JP2010146832A - Resistance heating element - Google Patents

Resistance heating element Download PDF

Info

Publication number
JP2010146832A
JP2010146832A JP2008321931A JP2008321931A JP2010146832A JP 2010146832 A JP2010146832 A JP 2010146832A JP 2008321931 A JP2008321931 A JP 2008321931A JP 2008321931 A JP2008321931 A JP 2008321931A JP 2010146832 A JP2010146832 A JP 2010146832A
Authority
JP
Japan
Prior art keywords
heating element
resistance
resistance heating
silicon carbide
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008321931A
Other languages
Japanese (ja)
Inventor
Akio Amo
映夫 天羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2008321931A priority Critical patent/JP2010146832A/en
Publication of JP2010146832A publication Critical patent/JP2010146832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistance heating element showing NTC characteristics, having the absolute value of a negative resistance temperature coefficient which is larger than that of graphite, and showing resistivity on the same level as that of graphite. <P>SOLUTION: This resistance heating element contains carbon and silicon carbide showing conductivity. In this resistance heating element, since silicon carbide is added to carbon, NTC characteristics are exhibited, and the absolute value of a negative resistance temperature coefficient is larger than that of graphite. The resistivity of the resistance heating element does not become excessively higher than original resistivity of graphite. For example, if the resistance heating element is used for a heating device to fix a toner image formed on the surface of a recording material such as paper, a temperature in a portion where the recording material does not pass through (paper non-passing portion) can be prevented from rising. A part of or all of the carbon contained in the resistance heating element is preferably graphite, and the resistance heating element preferably contains 20 mass% of silicon carbide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、一般的には抵抗発熱体に関し、特定的には、複写機、プリンタなどで用いられる、紙等の記録材の表面上に形成されたトナー画像を定着させるための加熱装置等に用いられる抵抗発熱体に関するものである。   The present invention generally relates to a resistance heating element, and more specifically, to a heating device or the like for fixing a toner image formed on the surface of a recording material such as paper used in a copying machine, a printer, or the like. The present invention relates to a resistance heating element used.

従来から、トナー画像を定着させるための加熱装置として、給電により発熱する抵抗発熱体を有する加熱体によって被加熱材としての記録材を加熱する加熱装置が用いられている。このような加熱装置において、記録材が通過しない部分(非通紙部)の昇温を防止するために種々の改善がなされている。   2. Description of the Related Art Conventionally, as a heating device for fixing a toner image, a heating device that heats a recording material as a material to be heated by a heating body having a resistance heating element that generates heat by power feeding is used. In such a heating apparatus, various improvements have been made in order to prevent a temperature rise in a portion where the recording material does not pass (non-sheet passing portion).

たとえば、特開2004−234997号公報(以下、特許文献1という)に開示された加熱装置では、加熱装置に用いられる抵抗発熱体にグラファイト(黒鉛)を含ませている。   For example, in a heating device disclosed in Japanese Patent Application Laid-Open No. 2004-234997 (hereinafter referred to as Patent Document 1), a resistance heating element used in the heating device includes graphite (graphite).

特許文献1によれば、グラファイトは、ある温度を境にその温度以下ではNTC特性(Negative Temperature Coefficient:温度が上がると電気抵抗が低くなる負の抵抗温度特性)を示し、その温度以上ではPTC特性(Positive Temperature Coefficient:温度が上がると電気抵抗が高くなる正の抵抗温度特性)を示す性質がある。その温度は変曲点温度と呼ばれ、700℃程度である。このような性質を示すグラファイトを抵抗発熱体に含ませているので、特許文献1に記載の抵抗発熱体は、変曲点温度以下においてNTC特性を発揮することができる。これにより、非通紙部に対応する抵抗発熱体部分の発熱量をNTC特性によって低減することができるので、非通紙部の昇温を抑制することができる。   According to Patent Document 1, graphite exhibits an NTC characteristic (Negative Temperature Coefficient: a negative resistance temperature characteristic in which electric resistance decreases as temperature rises) below a certain temperature, and PTC characteristic above that temperature. (Positive Temperature Coefficient: a positive resistance temperature characteristic in which electrical resistance increases as temperature rises). The temperature is called an inflection point temperature and is about 700 ° C. Since graphite exhibiting such properties is included in the resistance heating element, the resistance heating element described in Patent Document 1 can exhibit NTC characteristics at an inflection point temperature or lower. Thereby, since the calorific value of the resistance heating element portion corresponding to the non-sheet passing portion can be reduced by the NTC characteristic, the temperature rise of the non-sheet passing portion can be suppressed.

また、特許文献1に開示された抵抗発熱体では、グラファイトのシート抵抗が大きいため、抵抗発熱体の総抵抗を下げるために、PTC特性を示す銀またはパラジウムを含有させている。   Further, in the resistance heating element disclosed in Patent Document 1, since the sheet resistance of graphite is large, silver or palladium showing PTC characteristics is contained in order to reduce the total resistance of the resistance heating element.

ところで、一般の炭素発熱体は、負の温度係数を有し、すなわち、NTC特性を示すので、高温になると常温での電気抵抗値より電気抵抗値が下がる。このため、炭素発熱体は、電気抵抗値の変化率によっては、温度の自動制御が困難になる可能性がある。   By the way, a general carbon heating element has a negative temperature coefficient, that is, exhibits an NTC characteristic, so that the electrical resistance value is lower than the electrical resistance value at room temperature at a high temperature. For this reason, depending on the rate of change of the electrical resistance value, it may be difficult to automatically control the temperature of the carbon heating element.

この問題を解消するために、実質的に零に近い温度係数を有する炭素系発熱体を得るための製造方法、または所望の電気抵抗値を有するように成分が調整された発熱体を備えた定着用ヒーターとその製造方法が、たとえば、特開2001−15250号公報(以下、特許文献2という)または国際公開第WO2005/124471号パンフレット(以下、特許文献3という)に開示されている。   In order to solve this problem, a manufacturing method for obtaining a carbon-based heating element having a temperature coefficient substantially close to zero, or a fixing device including a heating element whose components are adjusted to have a desired electric resistance value For example, Japanese Patent Application Laid-Open No. 2001-15250 (hereinafter referred to as Patent Document 2) or International Publication No. WO2005 / 124471 (hereinafter referred to as Patent Document 3) discloses a heater for heating.

特許文献2または特許文献3には、黒鉛またはアモルファス炭素と、窒化硼素、炭化ケイ素などの導電阻害物質としての金属または半金属化合物とを含む炭素系発熱体が記載されている。   Patent Document 2 or Patent Document 3 describes a carbon-based heating element including graphite or amorphous carbon, and a metal or metalloid compound as a conductive inhibitor such as boron nitride or silicon carbide.

なお、特開平7−53265号公報(以下、特許文献4という)には、電気抵抗の温度依存性が極めて少ない、安定した導電性能を有する導電性炭化ケイ素質セラミック材が開示されている。この導電性炭化ケイ素質セラミック材は、室温から500℃までの抵抗温度係数の絶対値が0.2%/℃以下の材質からなる。
特開2004−234997号公報 特開2001−15250号公報 国際公開第WO2005/124471号パンフレット 特開平7−53265号公報
Japanese Patent Laid-Open No. 7-53265 (hereinafter referred to as Patent Document 4) discloses a conductive silicon carbide ceramic material having a very low temperature dependency of electrical resistance and having a stable conductive performance. The conductive silicon carbide ceramic material is made of a material having an absolute value of a resistance temperature coefficient from room temperature to 500 ° C. of 0.2% / ° C. or less.
JP 2004-234997 A JP 2001-15250 A International Publication No. WO2005 / 124471 Pamphlet JP-A-7-53265

特許文献1に開示された抵抗発熱体では、抵抗発熱体の総抵抗を下げるために、銀またはパラジウムを含有させている。黒鉛がNTC特性を示すのに対して、銀またはパラジウムはPTC特性を示す。このため、黒鉛と銀を含有する抵抗発熱体では抵抗温度係数が−240ppm/℃、黒鉛とパラジウムを含有する抵抗発熱体では抵抗温度係数が−460ppm/℃となり、黒鉛本来の負の抵抗温度係数よりもその絶対値が小さくなる。すなわち、特許文献1に開示された抵抗発熱体では、負の抵抗温度係数の絶対値が小さくなる、言い換えれば、NTC特性が黒鉛よりも弱くなるという問題がある。   The resistance heating element disclosed in Patent Document 1 contains silver or palladium in order to reduce the total resistance of the resistance heating element. Graphite shows NTC characteristics, whereas silver or palladium shows PTC characteristics. Therefore, the resistance heating coefficient containing graphite and silver has a resistance temperature coefficient of −240 ppm / ° C., and the resistance heating element containing graphite and palladium has a resistance temperature coefficient of −460 ppm / ° C. The absolute value is smaller than. That is, the resistance heating element disclosed in Patent Document 1 has a problem that the absolute value of the negative resistance temperature coefficient is small, in other words, the NTC characteristic is weaker than that of graphite.

特許文献2または特許文献3に開示された炭素系発熱体は、発熱体の比抵抗を調整するために導電阻害物質を含むので、その調整された比抵抗の値が黒鉛本来の比抵抗よりもかなり高くなる。また、この炭素系発熱体は、黒鉛よりも顕著なNTC特性を示さず、すなわち、黒鉛よりも負の抵抗温度係数の絶対値が大きくない。   Since the carbon-based heating element disclosed in Patent Document 2 or Patent Document 3 includes a conductivity-inhibiting substance for adjusting the specific resistance of the heating element, the adjusted specific resistance value is higher than the original specific resistance of graphite. It gets quite expensive. In addition, this carbon-based heating element does not exhibit remarkable NTC characteristics than graphite, that is, the absolute value of the negative resistance temperature coefficient is not larger than that of graphite.

なお、特許文献4は、抵抗温度係数の絶対値が極めて小さい導電性炭化ケイ素質セラミック材を得ることを目的としており、発熱体などの導電性部材として、NTC特性を示し、かつ、負の抵抗温度係数の絶対値が大きい炭化ケイ素材を得ることについては何ら言及されていない。   Note that Patent Document 4 aims to obtain a conductive silicon carbide ceramic material having an extremely small resistance temperature coefficient, exhibits NTC characteristics as a conductive member such as a heating element, and has a negative resistance. There is no mention of obtaining a silicon carbide material having a large absolute value of the temperature coefficient.

そこで、この発明の目的は、NTC特性を示し、黒鉛よりも負の抵抗温度係数の絶対値が大きく、かつ、黒鉛と同程度の比抵抗を示す抵抗発熱体を提供することである。   Accordingly, an object of the present invention is to provide a resistance heating element that exhibits NTC characteristics, has a larger absolute value of a negative resistance temperature coefficient than graphite, and exhibits a specific resistance comparable to that of graphite.

この発明に従った抵抗発熱体は、炭素と、導電性を示す炭化ケイ素とを含む。   The resistance heating element according to the present invention includes carbon and silicon carbide exhibiting conductivity.

この発明の抵抗発熱体においては、導電性を示す炭化ケイ素が炭素に添加されているので、NTC特性を示し、黒鉛よりも負の抵抗温度係数の絶対値が大きい。また、本発明の抵抗発熱体の比抵抗は、黒鉛本来の比抵抗よりも過度に高くならない。したがって、たとえば、本発明の抵抗発熱体を、紙等の記録材の表面上に形成されたトナー画像を定着させるための加熱装置等に用いると、記録材が通過しない部分(非通紙部)の昇温を著しく抑制することができる。   In the resistance heating element of the present invention, since silicon carbide exhibiting conductivity is added to carbon, NTC characteristics are exhibited, and the absolute value of the negative resistance temperature coefficient is larger than that of graphite. Further, the specific resistance of the resistance heating element of the present invention is not excessively higher than the specific resistance of graphite. Therefore, for example, when the resistance heating element of the present invention is used in a heating device or the like for fixing a toner image formed on the surface of a recording material such as paper, a portion through which the recording material does not pass (non-paper passing portion) Can be significantly suppressed.

この発明の抵抗発熱体に含まれる炭素の一部または全部は黒鉛であることが好ましい。   Part or all of the carbon contained in the resistance heating element of the present invention is preferably graphite.

この発明の抵抗発熱体は、炭化ケイ素を20質量%以上含むことが好ましい。炭化ケイ素を20質量%以上含むことにより、上記の作用効果を達成するために、抵抗発熱体の比抵抗と負の抵抗温度係数の絶対値とを適切な範囲に制御することができる。   The resistance heating element of the present invention preferably contains 20% by mass or more of silicon carbide. By including 20% by mass or more of silicon carbide, the specific resistance of the resistance heating element and the absolute value of the negative resistance temperature coefficient can be controlled within an appropriate range in order to achieve the above-described effects.

以上のようにこの発明によれば、NTC特性を示し、黒鉛よりも負の抵抗温度係数の絶対値が大きく、かつ、黒鉛と同程度の比抵抗を示す抵抗発熱体を得ることができるので、たとえば、本発明の抵抗発熱体を、紙等の記録材の表面上に形成されたトナー画像を定着させるための加熱装置等に用いると、記録材が通過しない部分(非通紙部)の昇温を著しく抑制することができる。   As described above, according to the present invention, it is possible to obtain a resistance heating element that exhibits NTC characteristics, has an absolute value of a negative resistance temperature coefficient larger than that of graphite, and exhibits a specific resistance comparable to that of graphite. For example, when the resistance heating element of the present invention is used in a heating device or the like for fixing a toner image formed on the surface of a recording material such as paper, the portion where the recording material does not pass (non-sheet-passing portion) rises. The temperature can be significantly suppressed.

この発明の一つの実施の形態としての抵抗発熱体は、炭素と、導電性を示す炭化ケイ素の一例として窒素を固溶した炭化ケイ素を含む。   A resistance heating element according to one embodiment of the present invention includes carbon and silicon carbide in which nitrogen is dissolved as an example of silicon carbide exhibiting conductivity.

この発明の一つの実施の形態である抵抗発熱体においては、窒素を固溶することによって導電性を示す炭化ケイ素が炭素に添加されているので、NTC特性を示し、黒鉛よりも負の抵抗温度係数の絶対値が大きい。また、本発明の抵抗発熱体の比抵抗は、黒鉛本来の比抵抗よりも過度に高くならない。したがって、たとえば、本発明の抵抗発熱体を、紙等の記録材の表面上に形成されたトナー画像を定着させるための加熱装置等に用いると、記録材が通過しない部分(非通紙部)の昇温を著しく抑制することができる。   In the resistance heating element according to one embodiment of the present invention, since silicon carbide that exhibits conductivity by dissolving nitrogen in solid solution is added to carbon, it exhibits NTC characteristics and has a resistance temperature more negative than graphite. The absolute value of the coefficient is large. Further, the specific resistance of the resistance heating element of the present invention is not excessively higher than the specific resistance of graphite. Therefore, for example, when the resistance heating element of the present invention is used in a heating device or the like for fixing a toner image formed on the surface of a recording material such as paper, a portion through which the recording material does not pass (non-paper passing portion) Can be significantly suppressed.

この発明の抵抗発熱体は、炭化ケイ素を20質量%以上含むことが好ましく、50質量%以上含むことがより好ましい。炭化ケイ素を20質量%以上含むことにより、上記の作用効果を達成するために、抵抗発熱体の比抵抗を常温25℃において5×10−5〜5×10−1Ωcmの範囲で、25〜125℃の範囲における抵抗温度係数を−1000〜−5000ppm/℃の範囲で制御することができる。 The resistance heating element of the present invention preferably contains 20% by mass or more, more preferably 50% by mass or more of silicon carbide. In order to achieve the above-mentioned effect by including 20% by mass or more of silicon carbide, the specific resistance of the resistance heating element is 25 × 10 −5 to 5 × 10 −1 Ωcm at room temperature of 25 ° C. The temperature coefficient of resistance in the range of 125 ° C. can be controlled in the range of −1000 to −5000 ppm / ° C.

この発明の抵抗発熱体に含まれる炭素は、抵抗発熱体全体の比抵抗を相対的に小さくするために作用する。抵抗発熱体に含まれる炭素は、有機樹脂を炭化処理して得られる非結晶質または結晶質の炭素でもよい。また、抵抗発熱体に含まれる炭素は、黒鉛粉末でもよい。さらに、抵抗発熱体に含まれる炭素は、有機樹脂を炭化処理して得られる非結晶質または結晶質の炭素と、黒鉛粉末とを混在させたものでもよい。   The carbon contained in the resistance heating element of the present invention acts to relatively reduce the specific resistance of the entire resistance heating element. The carbon contained in the resistance heating element may be amorphous or crystalline carbon obtained by carbonizing an organic resin. The carbon contained in the resistance heating element may be graphite powder. Furthermore, the carbon contained in the resistance heating element may be a mixture of amorphous or crystalline carbon obtained by carbonizing an organic resin and graphite powder.

抵抗発熱体に含まれる炭素として、有機樹脂を炭化処理して得られる非結晶質または結晶質の炭素を用いる場合、有機樹脂としては、炭化率の高いものが好ましく、具体的にはポリ塩化ビニル、ポリアクリロニトリル、ポリビニルアルコール、ポリ塩化ビニル−ポリ酢酸ビニル共重合体、ポリアミド等のいずれかの熱可塑性樹脂、フェノール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド等のいずれかの熱硬化性樹脂などが挙げられる。有機樹脂は、粉末の形態で準備されてもよく、ペースト状の形態で準備されてもよい。有機樹脂を炭化処理する温度は700℃以上が好ましい。   When amorphous or crystalline carbon obtained by carbonizing an organic resin is used as the carbon contained in the resistance heating element, the organic resin preferably has a high carbonization rate, specifically, polyvinyl chloride. Thermosetting of any thermoplastic resin such as polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-polyvinyl acetate copolymer, polyamide, phenol resin, furan resin, epoxy resin, unsaturated polyester resin, polyimide, etc. For example, a functional resin. The organic resin may be prepared in a powder form or may be prepared in a paste form. The temperature for carbonizing the organic resin is preferably 700 ° C. or higher.

抵抗発熱体の比抵抗を小さくするためには、抵抗発熱体に含まれる炭素の一部または全部として黒鉛粉末を用いるのが好ましい。黒鉛粉末は、一般的な黒鉛粉末でよいが、その比抵抗をより小さくするためには天然の黒鉛粉末を用いるのが好ましい。   In order to reduce the specific resistance of the resistance heating element, it is preferable to use graphite powder as part or all of the carbon contained in the resistance heating element. The graphite powder may be general graphite powder, but natural graphite powder is preferably used in order to reduce the specific resistance.

抵抗発熱体に含まれる炭素の比抵抗は常温25℃において1×10−5〜1×10−2Ωcm、25〜125℃の範囲における抵抗温度係数は−800〜−3000ppm/℃であるのが好ましい。 The specific resistance of carbon contained in the resistance heating element is 1 × 10 −5 to 1 × 10 −2 Ωcm at a normal temperature of 25 ° C., and the temperature coefficient of resistance in the range of 25 to 125 ° C. is −800 to −3000 ppm / ° C. preferable.

抵抗発熱体に含まれる炭素として黒鉛粉末を用いる場合、抵抗発熱体の原材料を成形体やペースト状物にするための容易さから、黒鉛粉末の粒径は10μm以下が好ましく、5μm以下がより好ましい。   When graphite powder is used as the carbon contained in the resistance heating element, the particle diameter of the graphite powder is preferably 10 μm or less, and more preferably 5 μm or less, from the standpoint of making the resistance heating element raw material into a compact or paste. .

この発明の抵抗発熱体に含まれる導電性の炭化ケイ素は、抵抗発熱体全体の負の抵抗温度係数の絶対値を相対的に大きくするために作用する。導電性の炭化ケイ素は、原材料として粉末の形態で準備される。炭化ケイ素粉末の比抵抗は常温25℃において1×10−3〜10Ωcm、25〜125℃の範囲における抵抗温度係数は−1000〜−6000ppm/℃であるのが好ましい。抵抗発熱体の原材料を成形体やペースト状物にするための容易さから、炭化ケイ素粉末の粒径は10μm以下が好ましく、5μm以下がより好ましい。 The conductive silicon carbide contained in the resistance heating element of the present invention acts to relatively increase the absolute value of the negative resistance temperature coefficient of the entire resistance heating element. Conductive silicon carbide is prepared as a raw material in the form of a powder. The specific resistance of the silicon carbide powder is preferably −1000 to −6000 ppm / ° C. in the range of 1 × 10 −3 to 10 Ωcm and 25 to 125 ° C. at a normal temperature of 25 ° C. The silicon carbide powder preferably has a particle size of 10 μm or less, and more preferably 5 μm or less, from the standpoint of easily forming the resistance heating element as a molded body or paste.

炭化ケイ素粉末の結晶形は、限定されるものではなく、α型またはβ型のいずれでもよい。炭化ケイ素粉末の製造方法としては、アチソン法、シリカ還元法、気相法、液相法などのいずれを採用してもよい。   The crystal form of the silicon carbide powder is not limited, and may be α-type or β-type. As a method for producing the silicon carbide powder, any one of the Atchison method, the silica reduction method, the gas phase method, and the liquid phase method may be employed.

炭化ケイ素の負の抵抗温度係数の絶対値が目標値になるように制御するために、炭化ケイ素の結晶形と、導電性を示すように固溶される元素とが適宜選択される。一般的に炭化ケイ素のような半導体では、固溶される元素により形成されるドナー準位またはアクセプタ準位と、伝導体または価電子帯とのエネルギーギャップが大きいほど、その物質の抵抗温度係数の絶対値が大きくなる。また、エネルギーギャップが大きいほど、その物質の比抵抗も大きくなる。この場合、炭化ケイ素のエネルギーギャップは、炭化ケイ素の結晶形と、炭化ケイ素に固溶される元素とによって決定される。   In order to control the absolute value of the negative temperature coefficient of resistance of silicon carbide to be a target value, the crystal form of silicon carbide and the element that is solid-solved so as to exhibit conductivity are appropriately selected. In general, in a semiconductor such as silicon carbide, the larger the energy gap between a donor level or an acceptor level formed by a solid solution element and a conductor or a valence band, the higher the resistance temperature coefficient of the material. The absolute value increases. In addition, the greater the energy gap, the greater the specific resistance of the material. In this case, the energy gap of silicon carbide is determined by the crystal form of silicon carbide and the elements dissolved in silicon carbide.

炭化ケイ素に固溶される元素は、好ましい負の抵抗温度係数の絶対値と比抵抗の値を考慮して、アルミニウム(Al)、硼素(B)、リン(P)、窒素(N)、ガリウム(Ga)、ベリリウム(Be)、クロム(Cr)、チタン(Ti)、スカンジウム(Sc)、バナジウム(V)などが好ましく、アルミニウム(Al)、硼素(B)、リン(P)、窒素(N)がより好ましい。炭化ケイ素粉末に元素を固溶させる方法としては、固溶される元素を含む雰囲気下で炭化ケイ素粉末を高温処理する方法、固溶させる元素のイオンを炭化ケイ素粉末に照射する方法などがある。   Elements dissolved in silicon carbide are aluminum (Al), boron (B), phosphorus (P), nitrogen (N), gallium in consideration of the absolute value of the negative resistance temperature coefficient and the value of specific resistance. (Ga), beryllium (Be), chromium (Cr), titanium (Ti), scandium (Sc), vanadium (V) and the like are preferable, and aluminum (Al), boron (B), phosphorus (P), nitrogen (N ) Is more preferable. As a method for dissolving an element in the silicon carbide powder, there are a method of treating the silicon carbide powder at a high temperature in an atmosphere containing the element to be dissolved, a method of irradiating the silicon carbide powder with ions of the element to be dissolved.

この発明の抵抗発熱体は、有機樹脂もしくは黒鉛粉末のいずれか、または、有機樹脂および黒鉛粉末の両方と、導電性炭化ケイ素とを混合したものを、固形物の形態で基板に貼り付けてもよく、あるいは、ペースト状の形態で基板上に塗布した後に焼き付けてもよい。   The resistance heating element of the present invention can be obtained by adhering either organic resin or graphite powder or a mixture of both organic resin and graphite powder and conductive silicon carbide to a substrate in the form of a solid material. Alternatively, it may be baked after being applied on the substrate in the form of a paste.

固形物の形態は、具体的には、有機樹脂もしくは黒鉛粉末のいずれか、または、有機樹脂および黒鉛粉末の両方と、導電性炭化ケイ素粉末とをヘンシェルミキサーなどで乾式混合したものに、有機バインダー、溶剤、可塑剤を加えて、ニーダなどで混練し、押し出し成形した後に焼成することによって作製される。この場合、導電性炭化ケイ素粉末を用いる代わりに、通常の炭化ケイ素粉末を用い、押し出し成形した後の焼成工程を窒素雰囲気中で行うことにより、炭化ケイ素に窒素を固溶させて、炭化ケイ素に導電性を付与してもよい。   Specifically, the form of the solid material is either an organic resin or graphite powder, or both organic resin and graphite powder and conductive silicon carbide powder are dry-mixed with a Henschel mixer or the like, an organic binder It is produced by adding a solvent and a plasticizer, kneading with a kneader, etc., extruding, and firing. In this case, instead of using conductive silicon carbide powder, normal silicon carbide powder is used, and the firing step after extrusion molding is performed in a nitrogen atmosphere, so that nitrogen is dissolved in silicon carbide to form silicon carbide. You may provide electroconductivity.

ペースト状の形態で基板上に塗布した後に焼き付ける方法は、具体的には、有機樹脂もしくは黒鉛粉末のいずれか、または、有機樹脂および黒鉛粉末の両方と、導電性炭化ケイ素粉末とをヘンシェルミキサーなどで乾式混合したものに、有機バインダー、溶剤を加えて、三本ロールなどで混錬し、粘度調整することにより作製されたペースト状の形態のものを、スクリーン印刷法、ディッピング法などによって基板上に塗布した後に焼き付ける方法である。この場合、導電性炭化ケイ素粉末を用いる代わりに、通常の炭化ケイ素粉末を用い、ペースト状の形態のものを基板上に塗布した後の焼き付け工程を窒素雰囲気中で行うことにより、炭化ケイ素に窒素を固溶させて、炭化ケイ素に導電性を付与してもよい。   Specifically, the method of baking after coating on the substrate in a paste form is either an organic resin or a graphite powder, or both an organic resin and a graphite powder, and a conductive silicon carbide powder, etc. Add the organic binder and solvent to the dry-mixed mixture, knead with three rolls, etc., and adjust the viscosity of the paste-like form on the substrate by screen printing method, dipping method, etc. It is the method of baking after apply | coating to. In this case, instead of using conductive silicon carbide powder, normal silicon carbide powder is used, and the baking process after applying the paste-like form on the substrate is performed in a nitrogen atmosphere, so that nitrogen is added to silicon carbide. May be dissolved to impart conductivity to silicon carbide.

有機バインダーとしては、エチルセルロース、ポリビニルアルコールなどが挙げられる。有機樹脂もしくは黒鉛粉末のいずれか、または、有機樹脂および黒鉛粉末の両方と、導電性炭化ケイ素粉末とに有機バインダーを添加した後、有機バインダーは、後工程の脱脂工程で除去してもよく、除去しなくてもよい。有機バインダーを除去しない場合には、後工程において非酸化雰囲気中にて高温で熱処理して炭化処理を行うことによって、残部の比抵抗を小さくするのが好ましい。   Examples of the organic binder include ethyl cellulose and polyvinyl alcohol. After adding the organic binder to either the organic resin or the graphite powder, or both the organic resin and the graphite powder, and the conductive silicon carbide powder, the organic binder may be removed in a degreasing step in the subsequent step, It does not have to be removed. When the organic binder is not removed, it is preferable to reduce the specific resistance of the remainder by performing a carbonization treatment by heat treatment at a high temperature in a non-oxidizing atmosphere in a subsequent step.

溶剤としては、水、エタノール、トルエン、メチルエチルケトン、ピロリドンなどが挙げられる。用いられる溶剤の種類は、用いられる有機バインダーや可塑剤の溶解性、原材料の粉末の分散性を考慮して選択される。   Examples of the solvent include water, ethanol, toluene, methyl ethyl ketone, pyrrolidone and the like. The type of solvent used is selected in consideration of the solubility of the organic binder and plasticizer used and the dispersibility of the raw material powder.

可塑剤としては、グリセリン、ポリアルキルグリコール、ポリエチレングリコールなどが挙げられる。   Examples of the plasticizer include glycerin, polyalkyl glycol, and polyethylene glycol.

固形物の形態で抵抗発熱体を作製するための成形方法としては、押し出し成形法の他に、ドクターブレード成形法、射出成形法、プレス成形法などが挙げられる。成形方法として、押し出し成形法やドクターブレード成形法を採用する場合には、原材料粉末に溶剤や可塑剤を添加するのが好ましいが、射出成形法やプレス成形法を採用する場合には、原材料粉末に溶剤や可塑剤を添加しなくてもよい。   Examples of the molding method for producing the resistance heating element in the form of a solid material include a doctor blade molding method, an injection molding method, and a press molding method in addition to the extrusion molding method. When an extrusion molding method or a doctor blade molding method is employed as the molding method, it is preferable to add a solvent or a plasticizer to the raw material powder. However, when an injection molding method or a press molding method is employed, the raw material powder It is not necessary to add a solvent or a plasticizer.

成形体の焼成は、炭素を気化させないように非酸化雰囲気中で行う必要がある。焼成温度は、700〜2300℃の範囲内であるのが好ましい。2300℃を超える焼成温度は、炭化ケイ素が分解するので好ましくない。ただし、加圧した雰囲気中で焼成を行う場合には、焼成温度は2300℃をわずかに超える温度でもよい。なお、固形物の形態の抵抗発熱体は、成形体を焼成しないで乾燥させることによって作製してもよい。得られた固形物の抵抗発熱体の厚みは、0.01〜2mmの範囲内であるのが好ましい。   The molded body must be fired in a non-oxidizing atmosphere so as not to vaporize carbon. The firing temperature is preferably in the range of 700 to 2300 ° C. A firing temperature exceeding 2300 ° C. is not preferable because silicon carbide decomposes. However, when firing is performed in a pressurized atmosphere, the firing temperature may be slightly higher than 2300 ° C. In addition, you may produce the resistance heating element of the form of a solid substance by drying a molded object, without baking. The thickness of the solid resistance heating element obtained is preferably in the range of 0.01 to 2 mm.

この発明の抵抗発熱体の実施例として試料を作製した。   Samples were prepared as examples of the resistance heating element of the present invention.

(実施例1)
まず、雰囲気圧力が1〜10気圧、温度が2000℃の窒素ガス雰囲気中に平均粒径が5μmの炭化ケイ素粉末を1時間保持して、窒素を炭化ケイ素粉末に固溶させることにより、導電性の炭化ケイ素粉末を作製した。一方、平均粒径が5μmの黒鉛粉末を準備した。
Example 1
First, a silicon carbide powder having an average particle diameter of 5 μm is held for 1 hour in a nitrogen gas atmosphere having an atmospheric pressure of 1 to 10 atm and a temperature of 2000 ° C., and the nitrogen is solid-dissolved in the silicon carbide powder. A silicon carbide powder was prepared. On the other hand, graphite powder having an average particle size of 5 μm was prepared.

次に、最終的に得られる抵抗発熱体中の導電性炭化ケイ素の含有量が20〜80質量%になるように、黒鉛粉末と導電性炭化ケイ素粉末をヘンシェルミキサーで乾式混合した。   Next, the graphite powder and the conductive silicon carbide powder were dry-mixed with a Henschel mixer so that the content of the conductive silicon carbide in the finally obtained resistance heating element was 20 to 80% by mass.

その後、得られた混合粉末に、有機バインダーとしてポリビニルアルコール、溶剤として水、可塑剤としてグリセリンを加えて、ニーダで混練した。   Thereafter, polyvinyl alcohol as an organic binder, water as a solvent, and glycerin as a plasticizer were added to the obtained mixed powder and kneaded with a kneader.

押出機を用いて、得られた混練物を押し出し成形することにより、成形体を作製した。   The obtained kneaded material was extruded using an extruder to produce a molded body.

得られた成形体を焼成炉内に置き、温度が1700℃の窒素ガス雰囲気中で2時間保持することにより焼成した。   The obtained molded body was placed in a firing furnace and fired by holding it in a nitrogen gas atmosphere at a temperature of 1700 ° C. for 2 hours.

このようにして作製された本発明の抵抗発熱体の試料について比抵抗と抵抗温度係数を測定したところ、常温25℃における抵抗発熱体の比抵抗は5×10−4〜5×10−2Ωcmの範囲内で、25〜125℃の範囲における抵抗温度係数は−1200〜−4500ppm/℃の範囲内であった。 When the resistivity and the temperature coefficient of resistance of the sample of the resistance heating element of the present invention thus manufactured were measured, the resistivity of the resistance heating element at a room temperature of 25 ° C. was 5 × 10 −4 to 5 × 10 −2 Ωcm. The temperature coefficient of resistance in the range of 25 to 125 ° C was within the range of -1200 to -4500 ppm / ° C.

(実施例2)
まず、雰囲気圧力が1〜10気圧、温度が2000℃の窒素ガス雰囲気中に平均粒径が5μmの炭化ケイ素粉末を1時間保持して、窒素を炭化ケイ素粉末に固溶させることにより、導電性の炭化ケイ素粉末を作製した。
(Example 2)
First, a silicon carbide powder having an average particle diameter of 5 μm is held for 1 hour in a nitrogen gas atmosphere having an atmospheric pressure of 1 to 10 atm and a temperature of 2000 ° C., and the nitrogen is solid-dissolved in the silicon carbide powder. A silicon carbide powder was prepared.

次に、最終的に得られる抵抗発熱体中の導電性炭化ケイ素の含有量が20〜80質量%になるように、導電性炭化ケイ素粉末と、有機樹脂としてペースト状のポリイミド樹脂、および、溶剤としてピロリドンとを三本ロールで混練した。   Next, a conductive silicon carbide powder, a paste-like polyimide resin as an organic resin, and a solvent so that the content of the conductive silicon carbide in the finally obtained resistance heating element is 20 to 80% by mass As a result, pyrrolidone was kneaded with three rolls.

このようにして得られたペーストをスクリーン印刷法で基板上に塗布し、温度が1500℃の窒素ガス雰囲気中で2時間保持することにより焼き付けた。   The paste thus obtained was applied onto a substrate by a screen printing method, and baked by maintaining in a nitrogen gas atmosphere at a temperature of 1500 ° C. for 2 hours.

このようにして作製された本発明の抵抗発熱体の試料について比抵抗と抵抗温度係数を測定したところ、常温25℃における抵抗発熱体の比抵抗は5×10−3〜1×10−1Ωcmの範囲内で、25〜125℃の範囲における抵抗温度係数は−1000〜−4000ppm/℃の範囲内であった。 When the specific resistance and the temperature coefficient of resistance of the sample of the resistance heating element of the present invention thus manufactured were measured, the specific resistance of the resistance heating element at room temperature of 25 ° C. was 5 × 10 −3 to 1 × 10 −1 Ωcm. The temperature coefficient of resistance in the range of 25 to 125 ° C. was within the range of −1000 to −4000 ppm / ° C.

(比較例)
比較のため、市販の炭素シートについて比抵抗と抵抗温度係数を測定したところ、常温25℃における抵抗発熱体の比抵抗は5×10−4〜5×10−3Ωcmの範囲内で、25〜125℃の範囲における抵抗温度係数は−800〜−1200ppm/℃の範囲内であった。
(Comparative example)
For comparison, when a specific resistance and a temperature coefficient of resistance were measured for a commercially available carbon sheet, the specific resistance of the resistance heating element at room temperature of 25 ° C. was within the range of 5 × 10 −4 to 5 × 10 −3 Ωcm, and 25 to 25 ° C. The temperature coefficient of resistance in the range of 125 ° C. was within the range of −800 to −1200 ppm / ° C.

以上の結果から、本発明の実施例1と実施例2の試料は、NTC特性を示し、黒鉛からなる市販の炭素シートよりも負の抵抗温度係数の絶対値が大きく、かつ、市販の炭素シートと同程度の比抵抗を示す抵抗発熱体であることがわかる。   From the above results, the samples of Examples 1 and 2 of the present invention exhibit NTC characteristics, have a larger absolute value of the negative temperature coefficient of resistance than a commercially available carbon sheet made of graphite, and are commercially available carbon sheets. It can be seen that this is a resistance heating element exhibiting a specific resistance of the same level.

今回開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態や実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。
It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments or examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

Claims (3)

炭素と、導電性を示す炭化ケイ素とを含む、抵抗発熱体。   A resistance heating element comprising carbon and silicon carbide exhibiting conductivity. 前記炭素の一部または全部が黒鉛である、請求項1に記載の抵抗発熱体。   The resistance heating element according to claim 1, wherein a part or all of the carbon is graphite. 前記炭化ケイ素を20質量%以上含む、請求項1または請求項2に記載の抵抗発熱体。   The resistance heating element according to claim 1 or 2 containing 20 mass% or more of said silicon carbide.
JP2008321931A 2008-12-18 2008-12-18 Resistance heating element Pending JP2010146832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321931A JP2010146832A (en) 2008-12-18 2008-12-18 Resistance heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321931A JP2010146832A (en) 2008-12-18 2008-12-18 Resistance heating element

Publications (1)

Publication Number Publication Date
JP2010146832A true JP2010146832A (en) 2010-07-01

Family

ID=42567028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321931A Pending JP2010146832A (en) 2008-12-18 2008-12-18 Resistance heating element

Country Status (1)

Country Link
JP (1) JP2010146832A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076390A1 (en) * 2013-11-22 2015-05-28 東洋ドライルーブ株式会社 Carbon heating composition and carbon heating element
JP2017157322A (en) * 2016-02-29 2017-09-07 東芝ライテック株式会社 Heater and fixation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076390A1 (en) * 2013-11-22 2015-05-28 東洋ドライルーブ株式会社 Carbon heating composition and carbon heating element
JP5866073B2 (en) * 2013-11-22 2016-02-17 東洋ドライルーブ株式会社 Carbon exothermic composition and carbon exothermic body
CN105637977A (en) * 2013-11-22 2016-06-01 东洋德来路博株式会社 Carbon heating composition and carbon heating element
JP2017157322A (en) * 2016-02-29 2017-09-07 東芝ライテック株式会社 Heater and fixation device

Similar Documents

Publication Publication Date Title
Martins et al. Interface characterization and thermal degradation of ferrite/poly (vinylidene fluoride) multiferroic nanocomposites
JP4738537B2 (en) Fixing heater and manufacturing method thereof
JPS60131784A (en) Heat roller
EP1749904A3 (en) Planar resistance heating element and manufacturing method thereof
KR20170066282A (en) Carbon coated heat conducting material
KR101777690B1 (en) Heating composition, ceramic heater and fusing belt using the same
KR20090119260A (en) High conductive paste composition
JP2010146832A (en) Resistance heating element
CN105086659A (en) Preparation method of high-thermal-conductivity nano carbon copper foil
KR100977635B1 (en) Paste composition, and resistor film and electronic component comprising the same
JP2008115069A (en) Composition of molybdenum disilicide and the application of the same
KR102117823B1 (en) Toner fused metal plate heater and fusing belt using the same
TW202024210A (en) A conductive heating material with self-limiting and regulating characteristics and a flexible conductive heating element using the conductive heating material
WO2022054720A1 (en) Manufacturing method for heating film, heating film, lens, and in-vehicle camera
Zhu et al. Laser sintering ZnO thick films for gas sensor application
JPS63196672A (en) Carbon paste composition
WO2015178337A1 (en) Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles
KR101459724B1 (en) Composition for heater including SiC particle and electrically conductive component, and heater from the same
JP2006202583A (en) Heating roll and method of manufacturing same
JP6558253B2 (en) Thick film resistor composition and resistor paste
KR940005079B1 (en) Process for producing of ceramic a heating element
JP4623778B2 (en) Method for producing carbon-based heating element
WO2021111870A1 (en) Electrical resistance body, honeycomb structure, and electrically-heated catalyst device
WO2021111869A1 (en) Electrical resistor, honeycomb structure, and electrically heated catalyst device
JP2004022799A (en) Coated conductive powder, its manufacturing method, and polymer ptc device using the same