WO2024063094A1 - Toilet seat warming device - Google Patents

Toilet seat warming device Download PDF

Info

Publication number
WO2024063094A1
WO2024063094A1 PCT/JP2023/034097 JP2023034097W WO2024063094A1 WO 2024063094 A1 WO2024063094 A1 WO 2024063094A1 JP 2023034097 W JP2023034097 W JP 2023034097W WO 2024063094 A1 WO2024063094 A1 WO 2024063094A1
Authority
WO
WIPO (PCT)
Prior art keywords
toilet seat
heating device
temperature
electrodes
pair
Prior art date
Application number
PCT/JP2023/034097
Other languages
French (fr)
Japanese (ja)
Inventor
隆介 徳井
哲 鈴木
Original Assignee
株式会社アドバネクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバネクス filed Critical 株式会社アドバネクス
Publication of WO2024063094A1 publication Critical patent/WO2024063094A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K13/00Seats or covers for all kinds of closets
    • A47K13/24Parts or details not covered in, or of interest apart from, groups A47K13/02 - A47K13/22, e.g. devices imparting a swinging or vibrating motion to the seats
    • A47K13/30Seats having provisions for heating, deodorising or the like, e.g. ventilating, noise-damping or cleaning devices

Definitions

  • the present invention relates to a toilet seat heating device, and particularly to a toilet seat heating device using a heat generating conductor made of carbon nanotubes (hereinafter referred to as "CNT”) or the like.
  • CNT carbon nanotubes
  • Patent Document 1 discloses a planar heating element that can prevent or suppress the exfoliation of the heating layer from the base material while achieving a desired amount of heat generation.
  • This planar heating element includes a first base material, a heat generating layer containing a conductive material formed on the surface of the first base material, and a heat generating layer formed on the first base material so as to be spaced apart from each other and in contact with the heat generating layer. and two electrodes provided on the conductive material, and the conductive material is made of a carbon material and graphene, or made of exfoliated graphene.
  • planar heating element described in Patent Document 1 essentially requires that the conductive material is made of a carbon material and graphene, and the sheet heating element without graphene is positioned as a comparative example.
  • existing toilet seat heating devices normally turn on the power in a low-temperature standby state, and then increase the supply voltage when they are ready for use, achieving the desired temperature rise in a short period of time, from a few seconds to several tens of seconds. are doing.
  • Patent Document 1 does not disclose the relationship between the temperature rise of the planar heating element and time, Patent Document 1 requires the use of graphene as a conductive material, but in general, Graphene has a relatively low thermal conductivity compared to CNT, and the temperature rise is generally gradual, which inevitably hinders the realization of the above (3).
  • an object of the present invention is to provide a toilet seat heating device that can raise the temperature early by devising at least the material of the heat generating conductor.
  • the toilet seat heating device of the present invention has the following features: a heat-generating conductor including a plurality of carbon nanotubes and a binder that binds the carbon nanotubes to each other; an electrically insulating sheet to which the heating conductor is fixed; a pair of electrodes electrically connected to both ends of the heating conductor; Equipped with.
  • It may be attached to the surface of the toilet seat or to the underside of the toilet seat.
  • the material of the electrically insulating sheet can be polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, or polyimide.
  • the electrode may be formed from a conductive paste such as silver paste or copper paste.
  • the design sheet is located on the rear surface side opposite the surface of the toilet seat.
  • a reflective member that directs heat toward the user may be provided.
  • FIG. 1 is a perspective view showing a schematic configuration of a toilet seat heating device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1 and 2, a pair of toilet seat heating devices 100 having a shape corresponding to the shape of the contact surface are attached to the surface of the O-shaped toilet seat (the contact surface when the user sits on the seat). It shows the state of being.
  • the toilet seat heating device 100 can also be attached to a U-shaped toilet seat.
  • FIG. 3 is an enlarged plan view of a portion of the toilet seat heating device 100 shown in FIG. 1.
  • FIG. 4 is a schematic cross-sectional view taken along line BB in FIG. FIG. 4 shows a heat generating conductor 10, an electrically insulating sheet 20, a pair of electrodes 30, and a design sheet 40, which will be described below.
  • the heating conductor 10 includes a plurality of CNTs and a binder that binds the CNTs to each other.
  • the heating conductor 10 preferably has CNTs uniformly dispersed in order to flow a current of uniform intensity. To this end, it is preferable to include a dispersant in the heat-generating conductor 10 as necessary.
  • the content ratio (wt%) of CNTs and binder etc. can be, for example, 0.1:99.9 to 5.0:95.0, although it depends on their types.
  • aligning the orientation of CNTs also contributes to improving thermal conductivity.
  • the heating conductor 10 is formed on the electrically insulating sheet 20 by printing and coating, the printing direction and the long axis direction of the CNTs substantially match, so that the directionality can be aligned.
  • the printing direction is preferably perpendicular to the direction in which the pair of electrodes 30 extend.
  • the heat-generating conductor 10 is heated while an electric magnetic field is applied along the orthogonal direction. Forming it is also a method.
  • the CNT is not limited to this, for example, one having a length of 5 ⁇ m to 100 ⁇ m and a diameter of 5 nm to 50 nm can be used. Note that, in general, the longer the CNT, the higher the thermal conductivity. Further, the number of CNT layers is not limited, and either single-walled CNTs or multi-walled CNTs may be used, but single-walled CNTs generally have higher thermal conductivity than multi-walled CNTs.
  • binders can be used, such as one or more types of thermoplastic resins, curable resins, and rubbers.
  • the viscosity of the binder varies depending on the method of application to the electrically insulating sheet 20, but can be, for example, 100 mPa ⁇ s to 5000 mPa ⁇ s.
  • the material of the electrically insulating sheet 20 is polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, or polyimide.
  • the heating conductor 10 is formed on at least one surface of the electrically insulating sheet 20 by a screen printing method, a dispense coating method, a gravure printing method, a gravure offset printing method, an offset printing method, an inkjet printing method, or the like.
  • the heating conductor 10 is fixed to the electrically insulating sheet 20 when the binder dries.
  • a pair of electrodes 30 are formed at both ends of the heating conductor 10 in the longitudinal direction. Both ends of the pair of electrodes 30 extend to both ends of the heating conductor 10 in the lateral direction.
  • the electrode 30 can be made of one or more high conductivity materials such as copper, silver, etc.
  • the pair of electrodes 30 can be formed, for example, by applying a paste-like high conductivity material, that is, a conductive paste, to the heating conductor 10. The more parallel the pair of electrodes 30 are to each other, the more uniform the current flowing through the heating conductor 10 becomes, which is preferable.
  • a silver paste as the conductive paste, for example, one having a conductivity of about 1.0 ⁇ 10 ⁇ 5 to 1.0 ⁇ 10 ⁇ 4 may be used.
  • the pair of electrodes 30 are electrically connected to a commercial power source through electrical wiring (not shown).
  • a voltage is applied to the pair of electrodes 30, and a current flows from one electrode to the other electrode through the heat generating conductor 10.
  • the design sheet 40 since the CNTs contained in the heating conductor 10 are often black, the electrically insulating sheet 20 is translucent, and the toilet seat heating device 100 is When attached to the surface of the seat, it is provided from the viewpoint of appearance. Therefore, the design sheet 40 does not need to be an essential component from the functional point of view of the toilet seat heating device 100 itself.
  • the electrically insulating sheet 20 itself has a design, or the toilet seat heating device 100 is attached to the back of the toilet seat as in Embodiment 2, which will be described later, and the toilet seat is attached to the back of the seat. If a lid is attached, the design sheet 40 may not be provided.
  • FIGS. 5 and 6 are graphs showing the measurement results of the surface temperature of the heating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged parallel to each other. Note that the horizontal axis in FIGS. 5 and 6 indicates time [s], and the vertical axis in FIGS. 5 and 6 indicates surface temperature [° C.], respectively. Furthermore, even when an AC voltage is applied to the pair of electrodes 30, the same measurement results as when a DC voltage is applied are obtained.
  • Figure 5 shows the measurement results when it is not attached to a toilet seat
  • Figure 6 shows the measurement results when it is attached to a relatively thick toilet seat (approximately 7.8 mm). Note that the thickness of this toilet seat portion is relatively thicker than that according to Embodiment 2, which will be described later.
  • the temperature sensors T1 to T4 are placed approximately at the center of the heating conductor 10 in the lateral direction in that order, and at approximately equal intervals along the longitudinal direction of the heating conductor 10. It was attached at both ends in the longitudinal direction.
  • thermosenors 30 were measured in an environment with a room temperature of 27°C and a humidity of 50% RH.
  • a pair of electrodes 30 were created by applying silver paste, each having a width of 6.0 mm.
  • a pair of electrodes 30 were arranged in parallel with an interval of 49 mm. At this time, the inner electrode length was 295 mm, and the outer electrode length was 325 mm.
  • a DC voltage of 24 V was applied to the pair of electrodes 30. At that time, the resistance value between the pair of electrodes 30 was measured and found to be 25.4 ⁇ .
  • a digital multimeter CD770 manufactured by Sanwa Denki Keiki was used to measure the resistance value.
  • Table 1 is a partial excerpt of the measurement results shown in FIG. "Time (seconds)" in Table 1 is the elapsed time after applying a 24V DC voltage to the pair of electrodes 30, and "T1 (°C)” to “T4 (°C)” are the temperature sensors T1 to T4 (°C), respectively. This is the measurement result of T4. The same applies to Tables 2 to 4 below.
  • the measurement results shown in FIG. 6 indicate that the temperature sensors T1 to T4 are For example, the temperature exceeded 30.0°C (+3.0°C) 5 seconds after voltage application (31.3°C, 30.3°C, 30.8°C, 30.7°C, respectively). , For example, the temperature exceeded 40.0°C (+13.0°C) 33 seconds after voltage application (41.2°C, 40.9°C, 40.7°C, 40.3°C, respectively). . For example, the temperature exceeded 50.0°C (+23.0°C) 99 seconds after voltage application (51.8°C, 51.1°C, 50.1°C, 50.3°C, respectively). ).
  • FIGS. 7 to 8 are graphs showing the measurement results of the surface temperature of the heat-generating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged approximately in a V-shape, and FIGS. This corresponds to
  • the measurement conditions according to FIGS. 7 and 8 are different from those according to FIGS. 5 and 6 in the arrangement form of the pair of electrodes 30. Specifically, they are arranged in a V-shape (electrode lengths: 310 mm and 370 mm) with an interval of 65 mm on the wire attachment side (temperature sensor T4 side) and an interval of 48 mm on the opposite side (temperature sensor T1 side), Concomitantly, the outer electrode length was 370 mm, the inner electrode length was 310 mm, and the resistance value was 25.3 ⁇ .
  • the measurement results shown in FIG. 7 show that the temperature sensors T1 to T4 are For example, the temperature exceeded 30.0°C (+3.0°C) 4 seconds after voltage application (34.7°C, 33.9°C, 33.2°C, 32.4°C, respectively). , For example, the temperature exceeded 40.0°C (+13.0°C) 11 seconds after voltage application (46.8°C, 44.2°C, 41.6°C, 40.1°C, respectively). , For example, the temperature exceeded 50.0°C (+23.0°C) 21 seconds after voltage application (60.7°C, 57.0°C, 54.6°C, 50.1°C, respectively). ).
  • the measurement results shown in FIG. 8 indicate that the temperature sensors T1 to T4 are For example, the temperature exceeded 30.0°C (+3.0°C) 8 seconds after voltage application (32.6°C, 31.6°C, 30.5°C, 30.1°C, respectively). , for example, the temperature exceeded 40.0°C (+13.0°C) 69 seconds after voltage application (45.8°C, 43.1°C, 41.2°C, 40.1°C, respectively). , For example, the temperature exceeded 50.0°C (+23.0°C) 221 seconds after voltage application (59.2°C, 54.8°C, 51.8°C, 50.0°C, respectively). ).
  • FIG. 9 is a perspective view showing a schematic configuration of a toilet seat heating device 100 according to a second embodiment of the present invention, and corresponds to Fig. 1.
  • Fig. 10 is a schematic cross-sectional view taken along line A-A in Fig. 9, and corresponds to Fig. 1.
  • Figs. 9 and 10 show a state in which the toilet seat heating device 100 is attached to a location where a nichrome wire is arranged in a known toilet seat heating device. It should be noted that the toilet seat heating device 100 of this embodiment can also be attached to the rear surface of a U-shaped toilet seat.
  • FIG. 11 is a BB cross-sectional view corresponding to FIG. 4.
  • a heating conductor 10 an electrically insulating sheet 20, and an electrode 30, each of which may be similar to those described with reference to FIG. 4,
  • FIG. 5 shows a reflective member 50 that can be used. Note that the toilet seat temperature raising device 100 of this embodiment does not include the design sheet 40.
  • the reflective member 50 reflects the heat emitted from the heat generating conductor 10 toward the user by applying a voltage to the electrode 30.
  • the reflective member 50 is not limited to this, for example, it can be made of aluminum foil.
  • FIG. 12 shows the measurement results of the surface temperature of the heating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged parallel to each other in the toilet seat heating device 100 attached to the back surface of the toilet seat. This graph corresponds to FIG. 6. Note that FIG. 12 shows the measurement results when the toilet seat was attached to a relatively thin toilet seat (approximately 2.0 mm). Note that the thickness of this toilet seat portion is relatively thinner than that according to the first embodiment described above.
  • the measurement results shown in FIG. 12 are the results of measuring the temperature after heat transfer from the back surface of the toilet seat section to the front surface, since the toilet seat temperature raising device 100 is attached to the back surface of the toilet seat seat section.
  • the toilet seat back cover was removed from the toilet seat seat part, and the temperature was measured in a state where the reflective member 50 was not provided.
  • the measurement results shown in FIG. 12 show that the temperature sensors T1 to T4 are For example, the temperature exceeded 30.0°C (+3.0°C) 17 seconds after voltage application (30.1°C, 30.1°C, 30.2°C, 30.3°C, respectively). , For example, the temperature exceeded 40.0°C (+13.0°C) 47 seconds after voltage application (40.3°C, 40.5°C, 40.0°C, 40.3°C, respectively). . For example, the temperature exceeded 50.0°C (+23.0°C) 87 seconds after voltage application (51.0°C, 51.5°C, 50.2°C, 50.6°C, respectively). ).
  • the heating conductor 10 is manufactured without containing graphene, it can have relatively high thermal conductivity and can quickly raise the temperature. Become.
  • FIG. 1 is a perspective view showing a schematic configuration of a toilet seat temperature increasing device 100 according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1.
  • FIG. FIG. 2 is an enlarged plan view of a portion of the toilet seat heating device 100 shown in FIG. 1.
  • FIG. FIG. 4 is a schematic cross-sectional view taken along the line BB of FIG. 10 is a graph showing the measurement results of the surface temperature of the heating conductor 10 (when not attached to a toilet seat) when a DC voltage is applied to a pair of electrodes 30 arranged parallel to each other.
  • FIG. 9 is a schematic cross-sectional view taken along line AA in FIG. 9.
  • FIG. 5 is a BB sectional view corresponding to FIG. 4.
  • FIG. 2 is a graph showing the measurement results of the surface temperature of the heating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged in parallel to each other in the toilet seat heating device 100 attached to the back surface of the toilet seat. .
  • Heat generating conductor 10
  • Electrical insulating sheet 30
  • Pair of electrodes 40
  • Design sheet 50
  • Reflective member 100

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toilet Supplies (AREA)

Abstract

[Problem] To contrive at least a material of a heat-generating electroconductive body and provide a toilet seat warming device with which it is possible to raise temperature rapidly. [Solution] This toilet seat warming device 100 is configured to comprise a heat-generating electroconductive body 10 that includes a plurality of carbon nanotubes and a binding agent that binds the carbon nanotubes together, an electrical insulating sheet 20 to which the heat-generating electroconductive body 10 is fixed, and a pair of electrodes 30 that are electrically connected to the two ends of the heat-generating electroconductive body 10.

Description

便座昇温装置Toilet seat heating device
 本発明は、便座昇温装置に関し、特に、カーボンナノチューブ(Carbon Nano Tube:以下「CNT」と称する。)等からなる発熱導電体を用いた便座昇温装置に関する。 The present invention relates to a toilet seat heating device, and particularly to a toilet seat heating device using a heat generating conductor made of carbon nanotubes (hereinafter referred to as "CNT") or the like.
 特許文献1には、所望の発熱量を実現しながら、発熱層が基材から剥離してしまうことを防止又は抑制できる面状発熱体について開示されている。この面状発熱体は、第1基材と、前記第1基材の表面に形成された、導電材料を含む発熱層と、互いに離間し、かつ前記発熱層に接触するように前記1基材に設けられた2つの電極と、を備え、前記導電材料は、カーボン材料とグラフェンとからなる、又は、剥離グラフェンからなる。特許文献1に記載されている面状発熱体は、導電材料がカーボン材料とグラフェンとからなることを必須としており、グラフェンを有しないものを比較例として位置付けている。
特許6174223号公報の(0044)段落等
Patent Document 1 discloses a planar heating element that can prevent or suppress the exfoliation of the heating layer from the base material while achieving a desired amount of heat generation. This planar heating element includes a first base material, a heat generating layer containing a conductive material formed on the surface of the first base material, and a heat generating layer formed on the first base material so as to be spaced apart from each other and in contact with the heat generating layer. and two electrodes provided on the conductive material, and the conductive material is made of a carbon material and graphene, or made of exfoliated graphene. The planar heating element described in Patent Document 1 essentially requires that the conductive material is made of a carbon material and graphene, and the sheet heating element without graphene is positioned as a comparative example.
Paragraph (0044) of Patent No. 6174223, etc.
 ところで、既存の便座発熱装置は、通常時には低温の待機状態で電源をオンしておき、使用時に移行した場合に供給電圧を高めて、数秒~数十秒といった短時間に所望の温度上昇を実現している。 By the way, existing toilet seat heating devices normally turn on the power in a low-temperature standby state, and then increase the supply voltage when they are ready for use, achieving the desired temperature rise in a short period of time, from a few seconds to several tens of seconds. are doing.
 しかし、昨今のSDGsの観点からいうと、(1)通常時における低温の待機状態を排除して電源をオフしておくこと、(2)そのために使用時に移行した場合に供給電圧を高めるものの通常時も含めて総じて見た場合に省電力化すること、(3)待機状態を排除することから温度上昇率を高めること、が必要である。 However, from the perspective of the recent SDGs, (1) it is necessary to eliminate the low-temperature standby state under normal conditions and turn off the power, and (2) to do so, it is normal to increase the supply voltage when transitioning to use. (3) It is necessary to reduce power consumption when viewed as a whole, including time, and (3) to increase the rate of temperature rise by eliminating standby states.
 しかし、特許文献1には面状発熱体の温度上昇と時間との関係については開示されていないが、特許文献1のものは、導電材料としてグラフェンを用いることを必須としているところ、一般的にグラフェンはCNTに比して相対的に熱伝導率が低く、温度上昇が一般的に緩やかであるから、上記(3)の実現を不可避的に阻害することになる。 However, although Patent Document 1 does not disclose the relationship between the temperature rise of the planar heating element and time, Patent Document 1 requires the use of graphene as a conductive material, but in general, Graphene has a relatively low thermal conductivity compared to CNT, and the temperature rise is generally gradual, which inevitably hinders the realization of the above (3).
 そこで、本発明は、発熱導電体の少なくとも材料を工夫して早期温度上昇が可能な便座昇温装置を提供することを課題とする。 Therefore, an object of the present invention is to provide a toilet seat heating device that can raise the temperature early by devising at least the material of the heat generating conductor.
 上記課題を解決するために、本発明の便座昇温装置は、
 複数のカーボンナノチューブと前記各カーボンナノチューブを相互に結着する結着剤とを含む発熱導電体と、
 前記発熱導電体が固定される電気絶縁性シートと、
 前記発熱導電体の両端部に電気的に接続される一対の電極と、
 を備える。
In order to solve the above problems, the toilet seat heating device of the present invention has the following features:
a heat-generating conductor including a plurality of carbon nanotubes and a binder that binds the carbon nanotubes to each other;
an electrically insulating sheet to which the heating conductor is fixed;
a pair of electrodes electrically connected to both ends of the heating conductor;
Equipped with.
 便座座部の表面に取り付けられてもよいし、便座座部の裏面に取り付けられてもよい。 It may be attached to the surface of the toilet seat or to the underside of the toilet seat.
 また、前記電気絶縁性シートは、その素材が、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、又は、ポリイミドとすることができる。 Further, the material of the electrically insulating sheet can be polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, or polyimide.
 前記電極は、銀ペースト、銅ペーストなどの導電性ペーストによって形成してもよい。 The electrode may be formed from a conductive paste such as silver paste or copper paste.
 さらに、例えば、便座座部の表面に取り付けられる場合には、或いは、便座座部の裏面に取り付けられる場合であっても便座座部に裏蓋が取り付けられない場合には、便座座部の表面の対向面に対する裏面側に、意匠シートが位置するとよい。 Furthermore, for example, when it is attached to the front surface of the toilet seat, or when it is attached to the rear surface of the toilet seat but no back cover is attached to the toilet seat, it is preferable that the design sheet is located on the rear surface side opposite the surface of the toilet seat.
 さらに、例えば、便座座部の裏面に取り付けられる場合には、熱を使用者に向ける反射部材を備えることもできる。 Furthermore, for example, when attached to the back surface of the toilet seat, a reflective member that directs heat toward the user may be provided.
発明の実施の形態Embodiment of the invention
 以下、本発明の実施形態の便座昇温装置について、図面を参照して説明する。 Hereinafter, a toilet seat heating device according to an embodiment of the present invention will be described with reference to the drawings.
 (実施形態1)
 図1は、本発明の実施形態1の便座昇温装置100の模式的な構成を示す斜視図である。図2は、図1の模式的なA-A断面図である。図1及び図2には、O字型の便座座部の表面(ユーザが腰かけたときの接触面)に、当該接触面の形状に対応する形状の一対の便座昇温装置100が取り付けられている状態を示している。なお、便座昇温装置100は、U字型の便座に対して取り付けることも可能である。
(Embodiment 1)
FIG. 1 is a perspective view showing a schematic configuration of a toilet seat heating device 100 according to Embodiment 1 of the present invention. FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1 and 2, a pair of toilet seat heating devices 100 having a shape corresponding to the shape of the contact surface are attached to the surface of the O-shaped toilet seat (the contact surface when the user sits on the seat). It shows the state of being. Note that the toilet seat heating device 100 can also be attached to a U-shaped toilet seat.
 図3は、図1に示す便座昇温装置100の一部の拡大平面図である。図4は、図3の模式的なB-B断面図である。図4には、以下説明する、発熱導電体10と、電気絶縁性シート20と、一対の電極30と、意匠シート40と、を示している。 FIG. 3 is an enlarged plan view of a portion of the toilet seat heating device 100 shown in FIG. 1. FIG. 4 is a schematic cross-sectional view taken along line BB in FIG. FIG. 4 shows a heat generating conductor 10, an electrically insulating sheet 20, a pair of electrodes 30, and a design sheet 40, which will be described below.
 発熱導電体10は、複数のCNTと前記各CNTを相互に結着する結着剤とを含む。発熱導電体10は、一様な強度の電流を流すために、CNTを均一的に分散させるとよい。そのためには、必要に応じて発熱導電体10には分散剤も含めるとよい。 The heating conductor 10 includes a plurality of CNTs and a binder that binds the CNTs to each other. The heating conductor 10 preferably has CNTs uniformly dispersed in order to flow a current of uniform intensity. To this end, it is preferable to include a dispersant in the heat-generating conductor 10 as necessary.
 CNTと結着剤等との含有割合(wt%)は、それらの種別にもよるが、例えば0.1:99.9~5.0:95.0とすることができる。 The content ratio (wt%) of CNTs and binder etc. can be, for example, 0.1:99.9 to 5.0:95.0, although it depends on their types.
 さらに、CNTの方向性を揃えることも、熱導電率の向上に寄与する。電気絶縁製シート20に対して発熱導電体10を印刷塗布によって形成すれば、その印刷方向とCNTの長軸方向とが略一致するという特性があるので方向性が揃えることができる。なお、CNTは、その長軸方向に電流が流れやすいので、その印刷方向は一対の電極30の延在方向に対する直交方向とするとよい。なお、発熱導電体10の材料に含まれるCNTとして複層CNTを用いる場合には、複層CNTが導電性を有するので、当該直交方向に沿った電動磁場を印加した状態で発熱導電体10を形成することも一法である。 Furthermore, aligning the orientation of CNTs also contributes to improving thermal conductivity. If the heating conductor 10 is formed on the electrically insulating sheet 20 by printing and coating, the printing direction and the long axis direction of the CNTs substantially match, so that the directionality can be aligned. Note that since current tends to flow in the long axis direction of CNT, the printing direction is preferably perpendicular to the direction in which the pair of electrodes 30 extend. Note that when multi-layer CNTs are used as the CNTs included in the material of the heat-generating conductor 10, since the multi-layer CNTs have conductivity, the heat-generating conductor 10 is heated while an electric magnetic field is applied along the orthogonal direction. Forming it is also a method.
 CNTは、これに限定されるものではないが、例えば、長さが5μm~100μm、直径が5nm~50nmのものを用いることができる。なお、CNTは、一般に長いほど熱伝導率が高い。また、CNTの層数は不問であり、単層CNT、複層CNTのいずれを用いてもよいが、一般に単層CNTの方が複層CNTに比して熱伝導率が高い。 Although the CNT is not limited to this, for example, one having a length of 5 μm to 100 μm and a diameter of 5 nm to 50 nm can be used. Note that, in general, the longer the CNT, the higher the thermal conductivity. Further, the number of CNT layers is not limited, and either single-walled CNTs or multi-walled CNTs may be used, but single-walled CNTs generally have higher thermal conductivity than multi-walled CNTs.
 結着剤は、例えば、一種又は二種以上の、熱可塑性樹脂、硬化性樹脂、ゴムなど、種々のものを用いることができる。結着剤の粘度は、電気絶縁性シート20に対する塗布手法によっても異なるが、例えば100mPa・s~5000mPa・sとすることができる。 Various types of binders can be used, such as one or more types of thermoplastic resins, curable resins, and rubbers. The viscosity of the binder varies depending on the method of application to the electrically insulating sheet 20, but can be, for example, 100 mPa·s to 5000 mPa·s.
 電気絶縁性シート20は、素材が、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、又は、ポリイミドである。電気絶縁性シート20の少なくとも一方の面には、スクリーン印刷法、ディスペンス塗布法、グラビア印刷法、グラビアオフセット印刷法、オフセット印刷法、インクジェット印刷法などによって発熱導電体10が形成される。発熱導電体10は、その結着剤が乾燥すると、電気絶縁性シート20に固定される。 The material of the electrically insulating sheet 20 is polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, or polyimide. The heating conductor 10 is formed on at least one surface of the electrically insulating sheet 20 by a screen printing method, a dispense coating method, a gravure printing method, a gravure offset printing method, an offset printing method, an inkjet printing method, or the like. The heating conductor 10 is fixed to the electrically insulating sheet 20 when the binder dries.
 一対の電極30は、発熱導電体10の長手方向の両端部に形成されている。一対の電極30は、それらの両端が発熱導電体10の短手方向の両端まで延びている。電極30は、一種又は二種以上の銅、銀などの高導電率材料とすることができる。 A pair of electrodes 30 are formed at both ends of the heating conductor 10 in the longitudinal direction. Both ends of the pair of electrodes 30 extend to both ends of the heating conductor 10 in the lateral direction. The electrode 30 can be made of one or more high conductivity materials such as copper, silver, etc.
 一対の電極30は、例えばペースト状の高導電率材料すなわち導電性ペーストを、発熱導電体10に塗布することによって形成することができる。一対の電極30は、相互に平行になるほど、発熱導電体10を流れる電流が一様になるので好ましい。導電性ペーストとしては銀ペーストを用いる場合には、例えば、1.0×10-5~1.0×10-4程度の導電性のものを用いればよい。 The pair of electrodes 30 can be formed, for example, by applying a paste-like high conductivity material, that is, a conductive paste, to the heating conductor 10. The more parallel the pair of electrodes 30 are to each other, the more uniform the current flowing through the heating conductor 10 becomes, which is preferable. When using a silver paste as the conductive paste, for example, one having a conductivity of about 1.0×10 −5 to 1.0×10 −4 may be used.
 一対の電極30は、それぞれ図示しない電気配線を通じて、商用電源に対して電気的に接続される。便座昇温装置100がオン状態であれば、一対の電極30に電圧が印加され、一方の電極から発熱導電体10を通じて他方の電極に向けて電流が流れる。 The pair of electrodes 30 are electrically connected to a commercial power source through electrical wiring (not shown). When the toilet seat heating device 100 is in the ON state, a voltage is applied to the pair of electrodes 30, and a current flows from one electrode to the other electrode through the heat generating conductor 10.
 意匠シート40は、発熱導電体10に含まれているCNTが黒色をしていることが多いため、電気絶縁性シート20が透光性を有していて、かつ、便座昇温装置100が便座座部の表面に取り付けられる場合には、見た目の観点から備えている。したがって、意匠シート40は、便座昇温装置100自体の機能面の観点からは、必須の構成要素とする必要はない。 In the design sheet 40, since the CNTs contained in the heating conductor 10 are often black, the electrically insulating sheet 20 is translucent, and the toilet seat heating device 100 is When attached to the surface of the seat, it is provided from the viewpoint of appearance. Therefore, the design sheet 40 does not need to be an essential component from the functional point of view of the toilet seat heating device 100 itself.
 換言すると、例えば、電気絶縁性シート20自体が意匠性を有していたり、後述する実施形態2のように便座昇温装置100が便座座部の裏面に取り付けられ、かつ、便座座部に裏蓋が取り付けられたりする場合には、意匠シート40を備えなくてもよい。 In other words, for example, the electrically insulating sheet 20 itself has a design, or the toilet seat heating device 100 is attached to the back of the toilet seat as in Embodiment 2, which will be described later, and the toilet seat is attached to the back of the seat. If a lid is attached, the design sheet 40 may not be provided.
 図5~図6は、相互に平行に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果を示すグラフである。なお、図5~図6の横軸には時間[s]を、図5~図6の縦軸には表面温度[℃]を、それぞれ示している。また、一対の電極30に対して交流電圧を印加した場合にも、直流電圧を印加した場合と同様の測定結果となる。 5 and 6 are graphs showing the measurement results of the surface temperature of the heating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged parallel to each other. Note that the horizontal axis in FIGS. 5 and 6 indicates time [s], and the vertical axis in FIGS. 5 and 6 indicates surface temperature [° C.], respectively. Furthermore, even when an AC voltage is applied to the pair of electrodes 30, the same measurement results as when a DC voltage is applied are obtained.
 図5には便座に取り付けていない状態の計測結果を、図6には相対的に厚みのある便座(約7.8mm)に取り付けた状態の計測結果を示している。なお、この便座座部の厚みは、後述する実施形態2に係るものよりも相対的に厚いものである。 Figure 5 shows the measurement results when it is not attached to a toilet seat, and Figure 6 shows the measurement results when it is attached to a relatively thick toilet seat (approximately 7.8 mm). Note that the thickness of this toilet seat portion is relatively thicker than that according to Embodiment 2, which will be described later.
 これらの温度測定は、便座昇温装置100の発熱導電体10の表面に4つの温度センサ(熱電対)T1~T4を取り付け、便座昇温装置100の電極30に24Vの直流電圧を印加した状態で、各温度センサT1~T4の測定値を1秒間隔でセンシングすることによって行った。 These temperature measurements were performed by attaching four temperature sensors (thermocouples) T1 to T4 to the surface of the heating conductor 10 of the toilet seat heating device 100, and sensing the measured values of each of the temperature sensors T1 to T4 at one-second intervals while a DC voltage of 24 V was applied to the electrode 30 of the toilet seat heating device 100.
 なお、温度センサT1~T4は、その順番で発熱導電体10の短手方向のほぼ中央に、発熱導電体10の長手方向に沿ってほぼ等間隔で、温度センサT1,T4が発熱導電体10の長手方向の両端部となる態様で取り付けた。 The temperature sensors T1 to T4 are placed approximately at the center of the heating conductor 10 in the lateral direction in that order, and at approximately equal intervals along the longitudinal direction of the heating conductor 10. It was attached at both ends in the longitudinal direction.
 なお、図5~図6に係る温度測定条件は、以下のとおりである。
 ・室温27℃、湿度50%RHの環境下で温度計測した。
 ・一対の電極30は、それぞれ6.0mm幅となる条件で、銀ペーストを塗布することによって作成した。
 ・一対の電極30は、49mm間隔で平行に配列した。このとき、内側の電極長は295mm、外側の電極長は325mmであった。
 ・一対の電極30に24Vの直流電圧を印加した。その際、一対の電極30間の抵抗値を測定したところ、25.4Ωであった。なお、当該抵抗値の測定には、三和電気計器製デジタルマルチメータCD770を用いた。
Note that the temperature measurement conditions related to FIGS. 5 and 6 are as follows.
-Temperature was measured in an environment with a room temperature of 27°C and a humidity of 50% RH.
- A pair of electrodes 30 were created by applying silver paste, each having a width of 6.0 mm.
- A pair of electrodes 30 were arranged in parallel with an interval of 49 mm. At this time, the inner electrode length was 295 mm, and the outer electrode length was 325 mm.
- A DC voltage of 24 V was applied to the pair of electrodes 30. At that time, the resistance value between the pair of electrodes 30 was measured and found to be 25.4Ω. Note that a digital multimeter CD770 manufactured by Sanwa Denki Keiki was used to measure the resistance value.
 表1は、図5に示す測定結果の一部を抜粋したものである。表1内の「時間(秒)」は、一対の電極30に24Vの直流電圧を印加してからの経過時間、「T1(℃)」~「T4(℃)」は、それぞれ温度センサT1~T4の測定結果である。後掲する表2~表4も同様である。 Table 1 is a partial excerpt of the measurement results shown in FIG. "Time (seconds)" in Table 1 is the elapsed time after applying a 24V DC voltage to the pair of electrodes 30, and "T1 (°C)" to "T4 (°C)" are the temperature sensors T1 to T4 (°C), respectively. This is the measurement result of T4. The same applies to Tables 2 to 4 below.
 図5に示す測定結果は、表1に現れているように、温度センサT1~T4が、
 いずれも例えば30.0℃(+3.0℃)を超えたのは、電圧印加から2秒後であり(それぞれ、30.4℃、31.8℃、31.2℃、32.8℃)、
 いずれも例えば40.0℃(+13.0℃)を超えたのは、電圧印加から7秒後であり(それぞれ、42.3℃、40.6℃、41.1℃、40.9℃)、
 いずれも例えば50.0℃(+23.0℃)を超えたのは、電圧印加から12秒後であった(それぞれ、51.1℃、51.5℃、51.9℃、50.9℃)。
The measurement results shown in FIG. 5, as shown in Table 1, show that the temperature sensors T1 to T4 are
In all cases, the temperature exceeded 30.0° C. (+3.0° C.) 2 seconds after the voltage was applied (30.4° C., 31.8° C., 31.2° C., and 32.8° C., respectively).
In all cases, the temperature exceeded 40.0° C. (+13.0° C.) 7 seconds after the voltage was applied (42.3° C., 40.6° C., 41.1° C., and 40.9° C., respectively).
In all cases, for example, the temperature exceeded 50.0° C. (+23.0° C.) 12 seconds after the voltage was applied (51.1° C., 51.5° C., 51.9° C., and 50.9° C., respectively).
 図6に示す測定結果は、表2に現れているように、温度センサT1~T4が、
 いずれも例えば30.0℃(+3.0℃)を超えたのは、電圧印加から5秒後であり(それぞれ、31.3℃、30.3℃、30.8℃、30.7℃)、
 いずれも例えば40.0℃(+13.0℃)を超えたのは、電圧印加から33秒後であり(それぞれ、41.2℃、40.9℃、40.7℃、40.3℃)。
 いずれも例えば50.0℃(+23.0℃)を超えたのは、電圧印加から99秒後であった(それぞれ、51.8℃、51.1℃、50.1℃、50.3℃)。
As shown in Table 2, the measurement results shown in FIG. 6 indicate that the temperature sensors T1 to T4 are
For example, the temperature exceeded 30.0°C (+3.0°C) 5 seconds after voltage application (31.3°C, 30.3°C, 30.8°C, 30.7°C, respectively). ,
For example, the temperature exceeded 40.0°C (+13.0°C) 33 seconds after voltage application (41.2°C, 40.9°C, 40.7°C, 40.3°C, respectively). .
For example, the temperature exceeded 50.0°C (+23.0°C) 99 seconds after voltage application (51.8°C, 51.1°C, 50.1°C, 50.3°C, respectively). ).
 図7~図8は、概略相互にハの字状に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果を示すグラフであり、図5~図6に相当するものである。 7 to 8 are graphs showing the measurement results of the surface temperature of the heat-generating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged approximately in a V-shape, and FIGS. This corresponds to
 図7~図8に係る計測条件は、図5~図6に係るものと対比すると、一対の電極30の配列形態が相違する。具体的には、電線取付側(温度センサT4側)が65mm間隔、その反対側(温度センサT1側)が48mm間隔となる態様でハの字状に配列し(電極長:310mmと370mm)、これに付随して、外側の電極長は370mm、内側の電極長は310mmとなり、抵抗値は25.3Ωとなった。 The measurement conditions according to FIGS. 7 and 8 are different from those according to FIGS. 5 and 6 in the arrangement form of the pair of electrodes 30. Specifically, they are arranged in a V-shape (electrode lengths: 310 mm and 370 mm) with an interval of 65 mm on the wire attachment side (temperature sensor T4 side) and an interval of 48 mm on the opposite side (temperature sensor T1 side), Concomitantly, the outer electrode length was 370 mm, the inner electrode length was 310 mm, and the resistance value was 25.3 Ω.
 図7に示す測定結果は、表3に現れているように、温度センサT1~T4が、
 いずれも例えば30.0℃(+3.0℃)を超えたのは、電圧印加から4秒後であり(それぞれ、34.7℃、33.9℃、33.2℃、32.4℃)、
 いずれも例えば40.0℃(+13.0℃)を超えたのは、電圧印加から11秒後であり(それぞれ、46.8℃、44.2℃、41.6℃、40.1℃)、
 いずれも例えば50.0℃(+23.0℃)を超えたのは、電圧印加から21秒後であった(それぞれ、60.7℃、57.0℃、54.6℃、50.1℃)。
As shown in Table 3, the measurement results shown in FIG. 7 show that the temperature sensors T1 to T4 are
For example, the temperature exceeded 30.0°C (+3.0°C) 4 seconds after voltage application (34.7°C, 33.9°C, 33.2°C, 32.4°C, respectively). ,
For example, the temperature exceeded 40.0°C (+13.0°C) 11 seconds after voltage application (46.8°C, 44.2°C, 41.6°C, 40.1°C, respectively). ,
For example, the temperature exceeded 50.0°C (+23.0°C) 21 seconds after voltage application (60.7°C, 57.0°C, 54.6°C, 50.1°C, respectively). ).
 図8に示す測定結果は、表4に現れているように、温度センサT1~T4が、
 いずれも例えば30.0℃(+3.0℃)を超えたのは、電圧印加から8秒後であり(それぞれ、32.6℃、31.6℃、30.5℃、30,1℃)、
 いずれも例えば40.0℃(+13.0℃)を超えたのは、電圧印加から69秒後であり(それぞれ、45.8℃、43.1℃、41.2℃、40.1℃)、
 いずれも例えば50.0℃(+23.0℃)を超えたのは、電圧印加から221秒後であった(それぞれ、59.2℃、54.8℃、51.8℃、50.0℃)。
As shown in Table 4, the measurement results shown in FIG. 8 indicate that the temperature sensors T1 to T4 are
For example, the temperature exceeded 30.0°C (+3.0°C) 8 seconds after voltage application (32.6°C, 31.6°C, 30.5°C, 30.1°C, respectively). ,
For example, the temperature exceeded 40.0°C (+13.0°C) 69 seconds after voltage application (45.8°C, 43.1°C, 41.2°C, 40.1°C, respectively). ,
For example, the temperature exceeded 50.0°C (+23.0°C) 221 seconds after voltage application (59.2°C, 54.8°C, 51.8°C, 50.0°C, respectively). ).
 (実施形態2)
 図9は、本発明の実施形態2の便座昇温装置100の模式的な構成を示す斜視図であり、図1に対応するものである。図10は、図9の模式的なA-A断面図であり、図1に対応するものである。図9及び図10には、既知の便座昇温装置のニクロム線が配置される箇所に、便座昇温装置100が取り付けられている状態を示している。なお、本実施形態の便座昇温装置100についても、U字型の便座座部の裏面に取り付けることも可能である。
(Embodiment 2)
Fig. 9 is a perspective view showing a schematic configuration of a toilet seat heating device 100 according to a second embodiment of the present invention, and corresponds to Fig. 1. Fig. 10 is a schematic cross-sectional view taken along line A-A in Fig. 9, and corresponds to Fig. 1. Figs. 9 and 10 show a state in which the toilet seat heating device 100 is attached to a location where a nichrome wire is arranged in a known toilet seat heating device. It should be noted that the toilet seat heating device 100 of this embodiment can also be attached to the rear surface of a U-shaped toilet seat.
 図11は、図4に対応するB-B断面図である。図11には、図4を参照して説明したものとそれぞれを同様のものとすることができる、発熱導電体10と、電気絶縁性シート20と、電極30とに加えて、選択的に設けることが可能な反射部材50を示している。なお、本実施形態の便座昇温装置100は、意匠シート40を備えていない。 FIG. 11 is a BB cross-sectional view corresponding to FIG. 4. In addition to a heating conductor 10, an electrically insulating sheet 20, and an electrode 30, each of which may be similar to those described with reference to FIG. 4, FIG. 5 shows a reflective member 50 that can be used. Note that the toilet seat temperature raising device 100 of this embodiment does not include the design sheet 40.
 反射部材50は、電極30に電圧を印加することによって発熱導電体10から発せられる熱を、使用者に向けて反射させるものである。反射部材50は、これに限定されるものではないが、例えば、アルミニウム箔とすることができる。 The reflective member 50 reflects the heat emitted from the heat generating conductor 10 toward the user by applying a voltage to the electrode 30. Although the reflective member 50 is not limited to this, for example, it can be made of aluminum foil.
 図12は、便座座部の裏面に取り付けた状態の便座昇温装置100において、相互に平行に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果を示すグラフであり、図6に対応するものである。なお、図12には相対的に厚みのない便座(約2.0mm)に取り付けた状態の計測結果を示している。なお、この便座座部の厚みは、前述した実施形態1に係るものよりも相対的に薄いものである。 FIG. 12 shows the measurement results of the surface temperature of the heating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged parallel to each other in the toilet seat heating device 100 attached to the back surface of the toilet seat. This graph corresponds to FIG. 6. Note that FIG. 12 shows the measurement results when the toilet seat was attached to a relatively thin toilet seat (approximately 2.0 mm). Note that the thickness of this toilet seat portion is relatively thinner than that according to the first embodiment described above.
 図12に示す測定結果は、便座昇温装置100を便座座部の裏面に取り付けているため、便座座部の裏面から表面への伝熱後の温度の測定結果である。なお、温度測定の都合上、便座座部から便座裏蓋を取り外し、かつ、反射部材50を設けない状態で測定した。 The measurement results shown in FIG. 12 are the results of measuring the temperature after heat transfer from the back surface of the toilet seat section to the front surface, since the toilet seat temperature raising device 100 is attached to the back surface of the toilet seat seat section. In addition, for convenience of temperature measurement, the toilet seat back cover was removed from the toilet seat seat part, and the temperature was measured in a state where the reflective member 50 was not provided.
 図12に示す測定結果は、表5に現れているように、温度センサT1~T4が、
 いずれも例えば30.0℃(+3.0℃)を超えたのは、電圧印加から17秒後であり(それぞれ、30.1℃、30.1℃、30.2℃、30.3℃)、
 いずれも例えば40.0℃(+13.0℃)を超えたのは、電圧印加から47秒後であり(それぞれ、40.3℃、40.5℃、40.0℃、40.3℃)。
 いずれも例えば50.0℃(+23.0℃)を超えたのは、電圧印加から87秒後であった(それぞれ、51.0℃、51.5℃、50.2℃、50.6℃)。
As shown in Table 5, the measurement results shown in FIG. 12 show that the temperature sensors T1 to T4 are
For example, the temperature exceeded 30.0°C (+3.0°C) 17 seconds after voltage application (30.1°C, 30.1°C, 30.2°C, 30.3°C, respectively). ,
For example, the temperature exceeded 40.0°C (+13.0°C) 47 seconds after voltage application (40.3°C, 40.5°C, 40.0°C, 40.3°C, respectively). .
For example, the temperature exceeded 50.0°C (+23.0°C) 87 seconds after voltage application (51.0°C, 51.5°C, 50.2°C, 50.6°C, respectively). ).
 図12に示す測定結果を、図6に示す測定結果と対比すると、便座座部の厚みに応じた伝熱ロスの影響によって、便座座部の表面温度の上昇が若干鈍い。もっとも、便座座部に便座裏蓋を取り付け、かつ、反射部材50を設けた状態で測定すれば、伝熱ロスは少なくなる筈であるから、図12及び表5に現れるデータも向上すると思われる。 Comparing the measurement results shown in FIG. 12 with the measurement results shown in FIG. 6, the rise in the surface temperature of the toilet seat portion is slightly slower due to the effect of heat transfer loss depending on the thickness of the toilet seat portion. However, if the measurement is performed with the toilet seat back cover attached to the toilet seat and the reflective member 50 provided, the heat transfer loss should be reduced, so the data shown in Figure 12 and Table 5 will also improve. .
 以上、本発明の便座昇温装置100について説明したように、発熱導電体10をグラフェンを含めずに製造しているため、相対的に高熱伝導率とすることができ、早期温度上昇が可能となる。 As described above regarding the toilet seat temperature raising device 100 of the present invention, since the heating conductor 10 is manufactured without containing graphene, it can have relatively high thermal conductivity and can quickly raise the temperature. Become.
本発明の実施形態1の便座昇温装置100の模式的な構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a toilet seat temperature increasing device 100 according to a first embodiment of the present invention. 図1の模式的なA-A断面図である。FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1. FIG. 図1に示す便座昇温装置100の一部の拡大平面図である。FIG. 2 is an enlarged plan view of a portion of the toilet seat heating device 100 shown in FIG. 1. FIG. 図4は、図3の模式的なB-B断面図である。FIG. 4 is a schematic cross-sectional view taken along the line BB of FIG. 相互に平行に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果(便座に取り付けていない状態)を示すグラフである。10 is a graph showing the measurement results of the surface temperature of the heating conductor 10 (when not attached to a toilet seat) when a DC voltage is applied to a pair of electrodes 30 arranged parallel to each other. 相互に平行に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果(便座に取り付けた状態)を示すグラフである。It is a graph showing the measurement results of the surface temperature of the heating conductor 10 (when attached to a toilet seat) when a DC voltage is applied to a pair of electrodes 30 arranged in parallel with each other. 概略相互にハの字状に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果(便座に取り付けていない状態)を示すグラフである。It is a graph showing the measurement results of the surface temperature of the heat generating conductor 10 (in a state where it is not attached to a toilet seat) when a DC voltage is applied to a pair of electrodes 30 arranged in a substantially V-shape with respect to each other. 概略相互にハの字状に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果(便座に取り付けた状態)を示すグラフである。1 is a graph showing the results of measuring the surface temperature of a heating conductor 10 (attached to a toilet seat) when a DC voltage is applied to a pair of electrodes 30 arranged approximately in a V-shape relative to each other. 本発明の実施形態2の便座昇温装置100の模式的な構成を示す斜視図である。It is a perspective view showing a typical composition of toilet seat temperature rising device 100 of Embodiment 2 of the present invention. 図9の模式的なA-A断面図である。9 is a schematic cross-sectional view taken along line AA in FIG. 9. FIG. 図4に対応するB-B断面図である。5 is a BB sectional view corresponding to FIG. 4. FIG. 便座座部の裏面に取り付けた状態の便座昇温装置100において、相互に平行に配列した一対の電極30に直流電圧を印加した場合の発熱導電体10の表面温度の測定結果を示すグラフである。2 is a graph showing the measurement results of the surface temperature of the heating conductor 10 when a DC voltage is applied to a pair of electrodes 30 arranged in parallel to each other in the toilet seat heating device 100 attached to the back surface of the toilet seat. .
 10 発熱導電体
 20 電気絶縁性シート
 30 一対の電極
 40 意匠シート
 50 反射部材
 100 便座昇温装置

 
10 Heat generating conductor 20 Electrical insulating sheet 30 Pair of electrodes 40 Design sheet 50 Reflective member 100 Toilet seat heating device

Claims (7)

  1.  複数のカーボンナノチューブと前記各カーボンナノチューブを相互に結着する結着剤とを含む発熱導電体と、
     前記発熱導電体が固定される電気絶縁性シートと、
     前記発熱導電体の両端部に電気的に接続される一対の電極と、
     を備える、便座昇温装置。
    a heat-generating conductor including a plurality of carbon nanotubes and a binder that binds the carbon nanotubes to each other;
    an electrically insulating sheet to which the heating conductor is fixed;
    a pair of electrodes electrically connected to both ends of the heating conductor;
    A toilet seat heating device.
  2.  便座座部の表面に取り付けられる、請求項1記載の便座昇温装置。 The toilet seat heating device according to claim 1, which is attached to the surface of the toilet seat seat.
  3.  便座座部の裏面に取り付けられる、請求項1記載の便座昇温装置。 The toilet seat heating device according to claim 1, which is attached to the back surface of the toilet seat seat.
  4.  前記電気絶縁性シートは、その素材が、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、又は、ポリイミドである、請求項1記載の便座昇温装置。 The toilet seat heating device according to claim 1, wherein the electrically insulating sheet is made of polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, or polyimide.
  5.  前記電極は、導電性ペーストによって形成される、請求項1記載の便座昇温装置。 The toilet seat temperature raising device according to claim 1, wherein the electrode is formed of a conductive paste.
  6.  便座座部の表面の対向面に対する裏面側に、意匠シートが位置する、請求項1記載の便座昇温装置。 2. The toilet seat heating device according to claim 1, wherein the design sheet is located on the back side of the toilet seat seat portion with respect to the facing surface.
  7.  さらに、熱を使用者に向ける反射部材を備える、請求項1記載の便座昇温装置。

     
    The toilet seat heating device according to claim 1, further comprising a reflective member that directs heat toward the user.

PCT/JP2023/034097 2022-09-20 2023-09-20 Toilet seat warming device WO2024063094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149102 2022-09-20
JP2022-149102 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024063094A1 true WO2024063094A1 (en) 2024-03-28

Family

ID=90454684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034097 WO2024063094A1 (en) 2022-09-20 2023-09-20 Toilet seat warming device

Country Status (1)

Country Link
WO (1) WO2024063094A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067513A (en) * 2009-09-28 2011-04-07 Toto Ltd Heated toilet seat device
JP2013013531A (en) * 2011-07-04 2013-01-24 Lixil Corp Flat heater for heated toilet seat
JP5866073B2 (en) * 2013-11-22 2016-02-17 東洋ドライルーブ株式会社 Carbon exothermic composition and carbon exothermic body
JP6174223B1 (en) * 2016-10-24 2017-08-02 イシイ株式会社 Planar heating element
JP2018107116A (en) * 2016-12-27 2018-07-05 株式会社アドバネクス Heating unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067513A (en) * 2009-09-28 2011-04-07 Toto Ltd Heated toilet seat device
JP2013013531A (en) * 2011-07-04 2013-01-24 Lixil Corp Flat heater for heated toilet seat
JP5866073B2 (en) * 2013-11-22 2016-02-17 東洋ドライルーブ株式会社 Carbon exothermic composition and carbon exothermic body
JP6174223B1 (en) * 2016-10-24 2017-08-02 イシイ株式会社 Planar heating element
JP2018107116A (en) * 2016-12-27 2018-07-05 株式会社アドバネクス Heating unit

Similar Documents

Publication Publication Date Title
KR102017004B1 (en) Electric heating type smoking device using printed temperature sensor
KR101983367B1 (en) Electric heating type smoking device using printed temperature sensor
KR101328353B1 (en) Heating sheet using carbon nano tube
JPH0138359B2 (en)
KR20190058436A (en) Electric heating type smoking device using PWM control
KR101401396B1 (en) Plate heater
WO2024063094A1 (en) Toilet seat warming device
JP4894335B2 (en) Planar heating element
JP2018107116A (en) Heating unit
CN109974514A (en) Hot triode and Re Lu
KR20190028590A (en) Electric heating type smoking device using PWM control
JP2017075854A (en) Temperature sensitive element
CN211267128U (en) Electrothermal film with PTC function
US8646899B2 (en) Methods and apparatus for ink drying
JP2022085740A (en) Planar heating element
JP2010125679A (en) Thermal printing head
KR101559475B1 (en) Transparency fever heater using conductive inks
KR200453079Y1 (en) Heater using paste composition
JP7014408B2 (en) Temperature sensor
CN109980079A (en) Hot triode and Re Lu
CN217309220U (en) Heating film and warmer provided with same
JP7366398B2 (en) Hot wire flow rate measurement sheet and its measurement method
JP6816674B2 (en) Manufacturing method of membrane electrode assembly
JP3006272B2 (en) Planar heating element
JP2010165467A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868215

Country of ref document: EP

Kind code of ref document: A1