WO2015076390A1 - Carbon heating composition and carbon heating element - Google Patents

Carbon heating composition and carbon heating element Download PDF

Info

Publication number
WO2015076390A1
WO2015076390A1 PCT/JP2014/080971 JP2014080971W WO2015076390A1 WO 2015076390 A1 WO2015076390 A1 WO 2015076390A1 JP 2014080971 W JP2014080971 W JP 2014080971W WO 2015076390 A1 WO2015076390 A1 WO 2015076390A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
graphite
heating element
binder
composition
Prior art date
Application number
PCT/JP2014/080971
Other languages
French (fr)
Japanese (ja)
Inventor
光彦 飯野
和彦 武藤
正田 浩一
剛文 佐藤
仁 田渕
Original Assignee
東洋ドライルーブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ドライルーブ株式会社 filed Critical 東洋ドライルーブ株式会社
Priority to CN201480055949.XA priority Critical patent/CN105637977A/en
Priority to JP2015527601A priority patent/JP5866073B2/en
Publication of WO2015076390A1 publication Critical patent/WO2015076390A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the present invention relates to a carbon exothermic composition and a carbon exothermic body. More specifically, the present invention relates to a carbon exothermic composition and a carbon exothermic body having excellent exothermic efficiency.
  • the planar heating element having such a configuration is a local heating type that generates heat in the nichrome wire portion, and only the nichrome wire arranged in a meandering manner and the periphery thereof are heated, while the portions other than the nichrome wire are in heat conduction.
  • the entire heating element is difficult to generate heat, and the heat efficiency is poor.
  • the nichrome wire itself since the nichrome wire itself must be heated to generate heat over the entire sheet-shaped heating element, it may cause burns depending on the material of the electrical insulating plate, and in some cases there is a risk of fire. There was a problem.
  • a carbon component having high resistance For example, as a heating element, a carbon heating composition in which a powdery carbon component is mixed and dispersed with a binder made of a predetermined resin material to form a paint, ink, etc., and such a composition is applied to a predetermined substrate, coated, A carbon heating element with a film formed by printing, baking, etc. has good heat generation efficiency, such as being able to generate heat uniformly over the entire surface, and is excellent in adaptability to the shape of the substrate, and is highly adaptable to mass production. It is done.
  • Such carbon heating elements are used, for example, as heating media such as heaters in a wide range of applications, and those having PTC characteristics by using a crystalline resin as a base polymer are also being studied. (For example, see Patent Document 1 and Patent Document 2.)
  • the present invention has been made in view of the above problems, and an object thereof is to provide a carbon exothermic composition and a carbon exothermic body having excellent exothermic efficiency.
  • a carbon exothermic composition according to the present invention is a carbon exothermic composition in which a powdery carbon component is dispersed in a binder, and the carbon component includes graphite and carbon nanotubes,
  • the carbon exothermic composition according to the present invention is characterized by further containing powdered silicon carbide in the above-described present invention.
  • the carbon exothermic composition according to the present invention is characterized in that, in the above-described present invention, the binder is at least one selected from a polyurethane resin, a polyamideimide resin and a fluororubber.
  • the carbon heating element according to the present invention is a film made of the above-described carbon heating composition according to the present invention.
  • the carbon heating element according to the present invention is characterized in that, in the above-described present invention, the coating is formed on a predetermined base material.
  • the carbon heating element according to the present invention is a planar heating element in which the coating film is formed on the planar substrate in the above-described present invention.
  • the carbon exothermic composition according to the present invention contains graphite and carbon nanotubes having a predetermined mixing ratio as carbon components in a predetermined content with respect to the binder, the graphite and carbon nanotubes are balanced in the binder.
  • a carbon heating element that is well dispersed and formed with such a composition has excellent heat generation efficiency, for example, a heating member in a heating device, a temperature control device, a snow melting device, etc., a part of an automobile, a motorcycle, etc., an agricultural machine, It can be widely used for parts attached to various types of vehicles such as cranes, excavators and other machines with wheels, and general machinery and equipment including caterpillar-equipped machines, transportation equipment, transportation vehicles, and mechanical vehicles.
  • FIG. 4 is a schematic diagram illustrating a configuration of a test sample in Test Example 1.
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • Experiment 5 it is the figure which showed the relationship between application time and raise temperature.
  • Experiment 8 it is the figure which showed the relationship between application time and raise temperature.
  • the carbon exothermic composition of the present invention is a carbon exothermic composition in which a powdery carbon component is dispersed in a binder, and the carbon component contains carbon nanotubes and graphite.
  • a component, component ratio (blending ratio), etc. it is a value about solid content about a binder, and the blending ratio of a graphite and a carbon nanotube (CNT) is a mass ratio. is there.
  • the carbon exothermic composition of the present invention contains graphite and carbon nanotubes as a powdery (particulate) carbon component.
  • graphite and carbon nanotubes are used in combination as described above.
  • the graphite when only graphite is used alone, the graphite generally has a relatively large particle shape. Although it is possible to significantly reduce the resistance value of the (carbon heating element), the effect on the heat generation action is often not obtained.
  • carbon nanotubes when only carbon nanotubes are used alone, it may be difficult to obtain a sufficient connection between the carbon nanotubes in the coating composed of the carbon exothermic composition. It may be necessary to add nanotubes.
  • the carbon nanotubes are connected to each other via graphite or a binder while reducing the overall resistance value, and in particular, a parallel circuit is formed. Thus, the generation of heat is promoted, and the heat generation efficiency is improved.
  • Graphite is generally an elemental mineral composed of carbon, and is a layered structure in which a plurality of carbon hexagonal network surfaces (surfaces in which a plurality of six carbon rings are connected to form one layer) are laminated in layers. In the present invention, it includes artificial graphite, graphite-coated diamond, soil graphite, and the like.
  • Graphite is used in the form of powder.
  • Specific examples of the shape of the graphite include, for example, a spherical shape, a granular shape, and a flake shape such as a scale shape or a scale shape, but are not particularly limited thereto.
  • common shapes may be used alone, or different shapes may be used in combination.
  • the heat generation efficiency can also be improved by using artificial graphite as the graphite.
  • the average particle size (average primary particle size) should be about 0.1 to 30 ⁇ m for graphite particles that are relatively uniform in shape, such as spherical shapes. Is preferred. By setting the average particle diameter in such a range, the dispersibility is good with respect to the binder, and heat generation can be performed efficiently.
  • the average particle diameter of graphite is particularly preferably about 1 to 15 ⁇ m.
  • the average particle diameter of the powdered graphite is, for example, a conventionally known means such as an average value obtained by observing graphite with a scanning electron microscope and measuring the particle diameter of any 50 (or 100) graphite particles. What was measured can be adopted.
  • the average particle diameter (average primary particle diameter) when the graphite is in the shape of flakes such as scales or scales is preferably about 0.1 to 30 ⁇ m. By setting the average particle diameter in such a range, the dispersibility is good with respect to the binder, and heat generation can be performed efficiently.
  • the average particle diameter of the flaky graphite is particularly preferably about 1 to 15 ⁇ m.
  • the average particle diameter of the flaky graphite is, for example, an average value (average major axis) obtained by observing the flaky graphite with a scanning electron microscope and measuring the major axis of arbitrary 50 (or 100). Find it from
  • Carbon nanotubes are generally fiber particles made of a polymer in which hexagonal lattices of carbon atoms are arranged in a cage-like sheet, and form a long hollow micro hollow cylinder. Yes.
  • a carbon nanotube has a graphite structure in which carbon atoms are arranged in a hexagon, and a sheet made of carbon is wound into a cylindrical shape and is called a single-walled carbon nanotube.
  • a tube composed of several sheets (for example, about 2 to 5 sheets) is called a multi-walled carbon nanotube.
  • the average length (fiber length) of the powdered carbon nanotube is preferably about 0.1 to 50 ⁇ m, and the average outer diameter (fiber diameter) of the carbon nanotube is about 10 to The thickness is preferably 1000 nm.
  • the average length of the carbon nanotube (fiber length) Is particularly preferably about 1 to 20 ⁇ m, and the average outer diameter (fiber diameter) is particularly preferably about 50 to 300 nm.
  • the average length and average outer diameter of the carbon nanotubes in the present invention are, for example, the results of measuring the length and outer diameter of any 50 (or 100) carbon nanotubes observed with a scanning electron microscope. What is necessary is just to obtain
  • the carbon nanotube may be, for example, a commercially available long carbon nanotube treated at a low temperature by a mechanical treatment such as ball milling so as to be within the above average length (fiber length).
  • the dispersion treatment is not particularly limited, and a conventionally known dispersion treatment or the like can be used. For example, after mixing a carbon nanotube into a system in which a wet additive is added to a predetermined solvent to obtain a mixed system, You may make it use the bead media dispersion
  • a component of the wetting and dispersing agent generally, a polymer copolymer, a block copolymer, an unsaturated polycarboxylic acid polymer, an acrylic copolymer, a phosphate ester copolymer, an alkyl ammonium salt, or the like is used. be able to.
  • the solvent for example, MEK (methyl ethyl ketone), IPA (isopropyl alcohol), NMP (n-methylpyrrolidone), butyl acetate, anone (cyclohexanone) and the like can be used.
  • the total content of graphite and carbon nanotubes as the carbon component is 50 to 300 parts by mass with respect to 100 parts by mass of the binder. If the total content of graphite and carbon nanotubes is less than 50 parts by mass, the exothermic properties may not be exhibited, or a high voltage may be required to exhibit them, while if the content is more than 300 parts by mass, it is obtained. In some cases, the resulting carbon heating element coating loses its smoothness.
  • the total content of graphite and carbon nanotubes is preferably 80 to 200 parts by mass, and particularly preferably 90 to 180 parts by mass with respect to 100 parts by mass of the binder.
  • the graphite as the carbon component is preferably 10 to 200 parts by weight, more preferably 50 to 170 parts by weight, and more preferably 70 to 70 parts by weight with respect to 100 parts by weight of the binder. It is especially preferable to set it as 145 mass parts.
  • the carbon nanotube is preferably 1 to 100 parts by mass, more preferably 5 to 80 parts by mass, and particularly preferably 15 to 45 parts by mass with respect to 100 parts by mass of the binder.
  • Binder (binder component): The binder constituting the carbon exothermic composition according to the present invention serves as a medium in which the above-described carbon component is dispersed (for example, a state where the carbon component is uniformly dispersed in the binder as much as possible).
  • the binder is not particularly limited, and known resins such as solvent-based resins and water-based resins can be used, but it is preferable to use solvent-based resins, for example, polyurethane-based resins, polyolefin-based resins such as polypropylene, Halogenated resins such as polyvinyl chloride or polyvinylidene chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymers, vinyl resins such as ethylene-vinyl acetate copolymers or polyacrylates, polyethylene terephthalate or polybutylene Polyester resins such as terephthalate, polystyrene resins, polyamide resins, polyimide resins, polyether ether ketone resins, nitrocellulose resins, polyether imide resins, polyamide imide resins, fluoro rubber, silicone rubber A seed elastomer (rubber) resin or the like can be used, and a resin obtained by dispersing or emulsifying these
  • the binder may be cross-linked by adding a cross-linking agent to a binder such as various elastomer (rubber) resins including fluororubber or the like or other resins, or by performing electron beam cross-linking.
  • a cross-linking agent such as various elastomer (rubber) resins including fluororubber or the like or other resins, or by performing electron beam cross-linking.
  • polyurethane resin polyamideimide resin, or fluororubber
  • a polyurethane-based resin a polyamide-imide resin, or a fluororubber
  • the heat generation efficiency of a carbon exothermic composition or a film made of such a composition can be improved, and in particular, by using a polyurethane-based resin, A carbon heating element provided with a film with excellent flexibility is provided, and since the affinity with the carbon material is good, the heating efficiency can be improved even in various shapes.
  • a polyamideimide resin it is possible to provide a carbon heating element provided with a film having excellent heat resistance in addition to improvement in heat generation efficiency.
  • fluororubber in addition to improving the heat generation efficiency, it is possible to reduce the weight of the carbon heating element and to impart flexibility to the carbon heating element.
  • One type of polyurethane-based resin, polyamideimide-based resin, or fluororubber may be used alone, or two or more types may be used in combination.
  • the organic solvent to be used can be used without particular limitation as long as it can dissolve or disperse the thermoplastic resin.
  • hydrocarbon solvents such as hexane and pentane
  • aromatic solvents such as xylene, toluene, benzene and ethylbenzene
  • ketone solvents such as MEK (methyl ethyl ketone) and acetone, butanol, propanol, ethanol, methanol, isopropyl alcohol (IPA)
  • alcohol solvents such as phenol, DMF (dimethylformamide), NMP (n-methylpyrrolidone), DMAC (dimethylacetamide), anone (cyclohexanone), butyl acetate, etc.
  • these solvents May be used alone or in combination of two or more.
  • Solvents include, for example, MEK (methyl ethyl ketone), butyl acetate, n-butanol, and IPA (isopropyl alcohol) for polyurethane resins, and DMF (dimethylformamide), NMP (n-methyl) for polyamideimide resins.
  • MEK methyl ethyl ketone
  • IPA isopropyl alcohol
  • DMF dimethylformamide
  • NMP n-methyl
  • the average particle diameter (average primary particle diameter) of silicon carbide is preferably about 0.03 to 10 ⁇ m.
  • the silicon carbide is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the binder. By containing silicon carbide in such a range with respect to the binder, in addition to the effect of the carbon component, the heat generation efficiency can be improved efficiently.
  • the amount of silicon carbide is particularly preferably 10 to 50 parts by mass with respect to 100 parts by mass of the binder.
  • a conductive material graphene, carbon black, carbon fiber (carbon fiber), acetylene black, and other general powder carbon materials other than the above-described carbon components, conductive ceramic fibers, conductive whiskers, metal fibers , Conductive inorganic oxides, conductive polymer fibers, metal powders such as alumina, and the like.
  • additives such as ultraviolet absorbers, heat stabilizers, antioxidants, or various additives such as surface modifiers and viscosity modifiers for improving processability are appropriately used. Can be added.
  • the carbon exothermic composition according to the present invention mixes the above-described carbon component, essential components such as a binder such as a solvent-based resin dissolved in a solvent, silicon carbide added if necessary, and an additive, and the powder is mixed in the binder. It can be easily produced by dispersing the carbon component and the like.
  • the carbon exothermic composition thus obtained becomes a material having excellent exothermic efficiency, and a carbon heating element comprising a film formed by directly forming such a carbon exothermic composition, or a film made of the carbon exothermic composition Can be used as a carbon heating element formed on a predetermined substrate.
  • the shape of the base material is not particularly limited, and can be appropriately determined according to the required product shape in addition to a sheet shape (planar shape).
  • the material for forming the base material is not particularly limited, but in the case of a planar shape, a sheet (film) made of a plastic material having good electrical insulation properties such as polycarbonate, polyester, polyamide, polyphenol, polyetherimide, etc.
  • a predetermined shape such as a three-dimensional shape that is not planar
  • materials other than the plastic material described above can be used as appropriate.
  • a base material made of a conventionally known metal-based material it is preferably used after the primer treatment. If it is a product using cloth, leather, fiber, non-woven fabric, etc., the cloth, leather, fiber, non-woven fabric, etc. can be used as they are or after being appropriately processed as necessary.
  • a carbon heating composition Heat can be easily generated by an operation such as disposing an electrode or the like on the coating film and applying a predetermined voltage.
  • the magnitude of the voltage, the application time, the type of the electrode, etc. are not particularly limited, and can be appropriately determined according to the required specifications, etc.
  • the electrode is formed by using a highly conductive material. It can be easily formed by disposing on the surface or inside of the coating, or coating the coating surface.
  • the carbon heating element according to the present invention can be used as a planar heating element formed on a planar substrate such as a sheet (including a film).
  • the carbon heating element as such a planar heating element is extremely excellent in heat generation efficiency, such as being able to generate heat uniformly over the entire surface, and being shaped to adhere to the substrate stably, etc. It is excellent in adaptability to.
  • the coating by the carbon exothermic composition part may be formed on one side of the substrate or on both sides according to the required specifications.
  • IPA isopropyl alcohol
  • acetone detergent (surfactant), acid, alkali, etc.
  • Means such as shot blasting or chemical etching with alumina powder or the like may be used depending on the material forming the base material or the shape of the base material. For example, when a plastic material or the like is used as the base material, it is preferable to perform cleaning with IPA or the like as the pretreatment.
  • the so-called spray coating, brush coating, roller coating, screen printing, pad printing, gravure printing, An immersion method (dipping) or the like can be used.
  • the conditions for the heat treatment are not particularly limited and can be appropriately determined depending on the heat-resistant temperature of the base material, the type of binder and solvent used, etc., but is generally from room temperature to 300 ° C. for about 1 minute to 1 hour. Is preferred.
  • formation of a film should just be able to volatilize and harden the solvent of a carbon exothermic composition when using solvent system resin, depending on the kind of a binder and a solvent, etc., it is carbon exothermic composition. After applying an object to a predetermined thickness, the solvent may be volatilized by leaving it at room temperature.
  • the carbon heating element is used as a film formed by directly forming the carbon heating composition
  • the carbon heating composition is applied to a predetermined peelable substrate, substrate, etc.
  • a film may be formed by a method similar to the method for forming a film on a substrate, and the film may be peeled off from a substrate or the like to be used as a carbon heating element.
  • the thickness of the carbon heating element coating is not particularly limited, and may be appropriately determined according to the application to be used and the required heating characteristics, weather resistance, durability, etc.
  • a sheet-like carbon heating element formed on a sheet-like (planar) base material is used to maintain the strength while exhibiting the strength, it is preferably about 5 to 1000 ⁇ m, and preferably about 20 to 200 ⁇ m. Particularly preferred.
  • a carbon heating element is formed on a substrate having a predetermined shape that is not planar, it is preferably about 5 to 1000 ⁇ m, and more preferably 20 to 200 ⁇ m.
  • the thickness is preferably 5 to 1000 ⁇ m, and more preferably 20 to 500 ⁇ m.
  • the thickness of the planar substrate in the case where the substrate is a sheet or the like and is a planar carbon heating element is not particularly limited, and may be appropriately determined according to the required specifications and applications. That's fine.
  • Such a carbon heating element according to the present invention includes graphite and carbon nanotubes having a predetermined mixing ratio as carbon components in the carbon heating composition that is a component of the coating film, with a predetermined content with respect to the binder. Therefore, graphite and carbon nanotubes are dispersed in a well-balanced manner in the binder, resulting in excellent heat generation efficiency.
  • Such carbon heating elements are used in various fields that require a heating effect, such as heating devices (floor heating, non-combustion heating devices such as carpets), temperature control devices (heaters, preheating devices, etc.), Heat-generating members in snow-melting devices, parts for automobiles, motorcycles, etc.
  • the numerical values of the binder and the carbon component are the content (the solid content of the binder), and the carbon component content. Is 100 parts by mass with respect to 100 parts by mass of the binder.
  • the binder is 100 parts by mass in total for Table 2, 100 parts by mass of the polyurethane-based resin serving as the binder for Tables 1, 3 and 4, and Table 5
  • the fluororubber serving as the binder is 100 parts by mass
  • the polyamideimide resin serving as the binder is 100 parts by mass.
  • Carbon nanotubes are mixed into a solvent (mixed system of methyl ethyl ketone and isopropyl alcohol) and a wetting additive (alkyl ammonium salt of a polymer copolymer) is added, and titania beads with an outer diameter of ⁇ 1.4 mm are added to this.
  • a solvent mixed system of methyl ethyl ketone and isopropyl alcohol
  • a wetting additive alkyl ammonium salt of a polymer copolymer
  • Carbon component (1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 ⁇ m) (2) Graphite-2 (G-2) (scale graphite, average particle size: 1 ⁇ m) (3) Carbon nanotube (CNT) (average length (fiber length) 6 ⁇ m, average outer diameter (fiber diameter) 100 nm, multilayer)
  • the carbon exothermic composition obtained in Production Example 1 is a base material (polycarbonate sheet, size: width) provided with electrodes made of aluminum tape on both sides of the long side. After spray coating (spray coating) on one side (surface on which electrodes are arranged) of 3 mm (50 mm ⁇ length 100 mm ⁇ 2 mm) 3, 80 ° C. ⁇ 60 minutes using a high-temperature incubator (Temperature Equipment Laboratory)
  • the sheet-like carbon heating element 1 (test sample 1) in which the electrode 4 and the coating 2 of the carbon heating composition were formed on one side of the substrate 3 was formed by baking and drying.
  • the thickness of the coating 2 of the carbon exothermic composition was set to 40 to 50 ⁇ m (the thickness of the coating 2 was about Production Example 4, Production Example 6, Production Example 8, Production Example 11 and Production Example 13). The same is true.)
  • FIG. 1 is a schematic diagram showing a configuration of a test sample 1 in Test Example 1 described later
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 (note that FIG. (The unit of numerical values indicating the width, length, etc. in FIGS. 1 and 2 is mm.)
  • an aluminum sheet having a width of 5 mm, a length of 100 mm, and a thickness of 130 ⁇ m is arranged as the pasting electrode 4 at an interval of 40 mm on both sides of the long side (100 mm side) of the substrate 3.
  • the carbon heating element 1 having the carbon exothermic composition coating 2 formed thereon as described above was used as the test sample 1 (the size of the base material and the electrode was Production Example 4, Production Example 6, Production Example 8, The same applies to Production Example 11 and Production Example 13.)
  • the temperature rise after 1 minute is 9 ° C. or more as a guide for heat generation efficiency, and when the temperature rise is 9 ° C. or more, the heat generation efficiency is excellent.
  • G / CNT mass ratio, the same applies hereinafter
  • G / CNT is a numerical value rounded off to the second decimal place for convenience.
  • Example 3 Production of carbon exothermic composition (2): The following components were blended in the composition shown in Table 2 as binders dissolved in graphite, carbon nanotubes (dispersed), and a solvent, and the carbon components were dispersed in a binder that was mixed and dissolved in the solvent. The carbon exothermic compositions of Example 1a, Example 12 and Example 13 were obtained. Note that Example 1a has the same composition as Example 1. In Example 12, a mixed system of epoxy resin (EP) + phenolic resin (PF) is used as a binder.
  • EP epoxy resin
  • PF phenolic resin
  • Carbon component (1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 ⁇ m) (2) Graphite-2 (G-2) (scale graphite, average particle size: 1 ⁇ m) (3) Carbon nanotube (CNT) (average length (fiber length) 6 ⁇ m, average outer diameter (fiber diameter) 100 nm, multilayer)
  • Production of carbon heating element (2) The carbon exothermic composition obtained in Production Example 3 was disposed on both sides of the long side by using the same method as in Production Example 2 (the substrate and the temperature conditions in firing were described later). A planar carbon heating element (test sample) in which a film of an electrode and a carbon heating composition was formed on one side of a substrate (polycarbonate sheet, size: 100 mm ⁇ 50 mm ⁇ 2 mm) was formed.
  • the binder is a polyurethane-based resin (UR), as in Production Example 2, the base material is a polycarbonate sheet, and the temperature condition in firing (hereinafter sometimes simply referred to as “temperature condition”) is 80 ° C. ⁇ 60 minutes.
  • the base material is a polyphenol sheet
  • the temperature condition is 150 ° C. ⁇ 60 minutes
  • the polyamideimide resin (PAI) is a base material. Was performed at a temperature of 190 ° C. for 60 minutes.
  • Test Example 2 Performance evaluation of carbon heating element (2) (Relationship with binder type): Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 2 together with the composition.
  • the carbon heating elements in which the carbon heating compositions of Example 1a, Example 12 and Example 13 using a polyurethane resin or the like as a binder are coated are excellent in heat generation efficiency.
  • a resin using a polyamide resin or a polyamide-imide resin gave particularly excellent results.
  • Example 5 Production of carbon exothermic composition (3): The following components were blended in the composition shown in Table 3 as binders dissolved in graphite, carbon nanotubes (dispersed), and a solvent, and the carbon components were dispersed in a binder dissolved in the solvent after mixing. The carbon exothermic compositions of Example 1b and Examples 14 to 17 were obtained. In addition, Example 1b is a composition common to Example 1.
  • Carbon component (1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 ⁇ m) (2) Graphite-2 (G-2) (scale graphite, average particle size: 1 ⁇ m) (3) Graphite-3 (G-3) (scaled graphite, average particle size: 10 ⁇ m) (4) Graphite-4 (G-4) (artificial graphite, average particle size: 20 ⁇ m) (5) Carbon nanotube (CNT) (average length (fiber length) 6 ⁇ m, average outer diameter (fiber diameter) 100 nm, multilayer)
  • CNT Carbon nanotube
  • Test Example 3 Performance evaluation of carbon heating element (3) (Relationship with graphite type): Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 3 together with the composition.
  • the carbon heating elements using the carbon exothermic compositions of Example 1b and Examples 14 to 17 using scaly, scaly, and artificial graphite as the graphite have excellent heat generation efficiency.
  • those having only the scale shape (G-1) and those using artificial graphite (G-4) gave particularly excellent results.
  • Graphite-1 (flaky graphite, average particle size: 10 ⁇ m)
  • Carbon nanotube (CNT) (average length (fiber length) 6 ⁇ m, average outer diameter (fiber diameter) 100 nm, multilayer)
  • Silicon carbide (SiC) (average particle size: 700 nm)
  • Production of carbon heating element (4) Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 7 was made of a base material (polycarbonate sheet, size: 100 mm ⁇ 50 mm ⁇ 2 mm) on both sides of the long side. A sheet-like carbon heating element (test sample) in which an electrode and a coating of the carbon heating composition were formed on one side was formed.
  • a base material polycarbonate sheet, size: 100 mm ⁇ 50 mm ⁇ 2 mm
  • Test Example 4 Performance evaluation of carbon heating element (4) (Relationship with silicon carbide addition): Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 4 together with the composition. In Table 1, the measurement results of Example 1 are also shown as blanks.
  • the carbon heating element having the carbon exothermic composition of Example 18 and Example 19 to which silicon carbide was added as a coating had better heat generation efficiency than Example 1 to which no silicon carbide was added. .
  • Example 9 Production of carbon heating element (5)
  • the carbon exothermic composition obtained in Example 1 was made of a polycarbonate sheet and a nylon 6 sheet (both sizes: 100 mm ⁇ 50 mm ⁇ 2 mm), which are substrates having electrodes made of aluminum tape having a thickness of 130 ⁇ m arranged on both sides of the long side. ) And spray-coating by the same method as shown in Production Example 2, and then baking and drying at 80 ° C. for 60 minutes using a high-temperature incubator (Temperature Equipment Laboratory). Then, a planar carbon heating element (test sample) in which a film of an electrode and a carbon heating composition was formed on one side of the substrate was formed. The film thickness of the carbon exothermic composition was adjusted to 30 to 50 ⁇ m.
  • FIG. 3 is a graph showing the relationship between the application time and the rising temperature in Test Example 5.
  • the polycarbonate sheet (indicated as PC in FIG. 3) as the base material had a higher rising temperature and excellent heat generation efficiency than the nylon sheet as the base material.
  • Carbon component (1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 ⁇ m) (2) Carbon nanotube (CNT) (average length (fiber length) 6 ⁇ m, average outer diameter (fiber diameter) 100 nm, multilayer)
  • Fluororubber (F) Fluororubber dissolved in a solvent (a mixed solvent of anone (cyclohexanone) and butyl acetate)
  • Production of carbon heating element (6) Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 10 was provided on one side of a base material (size: 100 mm ⁇ 50 mm ⁇ 2 mm) on both sides of the long side. A planar carbon heating element (test sample) having an electrode and a coating of the carbon heating composition formed thereon was formed. In Production Example 2, the substrate was changed to a polyphenol sheet, and the temperature condition was changed to 150 ° C. ⁇ 60 minutes.
  • Test Example 6 Performance evaluation of carbon heating element (6) (when fluororubber is used as binder): Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 5 together with the composition.
  • the carbon heating element in which the carbon heating composition of Example 20 in the range of .4 was coated was excellent in heating efficiency.
  • Carbon component (1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 ⁇ m) (2) Carbon nanotube (CNT) (average length (fiber length) 6 ⁇ m, average outer diameter (fiber diameter) 100 nm, multilayer)
  • Production of carbon heating element (7) Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 12 was provided on one side of a base material (size: 100 mm ⁇ 50 mm ⁇ 2 mm) having electrodes made of aluminum tape disposed on both sides of the long side. A planar carbon heating element (test sample) having an electrode and a coating of the carbon heating composition formed thereon was formed. In Production Example 2, the substrate was changed to a polyphenol sheet and the temperature condition was changed to 190 ° C. ⁇ 60 minutes.
  • Test Example 7 Performance evaluation of carbon heating element (7) (when polyamideimide resin is used as binder): Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 6 together with the composition.
  • the carbon heating element in which the carbon exothermic composition of Examples 21 to 23 using a polyamideimide resin as a binder was used as a film had excellent heat generation efficiency.
  • Performance evaluation of carbon heating element (8) Two commercially available aluminum bottle containers for beverages (inner diameter: 63 mm, capacity: 300 ml) were prepared, 100 ml (100 g) in one, 200 ml (200 g) in one, and water at room temperature.
  • the carbon heating element 1 (test sample 1) obtained in Production Example 14 was wrapped around the side surface of the container, and the change in water temperature when 12 V was applied to the carbon heating element 1 was measured with respect to time. The results are shown in FIG.
  • FIG. 4 is a diagram showing the relationship between the application time and the rising temperature in Test Example 8. As shown in FIG. 4, an increase in the water temperature was observed corresponding to the application time, and it was confirmed that it could be used for the purpose of heating the target medium (water). Moreover, since it was possible to heat the target medium with an applied voltage of 12V, it was also confirmed that it could be used with a vehicle-mounted voltage (12V).
  • the present invention can be advantageously used as a means for providing a carbon heating element excellent in thermal efficiency, and has high industrial applicability.

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a carbon heating composition and a carbon heating element which exhibit excellent heating efficiency. This carbon heating composition contains a prescribed amount, in relation to a binder, of graphite and carbon nanotubes as carbon components in a prescribed blending ratio; hence, the graphite and the carbon nanotubes are dispersed in the binder in a well-balanced manner. In addition, a carbon heating element obtained by producing a film from said composition is usable, when shaped into a planar carbon heating element (1) or the like forming a film (2) on a prescribed sheet and exhibiting excellent heating efficiency, as a heat-radiating member in a heating device, temperature control device, snow-melting device, or the like, a component or the like of a vehicle, motorcycle, or the like, and as a component or the like to be mounted onto various types of vehicles including wheeled machines, general machinery and equipment such as endless-track-equipped machines, transportation equipment, transportation vehicles, mechanical vehicles, and the like.

Description

炭素発熱組成物及び炭素発熱体Carbon exothermic composition and carbon exothermic body
 本発明は、炭素発熱組成物及び炭素発熱体に関する。さらに詳しくは、発熱効率に優れた炭素発熱組成物及び炭素発熱体に関する。 The present invention relates to a carbon exothermic composition and a carbon exothermic body. More specifically, the present invention relates to a carbon exothermic composition and a carbon exothermic body having excellent exothermic efficiency.
 従来の発熱体としては、例えば、ニクロム線を所定の絶縁基材に取り付け、これを電気絶縁板等で覆って挟み込む構成等が採用されていた。一方、かかる構成の面状発熱体は、ニクロム線部分で発熱する局部加熱タイプであり、蛇行状に配設されたニクロム線及びその周辺のみが高温となる一方、ニクロム線以外の部分は熱伝導等により発熱するに過ぎないため、発熱体の全体を発熱しにくく、熱効率が悪いものであった。加えて、面状の発熱体全体を発熱するためにはニクロム線自体を高温とする必要があるため、電気絶縁板の材質によっては焦げ等が生じたり、場合によっては火災の危険性もあるという問題があった。 As a conventional heating element, for example, a configuration in which a nichrome wire is attached to a predetermined insulating base material, and this is covered with an electric insulating plate or the like and sandwiched is employed. On the other hand, the planar heating element having such a configuration is a local heating type that generates heat in the nichrome wire portion, and only the nichrome wire arranged in a meandering manner and the periphery thereof are heated, while the portions other than the nichrome wire are in heat conduction. However, the entire heating element is difficult to generate heat, and the heat efficiency is poor. In addition, since the nichrome wire itself must be heated to generate heat over the entire sheet-shaped heating element, it may cause burns depending on the material of the electrical insulating plate, and in some cases there is a risk of fire. There was a problem.
 かかる問題を解決するために、高抵抗である炭素成分を利用することが考えられている。例えば、発熱素子として粉末状の炭素成分を所定の樹脂材料等からなるバインダーと混合・分散させて塗料、インキ等とした炭素発熱組成物や、かかる組成物を所定の基材に塗布、コーティング、印刷、焼き付け等により被膜形成した炭素発熱体は、全面にわたって均一に発熱できる等、発熱効率が良好であるとともに、基材の形状への対応性に優れ、大量生産にも適応性が高いと考えられる。そして、このような炭素発熱体は、例えば、広い用途でヒーター等の加熱媒体として用いられているほか、ベースポリマーとして結晶性樹脂を用いることにより、PTC特性を持たせたものも検討されている(例えば、特許文献1及び特許文献2を参照。)。 In order to solve such a problem, it is considered to use a carbon component having high resistance. For example, as a heating element, a carbon heating composition in which a powdery carbon component is mixed and dispersed with a binder made of a predetermined resin material to form a paint, ink, etc., and such a composition is applied to a predetermined substrate, coated, A carbon heating element with a film formed by printing, baking, etc. has good heat generation efficiency, such as being able to generate heat uniformly over the entire surface, and is excellent in adaptability to the shape of the substrate, and is highly adaptable to mass production. It is done. Such carbon heating elements are used, for example, as heating media such as heaters in a wide range of applications, and those having PTC characteristics by using a crystalline resin as a base polymer are also being studied. (For example, see Patent Document 1 and Patent Document 2.)
特開2000-82571号公報JP 2000-82571 A 特開2010-45025号公報JP 2010-45025 A
 一方、現在提供されている炭素発熱体にあっては、炭素成分の種類等によっては、考えているほどの発熱効率を発揮できない場合があり、改善が求められていた。 On the other hand, with the carbon heating elements currently provided, depending on the type of carbon component, etc., the heat generation efficiency as expected may not be exhibited, and improvement has been demanded.
 本発明は、前記の課題に鑑みてなされたものであり、発熱効率に優れた炭素発熱組成物及び炭素発熱体を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a carbon exothermic composition and a carbon exothermic body having excellent exothermic efficiency.
 前記の課題を解決するために、本発明に係る炭素発熱組成物は、粉末状の炭素成分をバインダーに分散させた炭素発熱組成物であって、前記炭素成分が、グラファイトとカーボンナノチューブを含み、前記グラファイトと前記カーボンナノチューブの配合比が、グラファイト/カーボンナノチューブ=2.5~5.4であり、前記バインダー100質量部に対して、前記グラファイト及び前記カーボンナノチューブを合計で50~300質量部含有することを特徴とする。 In order to solve the above problems, a carbon exothermic composition according to the present invention is a carbon exothermic composition in which a powdery carbon component is dispersed in a binder, and the carbon component includes graphite and carbon nanotubes, The compounding ratio of the graphite and the carbon nanotube is graphite / carbon nanotube = 2.5 to 5.4, and the graphite and the carbon nanotube are contained in a total of 50 to 300 parts by mass with respect to 100 parts by mass of the binder. It is characterized by doing.
 本発明に係る炭素発熱組成物は、前記した本発明において、さらに、粉末状の炭化ケイ素を含有することを特徴とする。 The carbon exothermic composition according to the present invention is characterized by further containing powdered silicon carbide in the above-described present invention.
 本発明に係る炭素発熱組成物は、前記した本発明において、前記バインダーがポリウレタン系樹脂、ポリアミドイミド系樹脂及びフッ素ゴムのうち選ばれた少なくとも1種であることを特徴とする。 The carbon exothermic composition according to the present invention is characterized in that, in the above-described present invention, the binder is at least one selected from a polyurethane resin, a polyamideimide resin and a fluororubber.
 本発明に係る炭素発熱体は、前記した本発明に係る炭素発熱組成物からなる被膜であることを特徴とする。 The carbon heating element according to the present invention is a film made of the above-described carbon heating composition according to the present invention.
 本発明に係る炭素発熱体は、前記した本発明において、所定の基材に前記被膜が形成されていることを特徴とする。 The carbon heating element according to the present invention is characterized in that, in the above-described present invention, the coating is formed on a predetermined base material.
 本発明に係る炭素発熱体は、前記した本発明において、面状の前記基材に前記被膜が形成された面状発熱体であることを特徴とする。 The carbon heating element according to the present invention is a planar heating element in which the coating film is formed on the planar substrate in the above-described present invention.
 本発明に係る炭素発熱組成物は、炭素成分として所定の配合比のグラファイトとカーボンナノチューブを、バインダーに対して所定の含有量で含有させたものであるので、グラファイトとカーボンナノチューブがバインダー中にバランスよく分散され、かかる組成物を製膜した炭素発熱体は、発熱効率に優れ、例えば、暖房装置、温調装置、融雪装置等における発熱部材や自動車、二輪自動車等の部品等や、農耕機、クレーン、ショベルカー等の車輪付き機械、キャタピラ付き機械を含む機械機器一般、運搬機器、運搬車両、機械車両等の各種車両等に取り付けられる部品等に広く使用することができる。 Since the carbon exothermic composition according to the present invention contains graphite and carbon nanotubes having a predetermined mixing ratio as carbon components in a predetermined content with respect to the binder, the graphite and carbon nanotubes are balanced in the binder. A carbon heating element that is well dispersed and formed with such a composition has excellent heat generation efficiency, for example, a heating member in a heating device, a temperature control device, a snow melting device, etc., a part of an automobile, a motorcycle, etc., an agricultural machine, It can be widely used for parts attached to various types of vehicles such as cranes, excavators and other machines with wheels, and general machinery and equipment including caterpillar-equipped machines, transportation equipment, transportation vehicles, and mechanical vehicles.
試験例1における試験サンプルの構成を示した概略図である。4 is a schematic diagram illustrating a configuration of a test sample in Test Example 1. FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 試験例5において、印加時間と上昇温度の関係を示した図である。In Experiment 5, it is the figure which showed the relationship between application time and raise temperature. 試験例8において、印加時間と上昇温度の関係を示した図である。In Experiment 8, it is the figure which showed the relationship between application time and raise temperature.
 以下、本発明に係る炭素発熱組成物及び炭素発熱体の構成について説明する。本発明の炭素発熱組成物は、粉末状の炭素成分をバインダーに分散させた炭素発熱組成物であって、かかる炭素成分がカーボンナノチューブとグラファイトを含むものである。なお、本発明にあって、成分の含有量、成分比(配合比)等については、バインダーについては、固形分についての値であり、グラファイトとカーボンナノチューブ(CNT)の配合比は、質量比である。 Hereinafter, the structure of the carbon exothermic composition and the carbon exothermic body according to the present invention will be described. The carbon exothermic composition of the present invention is a carbon exothermic composition in which a powdery carbon component is dispersed in a binder, and the carbon component contains carbon nanotubes and graphite. In addition, in this invention, about content of a component, component ratio (blending ratio), etc., it is a value about solid content about a binder, and the blending ratio of a graphite and a carbon nanotube (CNT) is a mass ratio. is there.
(a)炭素成分:
 本発明の炭素発熱組成物は、粉末状(粒子状)の炭素成分として、グラファイト及びカーボンナノチューブを含有する。
(A) Carbon component:
The carbon exothermic composition of the present invention contains graphite and carbon nanotubes as a powdery (particulate) carbon component.
 本発明では、このようにグラファイトとカーボンナノチューブを組み合わせて使用するが、グラファイトのみを単独で使用した場合には、グラファイトは一般に粒子の形状が比較的大きいこともあり、炭素発熱組成物からなる被膜(炭素発熱体)の抵抗値自体を大幅に下げることは可能であるが、発熱作用への効果は得られないことが多い。一方、カーボンナノチューブのみを単独で使用した場合には、炭素発熱組成物からなる被膜中でカーボンナノチューブ同士の十分なつながりを得ることが難しい場合があり、発熱効果を得るためには、過剰のカーボンナノチューブを添加する必要があると考えられる。本発明にあっては、グラファイトとカーボンナノチューブを組み合わせて使用することで、グラファイトが全体の抵抗値を低下させつつ、カーボンナノチューブがグラファイト同士ないしはバインダーを介して繋がり、なかば並列回路が形成されることで、熱の発生が促されることになり、発熱効率が向上する。 In the present invention, graphite and carbon nanotubes are used in combination as described above. However, when only graphite is used alone, the graphite generally has a relatively large particle shape. Although it is possible to significantly reduce the resistance value of the (carbon heating element), the effect on the heat generation action is often not obtained. On the other hand, when only carbon nanotubes are used alone, it may be difficult to obtain a sufficient connection between the carbon nanotubes in the coating composed of the carbon exothermic composition. It may be necessary to add nanotubes. In the present invention, by using graphite and carbon nanotubes in combination, the carbon nanotubes are connected to each other via graphite or a binder while reducing the overall resistance value, and in particular, a parallel circuit is formed. Thus, the generation of heat is promoted, and the heat generation efficiency is improved.
 グラファイト(黒鉛)とは、一般に、炭素から成る元素鉱物で、炭素六角網面(複数の六炭素環が連なって1つの層を構成している面)が複数個層状に積層されて成る層状構造物質であり、本発明にあっては人造黒鉛、黒鉛被覆ダイヤ、土壌黒鉛等も含む。 Graphite (graphite) is generally an elemental mineral composed of carbon, and is a layered structure in which a plurality of carbon hexagonal network surfaces (surfaces in which a plurality of six carbon rings are connected to form one layer) are laminated in layers. In the present invention, it includes artificial graphite, graphite-coated diamond, soil graphite, and the like.
 グラファイトは粉末状のものを用いるが、具体的な形状としては、例えば、球状、粒状のほか、鱗片状、鱗状等の薄片状等のものを使用することができるが、特にこれらには限定されない。また、共通する形状のものを単独で使用してもよく、異種の形状のものを組み合わせて使用するようにしてもよい。本発明にあっては、形状が鱗片状、鱗状等の薄片状のグラファイトを使用することが好ましく、これらの形状を用いることにより、発熱効率を向上させることができる。 Graphite is used in the form of powder. Specific examples of the shape of the graphite include, for example, a spherical shape, a granular shape, and a flake shape such as a scale shape or a scale shape, but are not particularly limited thereto. . In addition, common shapes may be used alone, or different shapes may be used in combination. In the present invention, it is preferable to use flake-like graphite having a scaly shape, a scaly shape, or the like. By using these shapes, heat generation efficiency can be improved.
 なお、グラファイトとしては人造黒鉛を用いることによっても、発熱効率を向上させることができる。 Note that the heat generation efficiency can also be improved by using artificial graphite as the graphite.
 粉末状のグラファイトのサイズとしては、球状等、グラファイトの粒子の形状が比較的均一に形成されているものについては、平均粒子径(平均一次粒子径)は、概ね0.1~30μmとすることが好ましい。平均粒子径をかかる範囲にすることにより、バインダーに対して分散性もよく、発熱を効率よく実施させることができる。グラファイトの平均粒子径は、概ね1~15μmとすることが特に好ましい。なお、粉末状のグラファイトの平均粒子径は、例えば、グラファイトを走査型電子顕微鏡で観察し、任意の50個(あるいは100個)について粒径を測定した結果の平均値等、従来公知の手段で測定されたものを採用することができる。 As for the size of powdered graphite, the average particle size (average primary particle size) should be about 0.1 to 30 μm for graphite particles that are relatively uniform in shape, such as spherical shapes. Is preferred. By setting the average particle diameter in such a range, the dispersibility is good with respect to the binder, and heat generation can be performed efficiently. The average particle diameter of graphite is particularly preferably about 1 to 15 μm. The average particle diameter of the powdered graphite is, for example, a conventionally known means such as an average value obtained by observing graphite with a scanning electron microscope and measuring the particle diameter of any 50 (or 100) graphite particles. What was measured can be adopted.
 また、グラファイトの形状を鱗片状や鱗状等の薄片状とした場合における平均粒子径(平均一次粒子径)は、概ね0.1~30μmとすることが好ましい。平均粒子径をかかる範囲にすることにより、バインダーに対して分散性もよく、発熱を効率よく実施させることができる。薄片状のグラファイトの平均粒子径は、概ね1~15μmとすることが特に好ましい。なお、薄片状のグラファイトの平均粒子径は、例えば、薄片状のグラファイトを走査型電子顕微鏡で観察し、任意の50個(あるいは100個)について長径を測定した結果の平均値(平均長径)等から求めればよい。 The average particle diameter (average primary particle diameter) when the graphite is in the shape of flakes such as scales or scales is preferably about 0.1 to 30 μm. By setting the average particle diameter in such a range, the dispersibility is good with respect to the binder, and heat generation can be performed efficiently. The average particle diameter of the flaky graphite is particularly preferably about 1 to 15 μm. The average particle diameter of the flaky graphite is, for example, an average value (average major axis) obtained by observing the flaky graphite with a scanning electron microscope and measuring the major axis of arbitrary 50 (or 100). Find it from
 また、カーボンナノチューブ(Carbon Nanotube:CNT)とは、一般に、炭素原子の六方格子がかご型のシート状に配列した高分子からなるファイバー粒子であり、長く伸びた微細な中空の円筒を形成している。一般に、カーボンナノチューブにおいて、炭素原子が6角形に配置された黒鉛構造を有する、炭素からなるシートが巻かれて円筒形になり、1枚のシートで構成されたチューブを単層カーボンナノチューブといい、数枚(例えば2~5枚)程度の複数のシートで構成されたチューブを多層カーボンナノチューブという。 Carbon nanotubes (Carbon Nanotubes: CNTs) are generally fiber particles made of a polymer in which hexagonal lattices of carbon atoms are arranged in a cage-like sheet, and form a long hollow micro hollow cylinder. Yes. In general, a carbon nanotube has a graphite structure in which carbon atoms are arranged in a hexagon, and a sheet made of carbon is wound into a cylindrical shape and is called a single-walled carbon nanotube. A tube composed of several sheets (for example, about 2 to 5 sheets) is called a multi-walled carbon nanotube.
 本発明にあって、粉末状のカーボンナノチューブの平均長さ(繊維長)は、概ね0.1~50μmとすることが好ましく、また、カーボンナノチューブの平均外径(繊維径)は、概ね10~1000nmとすることが好ましい。カーボンナノチューブの平均長さや平均外径をかかる範囲とすることにより、カーボンナノチューブの特徴を効率よく発揮させることが可能となり、発熱効率を向上させることができる、カーボンナノチューブの平均長さ(繊維長)は、概ね1~20μmとすることが特に好ましく、平均外径(繊維径)は、概ね50~300nmとすることが特に好ましい。なお、本発明におけるカーボンナノチューブの平均長さや平均外径とは、例えば、カーボンナノチューブの走査型電子顕微鏡で観察し、任意の50個(あるいは100個)についての長さや外径を測定した結果の平均値等から求めればよい。 In the present invention, the average length (fiber length) of the powdered carbon nanotube is preferably about 0.1 to 50 μm, and the average outer diameter (fiber diameter) of the carbon nanotube is about 10 to The thickness is preferably 1000 nm. By setting the average length and the average outer diameter of the carbon nanotube within such a range, it becomes possible to efficiently exhibit the characteristics of the carbon nanotube and improve the heat generation efficiency. The average length of the carbon nanotube (fiber length) Is particularly preferably about 1 to 20 μm, and the average outer diameter (fiber diameter) is particularly preferably about 50 to 300 nm. The average length and average outer diameter of the carbon nanotubes in the present invention are, for example, the results of measuring the length and outer diameter of any 50 (or 100) carbon nanotubes observed with a scanning electron microscope. What is necessary is just to obtain | require from an average value etc.
 カーボンナノチューブは、例えば、市販されている長いカーボンナノチューブを、ボールミリングなどの機械的処理によって低温で処理して、前記の平均長さ(繊維長)の範囲内になるようにしてもよい。 The carbon nanotube may be, for example, a commercially available long carbon nanotube treated at a low temperature by a mechanical treatment such as ball milling so as to be within the above average length (fiber length).
 また、カーボンナノチューブは、あらかじめ分散処理を施したものを使用することが好ましい。分散処理を施すことにより、被膜化した際の発熱作用を大きく向上させることができる。分散処理としては、特に制限はなく、従来公知の分散処理等を使用することができるが、例えば、所定の溶剤に湿潤添加剤を添加した系にカーボンナノチューブを混合して混合系とした後、チタニアビーズ等のビーズをかかる混合系に投入・攪拌等することにより行われるビーズメディア分散等を用いるようにしてもよい。湿潤分散剤の成分としては、一般に、高分子共重合体、ブロック共重合体、不飽和ポリカルボン酸ポリマー、アクリル系共重合体、リン酸エステル塩の共重合体、アルキルアンモニウム塩等を使用することができる。また、溶剤としては、例えば、MEK(メチルエチルケトン)、IPA(イソプロピルアルコール)、NMP(n-メチルピロリドン)、酢酸ブチル、アノン(シクロヘキサノン)等を使用することができる。 Moreover, it is preferable to use carbon nanotubes that have been previously subjected to a dispersion treatment. By performing the dispersion treatment, it is possible to greatly improve the heat generation effect when the film is formed. The dispersion treatment is not particularly limited, and a conventionally known dispersion treatment or the like can be used. For example, after mixing a carbon nanotube into a system in which a wet additive is added to a predetermined solvent to obtain a mixed system, You may make it use the bead media dispersion | distribution etc. which are carried out by throwing beads, such as a titania bead, in such a mixing system and stirring. As a component of the wetting and dispersing agent, generally, a polymer copolymer, a block copolymer, an unsaturated polycarboxylic acid polymer, an acrylic copolymer, a phosphate ester copolymer, an alkyl ammonium salt, or the like is used. be able to. As the solvent, for example, MEK (methyl ethyl ketone), IPA (isopropyl alcohol), NMP (n-methylpyrrolidone), butyl acetate, anone (cyclohexanone) and the like can be used.
 炭素成分におけるグラファイトとカーボンナノチューブ(CNT)の配合比は、グラファイト/カーボンナノチューブ=2.5~5.4の範囲内とする。配合比をかかる範囲とすることにより、グラファイトとカーボンナノチューブとのバランスもよく、また、カーボンナノチューブが有する電気特性をグラファイトが特異的に面状等の被膜全体に発現されるため、発熱効率を優れたものとすることができる。配合比は、グラファイト/カーボンナノチューブ=2.7~4.5の範囲内とすることがさらに好ましく、2.8~3.7の範囲内とすることが特に好ましい。 The compounding ratio of graphite and carbon nanotube (CNT) in the carbon component is in the range of graphite / carbon nanotube = 2.5 to 5.4. By making the blend ratio within this range, the balance between graphite and carbon nanotubes is good, and because the electrical properties of carbon nanotubes are specifically expressed on the entire surface of the film such as a sheet, heat generation efficiency is excellent. Can be. The blending ratio is more preferably in the range of graphite / carbon nanotubes = 2.7 to 4.5, particularly preferably in the range of 2.8 to 3.7.
 本発明に係る炭素発熱組成物にあって、炭素成分として、グラファイト及びカーボンナノチューブの合計の含有量は、バインダー100質量部に対して、50~300質量部とする。グラファイト及びカーボンナノチューブの合計の含有量が50質量部より少ないと発熱特性を発揮できない、あるいは発揮するために高電圧を必要とする場合があり、一方、含有量が300質量部より多いと、得られる炭素発熱体の被膜が平滑性を失った状態となってしまう場合がある。グラファイト及びカーボンナノチューブの合計の含有量は、バインダー100質量部に対して、80~200質量部とすることが好ましく、90~180質量部とすることが特に好ましい。 In the carbon exothermic composition according to the present invention, the total content of graphite and carbon nanotubes as the carbon component is 50 to 300 parts by mass with respect to 100 parts by mass of the binder. If the total content of graphite and carbon nanotubes is less than 50 parts by mass, the exothermic properties may not be exhibited, or a high voltage may be required to exhibit them, while if the content is more than 300 parts by mass, it is obtained. In some cases, the resulting carbon heating element coating loses its smoothness. The total content of graphite and carbon nanotubes is preferably 80 to 200 parts by mass, and particularly preferably 90 to 180 parts by mass with respect to 100 parts by mass of the binder.
 なお、前記の含有量を維持すべく、炭素成分として、グラファイトは、バインダー100質量部に対して10~200質量部とすることが好ましく、50~170質量部とすることがさらに好ましく、70~145質量部とすることが特に好ましい。同様に、カーボンナノチューブは、バインダー100質量部に対して1~100質量部とすることが好ましく、5~80質量部とすることがさらに好ましく、15~45質量部とすることが特に好ましい。 In order to maintain the above content, the graphite as the carbon component is preferably 10 to 200 parts by weight, more preferably 50 to 170 parts by weight, and more preferably 70 to 70 parts by weight with respect to 100 parts by weight of the binder. It is especially preferable to set it as 145 mass parts. Similarly, the carbon nanotube is preferably 1 to 100 parts by mass, more preferably 5 to 80 parts by mass, and particularly preferably 15 to 45 parts by mass with respect to 100 parts by mass of the binder.
(b)バインダー(バインダー成分):
 本発明に係る炭素発熱組成物を構成するバインダーは、前記した炭素成分を分散(例えば、炭素成分がバインダー中に極力凝集せずに一様に行き渡った状態。)させる媒体となる。バインダーとしては、特に制限はなく、溶剤系樹脂や水系樹脂等の公知の樹脂を用いることができるが、溶剤系樹脂を使用することが好ましく、例えば、ポリウレタン系樹脂、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニルもしくはポリ塩化ビニリデン等のハロゲン化樹脂、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル系共重合体、エチレン- 酢酸ビニル共重合体もしくはポリアクリル酸エステル等のビニル系樹脂、ポリエチレンテレフタレートもしくはポリブチレンテレフタレート等のポリエステル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ニトロセルロース系樹脂、ポリエーテルイミド系樹脂、ポリアミドイミド系樹脂、フッ素ゴム、シリコーンゴムを含む各種エラストマー(ゴム)樹脂等を使用することができ、また、これらをディスパージョン化、あるいはエマルジョン化した樹脂を用いるようにしてもよい。これらの溶剤系樹脂は、その1種を単独で使用してもよく、また、2種類以上を組み合わせて使用してもよい。また、フッ素ゴム等を含む各種エラストマー(ゴム)樹脂等や他の樹脂等のバインダーには架橋剤を添加したり、電子線架橋等を施すことにより、バインダーを架橋させるようにしてもよい。
(B) Binder (binder component):
The binder constituting the carbon exothermic composition according to the present invention serves as a medium in which the above-described carbon component is dispersed (for example, a state where the carbon component is uniformly dispersed in the binder as much as possible). The binder is not particularly limited, and known resins such as solvent-based resins and water-based resins can be used, but it is preferable to use solvent-based resins, for example, polyurethane-based resins, polyolefin-based resins such as polypropylene, Halogenated resins such as polyvinyl chloride or polyvinylidene chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymers, vinyl resins such as ethylene-vinyl acetate copolymers or polyacrylates, polyethylene terephthalate or polybutylene Polyester resins such as terephthalate, polystyrene resins, polyamide resins, polyimide resins, polyether ether ketone resins, nitrocellulose resins, polyether imide resins, polyamide imide resins, fluoro rubber, silicone rubber A seed elastomer (rubber) resin or the like can be used, and a resin obtained by dispersing or emulsifying these may be used. These solvent-based resins may be used alone or in combination of two or more. In addition, the binder may be cross-linked by adding a cross-linking agent to a binder such as various elastomer (rubber) resins including fluororubber or the like or other resins, or by performing electron beam cross-linking.
 本発明にあっては、バインダーとして、ポリウレタン系樹脂、ポリアミドイミド系樹脂、フッ素ゴムを使用することが好ましい。バインダーとしてポリウレタン系樹脂、ポリアミドイミド系樹脂、フッ素ゴムを使用することにより、炭素発熱組成物ないしはかかる組成物からなる被膜の発熱効率を向上させることができ、特にポリウレタン系樹脂を使用することにより、柔軟性に優れた被膜を備えた炭素発熱体を提供し、また炭素材料との親和性が良好なため、様々な形状においても、発熱効率を向上させることができる。また、ポリアミドイミド系樹脂を使用することにより、発熱効率の向上に加えて、耐熱性に優れた被膜を備えた炭素発熱体を提供することができる。さらに、フッ素ゴムを使用することにより、発熱効率の向上に加えて、炭素発熱体の軽量化を図り、また、炭素発熱体に柔軟性を付与することができる。ポリウレタン系樹脂、ポリアミドイミド系樹脂、フッ素ゴムは、その1種を単独で使用してもよく、また、2種類以上を組み合わせて使用してもよい。 In the present invention, it is preferable to use polyurethane resin, polyamideimide resin, or fluororubber as the binder. By using a polyurethane-based resin, a polyamide-imide resin, or a fluororubber as a binder, the heat generation efficiency of a carbon exothermic composition or a film made of such a composition can be improved, and in particular, by using a polyurethane-based resin, A carbon heating element provided with a film with excellent flexibility is provided, and since the affinity with the carbon material is good, the heating efficiency can be improved even in various shapes. Further, by using a polyamideimide resin, it is possible to provide a carbon heating element provided with a film having excellent heat resistance in addition to improvement in heat generation efficiency. Furthermore, by using fluororubber, in addition to improving the heat generation efficiency, it is possible to reduce the weight of the carbon heating element and to impart flexibility to the carbon heating element. One type of polyurethane-based resin, polyamideimide-based resin, or fluororubber may be used alone, or two or more types may be used in combination.
 また、バインダーが溶剤系樹脂であった場合、使用される有機溶剤としては、熱可塑性樹脂を溶解または分散できるものであれば、特に限定なく使用することができる。例えば、ヘキサン、ペンタン等の炭化水素系溶剤、キシレン、トルエン、ベンゼン、エチルべンゼン等の芳香族系溶剤、MEK(メチルエチルケトン)、アセトン等のケトン系溶剤、ブタノール、プロパノール、エタノール、メタノール、イソプロピルアルコール(IPA)、フェノール等のアルコール系溶剤、DMF(ジメチルフォルムアミド)、NMP(n-メチルピロリドン)、DMAC(ジメチルアセトアミド)、アノン(シクロヘキサノン)、酢酸ブチル等を使用することができ、これらの溶剤は、その1種を単独で使用してもよく、また、2種類以上を組み合わせて使用してもよい。 In addition, when the binder is a solvent-based resin, the organic solvent to be used can be used without particular limitation as long as it can dissolve or disperse the thermoplastic resin. For example, hydrocarbon solvents such as hexane and pentane, aromatic solvents such as xylene, toluene, benzene and ethylbenzene, ketone solvents such as MEK (methyl ethyl ketone) and acetone, butanol, propanol, ethanol, methanol, isopropyl alcohol (IPA), alcohol solvents such as phenol, DMF (dimethylformamide), NMP (n-methylpyrrolidone), DMAC (dimethylacetamide), anone (cyclohexanone), butyl acetate, etc. can be used, and these solvents May be used alone or in combination of two or more.
 溶剤としては、例えば、ポリウレタン系樹脂では、MEK(メチルエチルケトン)、酢酸ブチル、n-ブタノール、IPA(イソプロピルアルコール)等を、ポリアミドイミド系樹脂としては、DMF(ジメチルフォルムアミド)、NMP(n-メチルピロリドン)、MEK、IPA、DMAC(ジメチルアセトアミド)等を、ポリアクリル系樹脂、ポリビニル系樹脂としては、トルエン、n-ブタノール、MEK、シリコンアクリル系樹脂としては、キシレン、エチルベンゼン、n-ブタノール、IPA、MEK等を、エポキシ系樹脂、フェノール系樹脂としては、キシレン、エチルベンゼン、MEK、n-ブタノール、フェノール等を、フッ素ゴムとしては、アノン(シクロヘキサノン)、酢酸ブチル等の溶剤の1種を単独で、あるいは2種以上を組み合わせて使用することができる。 Solvents include, for example, MEK (methyl ethyl ketone), butyl acetate, n-butanol, and IPA (isopropyl alcohol) for polyurethane resins, and DMF (dimethylformamide), NMP (n-methyl) for polyamideimide resins. Pyrrolidone), MEK, IPA, DMAC (dimethylacetamide), etc., polyacrylic resin, polyvinyl resin, toluene, n-butanol, MEK, silicon acrylic resin, xylene, ethylbenzene, n-butanol, IPA , MEK, etc., epoxy resin, phenolic resin, xylene, ethylbenzene, MEK, n-butanol, phenol, etc., and fluorine rubber, one kind of solvent such as anone (cyclohexanone), butyl acetate, etc. Anyway It can be used in combination of two or more.
 なお、本発明に係る炭素発熱組成物には、発熱効率を向上させるべく、さらに、粉末状の炭化ケイ素(SiC)を添加することが好ましい。炭化ケイ素の平均粒子径(平均一次粒子径)としては、概ね0.03~10μmとすることが好ましい。 In addition, it is preferable to add powdered silicon carbide (SiC) to the carbon exothermic composition according to the present invention in order to improve the heat generation efficiency. The average particle diameter (average primary particle diameter) of silicon carbide is preferably about 0.03 to 10 μm.
 炭化ケイ素は、バインダー100質量部に対して5~80質量部とすることが好ましい。バインダーに対して炭化ケイ素をかかる範囲で含有させることにより、炭素成分の効果に加えて、効率よく発熱効率を向上させることができる。炭化ケイ素は、バインダー100質量部に対して10~50質量部とすることが特に好ましい。 The silicon carbide is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the binder. By containing silicon carbide in such a range with respect to the binder, in addition to the effect of the carbon component, the heat generation efficiency can be improved efficiently. The amount of silicon carbide is particularly preferably 10 to 50 parts by mass with respect to 100 parts by mass of the binder.
 なお、本発明に係る炭素発熱組成物には、本発明の目的及び効果を妨げない範囲において、前記した以外の各種の成分や添加剤を必要に応じて適宜添加することができる。 It should be noted that various components and additives other than those described above can be appropriately added to the carbon exothermic composition according to the present invention as necessary within the range not hindering the object and effect of the present invention.
 例えば、導電性材料として、グラフェン、カーボンブラック、カーボンファイバー(炭素繊維)、アセチレンブラック等の、前記した炭素成分以外の一般的な粉末炭素系材料や、導電性セラミック繊維、導電性ウィスカ、金属繊維、導電性無機酸化物、導電性ポリマー繊維、アルミナ等の金属粉等が挙げられる。 For example, as a conductive material, graphene, carbon black, carbon fiber (carbon fiber), acetylene black, and other general powder carbon materials other than the above-described carbon components, conductive ceramic fibers, conductive whiskers, metal fibers , Conductive inorganic oxides, conductive polymer fibers, metal powders such as alumina, and the like.
 また、バインダーにあっては、従来公知の添加剤、例えば、紫外線吸収剤、耐熱安定剤、酸化防止剤、あるいは加工性を向上させるための表面調整剤、粘度調整剤等の各種添加剤を適宜添加することができる。 In the binder, conventionally known additives such as ultraviolet absorbers, heat stabilizers, antioxidants, or various additives such as surface modifiers and viscosity modifiers for improving processability are appropriately used. Can be added.
 本発明に係る炭素発熱組成物は、前記した炭素成分、溶剤に溶解させた状態の溶剤系樹脂等のバインダーといった必須成分、必要により添加される炭化ケイ素、及び添加剤を混合し、バインダーに粉末状の炭素成分等を分散させることにより、簡便に製造することができる。 The carbon exothermic composition according to the present invention mixes the above-described carbon component, essential components such as a binder such as a solvent-based resin dissolved in a solvent, silicon carbide added if necessary, and an additive, and the powder is mixed in the binder. It can be easily produced by dispersing the carbon component and the like.
 このようにして得られた炭素発熱組成物は、発熱効率に優れた材料となり、かかる炭素発熱組成物をそのまま製膜して形成された被膜からなる炭素発熱体、あるいは、炭素発熱組成物による被膜を所定の基材に形成した炭素発熱体として使用することができる。 The carbon exothermic composition thus obtained becomes a material having excellent exothermic efficiency, and a carbon heating element comprising a film formed by directly forming such a carbon exothermic composition, or a film made of the carbon exothermic composition Can be used as a carbon heating element formed on a predetermined substrate.
 基材を用いる場合、基材の形状は、特に制限はなく、シート状(面状)のほか、必要とされる製品の形状にあわせて適宜決定することができる。また、基材を形成する材料としても、特に制限はないが、面状とする場合、ポリカーボネート、ポリエステル、ポリアミド、ポリフェノール、ポリエーテルイミド等の電気絶縁性の良好なプラスチック材料からなるシート(フィルムを含む。以下同じ。)を使用することができ、面状でない立体的形状等の所定の形状とする場合も、前記したプラスチック材料のほか、その用途に合わせた材料を適宜使用することができる。また、例えば、従来公知の金属系材料からなる基材を使用する場合には、プライマー処理後に使用することが好ましい。布、皮、繊維、不織布等を用いた製品であれば布、皮、繊維、不織布等をそのまま、あるいは必要に応じて適宜加工して使用することができる。 In the case of using a base material, the shape of the base material is not particularly limited, and can be appropriately determined according to the required product shape in addition to a sheet shape (planar shape). The material for forming the base material is not particularly limited, but in the case of a planar shape, a sheet (film) made of a plastic material having good electrical insulation properties such as polycarbonate, polyester, polyamide, polyphenol, polyetherimide, etc. In the case of a predetermined shape such as a three-dimensional shape that is not planar, materials other than the plastic material described above can be used as appropriate. For example, when using a base material made of a conventionally known metal-based material, it is preferably used after the primer treatment. If it is a product using cloth, leather, fiber, non-woven fabric, etc., the cloth, leather, fiber, non-woven fabric, etc. can be used as they are or after being appropriately processed as necessary.
 なお、炭素発熱体を発熱させるためには、特に制限はなく、従来公知の操作を用いることができるが、例えば、後記する図1及び図2にも試験サンプルとして例示するが、炭素発熱組成物による被膜に電極等を配設して、所定の大きさの電圧を印加する等の操作により、簡便に発熱させることができる。ここで、電圧の大きさ、印加時間、電極の種類等は、特に制限はなく、要求される仕様等に応じて適宜決定することができ、例えば、電極の形成は、導電性の高い材料を被膜表面や内部に配設したり、被膜表面に塗布する等により、簡便に形成することができる。 In addition, in order to heat a carbon heating element, there is no restriction | limiting in particular, Although conventionally well-known operation can be used, For example, although illustrated also in FIG.1 and FIG.2 mentioned later as a test sample, a carbon heating composition Heat can be easily generated by an operation such as disposing an electrode or the like on the coating film and applying a predetermined voltage. Here, the magnitude of the voltage, the application time, the type of the electrode, etc. are not particularly limited, and can be appropriately determined according to the required specifications, etc. For example, the electrode is formed by using a highly conductive material. It can be easily formed by disposing on the surface or inside of the coating, or coating the coating surface.
 本発明に係る炭素発熱体は、シート(フィルムも含む。)等の面状の基材に形成した面状発熱体として用いることができる。かかる面状発熱体としての炭素発熱体は、全面にわたって均一に発熱できる等、発熱効率が非常に優れたものとなるとともに、基材に対して安定して被着される等、基材の形状への対応性に優れるものである。炭素発熱組成部による被膜は、要求される仕様に応じて、基材の片面に形成しても、両面に形成するようにしてもよい。 The carbon heating element according to the present invention can be used as a planar heating element formed on a planar substrate such as a sheet (including a film). The carbon heating element as such a planar heating element is extremely excellent in heat generation efficiency, such as being able to generate heat uniformly over the entire surface, and being shaped to adhere to the substrate stably, etc. It is excellent in adaptability to. The coating by the carbon exothermic composition part may be formed on one side of the substrate or on both sides according to the required specifications.
 基材の表面に炭素発熱組成物の被膜を形成するに際し、基材に対する前処理としては、IPA(イソプロピルアルコール)、アセトン等の有機溶剤、洗剤(界面活性剤)、酸、アルカリ等による洗浄、アルミナパウダー等によるショットブラスト、ケミカルエッチング等の手段を、基材を形成する材料や基材の形状等によって使い分けて実施するようにすればよい。例えば、基材としてプラスチック材料等を用いる場合にあっては、前処理としてIPA等による洗浄を実施することが好ましい。 In forming the carbon exothermic composition film on the surface of the substrate, as a pretreatment for the substrate, washing with an organic solvent such as IPA (isopropyl alcohol) and acetone, detergent (surfactant), acid, alkali, etc. Means such as shot blasting or chemical etching with alumina powder or the like may be used depending on the material forming the base material or the shape of the base material. For example, when a plastic material or the like is used as the base material, it is preferable to perform cleaning with IPA or the like as the pretreatment.
 基材に炭素発熱組成物を塗布し、被膜とする際の基材に対する炭素発熱組成物の塗布方法としては、いわゆるスプレー塗布のほか、刷毛塗り、ローラー塗り、スクリーン印刷、パッド印刷、グラビア印刷、浸漬法(ディッピング)等を用いることができる。 As a method of applying the carbon exothermic composition to the base material by applying the carbon exothermic composition to the base material, the so-called spray coating, brush coating, roller coating, screen printing, pad printing, gravure printing, An immersion method (dipping) or the like can be used.
 なお、被膜の形成には、必要により加熱処理を施すようにしてもよい。加熱処理の条件は、特に制限はなく、基材の耐熱温度、使用されるバインダーや溶剤の種類等によって適宜決定することができるが、概ね室温~300℃で1分~1時間程度とすることが好ましい。なお、被膜の形成(製膜)は、溶剤系樹脂を用いた場合は炭素発熱組成物の溶剤を揮発させて硬化することができればよいことから、バインダー及び溶剤の種類等によっては、炭素発熱組成物を所定の厚さに塗布等した後、室温で放置することによって溶剤を揮発させるようにしてもよい。 In addition, you may make it heat-process for the formation of a film if needed. The conditions for the heat treatment are not particularly limited and can be appropriately determined depending on the heat-resistant temperature of the base material, the type of binder and solvent used, etc., but is generally from room temperature to 300 ° C. for about 1 minute to 1 hour. Is preferred. In addition, since formation of a film (film formation) should just be able to volatilize and harden the solvent of a carbon exothermic composition when using solvent system resin, depending on the kind of a binder and a solvent, etc., it is carbon exothermic composition. After applying an object to a predetermined thickness, the solvent may be volatilized by leaving it at room temperature.
 なお、炭素発熱体として、炭素発熱組成物をそのまま製膜して形成された被膜として用いる場合は、例えば、剥離可能な所定の基板、基体等に炭素発熱組成物を塗布等した後、前記した基材に被膜を形成する方法と同様な方法等で被膜とし、基板等から被膜を剥離して炭素発熱体として用いるようにすればよい。 When the carbon heating element is used as a film formed by directly forming the carbon heating composition, for example, the carbon heating composition is applied to a predetermined peelable substrate, substrate, etc. A film may be formed by a method similar to the method for forming a film on a substrate, and the film may be peeled off from a substrate or the like to be used as a carbon heating element.
 炭素発熱体の被膜の厚さは、特に制限はなく、適用される用途や必要とされる発熱特性や耐候性、耐久性等に応じて適宜決定すればよいが、発熱体としての発熱特性を発揮しつつ、強度を維持すべく、シート状(面状)の基材に形成した面状の炭素発熱体とする場合は、概ね5~1000μmとすることが好ましく、20~200μmとすることが特に好ましい。一方、面状でない所定の形状の基材に形成して炭素発熱体とする場合には、概ね5~1000μmとすることが好ましく、20~200μmとすることが特に好ましい。さらに、炭素発熱体として、炭素発熱組成物をそのまま製膜して形成された被膜として用いる場合は、5~1000μmとすることが好ましく、20~500μmとすることが特に好ましい。なお、基材をシート等の面状として、面状の炭素発熱体とする場合における面状の基材の厚さは、特に制限はなく、要求される仕様や用途等に応じて適宜決定すればよい。 The thickness of the carbon heating element coating is not particularly limited, and may be appropriately determined according to the application to be used and the required heating characteristics, weather resistance, durability, etc. When a sheet-like carbon heating element formed on a sheet-like (planar) base material is used to maintain the strength while exhibiting the strength, it is preferably about 5 to 1000 μm, and preferably about 20 to 200 μm. Particularly preferred. On the other hand, when a carbon heating element is formed on a substrate having a predetermined shape that is not planar, it is preferably about 5 to 1000 μm, and more preferably 20 to 200 μm. Further, when the carbon heating composition is used as a film formed by directly forming a carbon heating composition, the thickness is preferably 5 to 1000 μm, and more preferably 20 to 500 μm. In addition, the thickness of the planar substrate in the case where the substrate is a sheet or the like and is a planar carbon heating element is not particularly limited, and may be appropriately determined according to the required specifications and applications. That's fine.
 このような本発明に係る炭素発熱体は、被膜の構成成分である炭素発熱組成物における炭素成分として所定の配合比のグラファイトとカーボンナノチューブを、バインダーに対して所定の含有量で含有させたものであるので、グラファイトとカーボンナノチューブがバインダー中にバランスよく分散されて、発熱効率に優れるものとなる。そして、かかる炭素発熱体は、発熱効果を必要とする種々の分野で、例えば、暖房装置(床暖房、ヒーター、カーペット等の非燃焼系暖房装置)、温調装置(ヒーター、予熱装置等)、融雪装置等における発熱部材や、自動車、二輪自動車等の部品(例えば、シートヒーター、予熱装置、内装パネルのヒーター等。)等や、農耕機、クレーン、ショベルカー等の車輪付き機械、キャタピラ付き機械を含む機械機器一般、運搬機器、運搬車両、機械車両等の各種車両等に取り付けられる部品等として使用することができる等、従来の発熱体が適用されていた分野、用途について、広く使用することができる。 Such a carbon heating element according to the present invention includes graphite and carbon nanotubes having a predetermined mixing ratio as carbon components in the carbon heating composition that is a component of the coating film, with a predetermined content with respect to the binder. Therefore, graphite and carbon nanotubes are dispersed in a well-balanced manner in the binder, resulting in excellent heat generation efficiency. Such carbon heating elements are used in various fields that require a heating effect, such as heating devices (floor heating, non-combustion heating devices such as carpets), temperature control devices (heaters, preheating devices, etc.), Heat-generating members in snow-melting devices, parts for automobiles, motorcycles, etc. (for example, seat heaters, preheating devices, interior panel heaters, etc.), machines with wheels, such as agricultural machines, cranes, excavators, etc. Can be used widely in fields and applications where conventional heating elements have been applied, such as general equipment including machinery, transportation equipment, transportation vehicles, mechanical vehicles, etc. Can do.
 以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited thereto.
 [製造例1]
 炭素発熱組成物の製造(1):
 粉末状の炭素成分(以下、単に「炭素成分」とする場合もある。)であるグラファイト、カーボンナノチューブ(分散処理済)、溶剤に溶解させたバインダーとして下記の材料を表1に示した組成で配合、混合して溶剤に溶解させたバインダーに炭素成分を分散させた、実施例1ないし実施例11、比較例1ないし比較例6の炭素発熱組成物とした。なお、カーボンナノチューブについては、下記の方法で分散処理したものを用いた。また、表1及び後記する表2ないし表6において、バインダー及び炭素成分(表4は炭化ケイ素も)の数値は、含有量(バインダーについては固形分の含有量)であり、炭素成分の含有量は、バインダー100質量部に対する質量部であり、バインダーは、表2については合計で100質量部、表1、表3及び表4についてはバインダーとなるポリウレタン系樹脂が100質量部、表5についてはバインダーとなるフッ素ゴムが100質量部、表6についてはバインダーとなるポリアミドイミド系樹脂が100質量部、となるようにしている。
[Production Example 1]
Production of carbon exothermic composition (1):
Graphite, carbon nanotubes (dispersed), which are powdery carbon components (hereinafter sometimes simply referred to as “carbon components”), and the following materials as binders dissolved in a solvent have the compositions shown in Table 1. It was set as the carbon exothermic composition of Example 1 thru | or Example 11 and Comparative Example 1 thru | or Comparative Example 6 which disperse | distributed the carbon component in the binder mix | blended and mixed and dissolved in the solvent. In addition, about the carbon nanotube, what was disperse-processed with the following method was used. In Table 1 and Tables 2 to 6 to be described later, the numerical values of the binder and the carbon component (Table 4 also includes silicon carbide) are the content (the solid content of the binder), and the carbon component content. Is 100 parts by mass with respect to 100 parts by mass of the binder. The binder is 100 parts by mass in total for Table 2, 100 parts by mass of the polyurethane-based resin serving as the binder for Tables 1, 3 and 4, and Table 5 The fluororubber serving as the binder is 100 parts by mass, and in Table 6, the polyamideimide resin serving as the binder is 100 parts by mass.
 (カーボンナノチューブの分散処理の方法)
 溶剤(メチルエチルケトン、イソプロピルアルコールの混合系)に湿潤添加剤(高分子共重合体のアルキルアンモニウム塩)を添加した系にカーボンナノチューブを混合し、これに外径がφ1.4mmのチタニアビーズを投入・攪拌して、ビーズメディア分散により分散処理を行った。分散処理後、チタニアビーズを除去して、分散処理済のカーボンナノチューブとして用いた(カーボンナノチューブの分散処理については、以下の製造例について同じ。)。
(Method of dispersion treatment of carbon nanotube)
Carbon nanotubes are mixed into a solvent (mixed system of methyl ethyl ketone and isopropyl alcohol) and a wetting additive (alkyl ammonium salt of a polymer copolymer) is added, and titania beads with an outer diameter of φ1.4 mm are added to this. The mixture was stirred and dispersed by bead media dispersion. After the dispersion treatment, the titania beads were removed and used as a dispersion-treated carbon nanotube (the carbon nanotube dispersion treatment is the same for the following production examples).
 (炭素成分)
(1)グラファイト-1(G-1)(鱗片状黒鉛、平均粒子径:10μm)
(2)グラファイト-2(G-2)(鱗状黒鉛、平均粒子径:1μm)
(3)カーボンナノチューブ(CNT)(平均長さ(繊維長)6μm、平均外径(繊維径)100nm、多層)
(Carbon component)
(1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 μm)
(2) Graphite-2 (G-2) (scale graphite, average particle size: 1 μm)
(3) Carbon nanotube (CNT) (average length (fiber length) 6 μm, average outer diameter (fiber diameter) 100 nm, multilayer)
 (バインダー(溶剤系樹脂))
(1)ポリウレタン系樹脂(UR)(ポリウレタン系樹脂を溶剤(MEK(メチルエチルケトン)、酢酸ブチル、n-ブタノール、IPA(イソプロピルアルコール)の混合溶剤)に溶解させたもの。)
(Binder (solvent resin))
(1) Polyurethane resin (UR) (polyurethane resin dissolved in a solvent (mixed solvent of MEK (methyl ethyl ketone), butyl acetate, n-butanol, IPA (isopropyl alcohol)))
 [製造例2]
 炭素発熱体の製造(1):
 製造例1で得られた炭素発熱組成物を、図1及び図2(ともに後記する。)に示すようにアルミテープからなる電極を長辺の両側に配した基材(ポリカーボネートシート、サイズ:幅50mm×長さ100mm×2mm)3の片面(電極を配した面)に対してスプレーコーティング(スプレー塗布)した後、高温恒温器((株)温度設備研究所)を用いて80℃×60分で焼成、乾燥することにより製膜して、基材3の片面に電極4及び炭素発熱組成物の被膜2を形成した面状の炭素発熱体1(試験サンプル1)を形成した。なお、炭素発熱組成物の被膜2の厚さは、40~50μmとなるようにした(被膜2の厚さは、製造例4、製造例6、製造例8、製造例11及び製造例13についても同様。)。
[Production Example 2]
Production of carbon heating element (1):
As shown in FIG. 1 and FIG. 2 (both will be described later), the carbon exothermic composition obtained in Production Example 1 is a base material (polycarbonate sheet, size: width) provided with electrodes made of aluminum tape on both sides of the long side. After spray coating (spray coating) on one side (surface on which electrodes are arranged) of 3 mm (50 mm × length 100 mm × 2 mm) 3, 80 ° C. × 60 minutes using a high-temperature incubator (Temperature Equipment Laboratory) The sheet-like carbon heating element 1 (test sample 1) in which the electrode 4 and the coating 2 of the carbon heating composition were formed on one side of the substrate 3 was formed by baking and drying. The thickness of the coating 2 of the carbon exothermic composition was set to 40 to 50 μm (the thickness of the coating 2 was about Production Example 4, Production Example 6, Production Example 8, Production Example 11 and Production Example 13). The same is true.)
 図1は、後記する試験例1における試験サンプル1の構成を示した概略図であり、図2は図1のA-A断面図である(なお、図2には、電圧の印加における配線等も点線で示している。図1及び図2中の幅や長さ等を示す数値の単位はmm。)。図1及び図2に示すように、基材3の長辺(100mmの辺)の両側に対して40mmの間隔で幅5mm×長さ100mm×厚さ130μmのアルミシートを貼り付け電極4として配した状態で、前記のようにして炭素発熱組成物の被膜2を形成した炭素発熱体1を試験サンプル1とした(基材及び電極のサイズは、製造例4、製造例6、製造例8、製造例11及び製造例13についても同様。)。 FIG. 1 is a schematic diagram showing a configuration of a test sample 1 in Test Example 1 described later, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 (note that FIG. (The unit of numerical values indicating the width, length, etc. in FIGS. 1 and 2 is mm.) As shown in FIG. 1 and FIG. 2, an aluminum sheet having a width of 5 mm, a length of 100 mm, and a thickness of 130 μm is arranged as the pasting electrode 4 at an interval of 40 mm on both sides of the long side (100 mm side) of the substrate 3. In this state, the carbon heating element 1 having the carbon exothermic composition coating 2 formed thereon as described above was used as the test sample 1 (the size of the base material and the electrode was Production Example 4, Production Example 6, Production Example 8, The same applies to Production Example 11 and Production Example 13.)
 なお、スプレーコーティングは、基材に対して下記(1)~(8)を1サイクルとして、2サイクル繰り返して、炭素発熱組成物を塗布するようにした(8回塗布)。
(1)基材を回転可能な架台に、電極を配した面を上にして平置きし、かかる面に対してスプレーコーティングする。
(2)基材を90°回転する。
(3)(1)と同様にスプレーコーティングする。
(4)基材をさらに90°回転((1)からは180°回転した状態)する。
(5)(1)と同様にスプレーコーティングする。
(6)基材をさらに90°回転((1)からは270°回転した状態)する。
(7)(1)と同様にスプレーコーティングする。
(8)基材をさらに90°回転((1)からは360°回転した状態)する。
In the spray coating, the following (1) to (8) were applied to the substrate as one cycle, and the carbon exothermic composition was applied twice (8 times application).
(1) A base is placed flat on a rotatable base with the surface on which electrodes are arranged facing upward, and spray coating is performed on the surface.
(2) The substrate is rotated by 90 °.
(3) Spray coating as in (1).
(4) The base material is further rotated by 90 ° (from (1) in a state rotated by 180 °).
(5) Spray coating as in (1).
(6) The substrate is further rotated by 90 ° (from (1) to a state rotated by 270 °).
(7) Spray coating as in (1).
(8) The base material is further rotated by 90 ° (from (1) by 360 °).
 [試験例1]
 炭素発熱体の性能評価(1)(グラファイトとカーボンナノチューブの配合比、及び炭素成分とバインダーの配合比の関係):
 前記のようにして作成した試験サンプルに対して、印加電圧を12Vとして、電圧を印加した場合における1分後の上昇温度を確認して、比較・評価した。結果を組成とあわせて表1に示す。
[Test Example 1]
Performance Evaluation of Carbon Heating Element (1) (Relationship between Graphite and Carbon Nanotube Mixing Ratio and Carbon Component and Binder Mixing Ratio):
With respect to the test sample prepared as described above, the applied voltage was set to 12 V, and the temperature rise after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 1 together with the composition.
 なお、評価の基準として、1分後の上昇温度が9℃以上となることを発熱効率の目安とし、かかる上昇温度が9℃以上であった場合には、発熱効率が優れたものであると判定した(以下、試験例2ないし試験例4、試験例6及び試験例7について同じ。)。また、表1等のグラファイトとカーボンナノチューブの配合比であるG/CNT(質量比を示す。以下同じ。)については、便宜上、小数点第3位を四捨五入した数値を示している。 In addition, as a standard of evaluation, the temperature rise after 1 minute is 9 ° C. or more as a guide for heat generation efficiency, and when the temperature rise is 9 ° C. or more, the heat generation efficiency is excellent. (The same applies to Test Examples 2 to 4, Test Example 6, and Test Example 7). In addition, G / CNT (mass ratio, the same applies hereinafter), which is a blending ratio of graphite and carbon nanotube in Table 1, etc., is a numerical value rounded off to the second decimal place for convenience.
 (組成及び評価結果)
Figure JPOXMLDOC01-appb-T000001
(Composition and evaluation results)
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、炭素成分をバインダー100質量部に対して50~300質量部の範囲内として、グラファイトとカーボンナノチューブとの配合比をグラファイト/カーボンナノチューブ=2.5~5.4の範囲内とした実施例1ないし実施例11の炭素発熱組成物を被膜とした炭素発熱体は、発熱効率に優れるものであった。 As shown in Table 1, the carbon component is in the range of 50 to 300 parts by mass with respect to 100 parts by mass of the binder, and the compounding ratio of graphite and carbon nanotubes is in the range of graphite / carbon nanotubes = 2.5 to 5.4. The carbon heating element in which the carbon exothermic composition of Example 1 to Example 11 was used as a film had excellent heat generation efficiency.
 [製造例3]
 炭素発熱組成物の製造(2):
 炭素成分であるグラファイト、カーボンナノチューブ(分散処理済)、溶剤に溶解させたバインダーとして下記の材料を表2に示した組成で配合、混合して溶剤に溶解させたバインダーに炭素成分を分散させた、実施例1a、実施例12及び実施例13の炭素発熱組成物とした。なお、実施例1aは、実施例1と共通する組成である。また、実施例12は、バインダーとして、エポキシ系樹脂(EP)+フェノール系樹脂(PF)の混合系を使用している。
[Production Example 3]
Production of carbon exothermic composition (2):
The following components were blended in the composition shown in Table 2 as binders dissolved in graphite, carbon nanotubes (dispersed), and a solvent, and the carbon components were dispersed in a binder that was mixed and dissolved in the solvent. The carbon exothermic compositions of Example 1a, Example 12 and Example 13 were obtained. Note that Example 1a has the same composition as Example 1. In Example 12, a mixed system of epoxy resin (EP) + phenolic resin (PF) is used as a binder.
 (炭素成分)
(1)グラファイト-1(G-1)(鱗片状黒鉛、平均粒子径:10μm)
(2)グラファイト-2(G-2)(鱗状黒鉛、平均粒子径:1μm)
(3)カーボンナノチューブ(CNT)(平均長さ(繊維長)6μm、平均外径(繊維径)100nm、多層)
(Carbon component)
(1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 μm)
(2) Graphite-2 (G-2) (scale graphite, average particle size: 1 μm)
(3) Carbon nanotube (CNT) (average length (fiber length) 6 μm, average outer diameter (fiber diameter) 100 nm, multilayer)
 (バインダー(溶剤系樹脂))
(1)ポリウレタン系樹脂(UR)(ポリウレタン系樹脂を溶剤(MEK(メチルエチルケトン)、酢酸ブチル、n-ブタノール、IPA(イソプロピルアルコール)の混合溶剤)に溶解させたもの。)
(2)エポキシ系樹脂(EP)+フェノール系樹脂(PF)の混合系(エポキシ系樹脂+フェノール系樹脂を溶剤(キシレン、エチルベンゼン、MEK、n-ブタノール、フェノールの混合溶剤)に溶解させたもの。)
(3)ポリアミドイミド系樹脂(PAI)(ポリアミドイミド系樹脂を溶剤(DMF(ジメチルフォルムアミド)、NMP(n-メチルピロリドン)、MEK、IPAの混合溶剤)に溶解させたもの。)
(Binder (solvent resin))
(1) Polyurethane resin (UR) (polyurethane resin dissolved in a solvent (mixed solvent of MEK (methyl ethyl ketone), butyl acetate, n-butanol, IPA (isopropyl alcohol)))
(2) Mixed system of epoxy resin (EP) + phenolic resin (PF) (epoxy resin + phenolic resin dissolved in solvent (mixed solvent of xylene, ethylbenzene, MEK, n-butanol, phenol) .)
(3) Polyamideimide resin (PAI) (polyamideimide resin dissolved in solvent (mixed solvent of DMF (dimethylformamide), NMP (n-methylpyrrolidone), MEK, IPA))
 [製造例4]
 炭素発熱体の製造(2):
 製造例3で得られた炭素発熱組成物を、製造例2と同様な方法(基材と焼成における温度条件については後記。)を用いて、アルミテープからなる電極を長辺の両側に配した基材(ポリカーボネートシート、サイズ:100mm×50mm×2mm)の片面に電極及び炭素発熱組成物の被膜を形成した面状の炭素発熱体(試験サンプル)を形成した。なお、バインダーがポリウレタン系樹脂(UR)については、製造例2と同様、基材をポリカーボネートシート、焼成における温度条件(以下、単に「温度条件」とする場合がある。)を80℃×60分としたが、エポキシ系樹脂(EP)+フェノール系樹脂(PF)の混合系については、基材をポリフェノールシート、温度条件を150℃×60分、ポリアミドイミド系樹脂(PAI)については、基材をポリフェノールシート、温度条件を190℃×60分、でそれぞれ行った。
[Production Example 4]
Production of carbon heating element (2):
The carbon exothermic composition obtained in Production Example 3 was disposed on both sides of the long side by using the same method as in Production Example 2 (the substrate and the temperature conditions in firing were described later). A planar carbon heating element (test sample) in which a film of an electrode and a carbon heating composition was formed on one side of a substrate (polycarbonate sheet, size: 100 mm × 50 mm × 2 mm) was formed. When the binder is a polyurethane-based resin (UR), as in Production Example 2, the base material is a polycarbonate sheet, and the temperature condition in firing (hereinafter sometimes simply referred to as “temperature condition”) is 80 ° C. × 60 minutes. However, for a mixed system of epoxy resin (EP) + phenolic resin (PF), the base material is a polyphenol sheet, the temperature condition is 150 ° C. × 60 minutes, and the polyamideimide resin (PAI) is a base material. Was performed at a temperature of 190 ° C. for 60 minutes.
 [試験例2]
 炭素発熱体の性能評価(2)(バインダーの種類との関係):
 試験例1と同様な方法を用いて、試験サンプルに対して、印加電圧を12Vとして、電圧を印加した場合における1分後の上昇温度を確認して、比較・評価した。結果を組成とあわせて表2に示す。
[Test Example 2]
Performance evaluation of carbon heating element (2) (Relationship with binder type):
Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 2 together with the composition.
 (組成及び評価結果)
Figure JPOXMLDOC01-appb-T000002
(Composition and evaluation results)
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、バインダーとしてポリウレタン系樹脂等を用いた実施例1a、実施例12及び実施例13の炭素発熱組成物を被膜とした炭素発熱体は、発熱効率に優れるものであり、ポリウレタン系樹脂やポリアミドイミド系樹脂を用いたものが特に優れた結果となった。 As shown in Table 2, the carbon heating elements in which the carbon heating compositions of Example 1a, Example 12 and Example 13 using a polyurethane resin or the like as a binder are coated, and are excellent in heat generation efficiency. A resin using a polyamide resin or a polyamide-imide resin gave particularly excellent results.
 [製造例5]
 炭素発熱組成物の製造(3):
 炭素成分であるグラファイト、カーボンナノチューブ(分散処理済)、溶剤に溶解させたバインダーとして下記の材料を表3に示した組成で配合、混合して溶剤に溶解させたバインダーに炭素成分を分散させた、実施例1b、実施例14ないし実施例17の炭素発熱組成物とした。なお、実施例1bは、実施例1と共通する組成である。
[Production Example 5]
Production of carbon exothermic composition (3):
The following components were blended in the composition shown in Table 3 as binders dissolved in graphite, carbon nanotubes (dispersed), and a solvent, and the carbon components were dispersed in a binder dissolved in the solvent after mixing. The carbon exothermic compositions of Example 1b and Examples 14 to 17 were obtained. In addition, Example 1b is a composition common to Example 1.
 (炭素成分)
(1)グラファイト-1(G-1)(鱗片状黒鉛、平均粒子径:10μm)
(2)グラファイト-2(G-2)(鱗状黒鉛、平均粒子径:1μm)
(3)グラファイト-3(G-3)(鱗状黒鉛、平均粒子径:10μm)
(4)グラファイト-4(G-4)(人造黒鉛、平均粒子径:20μm)
(5)カーボンナノチューブ(CNT)(平均長さ(繊維長)6μm、平均外径(繊維径)100nm、多層)
(Carbon component)
(1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 μm)
(2) Graphite-2 (G-2) (scale graphite, average particle size: 1 μm)
(3) Graphite-3 (G-3) (scaled graphite, average particle size: 10 μm)
(4) Graphite-4 (G-4) (artificial graphite, average particle size: 20 μm)
(5) Carbon nanotube (CNT) (average length (fiber length) 6 μm, average outer diameter (fiber diameter) 100 nm, multilayer)
 (バインダー(溶剤系樹脂))
(1)ポリウレタン系樹脂(UR)(ポリウレタン系樹脂を溶剤(MEK(メチルエチルケトン)、酢酸ブチル、n-ブタノール、IPA(イソプロピルアルコール)の混合溶剤)に溶解させたもの)
(Binder (solvent resin))
(1) Polyurethane resin (UR) (Polyurethane resin dissolved in solvent (MEK (methyl ethyl ketone), butyl acetate, n-butanol, IPA (isopropyl alcohol) mixed solvent))
 [製造例6]
 炭素発熱体の製造(3):
 製造例5で得られた炭素発熱組成物を、製造例2と同様な方法を用いて、アルミテープからなる電極を長辺の両側に配した基材(ポリカーボネートシート、サイズ:100mm×50mm×2mm)の片面に電極及び炭素発熱組成物の被膜を形成した面状の炭素発熱体(試験サンプル)を形成した。
[Production Example 6]
Production of carbon heating element (3):
Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 5 was a base material (polycarbonate sheet, size: 100 mm × 50 mm × 2 mm) provided with electrodes made of aluminum tape on both long sides. A sheet-like carbon heating element (test sample) in which an electrode and a coating of the carbon heating composition were formed on one side was formed.
 [試験例3]
 炭素発熱体の性能評価(3)(グラファイトの種類との関係):
 試験例1と同様な方法を用いて、試験サンプルに対して、印加電圧を12Vとして、電圧を印加した場合における1分後の上昇温度を確認して、比較・評価した。結果を組成とあわせて表3に示す。
[Test Example 3]
Performance evaluation of carbon heating element (3) (Relationship with graphite type):
Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 3 together with the composition.
 (組成及び評価結果)
Figure JPOXMLDOC01-appb-T000003
(Composition and evaluation results)
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、グラファイトとして、鱗片状、鱗状、人造黒鉛を用いた実施例1b、実施例14ないし実施例17の炭素発熱組成物を被膜とした炭素発熱体は、発熱効率に優れるものであり、形状を鱗片状(G-1)だけとしたものや人造黒鉛(G-4)を用いたものが特に優れた結果となった。 As shown in Table 3, the carbon heating elements using the carbon exothermic compositions of Example 1b and Examples 14 to 17 using scaly, scaly, and artificial graphite as the graphite have excellent heat generation efficiency. In particular, those having only the scale shape (G-1) and those using artificial graphite (G-4) gave particularly excellent results.
 [製造例7]
 炭素発熱組成物の製造(4):
 炭素成分であるグラファイト、カーボンナノチューブ(分散処理済)、炭化ケイ素、溶剤に溶解させたバインダーとして下記の材料を表4に示した組成で配合、混合して溶剤に溶解させたバインダーに炭素成分を分散させた、実施例18及び実施例19の炭素発熱組成物とした。
[Production Example 7]
Production of carbon exothermic composition (4):
Carbon component graphite, carbon nanotubes (dispersed), silicon carbide, the following materials as binders dissolved in a solvent are blended in the composition shown in Table 4 and mixed to dissolve the carbon component in the solvent. Dispersed carbon exothermic compositions of Example 18 and Example 19 were obtained.
 (炭素成分等)
(1)グラファイト-1(G-1)(鱗片状黒鉛、平均粒子径:10μm)
(2)カーボンナノチューブ(CNT)(平均長さ(繊維長)6μm、平均外径(繊維径)100nm、多層)
(3)炭化ケイ素(SiC)(平均粒子径:700nm)
(Carbon components, etc.)
(1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 μm)
(2) Carbon nanotube (CNT) (average length (fiber length) 6 μm, average outer diameter (fiber diameter) 100 nm, multilayer)
(3) Silicon carbide (SiC) (average particle size: 700 nm)
 (バインダー(溶剤系樹脂))
(1)ポリウレタン系樹脂(UR)(ポリウレタン系樹脂を溶剤(MEK(メチルエチルケトン)、酢酸ブチル、n-ブタノール、IPA(イソプロピルアルコール)の混合溶剤)に溶解させたもの)
(Binder (solvent resin))
(1) Polyurethane resin (UR) (Polyurethane resin dissolved in solvent (MEK (methyl ethyl ketone), butyl acetate, n-butanol, IPA (isopropyl alcohol) mixed solvent))
 [製造例8]
 炭素発熱体の製造(4):
 製造例7で得られた炭素発熱組成物を、製造例2と同様な方法を用いて、アルミテープからなる電極を長辺の両側に配した基材(ポリカーボネートシート、サイズ:100mm×50mm×2mm)の片面に電極及び炭素発熱組成物の被膜を形成した面状の炭素発熱体(試験サンプル)を形成した。
[Production Example 8]
Production of carbon heating element (4):
Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 7 was made of a base material (polycarbonate sheet, size: 100 mm × 50 mm × 2 mm) on both sides of the long side. A sheet-like carbon heating element (test sample) in which an electrode and a coating of the carbon heating composition were formed on one side was formed.
 [試験例4]
 炭素発熱体の性能評価(4)(炭化ケイ素添加との関係):
 試験例1と同様な方法を用いて、試験サンプルに対して、印加電圧を12Vとして、電圧を印加した場合における1分後の上昇温度を確認して、比較・評価した。結果を組成とあわせて表4に示す。なお、表1には、ブランクとして、実施例1の測定結果も示している。
[Test Example 4]
Performance evaluation of carbon heating element (4) (Relationship with silicon carbide addition):
Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 4 together with the composition. In Table 1, the measurement results of Example 1 are also shown as blanks.
 (組成及び評価結果)
Figure JPOXMLDOC01-appb-T000004
(Composition and evaluation results)
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、炭化ケイ素を添加した実施例18及び実施例19の炭素発熱組成物を被膜とした炭素発熱体は、炭化ケイ素を添加しない実施例1より発熱効率に優れるものであった。 As shown in Table 4, the carbon heating element having the carbon exothermic composition of Example 18 and Example 19 to which silicon carbide was added as a coating had better heat generation efficiency than Example 1 to which no silicon carbide was added. .
 [製造例9]
 炭素発熱体の製造(5)
 実施例1で得られた炭素発熱組成物を、厚さが130μmのアルミテープからなる電極を長辺の両側に配した基材であるポリカーボネートシート及びナイロン6シート(ともにサイズ:100mm×50mm×2mm)に、製造例2で示した方法と同様な方法でそれぞれスプレーコーティングした後、高温恒温器((株)温度設備研究所)を用いて80℃×60分で焼成、乾燥することにより製膜して、基材の片面に電極及び炭素発熱組成物の被膜を形成した面状の炭素発熱体(試験サンプル)を形成した。なお、炭素発熱組成物の被膜の厚さは、30~50μmとなるようにした。
[Production Example 9]
Production of carbon heating element (5)
The carbon exothermic composition obtained in Example 1 was made of a polycarbonate sheet and a nylon 6 sheet (both sizes: 100 mm × 50 mm × 2 mm), which are substrates having electrodes made of aluminum tape having a thickness of 130 μm arranged on both sides of the long side. ) And spray-coating by the same method as shown in Production Example 2, and then baking and drying at 80 ° C. for 60 minutes using a high-temperature incubator (Temperature Equipment Laboratory). Then, a planar carbon heating element (test sample) in which a film of an electrode and a carbon heating composition was formed on one side of the substrate was formed. The film thickness of the carbon exothermic composition was adjusted to 30 to 50 μm.
 [試験例5]
 炭素発熱体の性能評価(5)(基材の種類との関係):
 製造例9で得られた試験サンプルに対して、印加電圧として12V、24Vの2種類を用いて電圧を印加した場合における、印加時間と上昇温度の関係を確認し、基材をポリカーボネートシートとナイロン6シートとした場合の違いを比較・評価した。結果を図3に示す。
[Test Example 5]
Performance evaluation of carbon heating element (5) (Relationship with substrate type):
When a voltage was applied to the test sample obtained in Production Example 9 using two kinds of applied voltages of 12 V and 24 V, the relationship between the application time and the rising temperature was confirmed, and the base material was polycarbonate sheet and nylon. The difference in the case of 6 sheets was compared and evaluated. The results are shown in FIG.
 図3は、試験例5において、印加時間と上昇温度の関係を示した図である。図3に示すように、基材をポリカーボネートシート(図3においてPCと表記。)としたものは、基材をナイロン6シートとしたものより上昇温度が高く、発熱効率に優れるものであった。 FIG. 3 is a graph showing the relationship between the application time and the rising temperature in Test Example 5. As shown in FIG. 3, the polycarbonate sheet (indicated as PC in FIG. 3) as the base material had a higher rising temperature and excellent heat generation efficiency than the nylon sheet as the base material.
 [製造例10]
 炭素発熱組成物の製造(5):
 炭素成分であるグラファイト、カーボンナノチューブ(分散処理済)、溶剤に溶解させたバインダーとして下記の材料を表5に示した組成で配合、混合して溶剤に溶解させたバインダーに炭素成分を分散させた、実施例20及び比較例7の炭素発熱組成物とした。なお、実施例20及び比較例7は、バインダーとして、架橋剤が添加され架橋されたフッ素ゴム(F)を使用した。
[Production Example 10]
Production of carbon exothermic composition (5):
The following components were blended in the composition shown in Table 5 as binders dissolved in graphite, carbon nanotubes (dispersed), and a solvent, and the carbon components were dispersed in a binder that was mixed and dissolved in the solvent. The carbon exothermic compositions of Example 20 and Comparative Example 7 were obtained. In Example 20 and Comparative Example 7, fluororubber (F) added with a crosslinking agent and crosslinked was used as a binder.
 (炭素成分)
(1)グラファイト-1(G-1)(鱗片状黒鉛、平均粒子径:10μm)
(2)カーボンナノチューブ(CNT)(平均長さ(繊維長)6μm、平均外径(繊維径)100nm、多層)
(Carbon component)
(1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 μm)
(2) Carbon nanotube (CNT) (average length (fiber length) 6 μm, average outer diameter (fiber diameter) 100 nm, multilayer)
 (バインダー(溶剤系樹脂))
(1)フッ素ゴム(F)(フッ素ゴムを溶剤(アノン(シクロヘキサノン)、酢酸ブチルの混合溶剤)に溶解させたもの。)
(Binder (solvent resin))
(1) Fluororubber (F) (Fluororubber dissolved in a solvent (a mixed solvent of anone (cyclohexanone) and butyl acetate))
 [製造例11]
 炭素発熱体の製造(6):
 製造例10で得られた炭素発熱組成物を、製造例2と同様な方法を用いて、アルミテープからなる電極を長辺の両側に配した基材(サイズ:100mm×50mm×2mm)の片面に電極及び炭素発熱組成物の被膜を形成した面状の炭素発熱体(試験サンプル)を形成した。なお、製造例2中、基材をポリフェノールシート、温度条件を150℃×60分に変更して行った。
[Production Example 11]
Production of carbon heating element (6):
Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 10 was provided on one side of a base material (size: 100 mm × 50 mm × 2 mm) on both sides of the long side. A planar carbon heating element (test sample) having an electrode and a coating of the carbon heating composition formed thereon was formed. In Production Example 2, the substrate was changed to a polyphenol sheet, and the temperature condition was changed to 150 ° C. × 60 minutes.
 [試験例6]
 炭素発熱体の性能評価(6)(バインダーとしてフッ素ゴムを使用した場合):
 試験例1と同様な方法を用いて、試験サンプルに対して、印加電圧を12Vとして、電圧を印加した場合における1分後の上昇温度を確認して、比較・評価した。結果を組成とあわせて表5に示す。
[Test Example 6]
Performance evaluation of carbon heating element (6) (when fluororubber is used as binder):
Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 5 together with the composition.
 (組成及び評価結果)
Figure JPOXMLDOC01-appb-T000005
(Composition and evaluation results)
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、炭素成分をバインダーであるフッ素ゴム100質量部に対して50~300質量部の範囲内として、グラファイトとカーボンナノチューブとの配合比をグラファイト/カーボンナノチューブ=2.5~5.4の範囲内とした実施例20の炭素発熱組成物を被膜とした炭素発熱体は、発熱効率に優れるものであった As shown in Table 5, the carbon component is in the range of 50 to 300 parts by mass with respect to 100 parts by mass of the fluororubber as a binder, and the compounding ratio of graphite and carbon nanotube is graphite / carbon nanotube = 2.5 to 5 The carbon heating element in which the carbon heating composition of Example 20 in the range of .4 was coated was excellent in heating efficiency.
 [製造例12]
 炭素発熱組成物の製造(6):
 炭素成分であるグラファイト、カーボンナノチューブ(分散処理済)、溶剤に溶解させたバインダーとして下記の材料を表6に示した組成で配合、混合して溶剤に溶解させたバインダーに炭素成分を分散させた、実施例21ないし実施例23の炭素発熱組成物とした。また、実施例21ないし実施例23は、バインダーとして、ポリアミドイミド系樹脂(PAI-2)(実施例13を構成するポリアミドイミド系樹脂(PAI)とは骨格、構造が異なる。)を使用している。
[Production Example 12]
Production of carbon exothermic composition (6):
The following components were blended in the composition shown in Table 6 as binders dissolved in graphite, carbon nanotubes (dispersed), and a solvent, and the carbon components were dispersed in a binder that was mixed and dissolved in the solvent. The carbon exothermic compositions of Examples 21 to 23 were obtained. In Examples 21 to 23, a polyamide-imide resin (PAI-2) (having a different skeleton and structure from the polyamide-imide resin (PAI) constituting Example 13) is used as a binder. Yes.
 (炭素成分)
(1)グラファイト-1(G-1)(鱗片状黒鉛、平均粒子径:10μm)
(2)カーボンナノチューブ(CNT)(平均長さ(繊維長)6μm、平均外径(繊維径)100nm、多層)
(Carbon component)
(1) Graphite-1 (G-1) (flaky graphite, average particle size: 10 μm)
(2) Carbon nanotube (CNT) (average length (fiber length) 6 μm, average outer diameter (fiber diameter) 100 nm, multilayer)
 (バインダー(溶剤系樹脂))
(1)ポリアミドイミド系樹脂(PAI-2)(ポリアミドイミド系樹脂を溶剤(DMF(ジメチルフォルムアミド)、DMAC(ジメチルアセトアミド)、NMP(N-メチルピロリドン)の混合溶剤)に溶解させたもの。)
(Binder (solvent resin))
(1) Polyamideimide resin (PAI-2) (polyamideimide resin dissolved in a solvent (mixed solvent of DMF (dimethylformamide), DMAC (dimethylacetamide), NMP (N-methylpyrrolidone)). )
 [製造例13]
 炭素発熱体の製造(7):
 製造例12で得られた炭素発熱組成物を、製造例2と同様な方法を用いて、アルミテープからなる電極を長辺の両側に配した基材(サイズ:100mm×50mm×2mm)の片面に電極及び炭素発熱組成物の被膜を形成した面状の炭素発熱体(試験サンプル)を形成した。なお、製造例2中、基材をポリフェノールシート、温度条件を190℃×60分に変更して行った。
[Production Example 13]
Production of carbon heating element (7):
Using the same method as in Production Example 2, the carbon exothermic composition obtained in Production Example 12 was provided on one side of a base material (size: 100 mm × 50 mm × 2 mm) having electrodes made of aluminum tape disposed on both sides of the long side. A planar carbon heating element (test sample) having an electrode and a coating of the carbon heating composition formed thereon was formed. In Production Example 2, the substrate was changed to a polyphenol sheet and the temperature condition was changed to 190 ° C. × 60 minutes.
 [試験例7]
 炭素発熱体の性能評価(7)(バインダーとしてポリアミドイミド系樹脂を使用した場合):
 試験例1と同様な方法を用いて、試験サンプルに対して、印加電圧を12Vとして、電圧を印加した場合における1分後の上昇温度を確認して、比較・評価した。結果を組成とあわせて表6に示す。
[Test Example 7]
Performance evaluation of carbon heating element (7) (when polyamideimide resin is used as binder):
Using the same method as in Test Example 1, the applied voltage was set to 12 V on the test sample, and the rising temperature after 1 minute when the voltage was applied was confirmed and compared and evaluated. The results are shown in Table 6 together with the composition.
 (組成及び評価結果)
Figure JPOXMLDOC01-appb-T000006
(Composition and evaluation results)
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、バインダーとしてポリアミドイミド系樹脂を用いた実施例21ないし実施例23の炭素発熱組成物を被膜とした炭素発熱体は、発熱効率に優れるものであった。 As shown in Table 6, the carbon heating element in which the carbon exothermic composition of Examples 21 to 23 using a polyamideimide resin as a binder was used as a film had excellent heat generation efficiency.
 [製造例14]
 炭素発熱体の製造(8):
 実施例20の炭素発熱組成物を、図1及び図2において長さを100mmから200mm、厚さを2mmから25μmとして、アルミテープからなる電極を長辺の両側に配した基材(ポリエーテルイミド(PEI)フィルム、サイズ:幅50mm×長さ200mm×25μm)3の片面(電極を配した面)に対して製造例2と同様にスプレーコーティングし、スプレーコーティング後150℃×60分で焼成、乾燥することにより製膜して、基材3の片面に電極4(電極長さ、200mm、電極間距離40mm)及び厚さが85μmの炭素発熱組成物の被膜2を形成した面状の炭素発熱体1(試験サンプル1)を形成した。
[Production Example 14]
Production of carbon heating element (8):
A base material (polyetherimide) having the carbon exothermic composition of Example 20 having a length of 100 mm to 200 mm and a thickness of 2 mm to 25 μm in FIG. 1 and FIG. (PEI) film, size: width 50 mm × length 200 mm × 25 μm) One side (surface on which electrodes are arranged) 3 is spray coated in the same manner as in Production Example 2, and after spray coating, baked at 150 ° C. for 60 minutes. Forming the film by drying, a sheet-like carbon heat generation in which an electrode 4 (electrode length, 200 mm, distance between electrodes: 40 mm) and a film 2 of a carbon heat generation composition having a thickness of 85 μm are formed on one surface of the substrate 3 Body 1 (Test Sample 1) was formed.
 [試験例8]
 炭素発熱体の性能評価(8):
 市販の筒状の飲料用アルミボトル容器(内径:63mm、容量:300ml)を2つ用意し、1つに100ml(100g)、もう1つに200ml(200g)、常温の水を入れた。かかる容器の側面に製造例14で得られた炭素発熱体1(試験サンプル1)を巻き付け、炭素発熱体1に12Vを印加した場合における水温の変化を時間に対して測定した。結果を図4に示す。
[Test Example 8]
Performance evaluation of carbon heating element (8):
Two commercially available aluminum bottle containers for beverages (inner diameter: 63 mm, capacity: 300 ml) were prepared, 100 ml (100 g) in one, 200 ml (200 g) in one, and water at room temperature. The carbon heating element 1 (test sample 1) obtained in Production Example 14 was wrapped around the side surface of the container, and the change in water temperature when 12 V was applied to the carbon heating element 1 was measured with respect to time. The results are shown in FIG.
 図4は、試験例8において、印加時間と上昇温度の関係を示した図である。図4に示すように、印加時間に対応して水温の上昇が認められ、対象媒体(水)を加熱する目的で使用することが可能であることが確認できた。また、印加電圧を12Vとして対象媒体の発熱が可能であったことから、車載用電圧(12V)で使用可能であることも確認できた。 FIG. 4 is a diagram showing the relationship between the application time and the rising temperature in Test Example 8. As shown in FIG. 4, an increase in the water temperature was observed corresponding to the application time, and it was confirmed that it could be used for the purpose of heating the target medium (water). Moreover, since it was possible to heat the target medium with an applied voltage of 12V, it was also confirmed that it could be used with a vehicle-mounted voltage (12V).
 本発明は、熱効率に優れた炭素発熱体を提供する手段として有利に使用することができ、産業上の利用可能性は高いものである。 The present invention can be advantageously used as a means for providing a carbon heating element excellent in thermal efficiency, and has high industrial applicability.
   1  炭素発熱体(試験サンプル)
   2  炭素発熱組成物の被膜
   3  基材
   4  電極
 
1 Carbon heating element (test sample)
2 Coating of carbon exothermic composition 3 Base material 4 Electrode

Claims (6)

  1.  粉末状の炭素成分をバインダーに分散させた炭素発熱組成物であって、
     前記炭素成分が、グラファイトとカーボンナノチューブを含み、
     前記グラファイトと前記カーボンナノチューブの配合比が、グラファイト/カーボンナノチューブ=2.5~5.4であり、
     前記バインダー100質量部に対して、前記グラファイト及び前記カーボンナノチューブを合計で50~300質量部含有することを特徴とする炭素発熱組成物。
    A carbon exothermic composition in which a powdery carbon component is dispersed in a binder,
    The carbon component includes graphite and carbon nanotubes,
    The mixing ratio of the graphite and the carbon nanotube is graphite / carbon nanotube = 2.5 to 5.4,
    A carbon exothermic composition comprising 50 to 300 parts by mass of the graphite and the carbon nanotubes in total with respect to 100 parts by mass of the binder.
  2.  さらに、粉末状の炭化ケイ素を含有することを特徴とする請求項1に記載の炭素発熱組成物。 The carbon exothermic composition according to claim 1, further comprising powdered silicon carbide.
  3.  前記バインダーがポリウレタン系樹脂、ポリアミドイミド系樹脂及びフッ素ゴムのうち選ばれた少なくとも1種であることを特徴とする請求項1または請求項2に記載の炭素発熱組成物。 The carbon exothermic composition according to claim 1 or 2, wherein the binder is at least one selected from a polyurethane resin, a polyamideimide resin, and a fluororubber.
  4.  請求項1ないし請求項3のいずれかに記載の炭素発熱組成物からなる被膜であることを特徴とする炭素発熱体。 A carbon heating element, which is a film made of the carbon heating composition according to any one of claims 1 to 3.
  5.  所定の基材に前記被膜が形成されていることを特徴とする請求項4に記載の炭素発熱体。 The carbon heating element according to claim 4, wherein the coating is formed on a predetermined base material.
  6.  面状の前記基材に前記被膜が形成された面状発熱体であることを特徴とする請求項5に記載の炭素発熱体。 The carbon heating element according to claim 5, wherein the heating element is a planar heating element in which the coating is formed on the planar substrate.
PCT/JP2014/080971 2013-11-22 2014-11-21 Carbon heating composition and carbon heating element WO2015076390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480055949.XA CN105637977A (en) 2013-11-22 2014-11-21 Carbon heating composition and carbon heating element
JP2015527601A JP5866073B2 (en) 2013-11-22 2014-11-21 Carbon exothermic composition and carbon exothermic body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-242037 2013-11-22
JP2013242037 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015076390A1 true WO2015076390A1 (en) 2015-05-28

Family

ID=53179649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080971 WO2015076390A1 (en) 2013-11-22 2014-11-21 Carbon heating composition and carbon heating element

Country Status (3)

Country Link
JP (1) JP5866073B2 (en)
CN (1) CN105637977A (en)
WO (1) WO2015076390A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636251A (en) * 2016-02-02 2016-06-01 湖州凯飞龙碳纤维科技有限公司 Carbon ground mat and production process therefor
JP2017004761A (en) * 2015-06-10 2017-01-05 エコホールディングス株式会社 Heating element
JP2017204529A (en) * 2016-05-10 2017-11-16 エコホールディングス株式会社 Photovoltaic power generation module having snow-melting function, and building or vehicle with photovoltaic power generation module installed therein
CN112626635A (en) * 2020-12-15 2021-04-09 西南科技大学 Method for preparing high-burning-rate micro-pipeline based on nano thermite ink
JP2021524791A (en) * 2018-06-01 2021-09-16 バイオニア コーポレーション Electric roasting board
WO2022054720A1 (en) * 2020-09-14 2022-03-17 パナソニックIpマネジメント株式会社 Manufacturing method for heating film, heating film, lens, and in-vehicle camera
KR20230076893A (en) * 2021-11-22 2023-06-01 주식회사 대유에이피 Plain heater composition for vehicle steering wheel and method for manufacturing heating pad for vehicle steering wheel using the same
JP7509485B1 (en) 2024-02-26 2024-07-02 日本フッソ工業株式会社 Fluororesin film and molded article having said film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317440A (en) * 2016-08-19 2017-01-11 苏州思创源博电子科技有限公司 Method for preparing composite graphene heat-conducting film
JP6174223B1 (en) * 2016-10-24 2017-08-02 イシイ株式会社 Planar heating element
TW201827120A (en) * 2017-01-27 2018-08-01 國立大學法人信州大學 Method of manufacturing carbon coating and method of manufacturing coating
KR101971014B1 (en) * 2017-03-23 2019-04-22 카이스 주식회사 Manufacturing method of automobile interior component using poly urethane having carbon nanotube skin spray molding method
CN107809811B (en) * 2017-11-16 2020-12-15 崔仁植 Metal-free heating element and heating pad
CN108165233A (en) * 2017-12-12 2018-06-15 王景硕 A kind of pavement snow melting agent and preparation method thereof
KR101976737B1 (en) * 2019-04-11 2019-09-10 카이스 주식회사 Manufacturing method of automobile interior component using poly urethane skin spray molding method
WO2024063094A1 (en) * 2022-09-20 2024-03-28 株式会社アドバネクス Toilet seat warming device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345681A (en) * 1998-06-03 1999-12-14 Co-Op Chem Co Ltd Sheet heating element
JP2003163104A (en) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp Organic ptc composition
JP2009144000A (en) * 2007-12-12 2009-07-02 Starlite Co Ltd Resin-carbon composite material
WO2009125740A1 (en) * 2008-04-07 2009-10-15 東洋紡績株式会社 Conductive paste for planar heating element, and printed circuit and planar heating element using same
JP2010045025A (en) * 2008-07-18 2010-02-25 Hodogaya Chem Co Ltd Exothermic body using fine carbon fiber, and manufacturing method thereof
JP2010146832A (en) * 2008-12-18 2010-07-01 Allied Material Corp Resistance heating element
JP2013119576A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Resin composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100518415C (en) * 2006-12-27 2009-07-22 中国科学院金属研究所 Heating unit of infrared electric heating plate and producing method
KR101123351B1 (en) * 2008-10-09 2012-03-23 주식회사 엑사이엔씨 High conductive paste composition and method of high conductive paste composition
DE102008063849A1 (en) * 2008-12-19 2010-06-24 Tesa Se Heated surface element and method for its attachment
JP2011248190A (en) * 2010-05-28 2011-12-08 Konica Minolta Business Technologies Inc Heat generating belt for fixing device and image forming device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345681A (en) * 1998-06-03 1999-12-14 Co-Op Chem Co Ltd Sheet heating element
JP2003163104A (en) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp Organic ptc composition
JP2009144000A (en) * 2007-12-12 2009-07-02 Starlite Co Ltd Resin-carbon composite material
WO2009125740A1 (en) * 2008-04-07 2009-10-15 東洋紡績株式会社 Conductive paste for planar heating element, and printed circuit and planar heating element using same
JP2010045025A (en) * 2008-07-18 2010-02-25 Hodogaya Chem Co Ltd Exothermic body using fine carbon fiber, and manufacturing method thereof
JP2010146832A (en) * 2008-12-18 2010-07-01 Allied Material Corp Resistance heating element
JP2013119576A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Resin composite material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004761A (en) * 2015-06-10 2017-01-05 エコホールディングス株式会社 Heating element
CN105636251A (en) * 2016-02-02 2016-06-01 湖州凯飞龙碳纤维科技有限公司 Carbon ground mat and production process therefor
JP2017204529A (en) * 2016-05-10 2017-11-16 エコホールディングス株式会社 Photovoltaic power generation module having snow-melting function, and building or vehicle with photovoltaic power generation module installed therein
JP7261823B2 (en) 2018-06-01 2023-04-20 バイオニア コーポレーション Electric grill plate
US12096523B2 (en) 2018-06-01 2024-09-17 Bioneer Corporation Electric roasting pan
JP2021524791A (en) * 2018-06-01 2021-09-16 バイオニア コーポレーション Electric roasting board
JP7345119B2 (en) 2020-09-14 2023-09-15 パナソニックIpマネジメント株式会社 Manufacturing method of heat-generating film, heat-generating film, lens and vehicle camera
JPWO2022054720A1 (en) * 2020-09-14 2022-03-17
WO2022054720A1 (en) * 2020-09-14 2022-03-17 パナソニックIpマネジメント株式会社 Manufacturing method for heating film, heating film, lens, and in-vehicle camera
CN112626635A (en) * 2020-12-15 2021-04-09 西南科技大学 Method for preparing high-burning-rate micro-pipeline based on nano thermite ink
KR20230076893A (en) * 2021-11-22 2023-06-01 주식회사 대유에이피 Plain heater composition for vehicle steering wheel and method for manufacturing heating pad for vehicle steering wheel using the same
KR102697984B1 (en) 2021-11-22 2024-08-26 주식회사 디에이치오토리드 Plain heater composition for vehicle steering wheel and method for manufacturing heating pad for vehicle steering wheel using the same
JP7509485B1 (en) 2024-02-26 2024-07-02 日本フッソ工業株式会社 Fluororesin film and molded article having said film

Also Published As

Publication number Publication date
JP5866073B2 (en) 2016-02-17
JPWO2015076390A1 (en) 2017-03-16
CN105637977A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5866073B2 (en) Carbon exothermic composition and carbon exothermic body
Wang et al. Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers
Jeong et al. Effects of mixed carbon filler composition on electric heating behavior of thermally-cured epoxy-based composite films
CN104559424A (en) Efficient graphene-based cooling coating as well as preparation method and application thereof
CN106167602A (en) Conductive preparation with and preparation method thereof
CN103108906B (en) Utilize the PTC element conductive polymer composition that the NTC characteristic of carbon nanotube reduces
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
KR102049266B1 (en) Heating paste composition and plane heater
CN108102358A (en) Polyamide-based conductive agglomerate based on carbon nanotubes and graphene compound system and preparation method thereof
Kwon et al. Molecular‐Level Contact of Graphene/Silver Nanowires through Simultaneous Dispersion for a Highly Stable Wearable Electrothermal Heater
Xiao et al. Polybenzimidazole/conductive carbon black composite driven at low voltage for high-temperature heaters
KR102115751B1 (en) Foam material distributed evenly and manufacturing method thereof
KR101639600B1 (en) High conductive Paste composition and producing Method thereof using high temperature heat treatment
JP3841733B2 (en) Conductive composition, conductive paint, conductive adhesive and electromagnetic wave shielding agent containing the same
RU2083618C1 (en) Conducting paint and varnish material
Dash et al. Dielectric relaxation behaviour of ethylene-vinyl acetate–exfoliated graphene nanoplatelets (xGnP) composites
JP2013077427A (en) Conductive particle and its use
US11578213B2 (en) Electrothermic compositions
KR101931254B1 (en) Planar heater structure containing carbon
KR102259236B1 (en) Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube
RU2042694C1 (en) Conducting dye
RU2573594C1 (en) Resistive carbon composite material
KR20240089240A (en) Heat-conductive composites and related composite materials and methods
KR20210121726A (en) Highly dispersed nano-carbon coating composition
Anderson et al. Towards nanostructured boron nitride films

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527601

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864715

Country of ref document: EP

Kind code of ref document: A1