴前後の熱分析結果を示したグラフ。
【符号の説明】
11  本発明の試料の熱履歴前の測定結果
12  本発明の試料の熱履歴後の測定結果
21  比較試料の熱履歴前の測定結果
22  比較試料の熱履歴後の測定結果[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called PTC (Polyconducting Powder) in which a mixture of a conductive powder, a method for producing the same, and a binder comprising the conductive powder and a crystalline polymer is formed into a sheet and electrodes are arranged on both surfaces. The present invention relates to a polymer PTC element having a positive temperature coefficient (positive temperature coefficient) characteristic.
[0002]
[Prior art]
2. Description of the Related Art PTC elements exhibiting a positive temperature characteristic in which electric resistance rapidly increases in a specific temperature range are widely used as heaters for automatically controlling temperature, self-recovering overcurrent protection elements, and the like. Examples of the composition used for the PTC element include ceramic-based PTC compositions such as barium titanate (BaTiO 3 ) to which a small amount of yttrium oxide (Y 2 O 3 ) is added, and conductive particles such as carbon black. Polymer PTC compositions dispersed therein are known.
[0003]
A PTC element using a ceramic-based PTC composition utilizes a rapid increase in resistance at the Curie point. However, since the resistance in a steady state is as high as about 100 Ω · cm, a relatively large current of about several A is used. Can not flow. This means that it is difficult to use a PTC element using a ceramic PTC composition as an overcurrent protection element. Further, the ceramic PTC composition requires many steps for molding and processing into a desired shape, and has a problem of poor impact resistance.
[0004]
On the other hand, a polymer PTC device using a polymer PTC composition has low resistance at room temperature, is suitable for an overcurrent protection device, has excellent impact resistance, and is easy to mold and process.
[0005]
The operation principle of the polymer PTC element is based on the fact that conductive particles forming a network at room temperature are separated by using a large thermal expansion at a crystal melting point of a crystalline polymer. For this reason, when excessive heat is generated by a current equal to or higher than the specified value, the resistance sharply increases at a temperature near the crystal melting point, and when the temperature returns to room temperature, a network of conductive particles is reformed and the resistance also decreases. .
[0006]
In a general method of manufacturing a polymer PTC element, a polymer PTC composition is obtained by dispersing conductive particles in a crystalline polymer using a roll or the like, and this is formed into a sheet by a hot press or a roll. Then, there is a dry method in which an electrode made of a metal foil or the like is pressed and then punched into a required shape.
[0007]
As a method for obtaining a sheet of the polymer PTC composition, there is also a wet method in which a film is formed using a paste in which a conductive filler is dispersed in a solution of a crystalline polymer, and in this case, a metal foil constituting an electrode is used. There is also a method in which a film is formed on a substrate, and the film-formed sides are opposed to be integrated.
[0008]
On the other hand, as electric and electronic devices such as secondary batteries have recently become smaller and components used for them have become smaller, the resistance of polymer PTC elements has also been required to be reduced. Instead, metals and metal carbides are used, and among them, metal carbides such as titanium carbide tend to be frequently used because of their high conductivity and the difficulty of aggregation.
[0009]
A problem when using a conductive powder containing a metal as described above is that the metal contained in the conductive powder promotes oxidation of the binder. In other words, this causes a decrease in the average molecular weight of the binder, thereby increasing the volume of the binder and increasing the resistance of the polymer PTC element at room temperature.
[0010]
One of the means for preventing such a phenomenon is to add an antioxidant, but it is difficult to adjust the amount of addition, and the resistance of the element may increase due to the non-conductivity of the antioxidant. . Further, antioxidants are generally expensive, which leads to an increase in manufacturing costs.
[0011]
As another means, the addition of a metal deactivator also has a remarkable effect in preventing the deterioration of the binder, but this substance also forms an insulating film on the surface of the conductive powder. Increase resistance. Also, this is generally expensive, which increases the manufacturing cost.
[0012]
[Problems to be solved by the invention]
Accordingly, the technical problem of the present invention is to solve the above-mentioned problems, to provide a polymer PTC element having low resistance at room temperature and a small increase in resistance due to aging or heat history, and a conductive PTC element for realizing the same. To provide a non-conductive powder without increasing costs.
[0013]
[Means for Solving the Problems]
The present invention solves the above problems by forming a conductive coating on the surface of a conductive powder containing a metal, without reducing the conductivity of the conductive powder itself, without reducing the metal to the binder. It was made as a result of studying to contain the oxidation promoting action.
[0014]
That is, the present invention is a conductive powder having a coating, wherein a carbide layer derived from a polymer compound is formed on the surface of the conductive powder.
[0015]
Further, the present invention is the conductive powder having a coating, wherein the polymer compound is at least one of a phenol resin and a phenol resin derivative.
[0016]
Further, according to the present invention, in the conductive powder having the coating, the conductive powder includes titanium carbide, and is a conductive powder having a coating.
[0017]
Further, the present invention is a method for producing a conductive powder having the coating, characterized in that after coating the surface of the conductive powder with the polymer compound, the polymer compound is carbonized. .
[0018]
According to the present invention, there is provided a polymer characterized in that electrodes are arranged on both surfaces of a sheet-shaped molded product of an admixture comprising a conductive powder having the above-mentioned coating and a binder containing a crystalline polymer. It is a PTC element.
[0019]
Even if the conductive powder having the coating of the present invention is dispersed in a binder containing a crystalline polymer, the surface of the conductive powder itself is in contact with the binder because the carbide coating is formed on the surface. Becomes extremely small. For this reason, even when a metal is contained in the conductive powder, it is possible to suppress the oxidation promoting action of the binder contained in the metal.
[0020]
Therefore, a polymer PTC element using such a conductive powder has a sudden increase in resistance when the temperature rises due to the application of a large current, that is, a repetition of switching operation and a change with time, which is caused by room temperature. The increase in resistance is extremely small.
[0021]
In the present invention, the carbide on the surface of the conductive powder is formed by a method of coating the surface with a polymer material and subjecting the surface to a treatment such as heating so that the dehydrogenation reaction of the polymer material proceeds. In the case of using a thermosetting polymer material having a low viscosity coefficient before curing, the conductive powder can be coated on the surface of the conductive powder by mixing a required amount of the conductive powder with the thermosetting polymer. If the viscosity before curing is high, it may be appropriately diluted with a solvent.
[0022]
In the case where a thermoplastic polymer material is used, it can be dissolved in an appropriate solvent or heated and melted so as to have a sufficiently low viscosity coefficient and mixed with a conductive powder. Therefore, the material of the polymer material to be used is not particularly limited as long as the material can be processed as described above.
[0023]
However, when the polymer material is not melted when heated for carbonization, a uniform coating can be formed. Therefore, in consideration of workability, cost, and the like, a thermosetting polymer material that is inexpensive and has a moderately low viscosity coefficient before curing or dissolves in a suitable solvent is preferable, and a phenol resin is preferable.
[0024]
A phenol resin is obtained by a reaction between phenol and formaldehyde, and a novolak type is obtained with an acid catalyst and a resol type is obtained with an alkali catalyst. The novolak type requires a curing agent such as hexamethylenetetramine at the time of curing, while the resol type is suitable for the present invention because the curing reaction occurs only by heating.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to examples.
[0026]
First, a resol-type phenol resin was prepared as a polymer material for coating, and 20 parts by weight of a phenol resin was mixed with 100 parts by weight of ethyl alcohol and stirred to form a solution. To this solution, 300 parts by weight of titanium carbide powder having an average particle size of 1.5 μm was weighed and stirred.
[0027]
Next, after the powder was left to dry for 24 hours, it was placed in a sintering furnace and heat-treated at 400 ° C. for 24 hours in an argon atmosphere. Thus, a conductive powder having a carbide coating on the surface was prepared.
[0028]
Next, based on 100 parts by weight of high-density polyethylene having a melting point of 137 ° C., the conductive powder having the coating was weighed at a ratio of 525 parts by weight, and kneaded using twin rolls until uniform, and then kneaded. A molecular PTC composition was obtained. When the polymer PTC composition was taken out from the twin rolls, the thickness was set to about 1.1 mm to obtain a sheet-shaped preform.
[0029]
Then, with the roughened surface of a 70 μm-thick nickel foil having a roughened surface on one side facing each other, the above-mentioned sheet of the polymer PTC composition is sandwiched therebetween, and pressed at 200 ° C. for 10 minutes. Was performed to obtain a sheet in which electrodes having a thickness of 1.14 mm were attached.
[0030]
Next, the sheet to which the electrodes were attached was cut into a plate having a size of 5 mm × 10 mm, and a lead wire was attached to the electrode portion to obtain a polymer PTC element sample, which was used as a sample of the present invention. At this time, for the purpose of comparison, a polymer PTC composition comprising 100 parts by weight of a high-density polyethylene and 525 parts by weight of a conductive powder was used as the conductive powder, using titanium carbide powder having no surface-treated powder. A sample of a polymer PTC element was prepared in the same manner as a comparative sample.
[0031]
The sample of the present invention and the comparative sample were placed in a thermostat set at 135 ° C., held for 5 minutes, taken out of the high-temperature bath, left at room temperature for 1 hour, and then placed in a thermostat set at 135 ° C. The operation of charging again was repeated 100 times, and the sample was subjected to heat history. The resistance was measured for 100 samples before and after the heat history. Further, the polymer PTC composition was peeled off from the sample, and subjected to thermal analysis by DSC. Table 1 collectively shows the initial value of the resistance and the resistance after the heat history for the sample of the present invention and the comparative sample.
[0032]
[Table 1]
Figure 2004022799
[0033]
FIG. 1 is a graph showing the results of thermal analysis of the polymer PTC composition peeled off from the polymer PTC element of the sample of the present invention before and after the heat history. FIG. 2 is a graph showing the results of thermal analysis of the polymer PTC composition peeled off from the polymer PTC element of the comparative sample before and after the heat history.
[0034]
In FIG. 1, 11 is the measurement result before the heat history, and 12 is the measurement result after the heat history. In FIG. 2, reference numeral 21 denotes a measurement result before the heat history, and reference numeral 22 denotes a measurement result after the heat history. In addition, these are the results under the conditions of cooling from 150 ° C. to 30 ° C. at a cooling rate of 20 ° C./min.
[0035]
According to the results shown in Table 1, the resistance of the sample of the present invention was slightly higher in the initial value than in the comparative sample. However, after the heat history, although the resistance of the sample of the present invention increased, the rate of increase was slight, whereas the resistance of the comparative sample increased remarkably, constituting the polymer PTC composition. The effect of oxidation of the resulting binder is evident.
[0036]
In addition, in the results shown in FIG. 1, no difference was observed before and after the heat history, and the oxidation of the binder by the metal contained in the conductive powder was extremely small due to the action of the carbide on the surface of the conductive powder. Presumed.
[0037]
However, in the results shown in FIG. 2, the heat generation peak after the heat history transitions to a lower temperature side than before the heat history, and the calorific value after the heat history is smaller than before the heat history. This is presumed to indicate a decrease in crystallinity due to the oxidation of the binder, indicating that the effect of the carbide coating according to the present invention is significant.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress a decrease in the stability of the resistance of a polymer PTC element using a conductive powder containing a metal due to heat history and aging, and to improve reliability. A high polymer PTC element can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of thermal analysis of a polymer PTC composition peeled off from a polymer PTC element of a sample of the present invention before and after thermal history.
FIG. 2 is a graph showing the results of thermal analysis of a polymer PTC composition peeled off from a polymer PTC element of a comparative sample before and after thermal history.
[Explanation of symbols]
11 Measurement result of sample of the present invention before thermal history 12 Measurement result of sample of the present invention after thermal history 21 Measurement result of comparative sample before thermal history 22 Measurement result of comparative sample after thermal history

Claims (5)

導電性粉末表面に、高分子化合物に起因する炭化物層を形成してなることを特徴とする、被覆を有する導電性粉末。A conductive powder having a coating, wherein a carbide layer derived from a polymer compound is formed on the surface of the conductive powder. 前記高分子化合物は、フェノール樹脂、フェノール樹脂誘導体の少なくともいずれかであることを特徴とする、請求項1に記載の被覆を有する導電性粉末。The conductive powder having a coating according to claim 1, wherein the polymer compound is at least one of a phenol resin and a phenol resin derivative. 前記導電性粉末は、炭化チタンを含むことを特徴とする、請求項1または請求項2のいずれかに記載の被覆を有する導電性粉末。The conductive powder having a coating according to claim 1, wherein the conductive powder includes titanium carbide. 前記導電性粉末の表面に前記高分子化合物の被覆を施した後、前記高分子化合物を炭化させることを特徴とする、請求項1ないし請求項3のいずれかに記載の、被覆を有する導電性粉末の製造方法。The conductive material having a coating according to any one of claims 1 to 3, wherein the polymer compound is carbonized after coating the polymer compound on the surface of the conductive powder. Powder manufacturing method. 請求項1ないし請求項3のいずれかに記載の被覆を有する導電性粉末と、結晶性高分子を含む結合材からなる混和物のシート状成形体の両面に、電極を配置してなることを特徴とする、高分子PTC素子。An electrode is arranged on both surfaces of a sheet-shaped molded product of an admixture comprising a conductive powder having a coating according to any one of claims 1 to 3 and a binder containing a crystalline polymer. A polymer PTC element.
JP2002175563A 2002-06-17 2002-06-17 Coated conductive powder, its manufacturing method, and polymer ptc device using the same Pending JP2004022799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175563A JP2004022799A (en) 2002-06-17 2002-06-17 Coated conductive powder, its manufacturing method, and polymer ptc device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175563A JP2004022799A (en) 2002-06-17 2002-06-17 Coated conductive powder, its manufacturing method, and polymer ptc device using the same

Publications (1)

Publication Number Publication Date
JP2004022799A true JP2004022799A (en) 2004-01-22

Family

ID=31174176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175563A Pending JP2004022799A (en) 2002-06-17 2002-06-17 Coated conductive powder, its manufacturing method, and polymer ptc device using the same

Country Status (1)

Country Link
JP (1) JP2004022799A (en)

Similar Documents

Publication Publication Date Title
EP2592628B1 (en) Conductive composite material with positive temperature coefficient of resistance and over-current protection component
JP4738537B2 (en) Fixing heater and manufacturing method thereof
JP2001237104A (en) Ptc composite material
JP2002241554A (en) Semiconductive admixture
JP2004022799A (en) Coated conductive powder, its manufacturing method, and polymer ptc device using the same
JP2002353003A (en) High polymer ptc element and manufacturing method therfor
JP2004047555A (en) Polymer ptc compound and polymer ptc element
JP5263668B2 (en) Semiconductor porcelain composition
JP2003282307A (en) Polymer ptc composition and polymer ptc device using the same
JP3271784B2 (en) Manufacturing method of positive temperature coefficient characteristic element
WO2019084912A1 (en) Method for preparing composite film for use in thermistor
JP2002343606A (en) Polymer ptc composition and polymer ptc element
JPH1187106A (en) Manufacture of ptc element
JP2004014776A (en) Conductive powder with coating film, its producing method, and high molecular ptc element using the same
JP3208170B2 (en) Organic positive temperature coefficient thermistor
JP2003332102A (en) Polymer ptc composition and polymer ptc element
JP2004023055A (en) Polymeric ptc element
JP2010146832A (en) Resistance heating element
JP2003318006A (en) Polymer ptc composition and polymer ptc element
WO1998026433A1 (en) Overcurrent protective circuit element
JP2002343603A (en) High polymer ptc element and manufacturing method therefor
JP2002367810A (en) Macromolecular ptc element and its manufacturing method
JP2003178903A (en) Macromolecular ptc element and its manufacturing method
JP2003100503A (en) High-molecular ptc composition and high-molecular ptc device
JP2003347107A (en) High polymer ptc composition and high polymer ptc element