WO2015178337A1 - Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles - Google Patents
Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles Download PDFInfo
- Publication number
- WO2015178337A1 WO2015178337A1 PCT/JP2015/064159 JP2015064159W WO2015178337A1 WO 2015178337 A1 WO2015178337 A1 WO 2015178337A1 JP 2015064159 W JP2015064159 W JP 2015064159W WO 2015178337 A1 WO2015178337 A1 WO 2015178337A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistance
- resistance value
- exothermic
- seamless tubular
- volume
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 211
- 229920005989 resin Polymers 0.000 title claims abstract description 193
- 239000011347 resin Substances 0.000 title claims abstract description 193
- 239000002245 particle Substances 0.000 title claims description 102
- 229920001721 polyimide Polymers 0.000 claims description 255
- 239000002243 precursor Substances 0.000 claims description 214
- 239000002134 carbon nanofiber Substances 0.000 claims description 198
- 239000000463 material Substances 0.000 claims description 193
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 111
- 239000004327 boric acid Substances 0.000 claims description 102
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 101
- 229910052751 metal Inorganic materials 0.000 claims description 79
- 239000002184 metal Substances 0.000 claims description 79
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- 238000000576 coating method Methods 0.000 claims description 40
- 239000011248 coating agent Substances 0.000 claims description 37
- 150000001875 compounds Chemical class 0.000 claims description 32
- 150000003839 salts Chemical class 0.000 claims description 23
- 239000002041 carbon nanotube Substances 0.000 claims description 22
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000002086 nanomaterial Substances 0.000 claims description 15
- 239000009719 polyimide resin Substances 0.000 claims description 14
- 150000003863 ammonium salts Chemical class 0.000 claims description 13
- 230000000087 stabilizing effect Effects 0.000 claims description 12
- 239000011231 conductive filler Substances 0.000 claims description 10
- 239000003381 stabilizer Substances 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 239000010955 niobium Substances 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- 230000009467 reduction Effects 0.000 abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 327
- 239000000243 solution Substances 0.000 description 282
- 239000010410 layer Substances 0.000 description 246
- 239000004642 Polyimide Substances 0.000 description 241
- 239000010419 fine particle Substances 0.000 description 238
- 229910052759 nickel Inorganic materials 0.000 description 160
- 239000007787 solid Substances 0.000 description 105
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 96
- 230000006866 deterioration Effects 0.000 description 80
- 238000000034 method Methods 0.000 description 47
- 229920005575 poly(amic acid) Polymers 0.000 description 47
- NYVOYAFUSJONHU-UHFFFAOYSA-K trisodium;1,3,5-triazine-2,4,6-trithiolate Chemical compound [Na+].[Na+].[Na+].[S-]C1=NC([S-])=NC([S-])=N1 NYVOYAFUSJONHU-UHFFFAOYSA-K 0.000 description 47
- 239000000203 mixture Substances 0.000 description 46
- 230000000052 comparative effect Effects 0.000 description 38
- 239000002585 base Substances 0.000 description 37
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 35
- WZRRRFSJFQTGGB-UHFFFAOYSA-N 1,3,5-triazinane-2,4,6-trithione Chemical compound S=C1NC(=S)NC(=S)N1 WZRRRFSJFQTGGB-UHFFFAOYSA-N 0.000 description 34
- 238000005259 measurement Methods 0.000 description 34
- 238000002360 preparation method Methods 0.000 description 34
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 31
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 30
- -1 polytetrafluoroethylene Polymers 0.000 description 30
- 238000004364 calculation method Methods 0.000 description 28
- 125000003396 thiol group Chemical group [H]S* 0.000 description 28
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 27
- 230000020169 heat generation Effects 0.000 description 27
- 230000002093 peripheral effect Effects 0.000 description 26
- 239000002987 primer (paints) Substances 0.000 description 18
- 230000015556 catabolic process Effects 0.000 description 17
- 238000006731 degradation reaction Methods 0.000 description 17
- 150000004985 diamines Chemical class 0.000 description 17
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 16
- 239000002253 acid Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 229920006015 heat resistant resin Polymers 0.000 description 15
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 239000002923 metal particle Substances 0.000 description 12
- 239000011810 insulating material Substances 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- KCORZHJVTZIZFD-UHFFFAOYSA-N 7-fluoro-1h-quinazolin-4-one Chemical compound N1C=NC(=O)C=2C1=CC(F)=CC=2 KCORZHJVTZIZFD-UHFFFAOYSA-N 0.000 description 9
- 238000010304 firing Methods 0.000 description 8
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000002798 polar solvent Substances 0.000 description 7
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 7
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 229920002379 silicone rubber Polymers 0.000 description 6
- 239000004945 silicone rubber Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 4
- BCJIMAHNJOIWKQ-UHFFFAOYSA-N 4-[(1,3-dioxo-2-benzofuran-4-yl)oxy]-2-benzofuran-1,3-dione Chemical compound O=C1OC(=O)C2=C1C=CC=C2OC1=CC=CC2=C1C(=O)OC2=O BCJIMAHNJOIWKQ-UHFFFAOYSA-N 0.000 description 4
- UTDAGHZGKXPRQI-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 UTDAGHZGKXPRQI-UHFFFAOYSA-N 0.000 description 4
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000004962 Polyamide-imide Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000007771 core particle Substances 0.000 description 4
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 4
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920002312 polyamide-imide Polymers 0.000 description 4
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- NKLCNNUWBJBICK-UHFFFAOYSA-N Dess-Martin periodinane Substances C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 239000012971 dimethylpiperazine Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 2
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 2
- DKKYOQYISDAQER-UHFFFAOYSA-N 3-[3-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=C(OC=3C=C(N)C=CC=3)C=CC=2)=C1 DKKYOQYISDAQER-UHFFFAOYSA-N 0.000 description 2
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 2
- WCXGOVYROJJXHA-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)S(=O)(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 WCXGOVYROJJXHA-UHFFFAOYSA-N 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- RAFAYWADRVMWFA-UHFFFAOYSA-N 4,6-dimethyl-1h-pyrimidine-2-thione Chemical compound CC1=CC(C)=NC(S)=N1 RAFAYWADRVMWFA-UHFFFAOYSA-N 0.000 description 2
- CWIYBOJLSWJGKV-UHFFFAOYSA-N 5-methyl-1,3-dihydrobenzimidazole-2-thione Chemical compound CC1=CC=C2NC(S)=NC2=C1 CWIYBOJLSWJGKV-UHFFFAOYSA-N 0.000 description 2
- IXDGHAZCSMVIFX-UHFFFAOYSA-N 6-(dibutylamino)-1h-1,3,5-triazine-2,4-dithione Chemical compound CCCCN(CCCC)C1=NC(=S)NC(=S)N1 IXDGHAZCSMVIFX-UHFFFAOYSA-N 0.000 description 2
- QQLZTRHXUSFZOM-UHFFFAOYSA-N 6-amino-1h-1,3,5-triazine-2,4-dithione Chemical compound NC1=NC(=S)NC(=S)N1 QQLZTRHXUSFZOM-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004113 Sepiolite Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 125000005619 boric acid group Chemical group 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- HBCQSNAFLVXVAY-UHFFFAOYSA-N pyrimidine-2-thiol Chemical compound SC1=NC=CC=N1 HBCQSNAFLVXVAY-UHFFFAOYSA-N 0.000 description 2
- 229910052624 sepiolite Inorganic materials 0.000 description 2
- 235000019355 sepiolite Nutrition 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- OXFSTTJBVAAALW-UHFFFAOYSA-N 1,3-dihydroimidazole-2-thione Chemical compound SC1=NC=CN1 OXFSTTJBVAAALW-UHFFFAOYSA-N 0.000 description 1
- VIQRAVLRWNDVCM-UHFFFAOYSA-N 1h-1,3,5-triazine-2,4-dithione Chemical compound SC1=NC=NC(S)=N1 VIQRAVLRWNDVCM-UHFFFAOYSA-N 0.000 description 1
- 229940075142 2,5-diaminotoluene Drugs 0.000 description 1
- SOUUDGAWOJKDRN-UHFFFAOYSA-N 2,6-diamino-1h-pyrimidine-4-thione Chemical compound NC1=CC(=S)N=C(N)N1 SOUUDGAWOJKDRN-UHFFFAOYSA-N 0.000 description 1
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 description 1
- OBCSAIDCZQSFQH-UHFFFAOYSA-N 2-methyl-1,4-phenylenediamine Chemical compound CC1=CC(N)=CC=C1N OBCSAIDCZQSFQH-UHFFFAOYSA-N 0.000 description 1
- DCRZVUIGGYMOBI-UHFFFAOYSA-N 2-sulfanylidene-1,3-dihydrobenzimidazole-5-carboxylic acid Chemical compound OC(=O)C1=CC=C2NC(=S)NC2=C1 DCRZVUIGGYMOBI-UHFFFAOYSA-N 0.000 description 1
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 1
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical group C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 1
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical group C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- LXJLFVRAWOOQDR-UHFFFAOYSA-N 3-(3-aminophenoxy)aniline Chemical compound NC1=CC=CC(OC=2C=C(N)C=CC=2)=C1 LXJLFVRAWOOQDR-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- TYKLCAKICHXQNE-UHFFFAOYSA-N 3-[(2,3-dicarboxyphenyl)methyl]phthalic acid Chemical compound OC(=O)C1=CC=CC(CC=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O TYKLCAKICHXQNE-UHFFFAOYSA-N 0.000 description 1
- CKOFBUUFHALZGK-UHFFFAOYSA-N 3-[(3-aminophenyl)methyl]aniline Chemical compound NC1=CC=CC(CC=2C=C(N)C=CC=2)=C1 CKOFBUUFHALZGK-UHFFFAOYSA-N 0.000 description 1
- UVUCUHVQYAPMEU-UHFFFAOYSA-N 3-[2-(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]aniline Chemical compound NC1=CC=CC(C(C=2C=C(N)C=CC=2)(C(F)(F)F)C(F)(F)F)=C1 UVUCUHVQYAPMEU-UHFFFAOYSA-N 0.000 description 1
- LJMPOXUWPWEILS-UHFFFAOYSA-N 3a,4,4a,7a,8,8a-hexahydrofuro[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1C2C(=O)OC(=O)C2CC2C(=O)OC(=O)C21 LJMPOXUWPWEILS-UHFFFAOYSA-N 0.000 description 1
- OCVLSHAVSIYKLI-UHFFFAOYSA-N 3h-1,3-thiazole-2-thione Chemical compound SC1=NC=CS1 OCVLSHAVSIYKLI-UHFFFAOYSA-N 0.000 description 1
- QCAWOHUJKPKOMD-UHFFFAOYSA-N 4,6-diamino-1h-pyrimidine-2-thione Chemical compound NC1=CC(N)=NC(S)=N1 QCAWOHUJKPKOMD-UHFFFAOYSA-N 0.000 description 1
- XBAMMTPCYPMBNO-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfinylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 XBAMMTPCYPMBNO-UHFFFAOYSA-N 0.000 description 1
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 description 1
- IFYXKXOINSPAJQ-UHFFFAOYSA-N 4-(4-aminophenyl)-5,5-bis(trifluoromethyl)cyclohexa-1,3-dien-1-amine Chemical group FC(F)(F)C1(C(F)(F)F)CC(N)=CC=C1C1=CC=C(N)C=C1 IFYXKXOINSPAJQ-UHFFFAOYSA-N 0.000 description 1
- IWXCYYWDGDDPAC-UHFFFAOYSA-N 4-[(3,4-dicarboxyphenyl)methyl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1CC1=CC=C(C(O)=O)C(C(O)=O)=C1 IWXCYYWDGDDPAC-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- IJJNNSUCZDJDLP-UHFFFAOYSA-N 4-[1-(3,4-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 IJJNNSUCZDJDLP-UHFFFAOYSA-N 0.000 description 1
- ZYEDGEXYGKWJPB-UHFFFAOYSA-N 4-[2-(4-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=C(N)C=CC=1C(C)(C)C1=CC=C(N)C=C1 ZYEDGEXYGKWJPB-UHFFFAOYSA-N 0.000 description 1
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 1
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 1
- KIFDSGGWDIVQGN-UHFFFAOYSA-N 4-[9-(4-aminophenyl)fluoren-9-yl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 KIFDSGGWDIVQGN-UHFFFAOYSA-N 0.000 description 1
- SBQPDLGIWJRKBS-UHFFFAOYSA-N 4-methyl-1,3-dihydroimidazole-2-thione Chemical compound CC1=CNC(S)=N1 SBQPDLGIWJRKBS-UHFFFAOYSA-N 0.000 description 1
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 1
- YGYCECQIOXZODZ-UHFFFAOYSA-N 4415-87-6 Chemical compound O=C1OC(=O)C2C1C1C(=O)OC(=O)C12 YGYCECQIOXZODZ-UHFFFAOYSA-N 0.000 description 1
- IQGYCVKWCYGVBK-UHFFFAOYSA-N 5,6-diamino-1h-pyrimidine-2,4-dithione Chemical compound NC=1NC(=S)NC(=S)C=1N IQGYCVKWCYGVBK-UHFFFAOYSA-N 0.000 description 1
- QYSWOQHLIDKEOL-UHFFFAOYSA-N 5,6-diamino-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound NC=1NC(=S)NC(=O)C=1N QYSWOQHLIDKEOL-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- QHHKLPCQTTWFSS-UHFFFAOYSA-N 5-[2-(1,3-dioxo-2-benzofuran-5-yl)-1,1,1,3,3,3-hexafluoropropan-2-yl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)(C(F)(F)F)C(F)(F)F)=C1 QHHKLPCQTTWFSS-UHFFFAOYSA-N 0.000 description 1
- FMACFWAQBPYRFO-UHFFFAOYSA-N 5-[9-(1,3-dioxo-2-benzofuran-5-yl)fluoren-9-yl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 FMACFWAQBPYRFO-UHFFFAOYSA-N 0.000 description 1
- BXDMTLVCACMNJO-UHFFFAOYSA-N 5-amino-1,3-dihydrobenzimidazole-2-thione Chemical compound NC1=CC=C2NC(S)=NC2=C1 BXDMTLVCACMNJO-UHFFFAOYSA-N 0.000 description 1
- KOFBRZWVWJCLGM-UHFFFAOYSA-N 5-methoxy-1,3-dihydrobenzimidazole-2-thione Chemical compound COC1=CC=C2NC(S)=NC2=C1 KOFBRZWVWJCLGM-UHFFFAOYSA-N 0.000 description 1
- YPXQSGWOGQPLQO-UHFFFAOYSA-N 5-nitro-1,3-dihydrobenzimidazole-2-thione Chemical compound [O-][N+](=O)C1=CC=C2N=C(S)NC2=C1 YPXQSGWOGQPLQO-UHFFFAOYSA-N 0.000 description 1
- YFYYRKDBDBILSD-UHFFFAOYSA-N 6-amino-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound NC1=CC(=O)NC(=S)N1 YFYYRKDBDBILSD-UHFFFAOYSA-N 0.000 description 1
- IDPNFKLUBIKHSW-UHFFFAOYSA-N 6-amino-3h-1,3-benzothiazole-2-thione Chemical compound NC1=CC=C2N=C(S)SC2=C1 IDPNFKLUBIKHSW-UHFFFAOYSA-N 0.000 description 1
- MLZQBMZXBHDWJM-UHFFFAOYSA-N 6-anilino-1h-1,3,5-triazine-2,4-dithione Chemical compound N1C(=S)NC(=S)N=C1NC1=CC=CC=C1 MLZQBMZXBHDWJM-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- HWGBHCRJGXAGEU-UHFFFAOYSA-N Methylthiouracil Chemical compound CC1=CC(=O)NC(=S)N1 HWGBHCRJGXAGEU-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- DFPOZTRSOAQFIK-UHFFFAOYSA-N S,S-dimethyl-beta-propiothetin Chemical compound C[S+](C)CCC([O-])=O DFPOZTRSOAQFIK-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- YVBOZGOAVJZITM-UHFFFAOYSA-P ammonium phosphomolybdate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])=O.[O-][Mo]([O-])(=O)=O YVBOZGOAVJZITM-UHFFFAOYSA-P 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical group C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- XMSVKICKONKVNM-UHFFFAOYSA-N bicyclo[2.2.1]heptane-3,4-diamine Chemical compound C1CC2(N)C(N)CC1C2 XMSVKICKONKVNM-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 1
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- CTCMZLFWDKHYMJ-UHFFFAOYSA-N diethyl(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](CC)(CC)C1=CC=CC=C1 CTCMZLFWDKHYMJ-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- PMRYVIKBURPHAH-UHFFFAOYSA-N methimazole Chemical compound CN1C=CNC1=S PMRYVIKBURPHAH-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- OBKARQMATMRWQZ-UHFFFAOYSA-N naphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 OBKARQMATMRWQZ-UHFFFAOYSA-N 0.000 description 1
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 1
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- UFOIOXZLTXNHQH-UHFFFAOYSA-N oxolane-2,3,4,5-tetracarboxylic acid Chemical compound OC(=O)C1OC(C(O)=O)C(C(O)=O)C1C(O)=O UFOIOXZLTXNHQH-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- UMSVUULWTOXCQY-UHFFFAOYSA-N phenanthrene-1,2,7,8-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1C(O)=O UMSVUULWTOXCQY-UHFFFAOYSA-N 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- ZEMGGZBWXRYJHK-UHFFFAOYSA-N thiouracil Chemical compound O=C1C=CNC(=S)N1 ZEMGGZBWXRYJHK-UHFFFAOYSA-N 0.000 description 1
- 229950000329 thiouracil Drugs 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/20—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
Definitions
- the present invention relates to a planar resistance heating element and a resistance heating seamless tubular body.
- the present invention also relates to a conductive particle-containing resin solution.
- a resistance heat generation seamless fixing belt having a heat generation layer made of a polyimide resin in which carbon nanomaterials and filamentous fine metal particles are dispersed has been proposed (see, for example, JP-A-2007-272223).
- This resistance heating seamless fixing belt is a seamless fixing belt that self-heats when energized, and is used as a main part of an image fixing unit of an electrophotographic image forming apparatus.
- resistance heating seamless fixing belt using a specific graphite fiber and carbon black or carbon nanofiber as a conductive material has been proposed in the past (for example, Japanese Patent Application Laid-Open No. 2013-2013). No. 037213).
- carbon-based fine particles are used as the conductive material instead of the metal fine particles.
- Such a resistance heat generation seamless fixing belt exhibits a stable heat generation characteristic with almost no change in resistance value even after long-term use.
- An object of the present invention is to provide a sheet resistance heating element (including a resistance heating seamless fixing belt) that can be used for a relatively long period of time with a resistance value fluctuation and a strength decrease with use being sufficiently small.
- Another object of the present invention is to provide a planar resistance heating element (including a resistance heating seamless fixing belt) that can be reduced in size while having a small change in resistance value.
- the planar resistance heating element includes a heat generating resin layer and a pair of electrode portions.
- the term “planar” herein may include a sheet form and a tubular form.
- the planar resistance heating element may be composed of only the heat generating resin layer and the pair of electrode portions, or may be composed of a plurality of layers including the heat generating resin layer and the pair of electrode portions.
- the electrode portion is preferably disposed on both sides of the heat generating resin layer. Further, when the planar resistance heating element is in the form of a sheet, the electrode portion may be provided so as to be exposed on the front side surface, may be provided so as to be exposed on the back side surface, or may be embedded. Good.
- the electrode portion When the planar resistance heating element is tubular, the electrode portion may be provided so as to be exposed on the inner peripheral surface, or may be provided so as to be exposed on the outer peripheral surface, or may be embedded. Good. Moreover, a part of the heat generating resin layer may function as an electrode part. The heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. Then, this sheet resistance heating element is calculated by dividing the resistance value between the electrode parts after the 100 hour elapse at a temperature of 300 ° C. by subtracting the initial resistance value between the electrode parts by the initial resistance value. The resistance value variation rate is within a range of ⁇ 30%.
- this sheet resistance heating element has a resistance fluctuation rate within a range of ⁇ 30% when 100 hours have passed at a temperature of 300 ° C. For this reason, this sheet resistance heating element has a sufficiently small resistance value variation with use.
- a heat generating resin layer can be formed from a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler. For this reason, such a planar resistance heating element can sufficiently reduce the strength reduction. Accordingly, such a planar resistance heating element can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
- the heating resin layer can be formed from a resin containing conductive particles having a metal surface.
- the resin preferably contains a resistance value stabilizing component. For this reason, the resistance value of such a planar resistance heating element can be reduced. Therefore, such a planar resistance heating element can be miniaturized while the resistance value variation with use is small.
- a planar resistance heating element includes a heat generating resin layer and a pair of electrode portions.
- the term “planar” herein may include a sheet form and a tubular form.
- the planar resistance heating element may be composed of only the heat generating resin layer and the pair of electrode portions, or may be composed of a plurality of layers including the heat generating resin layer and the pair of electrode portions.
- the electrode portion is preferably disposed on both sides of the heat generating resin layer. Further, when the planar resistance heating element is in the form of a sheet, the electrode portion may be provided so as to be exposed on the front side surface, may be provided so as to be exposed on the back side surface, or may be embedded. Good.
- the electrode portion When the planar resistance heating element is tubular, the electrode portion may be provided so as to be exposed on the inner peripheral surface, or may be provided so as to be exposed on the outer peripheral surface, or may be embedded. Good. Moreover, a part of the heat generating resin layer may function as an electrode part. The heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers.
- the sheet resistance heating element is calculated by dividing the resistance value between the electrode parts after 48 hours at a temperature of 300 ° C. by subtracting the initial resistance value between the electrode parts by the initial resistance value. The resistance value variation rate is within a range of ⁇ 15%.
- this sheet resistance heating element has a resistance fluctuation rate within a range of ⁇ 15% when 48 hours have passed at a temperature of 300 ° C. For this reason, this sheet resistance heating element has a sufficiently small resistance value variation with use.
- a heat generating resin layer can be formed from a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler. For this reason, such a planar resistance heating element can sufficiently reduce the strength reduction. Accordingly, such a planar resistance heating element can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
- the heating resin layer can be formed from a resin containing conductive particles having a metal surface.
- the resin preferably contains a resistance value stabilizing component. For this reason, the resistance value of such a planar resistance heating element can be reduced. Therefore, such a planar resistance heating element can be miniaturized while the resistance value variation with use is small.
- planar resistance heating element is the heat generating resin layer formed of a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler (hereinafter referred to as “a conductive filler”)?
- a conductive filler a conductive filler
- Such a planar resistance heating element is referred to as a “non-metallic nanofiller-containing planar resistance heating element”), and is formed of a resin containing conductive particles having a metal surface (hereinafter referred to as such).
- Such a planar resistance heating element is preferably referred to as “a planar resistance heating element containing metal surface particles”.
- the resin preferably contains a resistance value stabilizing component.
- the exothermic resin layer is preferably formed from a resin containing a non-metallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers but not containing a metallic filler.
- the “non-metallic nanofiller” herein does not include those having a diameter of 0.3 ⁇ m or more.
- it is preferable that at least one of the carbon nanotube and the carbon nanofiber is a main component of the nonmetallic nanofiller, and it is more preferable that the nonmetallic nanofiller is composed of only the carbon nanotube or the carbon nanofiber.
- the “main component” means a component occupying 90% by volume or more.
- the resin may be composed only of a polyimide resin.
- the heat generating resin layer preferably has a film thickness of 20 ⁇ m or more. If the film thickness of the heat generating resin layer satisfies this condition, even if the film thickness varies slightly, the fluctuation range of the resistance value becomes so narrow that it can be practically used. This is because even if it exists, the calorific value can be stabilized.
- the film thickness is 50 micrometers or more.
- the upper limit of this film thickness is 200 micrometers.
- the volume fraction of the nonmetallic nanofilling material with respect to the heat generating resin layer is preferably in the range of 5% by volume to 100% by volume. This is because good flexibility can be imparted to the planar resistance heating element, and application to a resistance heating seamless tubular object becomes possible.
- the volume fraction of the nonmetallic nano filler relative to the exothermic resin layer is 100% by volume, the exothermic resin layer is formed only from the nonmetallic nano filler. In such a case, this planar resistance heating element requires a base layer for supporting the heat generating resin layer.
- the resistance value stabilizing component when a resistance value stabilizing component is added, includes (a) at least one of an SH group and an SM group containing a nitrogen-containing aromatic. It is preferable to include a compound directly bonded to the heterocyclic ring (where M is a metal or substituted or unsubstituted ammonium) and (b) a compound containing boron (B).
- M is a metal or substituted or unsubstituted ammonium
- B a compound containing boron
- the “resistance value stabilizing component” is obtained by heat-treating a resistance value stabilizer of a conductive particle-containing resin solution described later.
- the “SH group” herein is a mercapto group
- the “SM group” is a “metal salt” or a “substituted or unsubstituted ammonium salt” of a mercapto group.
- the compound containing boron (B) is, for example, boron oxide.
- the resistance value stabilizing component contains (c) at least one element of molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium (Nb). It is preferable that a compound to be further contained. This is because deterioration of the electrode part and expansion of the electrode part in the metal surface particle-containing planar resistance heating element can be prevented.
- the resin preferably further contains a carbon nanomaterial.
- the carbon nanomaterial functions as a resistance adjusting material for the planar resistance heating element.
- the carbon nanomaterial is preferably composed mainly of at least one of carbon nanotubes and carbon nanofibers.
- the “main component” refers to a component occupying 90% by volume or more.
- the heat generating resin layer preferably has a thickness of 10 ⁇ m or more. If this condition is satisfied, even if there is a slight variation in film thickness, the fluctuation range of the resistance value becomes extremely narrow to withstand practical use, and even if this planar resistance heating element is mass-produced, the amount of generated heat can be reduced. This is because it can be stabilized.
- the volume fraction of the conductive particles is preferably in the range of 20% by volume to 70% by volume. This is because good flexibility can be imparted to the planar resistance heating element, and application to a resistance heating seamless tubular object becomes possible. This volume fraction is relative to the volume of the resistance exothermic seamless tubular material.
- the initial resistance value between the electrode portions is preferably in the range of 5 ⁇ to 150 ⁇ , and more preferably in the range of 15 ⁇ to 75 ⁇ . This is because the resistance exothermic seamless tubular material in a major country or region can exhibit an output of 400 W to 1200 W that can be required in a fixing device. More specifically, when the initial resistance value is within a range of 5 ⁇ to 40 ⁇ , resistance heat generation for countries and regions such as Japan, the United States, Taiwan, etc., with a voltage within a range of 100V to 120V as a single phase.
- the initial resistance value is in the range of 30 ⁇ or more and 150 ⁇ or less, it can be used as a seamless tubular product for countries and regions such as European countries that specify a voltage in the range of single phase 200V or more and 240V or less. It can be set as a resistance exothermic seamless tubular thing.
- the conductive particle-containing resin solution according to another aspect of the present invention contains a resin or resin precursor, conductive particles, a resistance value stabilizer, and a solvent.
- the conductive particles have a metal surface.
- the “metal” referred to here may be a pure metal or an alloy.
- the conductive particles may be metal particles formed only from metal or may be core / shell type particles. When the conductive particles are core / shell type particles, the shell is formed of metal.
- the solvent dissolves the resin or the resin precursor.
- This conductive particle-containing resin solution contains a resistance value stabilizer as described above. For this reason, the planar resistance heating element (corresponding to the above-mentioned metal surface particle-containing planar resistance heating element) produced from the conductive particle-containing resin solution has a sufficiently small resistance value variation with use.
- the conductive particle-containing resin solution contains conductive particles having a metal surface as described above. For this reason, the planar resistance heating element produced from this conductive particle containing resin solution can make the resistance value small. Therefore, by using this conductive particle-containing resin solution, it is possible to produce a small planar resistance heating element with a small resistance value variation with use.
- the resistance value stabilizer includes (d) a compound in which at least one of an SH group and an SM group is directly bonded to a nitrogen-containing aromatic heterocyclic ring (where M is a metal Or substituted or unsubstituted ammonium.) And (e) at least boric acid.
- the “SH group” is a mercapto group
- the “SM group” is a “metal salt” or “substituted or unsubstituted ammonium salt” of a mercapto group.
- the resistance value stabilizer preferably further includes (f) a polyacid or a salt thereof.
- the “polyacid” referred to here is composed of MO 4 tetrahedron, MO 5 square pyramid, MO 6 hexahedron, or MO 5 trigonal bilateral weight as a result of coordination of 4, 5 and 6 oxygen atoms to metal atoms and the like.
- An inorganic acid composed of basic units.
- the polyacid is preferably an isopolyacid, and more preferably a heteropolyacid.
- the conductive particle-containing resin solution described above further contains a carbon nanomaterial.
- the carbon nanomaterial not only functions as a resistance adjusting material for the planar resistance heating element but also functions as a viscosity adjusting material for the conductive particle-containing resin solution.
- the carbon nanomaterial is preferably composed mainly of at least one of carbon nanotubes and carbon nanofibers.
- the “main component” refers to a component occupying 90% by volume or more.
- the planar resistance heating element according to another aspect of the present invention is obtained by heating a coating film of the above-described conductive particle-containing resin solution.
- the above-described conductive particle-containing resin solution contains a resistance value stabilizer.
- this planar resistance heating element (corresponding to the above-mentioned metal surface particle-containing planar resistance heating element) produced from this conductive particle-containing resin solution has a sufficiently small resistance value variation with use.
- the conductive particle-containing resin solution contains conductive particles having a metal surface. For this reason, this planar resistance heating element produced from this conductive particle containing resin solution can make the resistance value small. Therefore, the planar resistance heating element can be miniaturized while the resistance value variation with use is small.
- a resistance exothermic seamless tubular article includes an exothermic resin layer and a pair of electrode portions.
- this resistance exothermic seamless tubular thing may be comprised only from the heat generating resin layer and a pair of electrode part, and may be comprised from the several layer containing a heat generating resin layer and a pair of electrode part.
- the electrode portion is preferably disposed on both sides of the heat generating resin layer.
- the electrode part may be provided so as to be exposed on the inner peripheral surface, may be provided so as to be exposed on the outer peripheral surface, or may be embedded.
- a part of the heat generating resin layer may function as an electrode part.
- the heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. And this resistance exothermic seamless tubular thing removes the value which deducted the initial resistance value between the said electrode parts from the resistance value between the electrode parts when 100 hours passed under the temperature of 300 degreeC by the initial resistance value.
- the calculated resistance value fluctuation rate is within a range of ⁇ 30%.
- this resistance exothermic seamless tubular product has a resistance value fluctuation rate within a range of ⁇ 30% when 100 hours have passed at a temperature of 300 ° C. For this reason, this resistance exothermic seamless tubular product has a sufficiently small resistance value variation with use.
- the exothermic resin layer can be formed from a resin containing only a nonmetallic nanofiller including at least one of carbon nanotubes and carbon nanofibers. For this reason, such a resistance exothermic seamless tubular product can sufficiently reduce the strength reduction. Therefore, such resistance exothermic seamless tubular objects can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
- the exothermic resin layer can also be formed from a resin containing conductive particles having a metal surface.
- the resin preferably contains a resistance value stabilizing component. For this reason, such a resistance exothermic seamless tubular object can make the resistance value small. Therefore, such a resistance heat generation seamless tubular object can be reduced in size while the resistance value fluctuation accompanying use is small.
- a resistance exothermic seamless tubular article includes an exothermic resin layer and a pair of electrode portions.
- this resistance exothermic seamless tubular thing may be comprised only from the heat generating resin layer and a pair of electrode part, and may be comprised from the several layer containing a heat generating resin layer and a pair of electrode part.
- the heat generating resin layer is formed of a resin containing conductive particles having a metal surface.
- the electrode portion is preferably disposed on both sides of the heat generating resin layer.
- the electrode part may be provided so as to be exposed on the inner peripheral surface, may be provided so as to be exposed on the outer peripheral surface, or may be embedded.
- a part of the heat generating resin layer may function as an electrode part.
- the heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. And in this resistance exothermic seamless tubular thing, it calculated by dividing the value which deducted the initial resistance value between electrode parts from the resistance value between electrode parts when 48 hours passed at the temperature of 300 degreeC by the initial resistance value.
- the resistance value variation rate is within a range of ⁇ 15%.
- this resistance exothermic seamless tubular product has a resistance fluctuation rate within a range of ⁇ 15% when 48 hours have passed at a temperature of 300 ° C. For this reason, this resistance exothermic seamless tubular product has a sufficiently small resistance value variation with use.
- the exothermic resin layer can be formed from a resin containing only a nonmetallic nanofiller including at least one of carbon nanotubes and carbon nanofibers. For this reason, such a resistance exothermic seamless tubular product can sufficiently reduce the strength reduction. Therefore, such resistance exothermic seamless tubular objects can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
- the exothermic resin layer can also be formed from a resin containing conductive particles having a metal surface.
- the resin preferably contains a resistance value stabilizing component. For this reason, such a resistance exothermic seamless tubular object can make the resistance value small. Therefore, such a resistance heat generation seamless tubular object can be reduced in size while the resistance value fluctuation accompanying use is small.
- FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
- FIG. 4 is a sectional view taken along line BB in FIG. 3.
- FIG. 7 is a cross-sectional view taken along the line CC of FIG.
- the planar resistance heating element according to the first embodiment of the present invention is a sheet-like or tubular resistance heating element.
- the sheet-like planar resistance heating element is easily formed by cutting a tubular planar resistance heating element along the longitudinal direction. Therefore, here, the details of the planar resistance heating element will be described using the tubular planar resistance heating element (hereinafter referred to as “resistance heating seamless tubular object”) 100 shown in FIG. A description of the resistance heating element will be omitted.
- the resistance heating seamless tubular object 100 is mainly composed of a main body 110 and a pair of electrodes 120 as shown in FIGS.
- these components 110 and 120 will be described in detail.
- Main Body The main body 110 is mainly composed of a heat generating resin layer 112 and a release layer 113 as shown in FIGS. 4 and 5.
- these layers 112 and 113 will be described in detail.
- the exothermic resin layer 112 is a seamless tubular layer as shown in FIGS. 4 and 5, and can mainly withstand the temperature during use of the resistance exothermic seamless tubular body 100. It is preferably formed from a heat resistant insulating material. Examples of such a heat resistant insulating material include a heat resistant resin.
- the heat-resistant resin is preferably a resin containing a polyimide resin as a main component, and more preferably a polyimide resin itself.
- the heat-resistant resin is a resin mainly composed of a polyimide resin
- other heat-resistant resins such as polyamide imide and polyether sulfone are added to the heat-resistant resin within the range that does not impair the essence of the present invention. May be.
- the heat-resistant resin includes a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers having a diameter of less than 0.3 ⁇ m as the conductive filler.
- the resistance exothermic seamless tubular article 100 according to the present embodiment does not include a metal nanofiller as the conductive filler.
- the diameter of the carbon nanotube or carbon nanofiber is more preferably in the range of 0.015 ⁇ m to 0.20 ⁇ m, further preferably in the range of 0.08 ⁇ m to 0.15 ⁇ m, and more preferably 0.10 ⁇ m to 0 It is particularly preferable to be within the range of 15 ⁇ m. At least one of the carbon nanotube and the carbon nanofiber is preferably a main component of the nonmetallic nanofiller.
- the volume fraction of the nonmetallic nanofiller with respect to the heat generating resin layer 112 is in the range of 5% by volume to 100% by volume, but is in the range of 5% by volume to 70% by volume. Preferably, it is in the range of 15 volume% or more and 60 volume% or less, more preferably in the range of 25 volume% or more and 50 volume% or less, and in the range of 25 volume% or more and 40 volume% or less. It is particularly preferred that Of course, the volume fraction needs to be changed depending on the target resistance value, but if the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent. It is.
- the thickness of the heat generating resin layer 112 is 20 ⁇ m or more, preferably 40 ⁇ m or more, and more preferably 50 ⁇ m or more. If the thickness of the heat generating resin layer 112 satisfies this condition, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. This is because the amount of heat generated can be stabilized even in the case of production. In consideration of ease of manufacture and flexibility of the resistance heating seamless tubular article 100, the thickness is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 50 ⁇ m or less.
- the carbon nanotubes or carbon nanofibers in the heat generating resin layer 112 are oriented in the length direction. This is because the electrical resistance value can be efficiently lowered with a relatively small amount of carbon nanomaterial, and uniform heat generation characteristics can be obtained.
- the heat-generating resin layer 112 is provided with alumina, boron nitride, aluminum nitride, silicon carbide, titanium oxide, silica, potassium titanate, alumina, silicon nitride, etc. for the purpose of improving thermal conductivity and the like.
- potassium titanate fiber, acicular titanium oxide, aluminum borate whisker, tetrapotted zinc oxide whisker, sepiolite, fiber particles such as glass fiber, montmorillonite, Viscous minerals such as talc may be added to such an extent that the essence of the present invention is not impaired.
- the release layer 113 is preferably formed from at least one selected from the group consisting of fluororesin, silicone rubber and fluororubber.
- the release layer 113 is preferably formed of a fluororesin.
- the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). It may be used in a mixture or may be used as a mixture.
- the release layer 113 preferably has a thickness in the range of 5 ⁇ m to 30 ⁇ m, and more preferably in the range of 10 ⁇ m to 20 ⁇ m.
- the release layer 113 is preferably bonded to the heat generating resin layer 112 through a primer.
- the primer thickness is preferably in the range of 2 ⁇ m to 5 ⁇ m.
- Electrode The electrode 120 is arrange
- the electrode 120 can be formed from, for example, a silver paste or the like.
- As the silver paste for example, those disclosed in International Publication No. 08/016148 can be used.
- the electrode 120 is in contact with the power supply member 210 as shown in FIG.
- the power supply member 210 include a power supply brush, a power supply roll, and a power supply bar.
- the resistance exothermic seamless tubular object 100 according to the first embodiment is intended for countries and regions such as Japan, the United States, Taiwan and the like that have a voltage within a range of a single phase of 100V to 120V.
- the initial resistance value between the electrodes is preferably adjusted within the range of 5 ⁇ to 40 ⁇ , and countries and regions such as European countries that use a single-phase voltage of 200V to 240V as a standard. When it is directed, it is preferable that the initial resistance value between the electrode portions is adjusted within a range of 30 ⁇ to 150 ⁇ .
- the initial resistance value between the electrode portions is adjusted within a range of 15 ⁇ to 20 ⁇ . In the latter case, it is more preferable that the initial resistance value between the electrode portions is adjusted within a range of 65 ⁇ to 75 ⁇ . This is because this resistance heat-generating seamless tubular product can exhibit an output of 400 W to 1200 W that can be required in a fixing device in major countries and major regions.
- the initial resistance value of the resistance exothermic seamless tubular object 100 is measured at normal temperature and pressure.
- the resistance exothermic seamless tubular article 100 has a resistance value fluctuation rate of ⁇ 15 at the time of elapse of 48 hours at a temperature of 300 ° C. by being configured as described above. %,
- the resistance value fluctuation rate after 100 hours at a temperature of 300 ° C. can be kept within a range of ⁇ 30%, and the resistance value fluctuation after 125 hours at a temperature of 300 ° C.
- the rate can be kept within a range of ⁇ 30%.
- the resistance value fluctuation rate at the time of elapse of 48 hours at a temperature of 300 ° C. is more preferably within a range of ⁇ 10%, and further preferably within a range of ⁇ 7%.
- the rate of change in resistance value after 100 hours at a temperature of 300 ° C. is more preferably within a range of ⁇ 25%, further preferably within a range of ⁇ 20%, and within a range of ⁇ 15%. More preferably, it is particularly preferably within a range of ⁇ 10%.
- the resistance value fluctuation rate when 125 hours have passed at a temperature of 300 ° C. is more preferably within a range of ⁇ 25%, further preferably within a range of ⁇ 20%, and within a range of ⁇ 15%. More preferably, it is particularly preferably within a range of ⁇ 10%.
- the “resistance value fluctuation rate” here is calculated by the following equation 1.
- “300 ° C. t time elapsed resistance value” indicates the resistance value of the resistance heating seamless tubular article 100 at 300 ° C. temperature t time elapsed
- “initial resistance value” is room temperature. The initial resistance value of the resistance heating seamless tubular article 100 is shown.
- the resistance exothermic seamless tubular article 100 according to the first embodiment is mainly manufactured through a heat generating resin layer forming step, an electrode forming step, a primer applying step, a release layer forming step, a firing step, and a demolding step.
- this manufacturing method is only an example and does not limit the present invention.
- each said manufacturing process is explained in full detail.
- a non-metallic nanofiller-containing polyimide precursor solution VS is made of a cylindrical core body 610 using a ring-shaped die 620. After uniformly apply
- the heating temperature at this time is preferably a temperature at which the organic polar solvent volatilizes but imidization does not proceed, for example, a temperature in the range of 200 ° C. or more and 250 ° C. or less. You may raise to 450 degreeC. In such a case, the carbon nanotubes and carbon nanofibers are aligned in one direction and oriented in the direction in which the ring-shaped die travels.
- the non-metallic nanofiller-containing polyimide precursor solution can be obtained by mixing non-metallic nanofillers such as carbon nanotubes and carbon nanofibers with a polyimide precursor solution prepared as follows.
- the addition method of a nonmetallic nanofiller is not specifically limited, Of course, the method of adding a nonmetallic nanofiller directly to a polyimide precursor solution, as well as the nonmetallic nanofiller during the polyimide precursor solution preparation The method of adding may be sufficient.
- the polyimide precursor solution is prepared as follows. First, a diamine solution is prepared by dissolving at least one diamine in an organic polar solvent, and then at least one tetracarboxylic dianhydride is added to the diamine solution to obtain a diamine, a tetracarboxylic dianhydride, Is polymerized to prepare a polyimide precursor solution.
- the environmental temperature is preferably in the range of 10 ° C. or higher and 90 ° C. or lower.
- solid content concentration is determined by the conditions of application
- the viscosity of the polyimide precursor solution is It is preferably within a range of 10 poise or more and 1,500 poise or less, and more preferably within a range of 50 poise or more and 1,000 poise or less.
- organic polar solvent capable of preparing the polyimide precursor solution examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, 1 , 3-dimethyl-2-imidazolidinone, N-methylcaprolactam, hexamethylphosphoric triamide, 1,2-dimethoxyethane, diglyme, triglyme and the like.
- diamines N, N-dimethylacetamide (DMAC) and N-methyl-2-pyrrolidone (NMP) are particularly preferable.
- these organic polar solvents may be used independently and may be used in combination.
- aromatic hydrocarbons such as toluene and xylene, may be mixed with this organic polar solvent.
- diamine capable of preparing the polyimide precursor solution examples include, for example, paraphenylenediamine (PPD), metaphenylenediamine (MPDA), 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4 ′ -Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 2,2-bis (trifluoromethyl) -4, 4'- Diaminobiphenyl, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane (MDA), 2,2-bis- (4-aminophenyl) propane, 3,3′-diaminodiphenylsulfone (33DDS), 4, 4′-diaminodiphenyl sulfone (44DDS), 3,3′-diaminodiphen
- examples of the tetracarboxylic dianhydride that can prepare the polyimide precursor solution include pyromellitic dianhydride (PMDA), 1,2,5,6-naphthalene tetracarboxylic dianhydride, 1,4 , 5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 , 3′4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride Anhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone
- tetracarboxylic dianhydrides even if it uses these tetracarboxylic dianhydrides in mixture of 2 or more types, it does not interfere at all.
- pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride (BPADA), and oxydiphthalic anhydride (ODPA) are preferred.
- polyimide resins obtained from these monomers are excellent in mechanical properties and tough, and do not soften or melt like thermoplastic resins even when the temperature of the resistance exothermic seamless tubular article 100 rises, and have excellent heat resistance It is because it has.
- a resin such as polyamide imide or polyether sulfone may be added to the polyimide precursor solution within a range not impairing the essence of the present invention.
- the polyimide precursor solution includes a dispersant, a solid lubricant, an anti-settling agent, a leveling agent, a surface conditioner, a moisture absorbent, an anti-gelling agent, and an antioxidant within the range not impairing the properties of the present invention.
- a dispersant such as UV absorbers, light stabilizers, plasticizers, anti-skinning agents, surfactants, antistatic agents, antifoaming agents, antibacterial agents, antifungal agents, antiseptics, thickeners May be.
- a stoichiometric or higher dehydrating agent and an imidization catalyst may be added to the polyimide precursor solution.
- the polyimide precursor solution is preferably subjected to a treatment such as filtration and defoaming before use.
- Electrode forming step In the electrode forming step, first, a silver paste is applied to the outer peripheral surfaces of both end portions of the heat generating resin layer 112, and then the applied thickness of the silver paste is made uniform by a known method. And the electrode 120 can be shape
- the polyimide precursor is added to silver paste as binder resin. This is because not only the adhesiveness with the heat generating resin layer 112 can be improved, but also the electrode 120 remains firmly bonded to the heat generating resin layer 112 even at high temperatures.
- a silver paste for example, those disclosed in International Publication No. 08/016148 can be used.
- the core liquid 610 on which the heat generating resin layer 112 is formed is dipped in the primer liquid in a state where the electrode 120 is masked, so that the primer liquid is formed on the outer peripheral surface of the heat generating resin layer 112. Evenly applied. And the exothermic resin layer 112 (with core body 610) with the coating film is heated.
- the heating temperature at this time is a temperature at which the solvent is volatilized but imidization of the previous polyimide precursor does not proceed, for example, a temperature within a range of 200 ° C. or more and 250 ° C. or less.
- Firing step In the firing step, after the masking is removed, the product obtained in the release layer forming step is fired to obtain the resistance exothermic seamless tubular product 100.
- the firing temperature at this time is preferably a temperature within the range of 350 ° C. or more and 400 ° C. or less.
- the treatment time is preferably in the range of 30 minutes to 2 hours. If the imidization of the heat generating resin layer 112 is completed and the fluororesin of the release layer 113 is fired at the same time, the manufacturing time of the resistance heat generating seamless tubular product 100 can be shortened and the thermal efficiency can be improved. This is because the adhesive strength of the layers 112 and 113 can also be increased.
- ⁇ Fixing device of electrophotographic image forming apparatus an embodiment of an image fixing apparatus incorporating the resistance heat generating seamless tubular body 100 according to the first embodiment will be described.
- the image fixing apparatus can also incorporate a resistance heating seamless tubular article 100 according to a second embodiment to be described later.
- the image fixing device 400 mainly includes a resistance heating seamless tubular object 100 according to the present embodiment, a belt support 150, a pressure roll 300, and a power supply roll 210. ing.
- the resistance exothermic seamless tubular object 100 is as described above.
- the belt support 150 is made of a heat-resistant insulating resin such as polyphenylene sulfide, polyamideimide, polyetheretherketone, or liquid crystal polymer, and mainly includes a cylindrical portion 151 and a belt guide portion 152. As shown in FIG. 7, the cylindrical portion 151 is rotatably disposed inside the resistance heating seamless tubular object 100.
- the belt guide part 152 functions as a stopper when the resistance heating seamless tubular article 100 meanders in the width direction.
- the pressure roll 300 includes a roll body 310 and a shaft 320.
- the shaft 320 extends on both sides along the rotation axis of the roll body 310 and is connected to a drive motor (not shown).
- the roll body 310 is pressed against the resistance heating seamless tubular object 100, and as a result, a nip portion N is formed between the roll body 310 and the resistance heating seamless tubular object 100. That is, when the drive motor is driven, the roll main body 310 rotates about the rotation axis, and the resistance heating seamless tubular object 100 pressed against the pressure roll 300 is driven. Then, as shown in FIG. 7, the copy paper PP on which the unfixed toner image TN is formed is sequentially fed into the nip portion N, and the unfixed toner image TN is sequentially heat-fixed on the copy paper PP.
- the power supply roll 210 is connected to the AC power supply 230 via the lead wire 220 and is in contact with the electrode 120 of the resistance heating seamless tubular object 100. For this reason, electricity is supplied to the resistance heating seamless tubular object 100 from the AC power supply 230 via the power supply roll 210.
- the resistance heat generating seamless tubular body 100 is energized, the heat generating resin layer 112 generates resistance heat as described above.
- the resistance exothermic seamless tubular article 100 according to the first embodiment has an exothermic resin layer 112, and the exothermic resin layer 112 has at least one of carbon nanotubes and carbon nanofibers as a main component as a conductive filler. Only the non-metallic nano filler is dispersed in the heat-resistant resin, and does not include a conductive filler having a relatively large size such as graphite fiber or a metallic conductive filler.
- the resistance exothermic seamless tubular article 100 has a resistance value fluctuation rate within a range of ⁇ 15% when 48 hours have passed at a temperature of 300 ° C., and has a resistance value when 100 hours have passed at a temperature of 300 ° C. Value fluctuation rate is within ⁇ 30%. For this reason, this resistance exothermic seamless tubular object 100 not only has a sufficiently small resistance value variation with use, but also can sufficiently reduce the strength reduction. Therefore, this resistance exothermic seamless tubular object 100 can be used for a relatively long time.
- the heat generating resin layer 112 has a thickness of 20 ⁇ m or more. For this reason, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. The calorific value can be stabilized.
- the volume fraction of the nonmetallic nanofiller with respect to the exothermic resin layer 112 is in the range of 5% by volume to 100% by volume. Good flexibility can be imparted to the resistance exothermic seamless tubular article 100.
- a base layer may be provided on the inner peripheral side of the heat generating resin layer 112.
- the base layer is a seamless tubular layer, and is preferably formed from a heat-resistant insulating material that can withstand the temperature during use of the resistance heating seamless tubular object 100.
- a heat-resistant insulating material include special stainless steel and heat-resistant resin.
- the heat-resistant resin is preferably a resin mainly composed of a polyimide resin or silicone rubber, and more preferably a polyimide resin itself.
- the resistance heat generating seamless tubular article 100 is incorporated in an image fixing unit of an electrophotographic image forming apparatus as a fixing tube or a fixing belt, it is preferable that the base layer has a mechanical characteristic capable of withstanding the operation.
- the heat generating resin layer 112 may have a thickness of 30 ⁇ m or more.
- the main body 110 may be formed of only the heat generating resin layer 112.
- the electrodes 120 are provided at both ends, but the arrangement positions of the electrodes 120 are not particularly limited, and may be appropriately changed according to the application.
- an elastic layer may be provided between the heat generating resin layer 112 and the release layer 113.
- the elastic layer is preferably made of at least one rubber selected from the group consisting of silicone rubber and fluorine rubber. This rubber is preferably soft and low in hardness. Specifically, for example, silicone rubber having a JIS-A hardness of 3 to 50 degrees is suitable.
- the thickness of this elastic layer is preferably in the range of 100 ⁇ m or more and 500 ⁇ m or less.
- an insulating layer may be provided between the heat generating resin layer 112 and the release layer 113.
- a primer is preferably used between the insulating layer and the release layer 113 in order to stabilize the adhesiveness.
- the insulating layer may be added with a filler for improving thermal conductivity or a filler for improving mechanical properties listed in the column of “(1-1) Heat generating resin layer”. Absent.
- At least one diamine is dissolved in an organic polar solvent to prepare a diamine solution, and then at least one tetracarboxylic dianhydride is added to the diamine solution to add diamine and tetra
- a polyimide precursor solution was prepared by polymerizing with carboxylic dianhydride, but the method for producing the polyimide precursor solution is not particularly limited, and either a diamine or a tetracarboxylic dianhydride derivative is used. May be. Examples of the tetracarboxylic dianhydride derivatives include ester compounds.
- the electrode 120 is disposed so as to be in contact with the heat generating resin layer 112 (see FIG. 5). However, if conductivity is imparted to the release layer 113 and the primer, the electrode 120 is removed from the release layer 113. You may arrange
- the electrode 120 is disposed so as to be exposed to the outer peripheral side (see FIG. 5), but if the release layer 113 is provided with conductivity, the electrode 120 may be embedded in the release layer 113.
- the electrode 120 is disposed so as to be exposed on the outer peripheral side (see FIG. 5), but like the resistance heating seamless tubular object 100a shown in FIG.
- the electrode 120 may be disposed so as to be exposed on the inner peripheral side of the heat generating resin layer 112.
- the base layer is provided so that the electrode 120 is exposed on the inner peripheral side.
- the electrode 120 may be embedded in the base layer as long as conductivity is imparted to the base layer.
- the electrode 120 is disposed on the exothermic resin layer 112 (see FIG. 5), but like the resistance exothermic seamless tubular object 100b shown in FIG.
- the electrode 120 may be disposed beside the heat generating resin layer 112.
- the release layer 113 when the release layer 113 maintains insulation, the release layer 113 is formed on the heat generating resin layer 112 so that the electrode 120 is exposed on the inner peripheral side or the electrode 120 is exposed on the outer peripheral side. It is formed only on the outer peripheral surface.
- the release layer 113 may cover the electrode 120.
- the electrode 120 is exposed on the outer peripheral side.
- the release layer 113 is formed only on the outer peripheral surface of the heat generating resin layer 112 (in this case, the base layer may cover the electrode 120), or the base layer is formed so that the electrode 120 is exposed to the inner peripheral side. It is formed only on the inner peripheral surface of the layer 112 (in such a case, the release layer 113 may cover the electrode 120).
- the base layer may cover the electrode 120.
- the tubular planar resistance heating element according to the second embodiment (hereinafter referred to as “resistance heating seamless tubular material”) is the tubular structure according to the first embodiment only in the configuration of the heat generating resin layer. It differs from the planar resistance heating element. Therefore, hereinafter, only the heat-generating resin layer will be referred to, and description of other configurations will be omitted.
- Heat generation resin layer 112 is a seamless tubular layer as shown in FIG. 4 and FIG.
- Heat-resistant insulating material to be obtained "," conductive particles having a metal surface (hereinafter referred to as “metal surface conductive particles”) "," compound in which at least one of SH group and SM group is directly bonded to a nitrogen-containing aromatic heterocycle (Wherein M is a metal or substituted or unsubstituted ammonium) (hereinafter referred to as “mercapto group-containing nitrogen-containing aromatic heterocyclic compound”) ”and“ boron (B) -containing compound (hereinafter referred to as “boron-containing”). Compound ”))”.
- the metal surface conductive particles, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound and the boron-containing compound are contained in the heat-resistant insulating material.
- the heat generating resin layer 112 may include “molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium (Nb) at least one element.
- the polyacid-derived compound (hereinafter referred to as “polyacid-derived compound”) ”may be further included, or carbon nanomaterials such as carbon nanotubes and carbon nanofibers may be included as a conductive auxiliary material.
- electrically insulating particles such as alumina, boron nitride, aluminum nitride, silicon carbide, titanium oxide, silica, potassium titanate, alumina, silicon nitride may be included.
- potassium titanate fiber, acicular titanium oxide, aluminum borate whisker, tetrapot shape Zinc whiskers, sepiolite, fibrous particles such as glass fiber, montmorillonite may include clay minerals such as talc.
- these optional components are required to be added to such an extent that the essence of the present invention is not impaired.
- These optional components are contained in the heat-resistant insulating material.
- the heat-resistant insulating material examples include a heat-resistant resin.
- the heat-resistant resin is preferably a resin containing a polyimide resin as a main component, and more preferably a polyimide resin itself. Note that details of the polyimide resin are sufficiently described in the first embodiment, and thus description thereof is omitted.
- the heat-resistant resin is a resin mainly composed of a polyimide resin
- other heat-resistant resins such as polyamide imide and polyether sulfone are added to the heat-resistant resin within a range that does not impair the essence of the present invention. May be.
- the metal surface conductive particles according to the second embodiment are metal particles or conductive particles (hereinafter referred to as “core— This is referred to as “shell-type conductive particles”.
- core— This is referred to as “shell-type conductive particles”.
- the metal particles are not particularly limited, but are preferably highly conductive metal particles such as platinum, gold, silver, nickel, and palladium.
- the metal particles may have any shape such as a scale shape, a needle shape, a dendritic shape, or a filament shape, but a filament shape is preferable because a conductive network can be constructed with a small amount.
- the metal particles are particularly “metal particles having a shape in which strands are three-dimensionally connected” (hereinafter referred to as “strand continuous metal particles”) as shown in FIG. preferable.
- Such strand continuous metal particles preferably have an average particle diameter in the range of 0.1 ⁇ m to 5.0 ⁇ m and a specific surface area of 1.0 m 2 / g to 100 m 2 / g.
- the strand continuous metal particles can form a low-resistance heating resistor by being intertwined linearly with the carbon nanomaterial, A heat generating resin layer having a uniform volume resistivity can be formed.
- the core particle of the core-shell type conductive particle is not particularly limited, but is an inorganic particle such as carbon, glass, ceramics, etc. from the viewpoint of characteristics such as cost and heat resistance. Is preferred.
- the inorganic particles particles having an arbitrary shape such as a scaly shape, a needle shape, or a dendritic shape can be used.
- the inorganic fine particles are preferably hollow and foamed fine particles in terms of dispersibility, stability and weight reduction when mixed with the polyimide precursor solution.
- the metal shell preferably covers 80% or more of the surface area of the core particle, more preferably 90% or more, and even more preferably 95% or more.
- the metal shell may be a single layer or a plurality of layers.
- the core particle portion not covered with the metal shell may be covered with another metal.
- conductive metals include noble metals such as platinum, gold and palladium, and base metals such as molybdenum, nickel, cobalt, iron, copper, zinc, tin, antimony, tungsten, manganese, titanium, vanadium and chromium.
- base metals such as molybdenum, nickel, cobalt, iron, copper, zinc, tin, antimony, tungsten, manganese, titanium, vanadium and chromium.
- it does not specifically limit as a method of forming a metal shell on a core particle For example, electrolytic plating, electroless plating, vacuum evaporation, sputtering etc. are mentioned.
- the average particle diameter of the metal surface conductive fine particles is preferably in the range of 1 ⁇ m or more and less than 50 ⁇ m. When the average particle diameter of the metal surface conductive fine particles is within this range, the metal surface conductive fine particles are less likely to aggregate in the conductive particle-containing resin solution (described later), and the coating obtained from the conductive particle-containing resin solution is used. This is because the surface roughness of the film or film is lowered.
- the volume fraction of the metal surface conductive particles relative to the heat-resistant insulating material is preferably in the range of 20% by volume to 70% by volume, and in the range of 30% by volume to 60% by volume. More preferably, it is more preferably in the range of 35% to 55% by volume, and particularly preferably in the range of 40% to 50% by volume.
- the volume fraction needs to be changed depending on the target resistance value, but when the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent.
- the metal surface conductive particles in the heat generating resin layer 112 when the shape of the metal surface conductive particles in the heat generating resin layer 112 is needle-shaped or the like, it is preferable that the metal surface conductive particles are oriented in the length direction. . This is because the electrical resistance value can be efficiently lowered with a relatively small amount of metal surface conductive particles, and uniform heat generation characteristics can be obtained.
- R1, R2, R3 and R4 is an SH group or an SM group, and M is a metal or a substituted or unsubstituted ammonium.
- R5, R6 and R7 is an SH group or an SM group, and M is a metal or a substituted or unsubstituted ammonium.
- the pyrimidine thiol compound is not particularly limited, and is a compound having a pyrimidine skeleton and having at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or unsubstituted ammonium salt). I just need it.
- the metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper.
- pyrimidine thiol compound examples include 2-mercaptopyrimidine (2MP), 2-hydroxy-4-mercaptopyrimidine, 4-hydroxy-2-mercaptopyrimidine, and 2,4-diamino-6- Mercaptopyrimidine, 4,6-diamino-2-mercaptopyrimidine, 4-amino-6-hydroxy-2-mercaptopyrimidine, 2-thiobarbituric acid, 4-hydroxy-2-mercapto-6-methylpyrimidine, 4,6 -Dimethyl-2-pyrimidine thiol (DMPT), 4,5-diamino-2,6-dimercaptopyrimidine, 4,5-diamino-6-hydroxy-2-mercaptopyrimidine, and salts thereof.
- these pyrimidine thiol compounds may be used independently and may be used together.
- the triazine thiol compound is not particularly limited, and is a compound having a triazine skeleton and having at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or unsubstituted ammonium salt). I just need it.
- the metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper.
- triazine thiol compound examples include 2-amino-1,3,5-triazine-4,6-dithiol (ATDT), 2-di-n-butylamino-4,6- Examples include dimercapto-1,3,5-triazine (DBDMT), 2-phenylamino-4,6-dimercapto-1,3,5-triazine, trithiocyanuric acid (TTCA), and salts thereof.
- triazine thiol compounds trithiocyanuric acid monosodium salt and trithiocyanuric acid trisodium salt (TTCA-3Na) are particularly preferred.
- these triazine thiol compounds may be used independently and may be used together.
- the imidazole compound having at least one of a mercapto group and a substituted mercapto group is not particularly limited, has an imidazole skeleton, and has at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or Any compound having an unsubstituted ammonium salt) may be used.
- the metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper.
- imidazole compound examples include 2-mercaptobenzimidazole (MBI), 2-mercaptoimidazole, 2-mercapto-1-methylimidazole, 2-mercapto-5-methylimidazole, 5-amino -2-Mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole (MMI), 2-mercapto-5-nitrobenzimidazole, 2-mercapto-5-methoxybenzimidazole, 2-mercaptobenzimidazole-5-carboxylic acid And their salts.
- MBI 2-mercaptobenzimidazole
- MMI 2-mercaptobenzimidazole
- 2-mercapto-1-methylimidazole 2-mercapto-5-methylimidazole
- 5-amino -2-Mercaptobenzimidazole 2-mercapto-5-methylbenzimidazole
- MMI 2-mercapto-5-methylbenzimidazole
- 2-mercapto-5-nitrobenzimidazole 2-mercapto-5-methoxybenzimi
- the thiazole compound having at least one of a mercapto group and a substituted mercapto group is not particularly limited, has a thiazole skeleton, and has at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or Any compound having an unsubstituted ammonium salt) may be used.
- the metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper.
- Specific examples of the imidazole compound include 2-benzothiazole thiol (BTT), 6-amino-2-mercaptobenzothiazole, 2-mercaptothiazole, and salts thereof.
- a thiazole compound may be used independently and may be used together.
- the boron-containing compound is not particularly limited, and is, for example, boron oxide.
- the polyacid-derived compound includes molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium ( A compound containing at least one element of Nb), which may be a polyacid itself or a polyacid salt itself, a polyacid or a heated product of the polyacid salt, a polyacid or It may be a heat product of a polyacid salt and another compound.
- the metal atom in the case where the polyacid salt is a metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Is done.
- polyacids that produce such polyacid-derived compounds include phosphovanadic acid, germanovanadate, arsenic vanadic acid, phosphoniobic acid, germanoniobic acid, silicomolybdic acid (siliconomolybdic acid), phosphomolybdic acid, titanium Molybdic acid, germanomolybdic acid, arsenic molybdic acid, tin molybdic acid, phosphotungstic acid, germanotungstic acid, tin tungstic acid, silicotungstic acid, phosphomolybdovanadic acid, phosphotungstovanadic acid, germanotungstovanadic acid , Phosphomolybdo-tungstovanadic acid, germano-molybdo-tungstovanadic acid, lymmolybdotungstic acid, lymmolybdniobic acid, lintoungstomolybdic acid, phosphovanadomolybdic acid and the like.
- particularly preferred polyacids are silicotungstic acid, phosphotungstic acid, and phosphomolybdic acid. These polyacids may be used alone or in combination. That is, at least one polyacid of silicotungstic acid, phosphotungstic acid and phosphomolybdic acid may be used.
- the polyacid-derived compound particularly preferable in the present embodiment includes at least one of molybdenum (Mo) and tungsten (W).
- the thickness of the heat generating resin layer 112 is preferably 10 ⁇ m or more. If the thickness of the heat generating resin layer 112 satisfies this condition, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. This is because the amount of heat generated can be stabilized even in the case of production. In consideration of ease of manufacture and flexibility of the resistance heating seamless tubular article 100, the thickness is preferably 200 ⁇ m or less.
- Initial resistance value The initial resistance value of the resistance heating seamless tubular article 100 according to the second embodiment is the same as the initial resistance value of the resistance heating seamless tubular article 100 according to the first embodiment.
- Resistance value fluctuation rate of the resistance heating seamless tubular object 100 according to the second embodiment is the same as the resistance value fluctuation rate of the resistance heating seamless tubular object 100 according to the first embodiment. is there.
- the resistance exothermic seamless tubular article 100 according to the present embodiment is mainly composed of a conductive particle-containing polyimide precursor solution preparation step, an exothermic resin layer forming step, an electrode forming step, a primer coating step, a release layer forming step, and a firing step. It is manufactured through a demolding process.
- this manufacturing method is only an example and does not limit the present invention. Hereafter, each said manufacturing process is explained in full detail.
- Conductive particle-containing polyimide precursor solution preparation step In the conductive particle-containing polyimide precursor solution preparation step, the above-described metal surface conductive particles and the above-described mercapto group are contained in the polyimide precursor solution prepared as follows. A nitrogen-containing aromatic heterocyclic compound and boric acid are added to obtain a conductive particle-containing polyimide precursor solution.
- the mercapto group-containing nitrogen-containing aromatic heterocyclic compound and boric acid function as a resistance value stabilizer that stabilizes the resistance value of the resistance exothermic seamless tubular body 100.
- the conductive particle-containing polyimide precursor solution is added with the above-described polyacid, the above-mentioned carbon nanomaterial, the above-mentioned electrically insulating particles, the above-mentioned fibrous particles, and the above-mentioned viscosity mineral as optional components. Also good.
- grains and compounds is not specifically limited, The method of adding these particle
- the metal surface conductive particles are polyimide precursors such that the volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution is in the range of 5% by volume to 70% by volume. It is preferably added to the body solution, more preferably added to the polyimide precursor solution so as to be in the range of 10% by volume to 60% by volume, and in the range of 15% by volume to 50% by volume. More preferably, it is added to the polyimide precursor solution, particularly preferably added to the polyimide precursor solution so as to be in the range of 20% by volume to 40% by volume.
- the volume fraction needs to be changed depending on the target resistance value, but when the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent.
- the mercapto group-containing nitrogen-containing aromatic heterocyclic compound has a volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution in the range of 0.01% by volume to 10% by volume. It is preferably added to the polyimide precursor solution so as to be within, more preferably added to the polyimide precursor solution so as to be within the range of 0.1% by volume or more and 5% by volume or less, More preferably, it is added to the polyimide precursor solution so as to be in the range of not less than 3% by volume and not more than 3% by volume, and is added to the polyimide precursor solution so as to be in the range of not less than 0.5% by volume and not more than 2% by volume. It is particularly preferred that Of course, the volume fraction needs to be changed depending on the target resistance stability, but if the volume fraction is within this range, the balance between resistance stabilization efficiency and cost reduction is excellent. .
- boric acid is a polyimide precursor solution so that the volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution is in the range of 0.01 volume% to 30 volume%. It is preferably added to the polyimide precursor solution so as to be in the range of 0.1 volume% or more and 20 volume% or less, and in the range of 0.2 volume% or more and 10 volume% or less. More preferably, it is added to the polyimide precursor solution so as to be within the range, and particularly preferably added to the polyimide precursor solution so as to be within the range of 1% by volume or more and 5% by volume or less.
- the volume fraction needs to be changed depending on the target resistance stability, but if the volume fraction is within this range, the balance between resistance stabilization efficiency and cost reduction is excellent. .
- the polyacid or polyacid salt has a volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution in the range of 0.01% by volume to 20% by volume. It is preferably added to the polyimide precursor solution, more preferably added to the polyimide precursor solution so as to be in the range of 0.1% by volume or more and 10% by volume or less, and 0.2% by volume or more and 5% by volume. More preferably, it is added to the polyimide precursor solution so as to be in the range of volume% or less, and may be added to the polyimide precursor solution so as to be in the range of 0.5 volume% or more and 3 volume% or less. Particularly preferred.
- the volume fraction needs to be changed depending on the target resistance stability, but if the volume fraction is within this range, the balance between resistance stabilization efficiency and cost reduction is excellent. .
- the carbon nanomaterial is a polyimide precursor that has a volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution in the range of 0.1% by volume to 50% by volume. It is preferably added to the body solution, more preferably added to the polyimide precursor solution so as to be in the range of 0.5 volume% or more and 40 volume% or less, and the range of 1 volume% or more and 30 volume% or less. More preferably, it is added to the polyimide precursor solution so as to be inside, and it is particularly preferable that it is added to the polyimide precursor solution so as to be in the range of 2% by volume or more and 25% by volume or less.
- the volume fraction needs to be changed depending on the target resistance value, but when the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent.
- polyimide precursor solution is prepared as described in the first embodiment.
- paraphenylenediamine as the diamine and tetra
- 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the carboxylic dianhydride.
- Polyimide resins obtained from these monomers are excellent in mechanical properties and tough, and do not soften or melt like thermoplastic resins even when the temperature of the resistance exothermic seamless tubular article 100 rises, and have excellent heat resistance It is because it has.
- the conductive particle-containing polyimide precursor solution VS is applied to the outer peripheral surface of the cylindrical core body 610 using a ring-shaped die 620. After uniformly coating, the core body 610 with the coating film CV is heated.
- the heating temperature at this time is preferably a temperature at which the organic polar solvent volatilizes but imidization does not proceed, for example, a temperature in the range of 200 ° C. or more and 250 ° C. or less. You may raise to 450 degreeC.
- conductive metal surface conductive particles, carbon nanotubes, carbon nanofibers, or the like are added to the conductive particle-containing polyimide precursor solution, they are approximately in the direction in which the ring-shaped die travels. They are aligned and oriented in one direction.
- Electrode forming step is the same as the electrode forming step according to the first embodiment.
- nickel particles or “core-shell type conductive particles having nickel as a shell” are used as the metal surface conductive particles
- the heat generating resin layer 112 and the electrode 120 are usually used.
- a polyacid especially phosphomolybdic acid is added to the conductive particle-containing polyimide precursor solution, this deterioration can be prevented. For this reason, it is preferable that polyacid is added to the conductive particle-containing polyimide precursor solution.
- Primer coating process, release layer molding process, firing process and demolding process are the primer coating process, release process according to the first embodiment. This is the same as the mold layer forming step, firing step, and demolding step.
- the resistance exothermic seamless tubular article 100 according to the second embodiment has a resistance fluctuation rate within a range of ⁇ 30% when 100 hours have passed at a temperature of 300 ° C. For this reason, this resistance exothermic seamless tubular object 100 has a sufficiently small resistance value variation with use.
- the resistance heat generating seamless tubular article 100 has a heat generating resin layer 112. In the heat generating resin layer 112, metal surface conductive particles are added to the heat resistant resin as conductive particles. For this reason, this resistance exothermic seamless tubular object 100 can make the resistance value small. Therefore, this resistance heat generation seamless tubular object 100 can be reduced in size while the resistance value fluctuation accompanying use is small.
- the heat generating resin layer 112 has a thickness of 10 ⁇ m or more. For this reason, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. Heat generation can be stabilized
- the volume fraction of the metal surface conductive particles with respect to the exothermic resin layer 112 is in the range of 20 volume% or more and 70 volume% or less. Good flexibility can be imparted to the resistance exothermic seamless tubular article 100.
- Modifications (A) to (J) of the first embodiment can be applied to the second embodiment.
- the heat generating resin layer 112 may have a thickness of 10 ⁇ m or more.
- planar resistance heating element according to the present embodiment will be described in more detail with reference to examples and comparative examples.
- the present invention is not limited by these examples and comparative examples.
- the coating film was 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 ⁇ m on both ends of the polyimide tubular product A.
- a primer solution is applied to “the outer surface of the central portion of the polyimide tubular article A on which no electrode is formed” and “the outer surface of a portion 5 mm from the end on the side of the central portion of the electrode”. Heated at 0 ° C. for 10 minutes. And after uniformly apply
- a primer solution was applied to the outer surface of the elastic layer, and the coating film was heated at 150 ° C. for 10 minutes. And after apply
- a resistance heating seamless tubular product having a thickness of 382 ⁇ m, an inner diameter of 18.00 mm, and a length of 390 mm was obtained.
- the distance between electrodes of this resistance exothermic seamless tubular product was 230 mm.
- the initial resistance value between electrodes of the resistance heating seamless tubular material was measured by a four-terminal method using a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation). The initial resistance value was 19.08 ⁇ (see Table 1).
- CNF-containing polyimide precursor solution C A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 401.85 g, NMP 98.06 g and CNF 20.09 g were mixed to obtain a CNF-containing polyimide precursor solution. C was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 17.07 volume% with respect to solid content of the CNF containing polyimide precursor solution C at this time (refer Table 1).
- CNF-containing polyimide precursor solution D A polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 269.20 g, NMP 208.16 g, and CNF 42.64 g were mixed to obtain a CNF-containing polyimide precursor solution. D was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 39.47 volume% with respect to solid content of the CNF containing polyimide precursor solution D at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 392 ⁇ m (including a base layer of 70 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 25.00 mm, a length of 390 mm, and a distance between electrodes of 340 mm. there were.
- CNF-containing polyimide precursor solution E 45.70 g of a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 55.86 g and CNF 11.44 g were mixed to obtain a CNF-containing polyimide precursor solution. E was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 9.43 volume% with respect to solid content of the CNF containing polyimide precursor solution E at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution E was used instead of the CNF containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 392 ⁇ m (including a base layer of 70 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 25.00 mm, a length of 390 mm, and a distance between electrodes of 340 mm. there were.
- CNF-containing polyimide precursor solution F A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 388.51 g, NMP 109.14 g and CNF 22.35 g were mixed to obtain a CNF-containing polyimide precursor solution. F was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 19.15 volume% with respect to solid content of the CNF containing polyimide precursor solution F at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 522 ⁇ m (including a base layer of 200 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 15.00 mm, a length of 400 mm, and a distance between electrodes of 350 mm. there were.
- CNF-containing polyimide precursor solution G A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 291.92 g, NMP 189.31 g and CNF 38.77 g were mixed to obtain a CNF-containing polyimide precursor solution. G was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 35.36 volume% with respect to solid content of the CNF containing polyimide precursor solution G at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution A was used instead of the CNF-containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 372 ⁇ m (including a base layer of 50 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 3.18 mm, a length of 300 mm, and an interelectrode distance of 250 mm. there were.
- CNF-containing polyimide precursor solution H A polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 368.40 g, NMP 125.83 g and CNF 25.77 g were mixed to obtain a CNF-containing polyimide precursor solution. H was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 22.36 volume% with respect to solid content of the CNF containing polyimide precursor solution H at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 397 ⁇ m (including a base layer of 75 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), a circumference of 150 mm, a length of 350 mm, and an interelectrode distance of 300 mm. It was.
- Sheet-like resistance heating element The above-described resistance heating seamless tubular material was cut along the longitudinal direction to obtain a sheet-like resistance heating element having a length of 350 mm and a width of 150 mm.
- Example 1 Measurement of resistance value after exposure at 300 ° C. After the sheet-like resistance heating element was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours as in Example 1, the same method as in Example 1 was used. When the resistance value of the sheet resistance heating element was measured, the resistance value of the sheet resistance heating element after exposure for 48 hours was 13.97 ⁇ , and the resistance value of the sheet resistance heating element after exposure for 100 hours was 13.64 ⁇ . The resistance value of the sheet resistance heating element after exposure for 125 hours was 13.52 ⁇ (see Table 1).
- CNF-containing polyimide precursor solution I 151.15 g of a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 306.15 g and CNF 62.70 g were mixed to obtain a CNF-containing polyimide precursor solution. I was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 63.08 volume% with respect to solid content of the CNF containing polyimide precursor solution I at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution I was used instead of the CNF-containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 342 ⁇ m (including a base layer of 20 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 3.18 mm, a length of 400 mm, and an interelectrode distance of 350 mm. there were.
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution J was used instead of the CNF-containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 367 ⁇ m (including a base layer of 45 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 79.62 mm, a length of 270 mm, and an interelectrode distance of 220 mm. there were.
- CNF-containing polyimide precursor solution K Polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 322.30 g, NMP164.09 g and CNF 33.61 g were mixed to obtain a CNF-containing polyimide precursor solution. K was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 30.04 volume% with respect to solid content of the CNF containing polyimide precursor solution K at this time (refer Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution K was used instead of the CNF-containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 422 ⁇ m (including a base layer of 100 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 14.65 mm, a length of 400 mm, and a distance between electrodes of 350 mm. there were.
- CNF nickel powder-containing polyimide precursor solution L A mixture of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 195.01 g, NMP 260.23 g, CNF 12.80 g and nickel powder 40.00 g Thus, a CNF nickel powder polyimide precursor solution L was prepared. At this time, the amount of CNF and nickel powder added so that CNF occupies 13.00% by volume and nickel powder occupies 18.40% by volume with respect to the solid content of the CNF nickel powder polyimide precursor solution L. Is calculated (see Table 1).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that CNF nickel powder containing polyimide precursor solution L was used instead of CNF containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 392 ⁇ m (including a base layer of 70 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 30.01 mm, a length of 390 mm, and an interelectrode distance of 340 mm. Met.
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the graphite powder-containing polyimide precursor solution M was used instead of the CNF-containing polyimide precursor solution A.
- the resistance heating seamless tubular product has a thickness of 392 ⁇ m (including a base layer of 70 ⁇ m, an elastic layer of 300 ⁇ m, a release layer of 20 ⁇ m), an inner diameter of 30.01 mm, a length of 390 mm, and an interelectrode distance of 340 mm. Met.
- filamentous nickel fine particles occupy 30.0% by volume
- TTCA occupies 0.5% by volume
- boric acid 1.0% by volume. %
- the addition amount of filamentary nickel fine particles, TTCA and boric acid is calculated (see Table 2).
- composition PMDA / ODA solid content 15.4% by mass
- silver powder (AgC-A, manufactured by Fukuda Metal Foil Powder Industry, average particle size 3.1 ⁇ m) , Density 14 g / cm 3 ) 26.57 g, NMP 37.5 g and 2-di-n-butylamino-4,6-dimercapto-1,3,5-triazine (hereinafter abbreviated as “DBDMT”) 0.018 g
- DBDMT 2-di-n-butylamino-4,6-dimercapto-1,3,5-triazine
- the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
- the polyimide tubular product B was produced by sequentially heating under the conditions of the above, removing the solvent and imidizing. When this polyimide tubular product B was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 ⁇ m, the inner diameter was 18 mm, and the length was 265 mm.
- the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to perform solvent removal and imidization treatment to form electrodes having a thickness of 20 ⁇ m on both ends of the polyimide tubular product B.
- composition BPDA / PPD, solid content a polyamic acid solution (composition BPDA / PPD, solid content) is added to “the outer surface of the central portion of the polyimide tubular body B on which no electrode is formed” and “the outer surface of the portion 5 mm from the end on the side of the central portion of the electrode”. 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes.
- the insulating layer was formed by heating to remove the solvent and imidization treatment.
- the initial resistance value between electrodes of the resistance heating seamless tubular material was measured by a four-terminal method using a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation). The initial resistance value was 17.6 ⁇ (see Table 2).
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0440 g of 2-mercaptobenzimidazole (hereinafter abbreviated as “MBI”).
- MBI 2-mercaptobenzimidazole
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 30.0% by volume
- MBI occupies 0.5% by volume
- boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution N.
- the addition amount of filamentary nickel fine particles, MBI and boric acid is calculated so as to occupy 0% by volume (see Table 2).
- a resistance exothermic seamless tubular material was prepared and carried out in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0370 g of 4,6-dimethyl-2-pyrimidinethiol (hereinafter abbreviated as “DMP”).
- DMP 4,6-dimethyl-2-pyrimidinethiol
- the filamentous nickel fine particles occupy 30.0% by volume
- the DMP occupies 0.5% by volume
- the boric acid is 1.% with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N.
- the amount of filamentary nickel fine particles, DMP and boric acid added is calculated so as to occupy 0% by volume (see Table 2).
- Example 11 Resistance heat generation was performed in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0380 g of 6-dibutylamino-1,3,5-triazine-2,4-dithiol (hereinafter abbreviated as “DBTDT”).
- DBTDT 6-dibutylamino-1,3,5-triazine-2,4-dithiol
- a seamless tubular product was prepared, and the resistance characteristics of the resistance-heat generating seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed.
- the filamentous nickel fine particles occupy 30.0% by volume
- DBTDT occupies 0.5% by volume
- boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution N.
- the addition amount of filamentary nickel fine particles, DBTDT and boric acid is calculated so as to occupy 0% by volume (see Table 2).
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0440 g of 2-benzothiazolethiol (hereinafter abbreviated as “BTT”).
- BTT 2-benzothiazolethiol
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 30.0% by volume
- the BTT accounts for 0.5% by volume
- the boric acid is 1.% with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N.
- the amount of filamentary nickel fine particles, BTT and boric acid added is calculated so as to occupy 0% by volume (see Table 2).
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0410 g of 2-mercapto-5-methylbenzimidazole (hereinafter abbreviated as “MMI”).
- MMI 2-mercapto-5-methylbenzimidazole
- the filamentous nickel fine particles occupy 30.0% by volume
- the MMI occupies 0.5% by volume
- the boric acid is 1.% with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N.
- the addition amounts of filamentary nickel fine particles, MMI and boric acid are calculated so as to occupy 0% by volume (see Table 2).
- conductive fine particle-containing polyimide precursor solution P 45 g of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 6.71 g, 26.53 g of filamentous nickel fine particles (TYPE525 made by NOVAMET), Carbon nanofiber (VGCF-H, manufactured by Showa Denko KK) 2.981 g, trithiocyanuric acid trisodium salt 15 wt% aqueous solution (hereinafter abbreviated as “TTCA-3Na”) (Fluka) 2.41 g and boric acid (Nacalai Tesque) (Manufactured) 3.594 g was mixed to prepare a polyimide precursor solution P containing conductive fine particles.
- TTCA-3Na trithiocyanuric acid trisodium salt 15 wt% aqueous solution
- filamentous nickel fine particles occupy 26.4% by volume
- carbon nanofibers occupy 13.2% by volume
- TTCA-3Na is based on the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so as to occupy 2.0% by volume and boric acid occupy 10.0% by volume (see Table 2).
- the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
- the polyimide tubular product C was produced by sequentially heating under the above conditions, removing the solvent and imidizing. When this polyimide tubular product C was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 ⁇ m, the inner diameter was 18 mm, and the length was 265 mm.
- the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 ⁇ m on both ends of the polyimide tubular product C.
- the polyamic acid solution composition BPDA / PPD, solid content
- composition BPDA / PPD polyamic acid solution
- the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes.
- the insulating layer was formed by heating to remove the solvent and imidization treatment.
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the filamentous nickel fine particles account for 29.1% by volume and the carbon nanofibers account for 14.6% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so that 3Na occupies 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
- the addition amount of filamentary nickel fine particles was changed to 22.11 g, the addition amount of carbon nanofibers was changed to 3.974 g, 2.41 g of TTCA-3Na was changed to 0.0849 g of TTCA, and the addition amount of boric acid was changed to 0.8152 g. Except for the above, a resistance exothermic seamless tubular product was produced in the same manner as in Example 17, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 24.3 volume%
- the carbon nanofibers occupy 19.4 volume%
- the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
- the addition amount of filamentary nickel fine particles was changed to 30.95 g, the addition amount of carbon nanofibers was changed to 1.987 g, 2.41 g of TTCA-3Na was changed to 0.0849 g of TTCA, and the addition amount of boric acid was changed to 0.8152 g. Except for the above, a resistance exothermic seamless tubular product was produced in the same manner as in Example 17, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed.
- the filamentous nickel fine particles account for 34.0% by volume
- the carbon nanofibers account for 9.7% by volume
- the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 17 except that the filamentary nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (NOCAMET HCA-1).
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles occupy 26.4% by volume and the carbon nanofibers occupy 13.2% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amount of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid is calculated so that 3Na occupies 2.0% by volume and boric acid occupies 10.0% by volume (see Table 2).
- the amount of NMP added was changed to 6.30 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 0.550 g, A resistance exothermic seamless tubular product was prepared in the same manner as in Example 17 except that the amount added was changed to 0.8152 g, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode was deteriorated. Was observed.
- the scale-like nickel fine particles occupy 29.1% by volume and the carbon nanofibers occupy 14.6% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so that 3Na occupies 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 17 except that 2.41 g of TTCA-3Na was replaced by 0.0894 g of TTCA and 984% of boric acid was replaced by 0.8152 g instead of 974 g. Similarly, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 24.3% by volume
- the carbon nanofibers account for 19.4% by volume
- the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of the scaly nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
- the amount of NMP added was changed to 6.30 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 30.95 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofiber added was 1. Instead of 987 g, 2.41 g of TTCA-3Na was replaced with 0.0849 g of TTCA, and the amount of boric acid was changed to 0.8152 g, and a resistance exothermic seamless tubular product was produced as in Example 11. Similarly, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles occupy 34.0% by volume
- the carbon nanofibers occupy 9.7% by volume
- the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P.
- the addition amounts of the scaly nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
- conductive fine particle-containing polyimide precursor solution Q 35 g of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), 2.18 g of NMP, 16.81 g of filamentous nickel fine particles (TYPE525 made by NOVAMET), 0.0520 g of TTCA, 0.2000 g of boric acid and 0.195 g of phosphomolybdic acid (hereinafter abbreviated as “PMoA”) (manufactured by Nacalai Tesque) were mixed to prepare a conductive fine particle-containing polyimide precursor solution Q.
- polyamic acid solution composition BPDA / PPD, solid content 17.0% by mass
- NMP 16.81 g of filamentous nickel fine particles
- TYPE525 16.81 g of filamentous nickel fine particles
- PMoA phosphomolybdic acid
- the filamentous nickel fine particles occupy 30.0% by volume
- TTCA accounts for 0.5% by volume
- boric acid is 1.0% by volume. %
- the addition amount of filamentary nickel fine particles, TTCA, boric acid and PMoA is calculated so that PMoA accounts for 1.0% by volume (see Table 3).
- the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
- the polyimide tubular product D was prepared by sequentially heating under the above conditions, removing the solvent and imidizing. When this polyimide tubular product D was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 ⁇ m, the inner diameter was 18 mm, and the length was 265 mm.
- the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 ⁇ m on both ends of the polyimide tubular product D.
- the polyamic acid solution composition BPDA / PPD, solid content
- composition BPDA / PPD, solid content the polyamic acid solution
- the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes.
- the insulating layer was formed by heating to remove the solvent and imidization treatment.
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 25 except that PMoA was replaced with phosphotungstic acid (hereinafter abbreviated as “PWA”).
- PWA phosphotungstic acid
- the resistance characteristics of the electrode were measured, and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 30.0% by volume
- the TTCA occupies 0.5% by volume
- the boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution Q.
- the addition amounts of the filamentous nickel fine particles, TTCA, boric acid and PWA are calculated so as to occupy 0% by volume and PWA account for 1.0% by volume (see Table 3).
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 25 except that PMoA was replaced with silicotungstic acid (hereinafter abbreviated as “SiWA”).
- the resistance characteristics of the electrode were measured, and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 30.0% by volume
- the TTCA occupies 0.5% by volume
- the boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution Q.
- the addition amounts of filamentary nickel fine particles, TTCA, boric acid and SiWA are calculated so that 0% by volume and SiWA account for 1.0% by volume (see Table 3).
- the polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) is replaced with a polyamic acid solution (composition PMDA / ODA, solid content 15.4% by mass)
- Example 25 except that the addition amount of NMP was changed to 1.09 g, the addition amount of TTCA was changed to 0.0470 g, the addition amount of boric acid was changed to 0.1820 g, and the addition amount of PMoA was changed to 0.177 g.
- a resistance exothermic seamless tubular product was produced.
- the resistance characteristics of the resistance exothermic seamless tubular product were measured, and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 30.0% by volume
- the TTCA occupies 0.5% by volume
- the boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution Q.
- the addition amounts of filamentary nickel fine particles, TTCA, boric acid and PMoA are calculated so that 0% by volume and PMoA account for 1.0% by volume (see Table 3).
- conductive fine particle-containing polyimide precursor solution R Polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 45 g, NMP 6.59 g, filamentous nickel fine particles (TYPE525 from NOVAMET) 26.53 g, Carbon nanofibers (VGCF-H, manufactured by Showa Denko KK) 2.981 g, TTCA 0.549 g, boric acid 0.6560 g, and PMoA 0.319 g were mixed to prepare conductive fine particle-containing polyimide precursor solution R.
- the filamentous nickel fine particles occupy 29.0% by volume
- the carbon nanofibers occupy 14.5% by volume
- TTCA-3Na is based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the addition amount of filamentary nickel fine particles, TTCA-3Na, boric acid and PMoA is calculated so that 0.5 volume%, boric acid accounts for 2.0 volume%, and PMoA accounts for 1.0 volume%. (See Table 3).
- the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
- the polyimide tubular product E was produced by sequentially heating under the above conditions to remove the solvent and imidize.
- the polyimide tubular product E was extracted from the cylindrical mold and the thickness, inner diameter and length were measured. The thickness was 70 ⁇ m, the inner diameter was 18 mm, and the length was 265 mm.
- the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to perform solvent removal and imidization treatment to form electrodes having a thickness of 20 ⁇ m on both ends of the polyimide tubular product E.
- the polyamic acid solution composition BPDA / PPD, solid content
- composition BPDA / PPD polyamic acid solution
- the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes.
- the insulating layer was formed by heating to remove the solvent and imidization treatment.
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 29, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed.
- the filamentous nickel fine particles occupy 27.9% by volume
- the carbon nanofibers occupy 14.0% by volume
- the amount of NMP added was changed to 7.45 g, the amount of TTCA-3Na added was changed to 1.14 g, the amount of boric acid added was changed to 1.700 g, the amount of PMoA added was changed to 0.331 g, and resistance exothermic seamless
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 29 except that the polyamic acid solution for forming the insulating layer was replaced with a polyamic acid solution (composition PMDA / ODA, solid content: 15.4% by mass) in the production of the tubular product.
- composition PMDA / ODA, solid content: 15.4% by mass composition PMDA / ODA, solid content: 15.4% by mass
- the filamentous nickel fine particles occupy 27.9% by volume
- the carbon nanofibers occupy 14.0% by volume
- TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the quantity has been calculated (see Table 3).
- the amount of NMP added was changed to 7.45 g, the amount of filamentary nickel fine particles added was changed to 19.90 g, the amount of carbon nanofiber added was changed to 4.471 g, and the amount of TTCA-3Na added was changed to 1.14 g.
- the addition amount of boric acid is changed to 1.700 g, the addition amount of PMoA is changed to 0.331 g, and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA, A resistance exothermic seamless tubular product was prepared in the same manner as in Example 29 except that the solid content was changed to 15.4% by mass, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11.
- the filamentous nickel fine particles occupy 20.9% by volume
- the carbon nanofibers occupy 20.9% by volume
- TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the quantity has been calculated (see Table 3).
- the amount of NMP added was changed to 7.45 g
- the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1)
- the amount of TTCA-3Na was changed to 1.14 g
- a resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the addition amount was changed to 1.700 g and the addition amount of PMoA was changed to 0.331 g.
- the resistance characteristics of the tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 27.9% by volume
- the carbon nanofibers account for 14.0% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, The addition amount was changed to 1.700 g, the addition amount of PMoA was changed to 0.331 g, and the obtained resistance exothermic seamless tubular material was annealed at 400 ° C. for 2 hours, as in Example 29. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode deterioration was observed.
- the scale-like nickel fine particles account for 27.9% by volume
- the carbon nanofibers account for 14.0% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the quantity has been calculated (see Table 3).
- the amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, The addition amount is changed to 1.700 g, the addition amount of PMoA is changed to 0.331 g, and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA, solids 15 .4 mass%) except that the resistance exothermic seamless tubular material was prepared in the same manner as in Example 29, and the resistance characteristics of the resistance exothermic seamless tubular material were measured in the same manner as in Example 11 and the electrode was deteriorated.
- the scale-like nickel fine particles account for 27.9% by volume
- the carbon nanofibers account for 14.0% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the quantity has been calculated (see Table 3).
- the amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, The addition amount is changed to 1.700 g, the addition amount of PMoA is changed to 0.331 g, and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA, solids 15 4 mass%), a resistance exothermic seamless tubular product was produced in the same manner as in Example 29 except that the obtained resistance exothermic seamless tubular product was annealed at 400 ° C. for 2 hours.
- the scale-like nickel fine particles account for 27.9% by volume
- the carbon nanofibers account for 14.0% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- a resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (NOCAMET HCA-1).
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the filamentous nickel fine particles (TYPE 525 made by NOVAMET) are replaced with scaly nickel fine particles (HCA-1 made by NOVAMET), and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA) in the production of a resistance exothermic seamless tubular product.
- composition PMDA / ODA polyamic acid solution
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 29, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11. In addition, electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
- the amount of NMP added was changed to 9.96 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 17.68 g of scaly nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofibers added was changed to 4.68 g.
- a resistance exothermic seamless tubular product was produced in the same manner as in Example 29 except that the amount was changed to 968 g, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed.
- scale-like nickel fine particles occupy 19.3% by volume
- carbon nanofibers occupy 24.1% by volume
- TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
- the amount of NMP added was changed to 9.96 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 17.68 g of scaly nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofibers added was changed to 4.68 g.
- the same procedure as in Example 29 was performed except that the polyamic acid solution for forming the insulating layer was replaced with a polyamic acid solution (composition PMDA / ODA, solid content: 15.4% by mass) in the production of the resistance exothermic seamless tubular product.
- a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed.
- scale-like nickel fine particles occupy 19.3% by volume
- carbon nanofibers occupy 24.1% by volume
- TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- the addition amount of TTCA-3Na is changed to 0.755 g
- the addition amount of boric acid is changed to 0.9010 g
- the addition amount of PMoA is changed to 0.439 g
- the conductive fine particle-containing polyimide precursor solution R A resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that 8.11 g of round alumina (AS-50, Showa Denko Co., Ltd.) was added. The resistance characteristics of the tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- TTCA-3Na, boric acid, PMoA and alumina addition amounts have been calculated (see Table 3).
- a resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (NOCAMET HCA-1) and PMoA was replaced by SiWA.
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- Filamentary nickel fine particles (NOVAMET TYPE 525) are replaced with scaly nickel fine particles (NOVAMET HCA-1), PMoA is replaced with SiWA, and a polyamic acid solution for forming an insulating layer is used as a polyamic acid in the production of a resistance exothermic seamless tubular product.
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 29 except that the solution (composition PMDA / ODA, solid content 15.4% by mass) was used. The resistance characteristics of the electrode were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and SiWA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and SiWA occupies 1.0% by volume The quantity has been calculated (see Table 3).
- a resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (HCA-1 made by NOVAMET) and PMoA was changed to PWA.
- the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- Filamentous nickel fine particles (TYPE 525 made by NOVAMET) are replaced with scaly nickel fine particles (NOVAMET HCA-1), PMoA is replaced by PWA, and a polyamic acid solution for forming an insulating layer in the production of a resistance exothermic seamless tubular material is polyamic acid.
- a resistance exothermic seamless tubular product was prepared in the same manner as in Example 29 except that the solution (composition PMDA / ODA, solid content 15.4% by mass) was used. The resistance characteristics of the electrode were measured, and electrode deterioration was observed.
- the scale-like nickel fine particles account for 29.0% by volume
- the carbon nanofibers account for 14.5% by volume
- the TTCA- based on the solid content of the conductive fine particle-containing polyimide precursor solution R.
- Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PWA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PWA occupies 1.0% by volume The quantity has been calculated (see Table 3).
- the coating film was applied at 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
- the polyimide tubular product F was produced by sequentially heating under the above conditions to remove the solvent and imidize. When this polyimide tubular product F was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 ⁇ m, the inner diameter was 18 mm, and the length was 265 mm.
- the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 ⁇ m on both ends of the polyimide tubular product F.
- the polyamic acid solution (composition BPDA / PPD, solid content) is added to the “outer surface of the central portion of the polyimide tubular article F on which no electrode is formed” and “the outer surface of the portion 5 mm from the end of the central portion of the electrode” 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes.
- the insulating layer was formed by heating to remove the solvent and imidization treatment.
- Comparative Example 4 Comparative Example 3 except that NMP was not added and the amount of filamentary nickel fine particles was changed to 41.88 g, and 0.9160 g of boric acid (manufactured by Nacalai Tesque) was added to the conductive fine particle-containing polyimide precursor solution S. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed.
- the filamentous nickel fine particle accounts for 45.0% by volume and the boric acid accounts for 2.8% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S.
- the amount of nickel fine particles and boric acid added are calculated (see Table 4).
- the filamentous nickel fine particles occupy 41.0% by volume
- the carbon nanofibers occupy 4.0% by volume
- boric acid is contained in the solid content of the conductive fine particle-containing polyimide precursor solution S.
- the addition amount of filamentary nickel fine particles, carbon nanofibers and boric acid is calculated so as to occupy 2.8% by volume (see Table 4).
- the filamentous nickel fine particles occupy 29.3% by volume, the carbon nanofibers 14.6% by volume, and TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution S.
- the added amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and PMoA are calculated so that 3Na occupies 0.5% by volume and PMoA occupies 2.0% by volume (see Table 4).
- the scaly nickel fine particles occupy 40.0% by volume, and the carbon nanofibers occupy 5.0% by volume.
- the addition amount of scaly nickel fine particles and carbon nanofibers is calculated (see Table 4).
- the scaly nickel fine particles occupy 29.0% by volume, and the carbon nanofibers occupy 16.0% by volume.
- the addition amount of scaly nickel fine particles and carbon nanofibers is calculated (see Table 4).
- the scale-like nickel fine particles account for 45.0% by volume and the boric acid accounts for 2.8% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S.
- the amount of nickel fine particles and boric acid added are calculated (see Table 4).
- the scale-like nickel fine particles occupy 29.0% by volume
- the carbon nanofibers occupy 16.0% by volume
- boric acid is contained in the solid content of the conductive fine particle-containing polyimide precursor solution S.
- the amount of scale-like nickel fine particles, carbon nanofibers and boric acid added is calculated so as to occupy 2.8% by volume (see Table 4).
- the scale-like nickel fine particles occupy 41.0% by volume
- the carbon nanofibers occupy 4.0% by volume
- boric acid in the solid content of the conductive fine particle-containing polyimide precursor solution S is calculated so as to occupy 2.8% by volume (see Table 4).
- a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode deterioration was observed.
- the flaky nickel fine particles account for 29.8% by volume
- the carbon nanofibers account for 14.9% by volume
- the TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S was calculated so that 3Na accounted for 0.5% by volume and phosphoric acid accounted for 0.3% by volume (see Table 4). ).
- An exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed.
- the flaky nickel fine particles occupy 29.6% by volume
- the carbon nanofibers occupy 14.8% by volume
- phosphoric acid with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S.
- the amount of scale-like nickel fine particles, carbon nanofibers, and phosphoric acid added is calculated so that occupies 0.3% by volume and PMoA occupies 1.0% by volume (see Table 4).
- the sheet resistance heating element according to the present invention has a feature that the resistance value variation with use is sufficiently small, and is used for an image fixing device of an image forming apparatus such as a copying machine or a laser beam printer and the image fixing device. It can be used as a fixing belt or a fixing tube.
- the sheet resistance heating element may be in the form of a sheet and is widely used as a heating means in addition to the image fixing device of an image forming apparatus such as a copying machine or a laser beam printer and the use of the image fixing device. Can do.
- Electrode Electrode part
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
- Fixing For Electrophotography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The problem addressed by the present invention is to provide a planar resistance heating element (including a resistance heat seamless attachment belt) for which variations in resistance value and reductions in strength accompanying use are sufficiently small and which can be used for a comparatively long period and also to provide "a planar resistance heating element (including a resistance heat seamless attachment belt) that can be made small while the variations in resistance value accompanying use are small." This planar resistance heating element (100, 100a, 100b) is provided with a heat generating resin layer (112) and a pair of electrode parts (120). Furthermore, the rate of variability of the resistance calculated by a value where the value of the resistance value between electrode parts when this planar resistance heating element has gone through 100 hours under a temperature of 300°C with the initial resistance value between the electrode parts subtracted therefrom being divided by the initial resistance value is within a range of ±30%.
Description
本発明は、面状抵抗発熱体および抵抗発熱シームレス管状物に関する。本発明は、また、導電性粒子含有樹脂溶液に関する。
The present invention relates to a planar resistance heating element and a resistance heating seamless tubular body. The present invention also relates to a conductive particle-containing resin solution.
過去に「カーボンナノ材料及びフィラメント状金属微粒子が分散されるポリイミド樹脂からなる発熱層を有する抵抗発熱シームレス定着ベルト」が提案されている(例えば、特開2007-272223号公報等参照)。この抵抗発熱シームレス定着ベルトは、通電されると自己発熱するシームレス定着ベルトであって、電子写真画像形成装置の画像定着部の主要部品として用いられる。
In the past, “a resistance heat generation seamless fixing belt having a heat generation layer made of a polyimide resin in which carbon nanomaterials and filamentous fine metal particles are dispersed” has been proposed (see, for example, JP-A-2007-272223). This resistance heating seamless fixing belt is a seamless fixing belt that self-heats when energized, and is used as a main part of an image fixing unit of an electrophotographic image forming apparatus.
しかしながら、このような抵抗発熱シームレス定着ベルトの発熱層において導電性材料として、銅、銀、ニッケル等の金属微粒子が用いられると、電子写真画像形成装置の使用に伴って金属微粒子が徐々に変質し、その変質に伴って抵抗発熱シームレス定着ベルトの抵抗値が徐々に変化し、延いてはその発熱量が変化してしまう。このため、このような抵抗発熱シームレス定着ベルトは、比較的短期間で交換しなければならない。
However, when metal fine particles such as copper, silver, and nickel are used as the conductive material in the heat generating layer of such a resistance heat generating seamless fixing belt, the metal fine particles gradually change with the use of the electrophotographic image forming apparatus. The resistance value of the resistance heat generating seamless fixing belt gradually changes with the alteration, and the heat generation amount changes accordingly. For this reason, such a resistance heating seamless fixing belt must be replaced in a relatively short period of time.
このような問題を解決するために、過去に「導電性材料として特定の黒鉛繊維と、カーボンブラック又はカーボンナノファイバーとを用いた抵抗発熱シームレス定着ベルト」が提案されている(例えば、特開2013-037213号公報等参照)。この抵抗発熱シームレス定着ベルトでは、上記の通り、導電性材料として、金属微粒子に代えてカーボン系の微粒子が用いられている。このような抵抗発熱シームレス定着ベルトは、長時間使用においても抵抗値の変化がほとんどなく、安定した発熱特性を発揮する。
In order to solve such a problem, “resistance heating seamless fixing belt using a specific graphite fiber and carbon black or carbon nanofiber as a conductive material” has been proposed in the past (for example, Japanese Patent Application Laid-Open No. 2013-2013). No. 037213). In this resistance heating seamless fixing belt, as described above, carbon-based fine particles are used as the conductive material instead of the metal fine particles. Such a resistance heat generation seamless fixing belt exhibits a stable heat generation characteristic with almost no change in resistance value even after long-term use.
ところが、このような抵抗発熱シームレス定着ベルトでは、比較的サイズが大きな黒鉛粒子が樹脂中に添加されているため、抵抗発熱シームレス定着ベルトの強度低下が引き起こされる懸念がある。したがって、結局のところ、この抵抗発熱シームレス定着ベルトも比較的短期間で交換しなければならないおそれがある。
However, in such a resistance heating seamless fixing belt, since graphite particles having a relatively large size are added to the resin, there is a concern that the resistance heating seamless fixing belt may be deteriorated in strength. Therefore, after all, there is a possibility that this resistance heat generating seamless fixing belt must be replaced in a relatively short period of time.
また、このように抵抗発熱シームレス定着ベルトにおいて金属微粒子に代えてカーボン系の微粒子が用いられるとその抵抗値が著しく高くなるため、抵抗発熱シームレス定着ベルトを小型化することができなくなる。
Further, when carbon-based fine particles are used instead of metal fine particles in the resistance heating seamless fixing belt in this way, the resistance value becomes remarkably high, so that the resistance heating seamless fixing belt cannot be downsized.
本発明の課題は、使用に伴う抵抗値変動や強度低下が十分に小さく比較的長期間使用可能である面状抵抗発熱体(抵抗発熱シームレス定着ベルトを含む。)を提供すると共に、「使用に伴う抵抗値変動が小さいながらも小型化することが可能である面状抵抗発熱体(抵抗発熱シームレス定着ベルトを含む。)」を提供することにある。
An object of the present invention is to provide a sheet resistance heating element (including a resistance heating seamless fixing belt) that can be used for a relatively long period of time with a resistance value fluctuation and a strength decrease with use being sufficiently small. Another object of the present invention is to provide a planar resistance heating element (including a resistance heating seamless fixing belt) that can be reduced in size while having a small change in resistance value.
本発明の一局面に係る面状抵抗発熱体は、発熱樹脂層および一対の電極部を備える。なお、ここにいう「面状」との文言には、シート状や管状も含まれ得る。また、この面状抵抗発熱体は、発熱樹脂層および一対の電極部のみから構成されていてもよいし、発熱樹脂層および一対の電極部を含む複数の層から構成されていてもよい。電極部は発熱樹脂層の両脇に配置されることが好ましい。また、面状抵抗発熱体がシート状である場合、電極部は、表側面に露出するように設けられてもよいし、裏側面に露出するように設けられてもよいし、埋設されてもよい。また、面状抵抗発熱体が管状である場合、電極部は、内周面に露出するように設けられてもよいし、外周面に露出するように設けられてもよいし、埋設されてもよい。また、発熱樹脂層の一部が電極部として機能してもよい。発熱樹脂層は、直接的に電極部に接合されてもよいし、1または複数の導電性樹脂層を介して間接的に電極部に接合されてもよい。そして、この面状抵抗発熱体は、300℃の温度下において100時間経過したときの電極部間の抵抗値から電極部間の初期抵抗値を差し引いた値を、初期抵抗値で除して算出される抵抗値変動率が±30%の範囲内である。
The planar resistance heating element according to one aspect of the present invention includes a heat generating resin layer and a pair of electrode portions. It should be noted that the term “planar” herein may include a sheet form and a tubular form. Further, the planar resistance heating element may be composed of only the heat generating resin layer and the pair of electrode portions, or may be composed of a plurality of layers including the heat generating resin layer and the pair of electrode portions. The electrode portion is preferably disposed on both sides of the heat generating resin layer. Further, when the planar resistance heating element is in the form of a sheet, the electrode portion may be provided so as to be exposed on the front side surface, may be provided so as to be exposed on the back side surface, or may be embedded. Good. When the planar resistance heating element is tubular, the electrode portion may be provided so as to be exposed on the inner peripheral surface, or may be provided so as to be exposed on the outer peripheral surface, or may be embedded. Good. Moreover, a part of the heat generating resin layer may function as an electrode part. The heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. Then, this sheet resistance heating element is calculated by dividing the resistance value between the electrode parts after the 100 hour elapse at a temperature of 300 ° C. by subtracting the initial resistance value between the electrode parts by the initial resistance value. The resistance value variation rate is within a range of ± 30%.
この面状抵抗発熱体は、上述の通り、300℃の温度下において100時間経過したときの抗値変動率が±30%の範囲内である。このため、この面状抵抗発熱体は、使用に伴う抵抗値変動が十分に小さい。
As described above, this sheet resistance heating element has a resistance fluctuation rate within a range of ± 30% when 100 hours have passed at a temperature of 300 ° C. For this reason, this sheet resistance heating element has a sufficiently small resistance value variation with use.
また、この面状抵抗発熱体において、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材のみを導電性充填材として含有する樹脂から発熱樹脂層を形成することができる。このため、このような面状抵抗発熱体は、強度低下を十分に小さくすることができる。したがって、このような面状抵抗発熱体は、使用に伴う抵抗値変動や強度低下が十分に小さく、比較的長期間使用することができる。
Further, in this planar resistance heating element, a heat generating resin layer can be formed from a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler. For this reason, such a planar resistance heating element can sufficiently reduce the strength reduction. Accordingly, such a planar resistance heating element can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
また、この面状抵抗発熱体において、金属表面を有する導電性粒子を含有する樹脂から発熱樹脂層を形成することもできる。なお、かかる場合、樹脂には、抵抗値安定化成分が含有されるのが好ましい。このため、このような面状抵抗発熱体は、その抵抗値を小さくすることができる。したがって、このような面状抵抗発熱体は、使用に伴う抵抗値変動が小さいながらも小型化することができる。
Further, in this planar resistance heating element, the heating resin layer can be formed from a resin containing conductive particles having a metal surface. In such a case, the resin preferably contains a resistance value stabilizing component. For this reason, the resistance value of such a planar resistance heating element can be reduced. Therefore, such a planar resistance heating element can be miniaturized while the resistance value variation with use is small.
本発明の他の局面に係る面状抵抗発熱体は、発熱樹脂層および一対の電極部を備える。なお、ここにいう「面状」との文言には、シート状や管状も含まれ得る。また、この面状抵抗発熱体は、発熱樹脂層および一対の電極部のみから構成されていてもよいし、発熱樹脂層および一対の電極部を含む複数の層から構成されていてもよい。電極部は発熱樹脂層の両脇に配置されることが好ましい。また、面状抵抗発熱体がシート状である場合、電極部は、表側面に露出するように設けられてもよいし、裏側面に露出するように設けられてもよいし、埋設されてもよい。また、面状抵抗発熱体が管状である場合、電極部は、内周面に露出するように設けられてもよいし、外周面に露出するように設けられてもよいし、埋設されてもよい。また、発熱樹脂層の一部が電極部として機能してもよい。発熱樹脂層は、直接的に電極部に接合されてもよいし、1または複数の導電性樹脂層を介して間接的に電極部に接合されてもよい。そして、この面状抵抗発熱体は、300℃の温度下において48時間経過したときの電極部間の抵抗値から電極部間の初期抵抗値を差し引いた値を、初期抵抗値で除して算出される抵抗値変動率が±15%の範囲内である。
A planar resistance heating element according to another aspect of the present invention includes a heat generating resin layer and a pair of electrode portions. It should be noted that the term “planar” herein may include a sheet form and a tubular form. Further, the planar resistance heating element may be composed of only the heat generating resin layer and the pair of electrode portions, or may be composed of a plurality of layers including the heat generating resin layer and the pair of electrode portions. The electrode portion is preferably disposed on both sides of the heat generating resin layer. Further, when the planar resistance heating element is in the form of a sheet, the electrode portion may be provided so as to be exposed on the front side surface, may be provided so as to be exposed on the back side surface, or may be embedded. Good. When the planar resistance heating element is tubular, the electrode portion may be provided so as to be exposed on the inner peripheral surface, or may be provided so as to be exposed on the outer peripheral surface, or may be embedded. Good. Moreover, a part of the heat generating resin layer may function as an electrode part. The heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. The sheet resistance heating element is calculated by dividing the resistance value between the electrode parts after 48 hours at a temperature of 300 ° C. by subtracting the initial resistance value between the electrode parts by the initial resistance value. The resistance value variation rate is within a range of ± 15%.
この面状抵抗発熱体は、上述の通り、300℃の温度下において48時間経過したときの抗値変動率が±15%の範囲内である。このため、この面状抵抗発熱体は、使用に伴う抵抗値変動が十分に小さい。
As described above, this sheet resistance heating element has a resistance fluctuation rate within a range of ± 15% when 48 hours have passed at a temperature of 300 ° C. For this reason, this sheet resistance heating element has a sufficiently small resistance value variation with use.
また、この面状抵抗発熱体において、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材のみを導電性充填材として含有する樹脂から発熱樹脂層を形成することができる。このため、このような面状抵抗発熱体は、強度低下を十分に小さくすることができる。したがって、このような面状抵抗発熱体は、使用に伴う抵抗値変動や強度低下が十分に小さく、比較的長期間使用することができる。
Further, in this planar resistance heating element, a heat generating resin layer can be formed from a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler. For this reason, such a planar resistance heating element can sufficiently reduce the strength reduction. Accordingly, such a planar resistance heating element can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
また、この面状抵抗発熱体において、金属表面を有する導電性粒子を含有する樹脂から発熱樹脂層を形成することもできる。なお、かかる場合、樹脂には、抵抗値安定化成分が含有されるのが好ましい。このため、このような面状抵抗発熱体は、その抵抗値を小さくすることができる。したがって、このような面状抵抗発熱体は、使用に伴う抵抗値変動が小さいながらも小型化することができる。
Further, in this planar resistance heating element, the heating resin layer can be formed from a resin containing conductive particles having a metal surface. In such a case, the resin preferably contains a resistance value stabilizing component. For this reason, the resistance value of such a planar resistance heating element can be reduced. Therefore, such a planar resistance heating element can be miniaturized while the resistance value variation with use is small.
なお、上述の面状抵抗発熱体において、発熱樹脂層は、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材のみを導電性充填材として含有する樹脂から形成されているか(以下、このような面状抵抗発熱体を「非金属系ナノ充填材含有面状抵抗発熱体」と称する。)、金属表面を有する導電性粒子を含有する樹脂から形成されている(以下、このような面状抵抗発熱体を「金属表面粒子含有面状抵抗発熱体」と称する。)のが好ましい。なお、上述の通り、後者の場合、樹脂には、抵抗値安定化成分が含有されるのが好ましい。
In the above-mentioned planar resistance heating element, is the heat generating resin layer formed of a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler (hereinafter referred to as “a conductive filler”)? Such a planar resistance heating element is referred to as a “non-metallic nanofiller-containing planar resistance heating element”), and is formed of a resin containing conductive particles having a metal surface (hereinafter referred to as such). Such a planar resistance heating element is preferably referred to as “a planar resistance heating element containing metal surface particles”. As described above, in the latter case, the resin preferably contains a resistance value stabilizing component.
前者の場合を言い換えると、発熱樹脂層は、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材を含有するが金属系充填材を含有しない樹脂から形成されるのが好ましい。上述の通り、面状抵抗発熱体の強度低下を十分に小さくすることができるからである。なお、ここにいう「非金属系ナノ充填材」には、直径が0.3μm以上のものは含まれない。また、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方が非金属系ナノ充填材の主成分となることが好ましく、非金属系ナノ充填材がカーボンナノチューブまたはカーボンナノファイバーのみからなることがより好ましい。なお、ここにいう「主成分」とは90体積%以上を占める成分をいう。樹脂はポリイミド樹脂のみから構成されていてもよい。
In other words, the exothermic resin layer is preferably formed from a resin containing a non-metallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers but not containing a metallic filler. This is because the reduction in strength of the planar resistance heating element can be sufficiently reduced as described above. The “non-metallic nanofiller” herein does not include those having a diameter of 0.3 μm or more. Moreover, it is preferable that at least one of the carbon nanotube and the carbon nanofiber is a main component of the nonmetallic nanofiller, and it is more preferable that the nonmetallic nanofiller is composed of only the carbon nanotube or the carbon nanofiber. Here, the “main component” means a component occupying 90% by volume or more. The resin may be composed only of a polyimide resin.
また、上述の非金属系ナノ充填材含有面状抵抗発熱体において、発熱樹脂層は、膜厚が20μm以上であるのが好ましい。発熱樹脂層の膜厚がこの条件を満足すれば膜厚に少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この面状抵抗発熱体を大量生産した場合であってもその発熱量を安定させることができるからである。なお、本面状抵抗発熱体に他の層が設けられない場合、その膜厚は50μm以上であることが好ましい。また、この膜厚の上限は200μmであることが好ましい。
Further, in the above-described planar resistance heating element containing a non-metallic nanofiller, the heat generating resin layer preferably has a film thickness of 20 μm or more. If the film thickness of the heat generating resin layer satisfies this condition, even if the film thickness varies slightly, the fluctuation range of the resistance value becomes so narrow that it can be practically used. This is because even if it exists, the calorific value can be stabilized. In addition, when another layer is not provided in this sheet | seat resistance heating element, it is preferable that the film thickness is 50 micrometers or more. Moreover, it is preferable that the upper limit of this film thickness is 200 micrometers.
また、上述の非金属系ナノ充填材含有面状抵抗発熱体において、発熱樹脂層に対する非金属系ナノ充填材の体積分率が5体積%以上100体積%以下の範囲内であるのが好ましい。面状抵抗発熱体に良好な柔軟性を付与することができ、抵抗発熱シームレス管状物への応用が可能となるからである。なお、ここで、発熱樹脂層に対する非金属系ナノ充填材の体積分率が100体積%である場合、発熱樹脂層が非金属系ナノ充填材のみから形成されることになる。かかる場合、この面状抵抗発熱体には、発熱樹脂層を支持するための基層が必要となる。
Further, in the above-described planar resistance heating element containing a nonmetallic nanofiller, the volume fraction of the nonmetallic nanofilling material with respect to the heat generating resin layer is preferably in the range of 5% by volume to 100% by volume. This is because good flexibility can be imparted to the planar resistance heating element, and application to a resistance heating seamless tubular object becomes possible. Here, when the volume fraction of the nonmetallic nano filler relative to the exothermic resin layer is 100% by volume, the exothermic resin layer is formed only from the nonmetallic nano filler. In such a case, this planar resistance heating element requires a base layer for supporting the heat generating resin layer.
また、上述の金属表面粒子含有面状抵抗発熱体において、抵抗値安定化成分が添加される場合、抵抗値安定化成分には、(a)SH基およびSM基の少なくとも1つが含窒素芳香族複素環に直接結合される化合物(ただし、Mは金属又は置換若しくは無置換のアンモニウムである。)ならびに(b)硼素(B)を含有する化合物が含まれるのが好ましい。なお、ここにいう「抵抗値安定化成分」とは、後述の導電性粒子含有樹脂溶液の抵抗値安定化剤が加熱処理されたものである。また、ここにいう「SH基」はメルカプト基であり、「SM基」はメルカプト基の「金属塩」または「置換若しくは無置換のアンモニウム塩」である。また、硼素(B)を含有する化合物は、例えば、酸化硼素等である。また、この抵抗値安定化成分には、(c)モリブデン(Mo)、バナジウム(V)、タングステン(W)、チタン(Ti)、アルミニウム(Al)およびニオブ(Nb)の少なくとも一つの元素を含有する化合物がさらに含まれるのが好ましい。金属表面粒子含有面状抵抗発熱体における電極部の劣化や電極部の膨張を防止することができるからである。
Further, in the above-described planar resistance heating element containing metal surface particles, when a resistance value stabilizing component is added, the resistance value stabilizing component includes (a) at least one of an SH group and an SM group containing a nitrogen-containing aromatic. It is preferable to include a compound directly bonded to the heterocyclic ring (where M is a metal or substituted or unsubstituted ammonium) and (b) a compound containing boron (B). Here, the “resistance value stabilizing component” is obtained by heat-treating a resistance value stabilizer of a conductive particle-containing resin solution described later. The “SH group” herein is a mercapto group, and the “SM group” is a “metal salt” or a “substituted or unsubstituted ammonium salt” of a mercapto group. The compound containing boron (B) is, for example, boron oxide. The resistance value stabilizing component contains (c) at least one element of molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium (Nb). It is preferable that a compound to be further contained. This is because deterioration of the electrode part and expansion of the electrode part in the metal surface particle-containing planar resistance heating element can be prevented.
上述の金属表面粒子含有面状抵抗発熱体において、樹脂は、カーボンナノ材料をさらに含有するのが好ましい。カーボンナノ材料は、面状抵抗発熱体の抵抗調整材として機能するからである。カーボンナノ材料は、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方が主成分であることが好ましい。なお、ここにいう「主成分」とは、90体積%以上を占める成分をいう。
In the above-described planar resistance heating element containing metal surface particles, the resin preferably further contains a carbon nanomaterial. This is because the carbon nanomaterial functions as a resistance adjusting material for the planar resistance heating element. The carbon nanomaterial is preferably composed mainly of at least one of carbon nanotubes and carbon nanofibers. Here, the “main component” refers to a component occupying 90% by volume or more.
また、上述の金属表面粒子含有面状抵抗発熱体において、発熱樹脂層は、膜厚が10μm以上であるのが好ましい。この条件を満足すれば膜厚に少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この面状抵抗発熱体を大量生産した場合であってもその発熱量を安定させることができるからである。
Further, in the above-described planar resistance heating element containing metal surface particles, the heat generating resin layer preferably has a thickness of 10 μm or more. If this condition is satisfied, even if there is a slight variation in film thickness, the fluctuation range of the resistance value becomes extremely narrow to withstand practical use, and even if this planar resistance heating element is mass-produced, the amount of generated heat can be reduced. This is because it can be stabilized.
また、上述の金属表面粒子含有面状抵抗発熱体において、導電性粒子の体積分率が20体積%以上70体積%以下の範囲内であるのが好ましい。面状抵抗発熱体に良好な柔軟性を付与することができ、抵抗発熱シームレス管状物への応用が可能となるからである。なお、この体積分率は、抵抗発熱シームレス管状物の体積に対するものである。
Further, in the above-described planar resistance heating element containing metal surface particles, the volume fraction of the conductive particles is preferably in the range of 20% by volume to 70% by volume. This is because good flexibility can be imparted to the planar resistance heating element, and application to a resistance heating seamless tubular object becomes possible. This volume fraction is relative to the volume of the resistance exothermic seamless tubular material.
また、上述の面状抵抗発熱体では、電極部間の初期抵抗値が5Ω以上150Ω以下の範囲内であるのが好ましく、15Ω以上75Ω以下の範囲内であるのがより好ましい。主要な国や地域において抵抗発熱シームレス管状物が、定着装置において要求され得る400W~1200Wの出力を発揮することができるからである。さらに詳しくは、その初期抵抗値が5Ω以上40Ω以下の範囲内である場合、単相100V以上120V以下の範囲内の電圧を規格とする日本、米国、台湾等の国々や諸地域向けの抵抗発熱シームレス管状物とすることができ、その初期抵抗値が30Ω以上150Ω以下の範囲内である場合、単相200V以上240V以下の範囲内の電圧を規格とするヨーロッパ各国等の国々や諸地域向けの抵抗発熱シームレス管状物とすることができる。
In the above-described planar resistance heating element, the initial resistance value between the electrode portions is preferably in the range of 5Ω to 150Ω, and more preferably in the range of 15Ω to 75Ω. This is because the resistance exothermic seamless tubular material in a major country or region can exhibit an output of 400 W to 1200 W that can be required in a fixing device. More specifically, when the initial resistance value is within a range of 5Ω to 40Ω, resistance heat generation for countries and regions such as Japan, the United States, Taiwan, etc., with a voltage within a range of 100V to 120V as a single phase. If the initial resistance value is in the range of 30Ω or more and 150Ω or less, it can be used as a seamless tubular product for countries and regions such as European countries that specify a voltage in the range of single phase 200V or more and 240V or less. It can be set as a resistance exothermic seamless tubular thing.
本発明の他の局面に係る導電性粒子含有樹脂溶液は、樹脂または樹脂前駆体、導電性粒子、抵抗値安定化剤および溶剤を含有する。導電性粒子は、金属表面を有する。なお、ここにいう「金属」は、純金属であってもよいし、合金であってもよい。また、導電性粒子は、金属のみから形成される金属粒子であってもよいし、コア・シェル型の粒子であってもよい。なお、導電性粒子がコア・シェル型の粒子である場合、シェルが金属で形成される。溶剤は、樹脂または樹脂前駆体を溶解させるものである。
The conductive particle-containing resin solution according to another aspect of the present invention contains a resin or resin precursor, conductive particles, a resistance value stabilizer, and a solvent. The conductive particles have a metal surface. The “metal” referred to here may be a pure metal or an alloy. Further, the conductive particles may be metal particles formed only from metal or may be core / shell type particles. When the conductive particles are core / shell type particles, the shell is formed of metal. The solvent dissolves the resin or the resin precursor.
この導電性粒子含有樹脂溶液には、上述の通り、抵抗値安定化剤が含有される。このため、この導電性粒子含有樹脂溶液から作製される面状抵抗発熱体(上述の金属表面粒子含有面状抵抗発熱体に該当する。)は、使用に伴う抵抗値変動が十分に小さい。また、この導電性粒子含有樹脂溶液には、上述の通り、金属表面を有する導電性粒子が含有される。このため、この導電性粒子含有樹脂溶液から作製される面状抵抗発熱体は、その抵抗値を小さくすることができる。したがって、この導電性粒子含有樹脂溶液を利用することによって、使用に伴う抵抗値変動が小さい小型の面状抵抗発熱体を作製することができる。
This conductive particle-containing resin solution contains a resistance value stabilizer as described above. For this reason, the planar resistance heating element (corresponding to the above-mentioned metal surface particle-containing planar resistance heating element) produced from the conductive particle-containing resin solution has a sufficiently small resistance value variation with use. In addition, the conductive particle-containing resin solution contains conductive particles having a metal surface as described above. For this reason, the planar resistance heating element produced from this conductive particle containing resin solution can make the resistance value small. Therefore, by using this conductive particle-containing resin solution, it is possible to produce a small planar resistance heating element with a small resistance value variation with use.
また、上述の導電性粒子含有樹脂溶液において、抵抗値安定化剤には、(d)SH基およびSM基の少なくとも1つが含窒素芳香族複素環に直接結合される化合物(ただし、Mは金属または置換若しくは無置換のアンモニウムである。)ならびに(e)硼酸が少なくとも含まれるのが好ましい。なお、ここにいう「SH基」はメルカプト基であり、「SM基」はメルカプト基の「金属塩」または「置換若しくは無置換のアンモニウム塩」である。また、この抵抗値安定化剤には、(f)ポリ酸またはその塩がさらに含まれるのが好ましい。面状抵抗発熱体における電極部の劣化や電極部の膨張を防止することができるからである。なお、ここにいう「ポリ酸」とは、金属原子などに酸素原子が4,5,6配位した結果、MO4四面体、MO5正方錘、MO6六面体またはMO5三方両錘からなる基本単位から構成される無機酸である。ポリ酸は、イソポリ酸であることが好ましく、ヘテロポリ酸であることがより好ましい。
In the above-described conductive particle-containing resin solution, the resistance value stabilizer includes (d) a compound in which at least one of an SH group and an SM group is directly bonded to a nitrogen-containing aromatic heterocyclic ring (where M is a metal Or substituted or unsubstituted ammonium.) And (e) at least boric acid. Here, the “SH group” is a mercapto group, and the “SM group” is a “metal salt” or “substituted or unsubstituted ammonium salt” of a mercapto group. The resistance value stabilizer preferably further includes (f) a polyacid or a salt thereof. This is because deterioration of the electrode part and expansion of the electrode part in the planar resistance heating element can be prevented. The “polyacid” referred to here is composed of MO 4 tetrahedron, MO 5 square pyramid, MO 6 hexahedron, or MO 5 trigonal bilateral weight as a result of coordination of 4, 5 and 6 oxygen atoms to metal atoms and the like. An inorganic acid composed of basic units. The polyacid is preferably an isopolyacid, and more preferably a heteropolyacid.
また、上述の導電性粒子含有樹脂溶液は、カーボンナノ材料をさらに含有するのが好ましい。カーボンナノ材料は、面状抵抗発熱体の抵抗調整材として機能するのみならず、導電性粒子含有樹脂溶液の粘度調節材としても機能するからである。カーボンナノ材料は、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方が主成分であることが好ましい。なお、ここにいう「主成分」とは、90体積%以上を占める成分をいう。
Moreover, it is preferable that the conductive particle-containing resin solution described above further contains a carbon nanomaterial. This is because the carbon nanomaterial not only functions as a resistance adjusting material for the planar resistance heating element but also functions as a viscosity adjusting material for the conductive particle-containing resin solution. The carbon nanomaterial is preferably composed mainly of at least one of carbon nanotubes and carbon nanofibers. Here, the “main component” refers to a component occupying 90% by volume or more.
本発明の他の局面に係る面状抵抗発熱体は、上述の導電性粒子含有樹脂溶液の塗膜を加熱して得られる。上述の通り、上述の導電性粒子含有樹脂溶液には抵抗値安定化剤が含有される。このため、この導電性粒子含有樹脂溶液から作製されるこの面状抵抗発熱体(上述の金属表面粒子含有面状抵抗発熱体に該当する。)は、使用に伴う抵抗値変動が十分に小さい。また、上述の通り、上述の導電性粒子含有樹脂溶液には、金属表面を有する導電性粒子が含有される。このため、この導電性粒子含有樹脂溶液から作製されるこの面状抵抗発熱体は、その抵抗値を小さくすることができる。したがって、この面状抵抗発熱体は、使用に伴う抵抗値変動が小さいながらも小型化することができる。
The planar resistance heating element according to another aspect of the present invention is obtained by heating a coating film of the above-described conductive particle-containing resin solution. As described above, the above-described conductive particle-containing resin solution contains a resistance value stabilizer. For this reason, this planar resistance heating element (corresponding to the above-mentioned metal surface particle-containing planar resistance heating element) produced from this conductive particle-containing resin solution has a sufficiently small resistance value variation with use. Moreover, as described above, the conductive particle-containing resin solution contains conductive particles having a metal surface. For this reason, this planar resistance heating element produced from this conductive particle containing resin solution can make the resistance value small. Therefore, the planar resistance heating element can be miniaturized while the resistance value variation with use is small.
本発明の他の局面に係る抵抗発熱シームレス管状物は、発熱樹脂層および一対の電極部を備える。なお、この抵抗発熱シームレス管状物は、発熱樹脂層および一対の電極部のみから構成されていてもよいし、発熱樹脂層および一対の電極部を含む複数の層から構成されていてもよい。電極部は発熱樹脂層の両脇に配置されることが好ましい。また、電極部は、内周面に露出するように設けられてもよいし、外周面に露出するように設けられてもよいし、埋設されてもよい。また、発熱樹脂層の一部が電極部として機能してもよい。発熱樹脂層は、直接的に電極部に接合されてもよいし、1または複数の導電性樹脂層を介して間接的に電極部に接合されてもよい。そして、この抵抗発熱シームレス管状物は、300℃の温度下において100時間経過したときの電極部間の抵抗値から前記電極部間の初期抵抗値を差し引いた値を、初期抵抗値で除して算出される抵抗値変動率が±30%の範囲内である。
A resistance exothermic seamless tubular article according to another aspect of the present invention includes an exothermic resin layer and a pair of electrode portions. In addition, this resistance exothermic seamless tubular thing may be comprised only from the heat generating resin layer and a pair of electrode part, and may be comprised from the several layer containing a heat generating resin layer and a pair of electrode part. The electrode portion is preferably disposed on both sides of the heat generating resin layer. Moreover, the electrode part may be provided so as to be exposed on the inner peripheral surface, may be provided so as to be exposed on the outer peripheral surface, or may be embedded. Moreover, a part of the heat generating resin layer may function as an electrode part. The heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. And this resistance exothermic seamless tubular thing removes the value which deducted the initial resistance value between the said electrode parts from the resistance value between the electrode parts when 100 hours passed under the temperature of 300 degreeC by the initial resistance value. The calculated resistance value fluctuation rate is within a range of ± 30%.
この抵抗発熱シームレス管状物は、上述の通り、300℃の温度下において100時間経過したときの抗値変動率が±30%の範囲内である。このため、この抵抗発熱シームレス管状物は、使用に伴う抵抗値変動が十分に小さい。
As described above, this resistance exothermic seamless tubular product has a resistance value fluctuation rate within a range of ± 30% when 100 hours have passed at a temperature of 300 ° C. For this reason, this resistance exothermic seamless tubular product has a sufficiently small resistance value variation with use.
また、この抵抗発熱シームレス管状物において、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材のみを含有する樹脂から発熱樹脂層を形成することができる。このため、このような抵抗発熱シームレス管状物は、強度低下を十分に小さくすることができる。したがって、このような抵抗発熱シームレス管状物は、使用に伴う抵抗値変動や強度低下が十分に小さく、比較的長期間使用することができる。
Further, in this resistance exothermic seamless tubular product, the exothermic resin layer can be formed from a resin containing only a nonmetallic nanofiller including at least one of carbon nanotubes and carbon nanofibers. For this reason, such a resistance exothermic seamless tubular product can sufficiently reduce the strength reduction. Therefore, such resistance exothermic seamless tubular objects can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
また、この抵抗発熱シームレス管状物において、金属表面を有する導電性粒子を含有する樹脂から発熱樹脂層を形成することもできる。なお、かかる場合、樹脂には、抵抗値安定化成分が含有されるのが好ましい。このため、このような抵抗発熱シームレス管状物は、その抵抗値を小さくすることができる。したがって、このような抵抗発熱シームレス管状物は、使用に伴う抵抗値変動が小さいながらも小型化することができる。
Further, in this resistance exothermic seamless tubular material, the exothermic resin layer can also be formed from a resin containing conductive particles having a metal surface. In such a case, the resin preferably contains a resistance value stabilizing component. For this reason, such a resistance exothermic seamless tubular object can make the resistance value small. Therefore, such a resistance heat generation seamless tubular object can be reduced in size while the resistance value fluctuation accompanying use is small.
本発明の他の局面に係る抵抗発熱シームレス管状物は、発熱樹脂層および一対の電極部を備える。なお、この抵抗発熱シームレス管状物は、発熱樹脂層および一対の電極部のみから構成されていてもよいし、発熱樹脂層および一対の電極部を含む複数の層から構成されていてもよい。発熱樹脂層は、金属表面を有する導電性粒子を含有する樹脂から形成される。電極部は発熱樹脂層の両脇に配置されることが好ましい。また、電極部は、内周面に露出するように設けられてもよいし、外周面に露出するように設けられてもよいし、埋設されてもよい。また、発熱樹脂層の一部が電極部として機能してもよい。発熱樹脂層は、直接的に電極部に接合されてもよいし、1または複数の導電性樹脂層を介して間接的に電極部に接合されてもよい。そして、この抵抗発熱シームレス管状物では、300℃の温度下において48時間経過したときの電極部間の抵抗値から電極部間の初期抵抗値を差し引いた値を、初期抵抗値で除して算出される抵抗値変動率が±15%の範囲内である。
A resistance exothermic seamless tubular article according to another aspect of the present invention includes an exothermic resin layer and a pair of electrode portions. In addition, this resistance exothermic seamless tubular thing may be comprised only from the heat generating resin layer and a pair of electrode part, and may be comprised from the several layer containing a heat generating resin layer and a pair of electrode part. The heat generating resin layer is formed of a resin containing conductive particles having a metal surface. The electrode portion is preferably disposed on both sides of the heat generating resin layer. Moreover, the electrode part may be provided so as to be exposed on the inner peripheral surface, may be provided so as to be exposed on the outer peripheral surface, or may be embedded. Moreover, a part of the heat generating resin layer may function as an electrode part. The heat generating resin layer may be directly bonded to the electrode part, or may be indirectly bonded to the electrode part via one or a plurality of conductive resin layers. And in this resistance exothermic seamless tubular thing, it calculated by dividing the value which deducted the initial resistance value between electrode parts from the resistance value between electrode parts when 48 hours passed at the temperature of 300 degreeC by the initial resistance value. The resistance value variation rate is within a range of ± 15%.
この抵抗発熱シームレス管状物は、上述の通り、300℃の温度下において48時間経過したときの抗値変動率が±15%の範囲内である。このため、この抵抗発熱シームレス管状物は、使用に伴う抵抗値変動が十分に小さい。
As described above, this resistance exothermic seamless tubular product has a resistance fluctuation rate within a range of ± 15% when 48 hours have passed at a temperature of 300 ° C. For this reason, this resistance exothermic seamless tubular product has a sufficiently small resistance value variation with use.
また、この抵抗発熱シームレス管状物において、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材のみを含有する樹脂から発熱樹脂層を形成することができる。このため、このような抵抗発熱シームレス管状物は、強度低下を十分に小さくすることができる。したがって、このような抵抗発熱シームレス管状物は、使用に伴う抵抗値変動や強度低下が十分に小さく、比較的長期間使用することができる。
Further, in this resistance exothermic seamless tubular product, the exothermic resin layer can be formed from a resin containing only a nonmetallic nanofiller including at least one of carbon nanotubes and carbon nanofibers. For this reason, such a resistance exothermic seamless tubular product can sufficiently reduce the strength reduction. Therefore, such resistance exothermic seamless tubular objects can be used for a relatively long period of time because resistance value fluctuations and strength reductions associated with use are sufficiently small.
また、この抵抗発熱シームレス管状物において、金属表面を有する導電性粒子を含有する樹脂から発熱樹脂層を形成することもできる。なお、かかる場合、樹脂には、抵抗値安定化成分が含有されるのが好ましい。このため、このような抵抗発熱シームレス管状物は、その抵抗値を小さくすることができる。したがって、このような抵抗発熱シームレス管状物は、使用に伴う抵抗値変動が小さいながらも小型化することができる。
Further, in this resistance exothermic seamless tubular material, the exothermic resin layer can also be formed from a resin containing conductive particles having a metal surface. In such a case, the resin preferably contains a resistance value stabilizing component. For this reason, such a resistance exothermic seamless tubular object can make the resistance value small. Therefore, such a resistance heat generation seamless tubular object can be reduced in size while the resistance value fluctuation accompanying use is small.
-第1の実施の形態-
<面状抵抗発熱体の構成>
本発明の第1の実施の形態に係る面状抵抗発熱体は、シート状や管状の抵抗発熱体である。シート状の面状抵抗発熱体は管状の面状抵抗発熱体を長手方向に沿って切断することによって容易に形成される。このため、ここでは、図1に示される管状の面状抵抗発熱体(以下「抵抗発熱シームレス管状物」と称する。)100を用いて面状抵抗発熱体の詳細を説明し、シート状の面状抵抗発熱体の説明を省略する。 -First embodiment-
<Configuration of sheet resistance heating element>
The planar resistance heating element according to the first embodiment of the present invention is a sheet-like or tubular resistance heating element. The sheet-like planar resistance heating element is easily formed by cutting a tubular planar resistance heating element along the longitudinal direction. Therefore, here, the details of the planar resistance heating element will be described using the tubular planar resistance heating element (hereinafter referred to as “resistance heating seamless tubular object”) 100 shown in FIG. A description of the resistance heating element will be omitted.
<面状抵抗発熱体の構成>
本発明の第1の実施の形態に係る面状抵抗発熱体は、シート状や管状の抵抗発熱体である。シート状の面状抵抗発熱体は管状の面状抵抗発熱体を長手方向に沿って切断することによって容易に形成される。このため、ここでは、図1に示される管状の面状抵抗発熱体(以下「抵抗発熱シームレス管状物」と称する。)100を用いて面状抵抗発熱体の詳細を説明し、シート状の面状抵抗発熱体の説明を省略する。 -First embodiment-
<Configuration of sheet resistance heating element>
The planar resistance heating element according to the first embodiment of the present invention is a sheet-like or tubular resistance heating element. The sheet-like planar resistance heating element is easily formed by cutting a tubular planar resistance heating element along the longitudinal direction. Therefore, here, the details of the planar resistance heating element will be described using the tubular planar resistance heating element (hereinafter referred to as “resistance heating seamless tubular object”) 100 shown in FIG. A description of the resistance heating element will be omitted.
本発明の実施の形態に係る抵抗発熱シームレス管状物100は、図1から3に示されるように、主に、本体110および一対の電極120から構成される。以下、これらの構成要素110,120について詳述する。
The resistance heating seamless tubular object 100 according to the embodiment of the present invention is mainly composed of a main body 110 and a pair of electrodes 120 as shown in FIGS. Hereinafter, these components 110 and 120 will be described in detail.
(1)本体
本体110は、図4および図5に示されるように、主に、発熱樹脂層112および離型層113から構成されている。以下、これらの層112,113について詳述する。 (1) Main Body Themain body 110 is mainly composed of a heat generating resin layer 112 and a release layer 113 as shown in FIGS. 4 and 5. Hereinafter, these layers 112 and 113 will be described in detail.
本体110は、図4および図5に示されるように、主に、発熱樹脂層112および離型層113から構成されている。以下、これらの層112,113について詳述する。 (1) Main Body The
(1-1)発熱樹脂層
発熱樹脂層112は、図4および図5に示されているように、シームレスの管状層であって、主として、抵抗発熱シームレス管状物100の使用時温度に耐え得る耐熱絶縁材料から形成されるのが好ましい。このような耐熱絶縁材料としては、例えば、耐熱性樹脂等が挙げられる。なお、本実施の形態に係る抵抗発熱シームレス管状物100において、耐熱性樹脂は、ポリイミド樹脂を主成分とする樹脂であることが好ましく、ポリイミド樹脂そのものであることがより好ましい。なお、耐熱性樹脂がポリイミド樹脂を主成分とする樹脂である場合、耐熱性樹脂には、本発明の本質を損なわない範囲内で、ポリアミドイミドやポリエーテルスルホンなどの他の耐熱性樹脂が添加されてもよい。 (1-1) Exothermic resin layer Theexothermic resin layer 112 is a seamless tubular layer as shown in FIGS. 4 and 5, and can mainly withstand the temperature during use of the resistance exothermic seamless tubular body 100. It is preferably formed from a heat resistant insulating material. Examples of such a heat resistant insulating material include a heat resistant resin. In the resistance heating seamless tubular article 100 according to the present embodiment, the heat-resistant resin is preferably a resin containing a polyimide resin as a main component, and more preferably a polyimide resin itself. When the heat-resistant resin is a resin mainly composed of a polyimide resin, other heat-resistant resins such as polyamide imide and polyether sulfone are added to the heat-resistant resin within the range that does not impair the essence of the present invention. May be.
発熱樹脂層112は、図4および図5に示されているように、シームレスの管状層であって、主として、抵抗発熱シームレス管状物100の使用時温度に耐え得る耐熱絶縁材料から形成されるのが好ましい。このような耐熱絶縁材料としては、例えば、耐熱性樹脂等が挙げられる。なお、本実施の形態に係る抵抗発熱シームレス管状物100において、耐熱性樹脂は、ポリイミド樹脂を主成分とする樹脂であることが好ましく、ポリイミド樹脂そのものであることがより好ましい。なお、耐熱性樹脂がポリイミド樹脂を主成分とする樹脂である場合、耐熱性樹脂には、本発明の本質を損なわない範囲内で、ポリアミドイミドやポリエーテルスルホンなどの他の耐熱性樹脂が添加されてもよい。 (1-1) Exothermic resin layer The
そして、この発熱樹脂層112において、その耐熱性樹脂中に、直径0.3μm未満のカーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材が導電性充填材として包含されている。なお、本実施の形態に係る抵抗発熱シームレス管状物100において、導電性充填材として金属系ナノ充填材は含まれない。なお、カーボンナノチューブまたはカーボンナノファイバーの長さは3μm以上20μm以下の範囲内であることが好ましい。カーボンナノチューブまたはカーボンナノファイバーの直径は0.015μm以上0.20μm以下の範囲内であることがより好ましく、0.08μm以上0.15μm以下の範囲内であることがさらに好ましく、0.10μm以上0.15μmの範囲内であることが特に好ましい。カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方は、非金属系ナノ充填材の主成分であることが好ましい。
In the heat-generating resin layer 112, the heat-resistant resin includes a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers having a diameter of less than 0.3 μm as the conductive filler. In addition, the resistance exothermic seamless tubular article 100 according to the present embodiment does not include a metal nanofiller as the conductive filler. In addition, it is preferable that the length of a carbon nanotube or carbon nanofiber exists in the range of 3 micrometers or more and 20 micrometers or less. The diameter of the carbon nanotube or carbon nanofiber is more preferably in the range of 0.015 μm to 0.20 μm, further preferably in the range of 0.08 μm to 0.15 μm, and more preferably 0.10 μm to 0 It is particularly preferable to be within the range of 15 μm. At least one of the carbon nanotube and the carbon nanofiber is preferably a main component of the nonmetallic nanofiller.
本実施の形態において、発熱樹脂層112に対する非金属系ナノ充填材の体積分率は5体積%以上100体積%以下の範囲内であるが、5体積%以上70体積%以下の範囲内であることが好ましく、15体積%以上60体積%以下の範囲内であることがより好ましく、25体積%以上50体積%以下の範囲内であることがさらに好ましく、25体積%以上40体積%以下の範囲内であることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値に依存して変更される必要があるが、同体積分率がこの範囲内であると発熱樹脂層112の機械的特性と発熱特性のバランスに優れるからである。
In the present embodiment, the volume fraction of the nonmetallic nanofiller with respect to the heat generating resin layer 112 is in the range of 5% by volume to 100% by volume, but is in the range of 5% by volume to 70% by volume. Preferably, it is in the range of 15 volume% or more and 60 volume% or less, more preferably in the range of 25 volume% or more and 50 volume% or less, and in the range of 25 volume% or more and 40 volume% or less. It is particularly preferred that Of course, the volume fraction needs to be changed depending on the target resistance value, but if the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent. It is.
また、この発熱樹脂層112の厚みは20μm以上であるが、40μm以上であることが好ましく、50μm以上であることがより好ましい。発熱樹脂層112の厚みがこの条件を満たせば発熱樹脂層112の厚みに少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この抵抗発熱シームレス管状物100を大量生産した場合であってもその発熱量を安定させることができるからである。なお、製造しやすさや抵抗発熱シームレス管状物100の可撓性を考慮すると、この厚みは200μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
The thickness of the heat generating resin layer 112 is 20 μm or more, preferably 40 μm or more, and more preferably 50 μm or more. If the thickness of the heat generating resin layer 112 satisfies this condition, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. This is because the amount of heat generated can be stabilized even in the case of production. In consideration of ease of manufacture and flexibility of the resistance heating seamless tubular article 100, the thickness is preferably 200 μm or less, more preferably 100 μm or less, and further preferably 50 μm or less.
本実施の形態において、発熱樹脂層112中のカーボンナノチューブまたはカーボンナノファイバーは長さ方向に配向して存在していることが好ましい。このようにすれば、比較的少量のカーボンナノ材料で電気抵抗値を効率的に下げることができ、かつ、均一な発熱特性が得られるからである。
In the present embodiment, it is preferable that the carbon nanotubes or carbon nanofibers in the heat generating resin layer 112 are oriented in the length direction. This is because the electrical resistance value can be efficiently lowered with a relatively small amount of carbon nanomaterial, and uniform heat generation characteristics can be obtained.
また、本実施の形態において、発熱樹脂層112には、熱伝導性等の向上を目的として、アルミナ、窒化硼素、窒化アルミニウム、炭化珪素、酸化チタン、シリカ、チタン酸カリウム、アルミナ、窒化珪素等の電気絶縁性粒子を、機械的特性等の向上を目的としてチタン酸カリウム繊維、針状酸化チタン、ホウ酸アルミニウムウィスカ、テトラポット状酸化亜鉛ウィスカ、セピオライト、ガラス繊維等の繊維状粒子、モンモリロナイト、タルク等の粘度鉱物を、本発明の本質を損なわない程度に加えてもよい。
In the present embodiment, the heat-generating resin layer 112 is provided with alumina, boron nitride, aluminum nitride, silicon carbide, titanium oxide, silica, potassium titanate, alumina, silicon nitride, etc. for the purpose of improving thermal conductivity and the like. For the purpose of improving mechanical properties, etc., potassium titanate fiber, acicular titanium oxide, aluminum borate whisker, tetrapotted zinc oxide whisker, sepiolite, fiber particles such as glass fiber, montmorillonite, Viscous minerals such as talc may be added to such an extent that the essence of the present invention is not impaired.
(1-2)離型層
離型層113は、フッ素樹脂、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つから形成されるのが好ましい。この抵抗発熱シームレス管状物100がモノクロプリンターにおいて発熱定着ベルトとして利用される場合、離型層113は、フッ素樹脂から形成されるのが好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)が挙げられ、これらは単体で利用されてもよいし、混合して利用されてもよい。また、かかる場合、離型層113は、5μm以上30μm以下の範囲内の厚みであることが好ましく、10μm以上20μm以下の範囲内の厚みであることがより好ましい。 (1-2) Release Layer Therelease layer 113 is preferably formed from at least one selected from the group consisting of fluororesin, silicone rubber and fluororubber. When this resistance heat generation seamless tubular product 100 is used as a heat generation fixing belt in a monochrome printer, the release layer 113 is preferably formed of a fluororesin. Examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). It may be used in a mixture or may be used as a mixture. In such a case, the release layer 113 preferably has a thickness in the range of 5 μm to 30 μm, and more preferably in the range of 10 μm to 20 μm.
離型層113は、フッ素樹脂、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つから形成されるのが好ましい。この抵抗発熱シームレス管状物100がモノクロプリンターにおいて発熱定着ベルトとして利用される場合、離型層113は、フッ素樹脂から形成されるのが好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)が挙げられ、これらは単体で利用されてもよいし、混合して利用されてもよい。また、かかる場合、離型層113は、5μm以上30μm以下の範囲内の厚みであることが好ましく、10μm以上20μm以下の範囲内の厚みであることがより好ましい。 (1-2) Release Layer The
そして、この離型層113は、プライマーを介して発熱樹脂層112に接着されるのが好ましい。かかる場合、プライマーの厚みは2μm以上5μm以下の範囲内であることが好ましい。
The release layer 113 is preferably bonded to the heat generating resin layer 112 through a primer. In such a case, the primer thickness is preferably in the range of 2 μm to 5 μm.
(2)電極
電極120は、図1に示されるように、本体110の両端部分において外表面に露出するように配設されている。この電極120は、例えば、銀ペースト等から形成され得る。なお、銀ペーストとしては、例えば、国際公開第08/016148号に開示されているものが利用可能である。そして、抵抗発熱シームレス管状物100が使用される際、この電極120には、図6に示されるように、給電部材210が接触する。これにより、電極120に接して配設されている発熱樹脂層112に給電が行われ、発熱樹脂層112が抵抗発熱する。なお、給電部材210としては、例えば、給電ブラシ、給電ロール、給電バー等が挙げられる。 (2) Electrode Theelectrode 120 is arrange | positioned so that it may be exposed to an outer surface in the both ends of the main body 110, as FIG. 1 shows. The electrode 120 can be formed from, for example, a silver paste or the like. As the silver paste, for example, those disclosed in International Publication No. 08/016148 can be used. When the resistance heating seamless tubular object 100 is used, the electrode 120 is in contact with the power supply member 210 as shown in FIG. As a result, power is supplied to the heat generating resin layer 112 disposed in contact with the electrode 120, and the heat generating resin layer 112 generates resistance heat. Examples of the power supply member 210 include a power supply brush, a power supply roll, and a power supply bar.
電極120は、図1に示されるように、本体110の両端部分において外表面に露出するように配設されている。この電極120は、例えば、銀ペースト等から形成され得る。なお、銀ペーストとしては、例えば、国際公開第08/016148号に開示されているものが利用可能である。そして、抵抗発熱シームレス管状物100が使用される際、この電極120には、図6に示されるように、給電部材210が接触する。これにより、電極120に接して配設されている発熱樹脂層112に給電が行われ、発熱樹脂層112が抵抗発熱する。なお、給電部材210としては、例えば、給電ブラシ、給電ロール、給電バー等が挙げられる。 (2) Electrode The
<第1の実施の形態に係る抵抗発熱シームレス管状物の特性>
(1)初期抵抗値
第1実施の形態に係る抵抗発熱シームレス管状物100は、単相100V以上120V以下の範囲内の電圧を規格とする日本、米国、台湾等の国々や諸地域向けとされる場合には電極部間の初期抵抗値が5Ω以上40Ω以下の範囲内に調整されるのが好ましく、単相200V以上240V以下の範囲内の電圧を規格とするヨーロッパ各国等の国々や諸地域向けとされる場合には電極部間の初期抵抗値が30Ω以上150Ω以下の範囲内に調整されるのが好ましい。なお、前者の場合、電極部間の初期抵抗値が15Ω以上20Ω以下の範囲内に調整されるのがより好ましい。また、後者の場合、電極部間の初期抵抗値が65Ω以上75Ω以下の範囲内に調整されるのがより好ましい。この抵抗発熱シームレス管状物が、主要国や主要地域において、定着装置において要求され得る400W~1200Wの出力を発揮することができるからである。なお、抵抗発熱シームレス管状物100の初期抵抗値は、常温常圧で測定される。 <Characteristics of the resistance exothermic seamless tubular article according to the first embodiment>
(1) Initial resistance value The resistance exothermic seamlesstubular object 100 according to the first embodiment is intended for countries and regions such as Japan, the United States, Taiwan and the like that have a voltage within a range of a single phase of 100V to 120V. The initial resistance value between the electrodes is preferably adjusted within the range of 5Ω to 40Ω, and countries and regions such as European countries that use a single-phase voltage of 200V to 240V as a standard. When it is directed, it is preferable that the initial resistance value between the electrode portions is adjusted within a range of 30Ω to 150Ω. In the former case, it is more preferable that the initial resistance value between the electrode portions is adjusted within a range of 15Ω to 20Ω. In the latter case, it is more preferable that the initial resistance value between the electrode portions is adjusted within a range of 65Ω to 75Ω. This is because this resistance heat-generating seamless tubular product can exhibit an output of 400 W to 1200 W that can be required in a fixing device in major countries and major regions. The initial resistance value of the resistance exothermic seamless tubular object 100 is measured at normal temperature and pressure.
(1)初期抵抗値
第1実施の形態に係る抵抗発熱シームレス管状物100は、単相100V以上120V以下の範囲内の電圧を規格とする日本、米国、台湾等の国々や諸地域向けとされる場合には電極部間の初期抵抗値が5Ω以上40Ω以下の範囲内に調整されるのが好ましく、単相200V以上240V以下の範囲内の電圧を規格とするヨーロッパ各国等の国々や諸地域向けとされる場合には電極部間の初期抵抗値が30Ω以上150Ω以下の範囲内に調整されるのが好ましい。なお、前者の場合、電極部間の初期抵抗値が15Ω以上20Ω以下の範囲内に調整されるのがより好ましい。また、後者の場合、電極部間の初期抵抗値が65Ω以上75Ω以下の範囲内に調整されるのがより好ましい。この抵抗発熱シームレス管状物が、主要国や主要地域において、定着装置において要求され得る400W~1200Wの出力を発揮することができるからである。なお、抵抗発熱シームレス管状物100の初期抵抗値は、常温常圧で測定される。 <Characteristics of the resistance exothermic seamless tubular article according to the first embodiment>
(1) Initial resistance value The resistance exothermic seamless
(2)抵抗値変動率
第1の実施の形態に係る抵抗発熱シームレス管状物100は、上述のように構成されることによって、300℃の温度下48時間経過時の抵抗値変動率を±15%の範囲内に抑えることができ、300℃の温度下100時間経過時の抵抗値変動率を±30%の範囲内に抑えることができ、300℃の温度下125時間経過時の抵抗値変動率を±30%の範囲内に抑えることができる。なお、300℃の温度下48時間経過時の抵抗値変動率は±10%の範囲内であることがより好ましく、±7%の範囲内であることがさらに好ましい。また、300℃の温度下100時間経過時の抵抗値変動率は±25%の範囲内であることがより好ましく、±20%の範囲内であることがさらに好ましく、±15%の範囲内であることがさらに好ましく、±10%の範囲内であることが特に好ましい。また、300℃の温度下125時間経過時の抵抗値変動率は±25%の範囲内であることがより好ましく、±20%の範囲内であることがさらに好ましく、±15%の範囲内であることがさらに好ましく、±10%の範囲内であることが特に好ましい。ここにいう「抵抗値変動率」は、以下に示す式1によって算出される。 (2) Resistance value fluctuation rate The resistance exothermic seamlesstubular article 100 according to the first embodiment has a resistance value fluctuation rate of ± 15 at the time of elapse of 48 hours at a temperature of 300 ° C. by being configured as described above. %, The resistance value fluctuation rate after 100 hours at a temperature of 300 ° C. can be kept within a range of ± 30%, and the resistance value fluctuation after 125 hours at a temperature of 300 ° C. The rate can be kept within a range of ± 30%. In addition, the resistance value fluctuation rate at the time of elapse of 48 hours at a temperature of 300 ° C. is more preferably within a range of ± 10%, and further preferably within a range of ± 7%. Further, the rate of change in resistance value after 100 hours at a temperature of 300 ° C. is more preferably within a range of ± 25%, further preferably within a range of ± 20%, and within a range of ± 15%. More preferably, it is particularly preferably within a range of ± 10%. Further, the resistance value fluctuation rate when 125 hours have passed at a temperature of 300 ° C. is more preferably within a range of ± 25%, further preferably within a range of ± 20%, and within a range of ± 15%. More preferably, it is particularly preferably within a range of ± 10%. The “resistance value fluctuation rate” here is calculated by the following equation 1.
第1の実施の形態に係る抵抗発熱シームレス管状物100は、上述のように構成されることによって、300℃の温度下48時間経過時の抵抗値変動率を±15%の範囲内に抑えることができ、300℃の温度下100時間経過時の抵抗値変動率を±30%の範囲内に抑えることができ、300℃の温度下125時間経過時の抵抗値変動率を±30%の範囲内に抑えることができる。なお、300℃の温度下48時間経過時の抵抗値変動率は±10%の範囲内であることがより好ましく、±7%の範囲内であることがさらに好ましい。また、300℃の温度下100時間経過時の抵抗値変動率は±25%の範囲内であることがより好ましく、±20%の範囲内であることがさらに好ましく、±15%の範囲内であることがさらに好ましく、±10%の範囲内であることが特に好ましい。また、300℃の温度下125時間経過時の抵抗値変動率は±25%の範囲内であることがより好ましく、±20%の範囲内であることがさらに好ましく、±15%の範囲内であることがさらに好ましく、±10%の範囲内であることが特に好ましい。ここにいう「抵抗値変動率」は、以下に示す式1によって算出される。 (2) Resistance value fluctuation rate The resistance exothermic seamless
なお、上記式1中、「300℃下t時間経過時抵抗値」は300℃の温度下t時間経過時の抵抗発熱シームレス管状物100の抵抗値を示し、「初期抵抗値」は常温下の抵抗発熱シームレス管状物100の初期抵抗値を示している。
In the above equation 1, “300 ° C. t time elapsed resistance value” indicates the resistance value of the resistance heating seamless tubular article 100 at 300 ° C. temperature t time elapsed, and “initial resistance value” is room temperature. The initial resistance value of the resistance heating seamless tubular article 100 is shown.
<第1の実施の形態に係る抵抗発熱シームレス管状物の製造方法の一例>
第1の実施の形態に係る抵抗発熱シームレス管状物100は、主に、発熱樹脂層成形工程、電極成形工程、プライマー塗布工程、離型層成形工程、焼成工程および脱型工程を経て製造される。ただし、本製造方法は、一例に過ぎず、本願発明を限定することはない。以下、上記各製造工程について詳述する。 <An example of the manufacturing method of the resistance exothermic seamless tubular article according to the first embodiment>
The resistance exothermic seamlesstubular article 100 according to the first embodiment is mainly manufactured through a heat generating resin layer forming step, an electrode forming step, a primer applying step, a release layer forming step, a firing step, and a demolding step. . However, this manufacturing method is only an example and does not limit the present invention. Hereafter, each said manufacturing process is explained in full detail.
第1の実施の形態に係る抵抗発熱シームレス管状物100は、主に、発熱樹脂層成形工程、電極成形工程、プライマー塗布工程、離型層成形工程、焼成工程および脱型工程を経て製造される。ただし、本製造方法は、一例に過ぎず、本願発明を限定することはない。以下、上記各製造工程について詳述する。 <An example of the manufacturing method of the resistance exothermic seamless tubular article according to the first embodiment>
The resistance exothermic seamless
(1)発熱樹脂層成形工程
発熱樹脂層成形工程では、図8に示されるように、リング状ダイス620を用いて非金属系ナノ充填材含有ポリイミド前駆体溶液VSを円柱状の芯体610の外周面に均一に塗布した後、その塗膜CV付きの芯体610を加熱する。なお、このときの加熱温度は、有機極性溶媒が揮発するがイミド化が進行しない程度の温度、例えば200℃以上250℃以下の範囲内の温度であることが好ましいが、段階的に300℃~450℃まで上昇させてもかまわない。かかる場合、カーボンナノチューブやカーボンナノファイバーはリング状ダイスが走行した方向に向かって略一方向に並び、配向された状態となる。 (1) Exothermic resin layer molding step In the exothermic resin layer molding step, as shown in FIG. 8, a non-metallic nanofiller-containing polyimide precursor solution VS is made of acylindrical core body 610 using a ring-shaped die 620. After uniformly apply | coating to an outer peripheral surface, the core body 610 with the coating film CV is heated. The heating temperature at this time is preferably a temperature at which the organic polar solvent volatilizes but imidization does not proceed, for example, a temperature in the range of 200 ° C. or more and 250 ° C. or less. You may raise to 450 degreeC. In such a case, the carbon nanotubes and carbon nanofibers are aligned in one direction and oriented in the direction in which the ring-shaped die travels.
発熱樹脂層成形工程では、図8に示されるように、リング状ダイス620を用いて非金属系ナノ充填材含有ポリイミド前駆体溶液VSを円柱状の芯体610の外周面に均一に塗布した後、その塗膜CV付きの芯体610を加熱する。なお、このときの加熱温度は、有機極性溶媒が揮発するがイミド化が進行しない程度の温度、例えば200℃以上250℃以下の範囲内の温度であることが好ましいが、段階的に300℃~450℃まで上昇させてもかまわない。かかる場合、カーボンナノチューブやカーボンナノファイバーはリング状ダイスが走行した方向に向かって略一方向に並び、配向された状態となる。 (1) Exothermic resin layer molding step In the exothermic resin layer molding step, as shown in FIG. 8, a non-metallic nanofiller-containing polyimide precursor solution VS is made of a
なお、非金属系ナノ充填材含有ポリイミド前駆体溶液は、以下の通りに調製されるポリイミド前駆体溶液に、カーボンナノチューブやカーボンナノファイバー等の非金属系ナノ充填材を混合させることによって得られる。なお、非金属系ナノ充填材の添加方法は特に限定されず、ポリイミド前駆体溶液に非金属系ナノ充填材を直接添加する方法はもちろん、ポリイミド前駆体溶液調製中に非金属系ナノ充填材を添加する方法であってもよい。
The non-metallic nanofiller-containing polyimide precursor solution can be obtained by mixing non-metallic nanofillers such as carbon nanotubes and carbon nanofibers with a polyimide precursor solution prepared as follows. In addition, the addition method of a nonmetallic nanofiller is not specifically limited, Of course, the method of adding a nonmetallic nanofiller directly to a polyimide precursor solution, as well as the nonmetallic nanofiller during the polyimide precursor solution preparation The method of adding may be sufficient.
ポリイミド前駆体溶液は、以下の通りに調製される。
先ず、有機極性溶媒中に少なくとも1種のジアミンを溶解させてジアミン溶液を調製した後、そのジアミン溶液に少なくとも1種のテトラカルボン酸二無水物を添加してジアミンとテトラカルボン酸二無水物とを重合させてポリイミド前駆体溶液を調製する。なお、このとき、環境温度は、10℃以上90℃以下の範囲内であることが好ましい。また、固形分濃度は、塗布の条件によって決定され、通常は10質量%以上30質量%以下の範囲内である。また、ジアミンとテトラカルボン酸二無水物との重合反応が進むにつれて、溶液の粘度が上昇するが、使用に際しては溶媒で希釈して所望の粘度にしてから使用することができる。製造条件や作業条件によって通常1ポイズから5,000ポイズの粘度で使用されるが、このポリイミド前駆体溶液を金型の表面にキャスティング方法で塗布するためには、同ポリイミド前駆体溶液の粘度が10ポイズ以上1,500ポイズ以下の範囲内であるのが好ましく、50ポイズ以上1,000ポイズ以下の範囲内であるのがより好ましい。 The polyimide precursor solution is prepared as follows.
First, a diamine solution is prepared by dissolving at least one diamine in an organic polar solvent, and then at least one tetracarboxylic dianhydride is added to the diamine solution to obtain a diamine, a tetracarboxylic dianhydride, Is polymerized to prepare a polyimide precursor solution. At this time, the environmental temperature is preferably in the range of 10 ° C. or higher and 90 ° C. or lower. Moreover, solid content concentration is determined by the conditions of application | coating, and usually exists in the range of 10 to 30 mass%. Further, as the polymerization reaction of diamine and tetracarboxylic dianhydride proceeds, the viscosity of the solution increases. However, it can be used after diluting with a solvent to obtain a desired viscosity. Depending on manufacturing conditions and working conditions, it is usually used at a viscosity of 1 poise to 5,000 poise. In order to apply this polyimide precursor solution to the surface of a mold by a casting method, the viscosity of the polyimide precursor solution is It is preferably within a range of 10 poise or more and 1,500 poise or less, and more preferably within a range of 50 poise or more and 1,000 poise or less.
先ず、有機極性溶媒中に少なくとも1種のジアミンを溶解させてジアミン溶液を調製した後、そのジアミン溶液に少なくとも1種のテトラカルボン酸二無水物を添加してジアミンとテトラカルボン酸二無水物とを重合させてポリイミド前駆体溶液を調製する。なお、このとき、環境温度は、10℃以上90℃以下の範囲内であることが好ましい。また、固形分濃度は、塗布の条件によって決定され、通常は10質量%以上30質量%以下の範囲内である。また、ジアミンとテトラカルボン酸二無水物との重合反応が進むにつれて、溶液の粘度が上昇するが、使用に際しては溶媒で希釈して所望の粘度にしてから使用することができる。製造条件や作業条件によって通常1ポイズから5,000ポイズの粘度で使用されるが、このポリイミド前駆体溶液を金型の表面にキャスティング方法で塗布するためには、同ポリイミド前駆体溶液の粘度が10ポイズ以上1,500ポイズ以下の範囲内であるのが好ましく、50ポイズ以上1,000ポイズ以下の範囲内であるのがより好ましい。 The polyimide precursor solution is prepared as follows.
First, a diamine solution is prepared by dissolving at least one diamine in an organic polar solvent, and then at least one tetracarboxylic dianhydride is added to the diamine solution to obtain a diamine, a tetracarboxylic dianhydride, Is polymerized to prepare a polyimide precursor solution. At this time, the environmental temperature is preferably in the range of 10 ° C. or higher and 90 ° C. or lower. Moreover, solid content concentration is determined by the conditions of application | coating, and usually exists in the range of 10 to 30 mass%. Further, as the polymerization reaction of diamine and tetracarboxylic dianhydride proceeds, the viscosity of the solution increases. However, it can be used after diluting with a solvent to obtain a desired viscosity. Depending on manufacturing conditions and working conditions, it is usually used at a viscosity of 1 poise to 5,000 poise. In order to apply this polyimide precursor solution to the surface of a mold by a casting method, the viscosity of the polyimide precursor solution is It is preferably within a range of 10 poise or more and 1,500 poise or less, and more preferably within a range of 50 poise or more and 1,000 poise or less.
なお、上記のポリイミド前駆体溶液を調製し得る有機極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ヘキサメチルホスホリックトリアミド、1,2-ジメトキシエタン、ジグライム、トリグライム等が挙げられる。これらのジアミンの中でも、特に、N,N-ジメチルアセトアミド(DMAC)、N-メチル-2-ピロリドン(NMP)が好ましい。なお、これらの有機極性溶媒は、単独で用いられてもよいし、組み合わせて用いられてもよい。また、この有機極性溶媒には、トルエン、キシレン等の芳香族炭化水素等が混合されてもよい。
Examples of the organic polar solvent capable of preparing the polyimide precursor solution include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, 1 , 3-dimethyl-2-imidazolidinone, N-methylcaprolactam, hexamethylphosphoric triamide, 1,2-dimethoxyethane, diglyme, triglyme and the like. Among these diamines, N, N-dimethylacetamide (DMAC) and N-methyl-2-pyrrolidone (NMP) are particularly preferable. In addition, these organic polar solvents may be used independently and may be used in combination. Moreover, aromatic hydrocarbons, such as toluene and xylene, may be mixed with this organic polar solvent.
また、上記のポリイミド前駆体溶液を調製し得るジアミンとしては、例えば、パラフェニレンジアミン(PPD)、メタフェニレンジアミン(MPDA)、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(トリフルオロメチル)-4、4’-ジアミノビフェニル、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン(MDA)、2,2-ビス-(4-アミノフェニル)プロパン、3,3’-ジアミノジフェニルスルホン(33DDS)、4,4’-ジアミノジフェニルスルホン(44DDS)、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル(34ODA)、4,4’-ジアミノジフェニルエーテル(ODA)、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、1,3-ビス(3-アミノフェノキシ)ベンゼン(133APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(134APB)、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン(BAPSM)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、2,2-ビス(3-アミノフェニル)1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)1,1,1,3,3,3-ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン、シクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン等の脂環式ジアミン等が挙げられる。なお、これらのジアミンを2種以上混合して使用しても何ら差し支えない。これらのジアミンの中でも、特に、パラフェニレンジアミン(PPD)、メタフェニレンジアミン(MPDA)、4,4’-ジアミノジフェニルメタン(MDA)、3,3’-ジアミノジフェニルスルホン(33DDS)、4,4’-ジアミノジフェニルスルホン(44DDS)、3,4’-ジアミノジフェニルエーテル(34ODA)、4,4’-ジアミノジフェニルエーテル(ODA)、1,3-ビス(3-アミノフェノキシ)ベンゼン(133APB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(134APB)、ビス[4-(3-アミノフェノキシ)フェニル]スルホン(BAPSM)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)が好ましい。
Examples of the diamine capable of preparing the polyimide precursor solution include, for example, paraphenylenediamine (PPD), metaphenylenediamine (MPDA), 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4 ′ -Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 2,2-bis (trifluoromethyl) -4, 4'- Diaminobiphenyl, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane (MDA), 2,2-bis- (4-aminophenyl) propane, 3,3′-diaminodiphenylsulfone (33DDS), 4, 4′-diaminodiphenyl sulfone (44DDS), 3,3′-diaminodiphenyl sulfide, 4 4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether (34 ODA), 4,4'-diaminodiphenyl ether (ODA), 1,5-diaminonaphthalene, 4,4'-diamino Diphenyldiethylsilane, 4,4′-diaminodiphenylsilane, 4,4′-diaminodiphenylethylphosphine oxide, 1,3-bis (3-aminophenoxy) benzene (133APB), 1,3-bis (4-aminophenoxy) ) Benzene (134APB), 1,4-bis (4-aminophenoxy) benzene, bis [4- (3-aminophenoxy) phenyl] sulfone (BAPSM), bis [4- (4-aminophenoxy) phenyl] sulfone ( BAPS), 2,2-bis [4- (4- Minophenoxy) phenyl] propane (BAPP), 2,2-bis (3-aminophenyl) 1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-aminophenyl) 1, Aromatic diamines such as 1,1,3,3,3-hexafluoropropane, 9,9-bis (4-aminophenyl) fluorene, aliphatic diamines such as tetramethylenediamine and hexamethylenediamine, cyclohexanediamine, isophoronediamine And alicyclic diamines such as norbornanediamine, bis (4-aminocyclohexyl) methane, and bis (4-amino-3-methylcyclohexyl) methane. In addition, even if it uses these diamines in mixture of 2 or more types, it does not interfere at all. Among these diamines, paraphenylenediamine (PPD), metaphenylenediamine (MPDA), 4,4′-diaminodiphenylmethane (MDA), 3,3′-diaminodiphenylsulfone (33DDS), 4,4′- Diaminodiphenylsulfone (44DDS), 3,4'-diaminodiphenyl ether (34ODA), 4,4'-diaminodiphenylether (ODA), 1,3-bis (3-aminophenoxy) benzene (133APB), 1,3-bis (4-aminophenoxy) benzene (134APB), bis [4- (3-aminophenoxy) phenyl] sulfone (BAPSM), bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2-bis [4- (4-Aminophenoxy) phenyl] pro Emissions (BAPP) is preferable.
さらに、上記のポリイミド前駆体溶液を調製し得るテトラカルボン酸二無水物としては、ピロメリット酸二無水物(PMDA)、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、2,2-ビス[3,4-(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BPADA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、オキシジフタル酸無水物(ODPA)、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホキシド二無水物、チオジフタル酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物や9,9-ビス[4-(3,4’-ジカルボキシフェノキシ)フェニル]フルオレン二無水物等の芳香族テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物が挙げられる。なお、これらのテトラカルボン酸二無水物を2種以上混合して使用しても何ら差し支えない。これらのテトラカルボン酸二無水物の中でも、特に、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,2-ビス[3,4-(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BPADA)、オキシジフタル酸無水物(ODPA)が好ましい。
Furthermore, examples of the tetracarboxylic dianhydride that can prepare the polyimide precursor solution include pyromellitic dianhydride (PMDA), 1,2,5,6-naphthalene tetracarboxylic dianhydride, 1,4 , 5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 , 3′4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride Anhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), bis (3,4-dicarbo Ciphenyl) sulfone dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ) Ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride (BPADA), 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, oxydiphthalic anhydride (ODPA), bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfoxide Dianhydride, thiodiphthalic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetra Rubonic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride and 9,9-bis [4- ( Aromatic tetracarboxylic dianhydrides such as 3,4′-dicarboxyphenoxy) phenyl] fluorene dianhydride, cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3 , 4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride. In addition, even if it uses these tetracarboxylic dianhydrides in mixture of 2 or more types, it does not interfere at all. Among these tetracarboxylic dianhydrides, pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride (BPADA), and oxydiphthalic anhydride (ODPA) are preferred.
本実施の形態では、ジアミンとしてパラフェニレンジアミンを用い、テトラカルボン酸二無水物として3,3',4,4'-ビフェニルテトラカルボン酸二無水物を用いることが特に好ましい。これらのモノマーから得られるポリイミド樹脂は機械的特性に優れ強靭であり、抵抗発熱シームレス管状物100の温度が上昇しても熱可塑性樹脂のように軟化、あるいは溶融することがなく、優れた耐熱性を有するからである。
In this embodiment, it is particularly preferable to use paraphenylenediamine as the diamine and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the tetracarboxylic dianhydride. Polyimide resins obtained from these monomers are excellent in mechanical properties and tough, and do not soften or melt like thermoplastic resins even when the temperature of the resistance exothermic seamless tubular article 100 rises, and have excellent heat resistance It is because it has.
また、必要であれば、本発明の本質を損なわない範囲内で、このポリイミド前駆体溶液にポリアミドイミドやポリエーテルスルホンなどの樹脂が添加されてもかまわない。
If necessary, a resin such as polyamide imide or polyether sulfone may be added to the polyimide precursor solution within a range not impairing the essence of the present invention.
また、ポリイミド前駆体溶液には、本発明の性質を損なわない範囲内で、分散剤、固体潤滑剤、沈降防止剤、レベリング剤、表面調節剤、水分吸収剤、ゲル化防止剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、皮張り防止剤、界面活性剤、帯電防止剤、消泡剤、抗菌剤、防カビ剤、防腐剤、増粘剤などの公知の添加剤が添加されてもよい。さらに、このポリイミド前駆体溶液には、化学量論以上の脱水剤およびイミド化触媒が添加されてもよい。
In addition, the polyimide precursor solution includes a dispersant, a solid lubricant, an anti-settling agent, a leveling agent, a surface conditioner, a moisture absorbent, an anti-gelling agent, and an antioxidant within the range not impairing the properties of the present invention. Addition of known additives such as UV absorbers, light stabilizers, plasticizers, anti-skinning agents, surfactants, antistatic agents, antifoaming agents, antibacterial agents, antifungal agents, antiseptics, thickeners May be. Furthermore, a stoichiometric or higher dehydrating agent and an imidization catalyst may be added to the polyimide precursor solution.
また、ポリイミド前駆体溶液は、使用に際して予めろ過、脱泡などの処理が行われるのが好ましい。
The polyimide precursor solution is preferably subjected to a treatment such as filtration and defoaming before use.
(2)電極成形工程
電極成形工程では、先ず、発熱樹脂層112の両端部の外周面に銀ペーストを塗布した後、既知の方法で銀ペーストの塗布厚みを均一にする。そして、発熱樹脂層112に銀ペーストが塗布された芯体を加熱することによって電極120を成形することができる。なお、銀ペーストには、バインダー樹脂としてポリイミド前駆体が添加されているのが好ましい。発熱樹脂層112との接着性を良好なものとすることができるだけでなく、高温化でも電極120が発熱樹脂層112に強固に接着した状態を保つからである。なお、このような銀ペーストとしては、例えば、国際公開第08/016148号に開示されているものが利用可能である。 (2) Electrode forming step In the electrode forming step, first, a silver paste is applied to the outer peripheral surfaces of both end portions of the heat generatingresin layer 112, and then the applied thickness of the silver paste is made uniform by a known method. And the electrode 120 can be shape | molded by heating the core body by which the silver paste was apply | coated to the heat-generating resin layer 112. FIG. In addition, it is preferable that the polyimide precursor is added to silver paste as binder resin. This is because not only the adhesiveness with the heat generating resin layer 112 can be improved, but also the electrode 120 remains firmly bonded to the heat generating resin layer 112 even at high temperatures. As such a silver paste, for example, those disclosed in International Publication No. 08/016148 can be used.
電極成形工程では、先ず、発熱樹脂層112の両端部の外周面に銀ペーストを塗布した後、既知の方法で銀ペーストの塗布厚みを均一にする。そして、発熱樹脂層112に銀ペーストが塗布された芯体を加熱することによって電極120を成形することができる。なお、銀ペーストには、バインダー樹脂としてポリイミド前駆体が添加されているのが好ましい。発熱樹脂層112との接着性を良好なものとすることができるだけでなく、高温化でも電極120が発熱樹脂層112に強固に接着した状態を保つからである。なお、このような銀ペーストとしては、例えば、国際公開第08/016148号に開示されているものが利用可能である。 (2) Electrode forming step In the electrode forming step, first, a silver paste is applied to the outer peripheral surfaces of both end portions of the heat generating
(3)プライマー塗布工程
プライマー塗布工程では、電極120をマスキングした状態で、発熱樹脂層112が形成された芯体610をプライマー液にディッピングすることによって、発熱樹脂層112の外周面にプライマー液が均一に塗布される。そして、その塗膜付きの発熱樹脂層112(芯体610付)が加熱される。なお、このときの加熱温度は、溶媒が揮発するが先のポリイミド前駆体のイミド化が進行しない程度の温度、例えば200℃以上250℃以下の範囲内の温度であることが好ましい。 (3) Primer application process In the primer application process, thecore liquid 610 on which the heat generating resin layer 112 is formed is dipped in the primer liquid in a state where the electrode 120 is masked, so that the primer liquid is formed on the outer peripheral surface of the heat generating resin layer 112. Evenly applied. And the exothermic resin layer 112 (with core body 610) with the coating film is heated. In addition, it is preferable that the heating temperature at this time is a temperature at which the solvent is volatilized but imidization of the previous polyimide precursor does not proceed, for example, a temperature within a range of 200 ° C. or more and 250 ° C. or less.
プライマー塗布工程では、電極120をマスキングした状態で、発熱樹脂層112が形成された芯体610をプライマー液にディッピングすることによって、発熱樹脂層112の外周面にプライマー液が均一に塗布される。そして、その塗膜付きの発熱樹脂層112(芯体610付)が加熱される。なお、このときの加熱温度は、溶媒が揮発するが先のポリイミド前駆体のイミド化が進行しない程度の温度、例えば200℃以上250℃以下の範囲内の温度であることが好ましい。 (3) Primer application process In the primer application process, the
(4)離型層成形工程
離型層成形工程では、電極120がマスキングされたままの状態でフッ素樹脂ディスパーション液が塗布された後、その塗膜が乾燥させられて、プライマー層上にフッ素樹脂ディスパーション液の塗膜が形成される。 (4) Release layer molding process In the release layer molding process, after the fluororesin dispersion liquid is applied in a state where theelectrode 120 is masked, the coating film is dried, and fluorine is formed on the primer layer. A coating film of a resin dispersion liquid is formed.
離型層成形工程では、電極120がマスキングされたままの状態でフッ素樹脂ディスパーション液が塗布された後、その塗膜が乾燥させられて、プライマー層上にフッ素樹脂ディスパーション液の塗膜が形成される。 (4) Release layer molding process In the release layer molding process, after the fluororesin dispersion liquid is applied in a state where the
(5)焼成工程
焼成工程では、マスキングが取り外された後、離型層成形工程で得られたものが焼成処理されて、抵抗発熱シームレス管状物100が得られる。このときの焼成温度は350℃以上400℃以下の範囲内の温度であることが好ましい。また、処理時間は30分以上2時間以下の範囲内であるのが好ましい。発熱樹脂層112のイミド化の完結と、離型層113のフッ素樹脂の焼成とが同時に行われ、抵抗発熱シームレス管状物100の製造時間の短縮化や熱効率の向上を実現することができるのみならず、各層112,113の接着力を高めることもできるからである。 (5) Firing step In the firing step, after the masking is removed, the product obtained in the release layer forming step is fired to obtain the resistance exothermic seamlesstubular product 100. The firing temperature at this time is preferably a temperature within the range of 350 ° C. or more and 400 ° C. or less. The treatment time is preferably in the range of 30 minutes to 2 hours. If the imidization of the heat generating resin layer 112 is completed and the fluororesin of the release layer 113 is fired at the same time, the manufacturing time of the resistance heat generating seamless tubular product 100 can be shortened and the thermal efficiency can be improved. This is because the adhesive strength of the layers 112 and 113 can also be increased.
焼成工程では、マスキングが取り外された後、離型層成形工程で得られたものが焼成処理されて、抵抗発熱シームレス管状物100が得られる。このときの焼成温度は350℃以上400℃以下の範囲内の温度であることが好ましい。また、処理時間は30分以上2時間以下の範囲内であるのが好ましい。発熱樹脂層112のイミド化の完結と、離型層113のフッ素樹脂の焼成とが同時に行われ、抵抗発熱シームレス管状物100の製造時間の短縮化や熱効率の向上を実現することができるのみならず、各層112,113の接着力を高めることもできるからである。 (5) Firing step In the firing step, after the masking is removed, the product obtained in the release layer forming step is fired to obtain the resistance exothermic seamless
(6)脱型工程
脱型工程では、芯体610から抵抗発熱シームレス管状物100が抜き取られる。 (6) Demolding process In the demolding process, the resistance exothermic seamlesstubular object 100 is extracted from the core body 610.
脱型工程では、芯体610から抵抗発熱シームレス管状物100が抜き取られる。 (6) Demolding process In the demolding process, the resistance exothermic seamless
<電子写真画像形成装置の定着装置>
ここでは、第1実施の形態に係る抵抗発熱シームレス管状物100が組み込まれた画像定着装置の一実施形態を説明する。なお、この画像定着装置には、後述する第2の実施の形態に係る抵抗発熱シームレス管状物100も組み込まれることができる。 <Fixing device of electrophotographic image forming apparatus>
Here, an embodiment of an image fixing apparatus incorporating the resistance heat generating seamlesstubular body 100 according to the first embodiment will be described. The image fixing apparatus can also incorporate a resistance heating seamless tubular article 100 according to a second embodiment to be described later.
ここでは、第1実施の形態に係る抵抗発熱シームレス管状物100が組み込まれた画像定着装置の一実施形態を説明する。なお、この画像定着装置には、後述する第2の実施の形態に係る抵抗発熱シームレス管状物100も組み込まれることができる。 <Fixing device of electrophotographic image forming apparatus>
Here, an embodiment of an image fixing apparatus incorporating the resistance heat generating seamless
この画像定着装置400は、図6および図7に示されるように、主に、本実施の形態に係る抵抗発熱シームレス管状物100、ベルト支持体150、加圧ロール300および給電ロール210から構成されている。
As shown in FIGS. 6 and 7, the image fixing device 400 mainly includes a resistance heating seamless tubular object 100 according to the present embodiment, a belt support 150, a pressure roll 300, and a power supply roll 210. ing.
抵抗発熱シームレス管状物100は、上述の通りである。ベルト支持体150は、ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルエーテルケトン、液晶ポリマー等の耐熱絶縁性樹脂から形成されており、主に、円筒部151およびベルトガイド部152から構成されている。円筒部151は、図7に示されるように、抵抗発熱シームレス管状物100の内側に回転自在に配置されている。ベルトガイド部152は、抵抗発熱シームレス管状物100が幅方向に蛇行した場合にストッパーとして機能する。加圧ロール300は、ロール本体310およびシャフト320から構成されている。シャフト320は、ロール本体310の回転軸に沿って両側に延びており、駆動モータ(図示せず)に連結されている。図6および図7に示されるように、ロール本体310は抵抗発熱シームレス管状物100に圧接され、その結果、ロール本体310と抵抗発熱シームレス管状物100との間にニップ部Nが形成される。すなわち、駆動モータが駆動されると、ロール本体310が回転軸を中心として回転し、加圧ロール300と圧接された抵抗発熱シームレス管状物100が従動する。そして、図7に示されるようにそのニップ部Nに対して、未定着トナー像TNが形成された複写紙PPが順次送り込まれて、未定着トナー像TNが順次、複写紙PPに熱定着される。給電ロール210は、リード線220を介して交流電源230に接続されていると共に、抵抗発熱シームレス管状物100の電極120と接触している。このため、抵抗発熱シームレス管状物100には、交流電源230から給電ロール210を介して電気が供給される。抵抗発熱シームレス管状物100に通電がなされると、上述の通り、発熱樹脂層112が抵抗発熱する。
The resistance exothermic seamless tubular object 100 is as described above. The belt support 150 is made of a heat-resistant insulating resin such as polyphenylene sulfide, polyamideimide, polyetheretherketone, or liquid crystal polymer, and mainly includes a cylindrical portion 151 and a belt guide portion 152. As shown in FIG. 7, the cylindrical portion 151 is rotatably disposed inside the resistance heating seamless tubular object 100. The belt guide part 152 functions as a stopper when the resistance heating seamless tubular article 100 meanders in the width direction. The pressure roll 300 includes a roll body 310 and a shaft 320. The shaft 320 extends on both sides along the rotation axis of the roll body 310 and is connected to a drive motor (not shown). As shown in FIGS. 6 and 7, the roll body 310 is pressed against the resistance heating seamless tubular object 100, and as a result, a nip portion N is formed between the roll body 310 and the resistance heating seamless tubular object 100. That is, when the drive motor is driven, the roll main body 310 rotates about the rotation axis, and the resistance heating seamless tubular object 100 pressed against the pressure roll 300 is driven. Then, as shown in FIG. 7, the copy paper PP on which the unfixed toner image TN is formed is sequentially fed into the nip portion N, and the unfixed toner image TN is sequentially heat-fixed on the copy paper PP. The The power supply roll 210 is connected to the AC power supply 230 via the lead wire 220 and is in contact with the electrode 120 of the resistance heating seamless tubular object 100. For this reason, electricity is supplied to the resistance heating seamless tubular object 100 from the AC power supply 230 via the power supply roll 210. When the resistance heat generating seamless tubular body 100 is energized, the heat generating resin layer 112 generates resistance heat as described above.
<第1の実施の形態に係る抵抗発熱シームレス管状物の特徴>
(1)
第1の実施の形態に係る抵抗発熱シームレス管状物100は発熱樹脂層112を有しており、その発熱樹脂層112では、導電性充填材として、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を主成分とする非金属系ナノ充填材のみが耐熱性樹脂中に分散されており、黒鉛繊維のような比較的サイズが大きい導電性充填材や、金属系導電性充填材が含まれていない。そして、この抵抗発熱シームレス管状物100は、300℃の温度下において48時間経過したときの抗値変動率が±15%の範囲内であり、300℃の温度下において100時間経過したときの抗値変動率が±30%の範囲内である。このため、この抵抗発熱シームレス管状物100は、使用に伴う抵抗値変動が十分に小さいだけでなく、強度低下を十分に小さくすることができる。したがって、この抵抗発熱シームレス管状物100は、比較的長期間使用することができる。 <Characteristics of the resistance heating seamless tubular article according to the first embodiment>
(1)
The resistance exothermic seamlesstubular article 100 according to the first embodiment has an exothermic resin layer 112, and the exothermic resin layer 112 has at least one of carbon nanotubes and carbon nanofibers as a main component as a conductive filler. Only the non-metallic nano filler is dispersed in the heat-resistant resin, and does not include a conductive filler having a relatively large size such as graphite fiber or a metallic conductive filler. The resistance exothermic seamless tubular article 100 has a resistance value fluctuation rate within a range of ± 15% when 48 hours have passed at a temperature of 300 ° C., and has a resistance value when 100 hours have passed at a temperature of 300 ° C. Value fluctuation rate is within ± 30%. For this reason, this resistance exothermic seamless tubular object 100 not only has a sufficiently small resistance value variation with use, but also can sufficiently reduce the strength reduction. Therefore, this resistance exothermic seamless tubular object 100 can be used for a relatively long time.
(1)
第1の実施の形態に係る抵抗発熱シームレス管状物100は発熱樹脂層112を有しており、その発熱樹脂層112では、導電性充填材として、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を主成分とする非金属系ナノ充填材のみが耐熱性樹脂中に分散されており、黒鉛繊維のような比較的サイズが大きい導電性充填材や、金属系導電性充填材が含まれていない。そして、この抵抗発熱シームレス管状物100は、300℃の温度下において48時間経過したときの抗値変動率が±15%の範囲内であり、300℃の温度下において100時間経過したときの抗値変動率が±30%の範囲内である。このため、この抵抗発熱シームレス管状物100は、使用に伴う抵抗値変動が十分に小さいだけでなく、強度低下を十分に小さくすることができる。したがって、この抵抗発熱シームレス管状物100は、比較的長期間使用することができる。 <Characteristics of the resistance heating seamless tubular article according to the first embodiment>
(1)
The resistance exothermic seamless
(2)
第1実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112の膜厚が20μm以上とされている。このため、発熱樹脂層112の膜厚に少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この抵抗発熱シームレス管状物100を大量生産した場合であってもその発熱量を安定させることができる。 (2)
In the resistance exothermic seamlesstubular body 100 according to the first embodiment, the heat generating resin layer 112 has a thickness of 20 μm or more. For this reason, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. The calorific value can be stabilized.
第1実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112の膜厚が20μm以上とされている。このため、発熱樹脂層112の膜厚に少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この抵抗発熱シームレス管状物100を大量生産した場合であってもその発熱量を安定させることができる。 (2)
In the resistance exothermic seamless
(3)
本実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112に対する非金属系ナノ充填材の体積分率が5体積%以上100体積%以下の範囲内である。この抵抗発熱シームレス管状物100に良好な柔軟性を付与することができる。 (3)
In the resistance exothermic seamlesstubular article 100 according to the present embodiment, the volume fraction of the nonmetallic nanofiller with respect to the exothermic resin layer 112 is in the range of 5% by volume to 100% by volume. Good flexibility can be imparted to the resistance exothermic seamless tubular article 100.
本実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112に対する非金属系ナノ充填材の体積分率が5体積%以上100体積%以下の範囲内である。この抵抗発熱シームレス管状物100に良好な柔軟性を付与することができる。 (3)
In the resistance exothermic seamless
<変形例>
(A)
第1の実施の形態では特に言及しなかったが、発熱樹脂層112の内周側に基層が設けられてもよい。基層は、シームレスの管状層であって、抵抗発熱シームレス管状物100の使用時温度に耐え得る耐熱絶縁材料から形成されるのが好ましい。このような耐熱絶縁材料としては、例えば、特殊ステンレス鋼や、耐熱性樹脂等が挙げられる。耐熱性樹脂は、ポリイミド樹脂またはシリコーンゴムを主成分とする樹脂であることが好ましく、ポリイミド樹脂そのものであることがより好ましい。また、抵抗発熱シームレス管状物100が定着チューブや定着ベルトとして電子写真画像形成装置の画像定着部に組み込まれる場合、この基層は、その動作に耐え得る機械的特性を有しているのが好ましい。また、このように本体110に基層が設けられる場合、発熱樹脂層112の膜厚は30μm以上であればよい。 <Modification>
(A)
Although not particularly mentioned in the first embodiment, a base layer may be provided on the inner peripheral side of the heat generatingresin layer 112. The base layer is a seamless tubular layer, and is preferably formed from a heat-resistant insulating material that can withstand the temperature during use of the resistance heating seamless tubular object 100. Examples of such a heat-resistant insulating material include special stainless steel and heat-resistant resin. The heat-resistant resin is preferably a resin mainly composed of a polyimide resin or silicone rubber, and more preferably a polyimide resin itself. In addition, when the resistance heat generating seamless tubular article 100 is incorporated in an image fixing unit of an electrophotographic image forming apparatus as a fixing tube or a fixing belt, it is preferable that the base layer has a mechanical characteristic capable of withstanding the operation. When the base layer is provided on the main body 110 in this way, the heat generating resin layer 112 may have a thickness of 30 μm or more.
(A)
第1の実施の形態では特に言及しなかったが、発熱樹脂層112の内周側に基層が設けられてもよい。基層は、シームレスの管状層であって、抵抗発熱シームレス管状物100の使用時温度に耐え得る耐熱絶縁材料から形成されるのが好ましい。このような耐熱絶縁材料としては、例えば、特殊ステンレス鋼や、耐熱性樹脂等が挙げられる。耐熱性樹脂は、ポリイミド樹脂またはシリコーンゴムを主成分とする樹脂であることが好ましく、ポリイミド樹脂そのものであることがより好ましい。また、抵抗発熱シームレス管状物100が定着チューブや定着ベルトとして電子写真画像形成装置の画像定着部に組み込まれる場合、この基層は、その動作に耐え得る機械的特性を有しているのが好ましい。また、このように本体110に基層が設けられる場合、発熱樹脂層112の膜厚は30μm以上であればよい。 <Modification>
(A)
Although not particularly mentioned in the first embodiment, a base layer may be provided on the inner peripheral side of the heat generating
(B)
第1の実施の形態では特に言及しなかったが、本体110は、発熱樹脂層112のみから形成されてよい。 (B)
Although not specifically mentioned in the first embodiment, themain body 110 may be formed of only the heat generating resin layer 112.
第1の実施の形態では特に言及しなかったが、本体110は、発熱樹脂層112のみから形成されてよい。 (B)
Although not specifically mentioned in the first embodiment, the
(C)
第1の実施の形態に係る抵抗発熱シームレス管状物100では電極120が両端部に設けられたが、電極120の配設位置は特に限定されず用途等に応じて適宜変更されてもよい。 (C)
In the resistance heating seamlesstubular article 100 according to the first embodiment, the electrodes 120 are provided at both ends, but the arrangement positions of the electrodes 120 are not particularly limited, and may be appropriately changed according to the application.
第1の実施の形態に係る抵抗発熱シームレス管状物100では電極120が両端部に設けられたが、電極120の配設位置は特に限定されず用途等に応じて適宜変更されてもよい。 (C)
In the resistance heating seamless
(D)
第1の実施の形態では特に言及しなかったが、発熱樹脂層112と離型層113との間に弾性層が設けられてもよい。なお、この弾性層は、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つのゴムから成るのが好ましい。このゴムは、硬度が低く柔らかいものが好ましい。具体的には、例えばJIS-A硬度で3~50度のシリコーンゴムなどが好適である。また、この弾性層の厚さは100μm以上500μm以下の範囲内であることが好ましい。このように発熱樹脂層112と離型層113との間に弾性層を設けることにより、抵抗発熱シームレス管状物100をフルカラー画像定着用途に適用することが可能となる。 (D)
Although not particularly mentioned in the first embodiment, an elastic layer may be provided between the heat generatingresin layer 112 and the release layer 113. The elastic layer is preferably made of at least one rubber selected from the group consisting of silicone rubber and fluorine rubber. This rubber is preferably soft and low in hardness. Specifically, for example, silicone rubber having a JIS-A hardness of 3 to 50 degrees is suitable. The thickness of this elastic layer is preferably in the range of 100 μm or more and 500 μm or less. By providing an elastic layer between the heat generating resin layer 112 and the release layer 113 as described above, the resistance heat generating seamless tubular object 100 can be applied to a full color image fixing application.
第1の実施の形態では特に言及しなかったが、発熱樹脂層112と離型層113との間に弾性層が設けられてもよい。なお、この弾性層は、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つのゴムから成るのが好ましい。このゴムは、硬度が低く柔らかいものが好ましい。具体的には、例えばJIS-A硬度で3~50度のシリコーンゴムなどが好適である。また、この弾性層の厚さは100μm以上500μm以下の範囲内であることが好ましい。このように発熱樹脂層112と離型層113との間に弾性層を設けることにより、抵抗発熱シームレス管状物100をフルカラー画像定着用途に適用することが可能となる。 (D)
Although not particularly mentioned in the first embodiment, an elastic layer may be provided between the heat generating
(E)
第1の実施の形態では特に言及しなかったが、発熱樹脂層112と離型層113との間に絶縁層が設けられてもよい。かかる場合、絶縁層と離型層113との層間には接着性を安定させるためにプライマーを用いることが好ましい。また、かかる場合、絶縁層には、上記「(1-1)発熱樹脂層」の欄で列記した熱伝導性改良用の充填材や、機械的特性改良用の充填材が添加されてもかまわない。絶縁層をこのように形成することにより、発熱樹脂層112の熱量を効率よく抵抗発熱シームレス管状物100の外表面まで伝導させることができ、延いてはクイックスタートあるいは省エネルギーを実現することができるからである。 (E)
Although not particularly mentioned in the first embodiment, an insulating layer may be provided between the heat generatingresin layer 112 and the release layer 113. In such a case, a primer is preferably used between the insulating layer and the release layer 113 in order to stabilize the adhesiveness. In such a case, the insulating layer may be added with a filler for improving thermal conductivity or a filler for improving mechanical properties listed in the column of “(1-1) Heat generating resin layer”. Absent. By forming the insulating layer in this way, the heat quantity of the heat generating resin layer 112 can be efficiently conducted to the outer surface of the resistance heat generating seamless tubular object 100, and thus quick start or energy saving can be realized. It is.
第1の実施の形態では特に言及しなかったが、発熱樹脂層112と離型層113との間に絶縁層が設けられてもよい。かかる場合、絶縁層と離型層113との層間には接着性を安定させるためにプライマーを用いることが好ましい。また、かかる場合、絶縁層には、上記「(1-1)発熱樹脂層」の欄で列記した熱伝導性改良用の充填材や、機械的特性改良用の充填材が添加されてもかまわない。絶縁層をこのように形成することにより、発熱樹脂層112の熱量を効率よく抵抗発熱シームレス管状物100の外表面まで伝導させることができ、延いてはクイックスタートあるいは省エネルギーを実現することができるからである。 (E)
Although not particularly mentioned in the first embodiment, an insulating layer may be provided between the heat generating
(F)
第1の実施の形態では、有機極性溶媒中に少なくとも1種のジアミンを溶解させてジアミン溶液を調製した後、そのジアミン溶液に少なくとも1種のテトラカルボン酸二無水物を添加してジアミンとテトラカルボン酸二無水物とを重合させてポリイミド前駆体溶液を調製したが、ポリイミド前駆体溶液の製造方法は、特に限定されず、ジアミンおよびテトラカルボン酸二無水物のいずれか一方の誘導体が利用されてもよい。テトラカルボン酸二無水物の誘導体としては、例えば、エステル化合物が挙げられる。 (F)
In the first embodiment, at least one diamine is dissolved in an organic polar solvent to prepare a diamine solution, and then at least one tetracarboxylic dianhydride is added to the diamine solution to add diamine and tetra A polyimide precursor solution was prepared by polymerizing with carboxylic dianhydride, but the method for producing the polyimide precursor solution is not particularly limited, and either a diamine or a tetracarboxylic dianhydride derivative is used. May be. Examples of the tetracarboxylic dianhydride derivatives include ester compounds.
第1の実施の形態では、有機極性溶媒中に少なくとも1種のジアミンを溶解させてジアミン溶液を調製した後、そのジアミン溶液に少なくとも1種のテトラカルボン酸二無水物を添加してジアミンとテトラカルボン酸二無水物とを重合させてポリイミド前駆体溶液を調製したが、ポリイミド前駆体溶液の製造方法は、特に限定されず、ジアミンおよびテトラカルボン酸二無水物のいずれか一方の誘導体が利用されてもよい。テトラカルボン酸二無水物の誘導体としては、例えば、エステル化合物が挙げられる。 (F)
In the first embodiment, at least one diamine is dissolved in an organic polar solvent to prepare a diamine solution, and then at least one tetracarboxylic dianhydride is added to the diamine solution to add diamine and tetra A polyimide precursor solution was prepared by polymerizing with carboxylic dianhydride, but the method for producing the polyimide precursor solution is not particularly limited, and either a diamine or a tetracarboxylic dianhydride derivative is used. May be. Examples of the tetracarboxylic dianhydride derivatives include ester compounds.
(G)
第1の実施の形態では発熱樹脂層112に接するように電極120が配設されたが(図5参照)、離型層113およびプライマーに導電性を付与すれば、電極120を離型層113に接するように配設してもかまわない。 (G)
In the first embodiment, theelectrode 120 is disposed so as to be in contact with the heat generating resin layer 112 (see FIG. 5). However, if conductivity is imparted to the release layer 113 and the primer, the electrode 120 is removed from the release layer 113. You may arrange | position so that it may touch.
第1の実施の形態では発熱樹脂層112に接するように電極120が配設されたが(図5参照)、離型層113およびプライマーに導電性を付与すれば、電極120を離型層113に接するように配設してもかまわない。 (G)
In the first embodiment, the
(H)
第1の実施の形態に係る抵抗発熱シームレス管状物100では電極120が外周側に露出するように配設されていたが(図5参照)、離型層113に導電性を付与すれば、電極120を離型層113に埋設してもかまわない。 (H)
In the resistance heating seamlesstubular article 100 according to the first embodiment, the electrode 120 is disposed so as to be exposed to the outer peripheral side (see FIG. 5), but if the release layer 113 is provided with conductivity, the electrode 120 may be embedded in the release layer 113.
第1の実施の形態に係る抵抗発熱シームレス管状物100では電極120が外周側に露出するように配設されていたが(図5参照)、離型層113に導電性を付与すれば、電極120を離型層113に埋設してもかまわない。 (H)
In the resistance heating seamless
(I)
第1の実施の形態に係る抵抗発熱シームレス管状物100では電極120が外周側に露出するように配設されていたが(図5参照)、図9に示される抵抗発熱シームレス管状物100aのように、電極120が発熱樹脂層112の内周側に露出するように配設されてもよい。また、変形例(A)に記載のように、発熱樹脂層112の内周側に基層が設けられる場合、電極120が内周側に露出するように基層が設けられる。ただし、基層に導電性を付与すれば、電極120を基層に埋設してもかまわない。 (I)
In the resistance heating seamlesstubular object 100 according to the first embodiment, the electrode 120 is disposed so as to be exposed on the outer peripheral side (see FIG. 5), but like the resistance heating seamless tubular object 100a shown in FIG. In addition, the electrode 120 may be disposed so as to be exposed on the inner peripheral side of the heat generating resin layer 112. Further, as described in the modification example (A), when the base layer is provided on the inner peripheral side of the heat generating resin layer 112, the base layer is provided so that the electrode 120 is exposed on the inner peripheral side. However, the electrode 120 may be embedded in the base layer as long as conductivity is imparted to the base layer.
第1の実施の形態に係る抵抗発熱シームレス管状物100では電極120が外周側に露出するように配設されていたが(図5参照)、図9に示される抵抗発熱シームレス管状物100aのように、電極120が発熱樹脂層112の内周側に露出するように配設されてもよい。また、変形例(A)に記載のように、発熱樹脂層112の内周側に基層が設けられる場合、電極120が内周側に露出するように基層が設けられる。ただし、基層に導電性を付与すれば、電極120を基層に埋設してもかまわない。 (I)
In the resistance heating seamless
(J)
第1の実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112の上に電極120が配設されていたが(図5参照)、図10に示される抵抗発熱シームレス管状物100bのように、電極120が発熱樹脂層112の横に配設されてもよい。かかる場合において離型層113が絶縁性を保持している場合には、電極120が内周側に露出するか、電極120が外周側に露出するように離型層113を発熱樹脂層112の外周面にのみ形成する。その一方、離型層113に導電性が付与されている場合には、離型層113が電極120を覆っていてもよい。 (J)
In the resistance exothermic seamlesstubular object 100 according to the first embodiment, the electrode 120 is disposed on the exothermic resin layer 112 (see FIG. 5), but like the resistance exothermic seamless tubular object 100b shown in FIG. In addition, the electrode 120 may be disposed beside the heat generating resin layer 112. In such a case, when the release layer 113 maintains insulation, the release layer 113 is formed on the heat generating resin layer 112 so that the electrode 120 is exposed on the inner peripheral side or the electrode 120 is exposed on the outer peripheral side. It is formed only on the outer peripheral surface. On the other hand, when conductivity is imparted to the release layer 113, the release layer 113 may cover the electrode 120.
第1の実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112の上に電極120が配設されていたが(図5参照)、図10に示される抵抗発熱シームレス管状物100bのように、電極120が発熱樹脂層112の横に配設されてもよい。かかる場合において離型層113が絶縁性を保持している場合には、電極120が内周側に露出するか、電極120が外周側に露出するように離型層113を発熱樹脂層112の外周面にのみ形成する。その一方、離型層113に導電性が付与されている場合には、離型層113が電極120を覆っていてもよい。 (J)
In the resistance exothermic seamless
また、変形例(A)に記載のように、発熱樹脂層112の内周側に基層が設けられる場合において基層が絶縁性を保持している場合には、電極120が外周側に露出するように離型層113を発熱樹脂層112の外周面にのみ形成するか(かかる場合、基層が電極120を覆っていてもよい。)、電極120が内周側に露出するように基層を発熱樹脂層112の内周面にのみ形成する(かかる場合、離型層113が電極120を覆っていてもよい。)。その一方、基層に導電性が付与されている場合には、基層が電極120を覆っていてもよい。
Further, as described in the modification example (A), when the base layer is provided on the inner peripheral side of the heat generating resin layer 112 and the base layer retains insulation, the electrode 120 is exposed on the outer peripheral side. The release layer 113 is formed only on the outer peripheral surface of the heat generating resin layer 112 (in this case, the base layer may cover the electrode 120), or the base layer is formed so that the electrode 120 is exposed to the inner peripheral side. It is formed only on the inner peripheral surface of the layer 112 (in such a case, the release layer 113 may cover the electrode 120). On the other hand, when conductivity is imparted to the base layer, the base layer may cover the electrode 120.
-第2の実施の形態-
第2の実施の形態に係る管状の面状抵抗発熱体(以下「抵抗発熱シームレス管状物」と称する。)は、発熱樹脂層の構成の点でのみ、第1の実施の形態に係る管状の面状抵抗発熱体と相違する。したがって、以下、発熱樹脂層のみについて言及し、他の構成の説明を省略する。 -Second Embodiment-
The tubular planar resistance heating element according to the second embodiment (hereinafter referred to as “resistance heating seamless tubular material”) is the tubular structure according to the first embodiment only in the configuration of the heat generating resin layer. It differs from the planar resistance heating element. Therefore, hereinafter, only the heat-generating resin layer will be referred to, and description of other configurations will be omitted.
第2の実施の形態に係る管状の面状抵抗発熱体(以下「抵抗発熱シームレス管状物」と称する。)は、発熱樹脂層の構成の点でのみ、第1の実施の形態に係る管状の面状抵抗発熱体と相違する。したがって、以下、発熱樹脂層のみについて言及し、他の構成の説明を省略する。 -Second Embodiment-
The tubular planar resistance heating element according to the second embodiment (hereinafter referred to as “resistance heating seamless tubular material”) is the tubular structure according to the first embodiment only in the configuration of the heat generating resin layer. It differs from the planar resistance heating element. Therefore, hereinafter, only the heat-generating resin layer will be referred to, and description of other configurations will be omitted.
(1-1)発熱樹脂層
発熱樹脂層112は、図4および図5に示されているように、シームレスの管状層であって、主に「抵抗発熱シームレス管状物100の使用時温度に耐え得る耐熱絶縁材料」、「金属表面を有する導電性粒子(以下「金属表面導電性粒子」という。)」、「SH基およびSM基の少なくとも1つが含窒素芳香族複素環に直接結合される化合物(ただし、Mは金属または置換もしくは無置換のアンモニウムである。)(以下「メルカプト基含有含窒素芳香族複素環化合物」という。)」ならびに「硼素(B)を含有する化合物(以下「硼素含有化合物」という。)」から形成される。なお、これらの化合物は、第2の実施の形態に係る抵抗発熱シームレス管状物において発熱樹脂層112の必須成分である。また、第2の実施の形態において、金属表面導電性粒子、メルカプト基含有含窒素芳香族複素環化合物および硼素含有化合物は、耐熱絶縁材料に含有されている。 (1-1) Heat generation resin layer The heatgeneration resin layer 112 is a seamless tubular layer as shown in FIG. 4 and FIG. Heat-resistant insulating material to be obtained "," conductive particles having a metal surface (hereinafter referred to as "metal surface conductive particles") "," compound in which at least one of SH group and SM group is directly bonded to a nitrogen-containing aromatic heterocycle (Wherein M is a metal or substituted or unsubstituted ammonium) (hereinafter referred to as “mercapto group-containing nitrogen-containing aromatic heterocyclic compound”) ”and“ boron (B) -containing compound (hereinafter referred to as “boron-containing”). Compound "))". Note that these compounds are essential components of the heat generating resin layer 112 in the resistance heat generating seamless tubular product according to the second embodiment. In the second embodiment, the metal surface conductive particles, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound and the boron-containing compound are contained in the heat-resistant insulating material.
発熱樹脂層112は、図4および図5に示されているように、シームレスの管状層であって、主に「抵抗発熱シームレス管状物100の使用時温度に耐え得る耐熱絶縁材料」、「金属表面を有する導電性粒子(以下「金属表面導電性粒子」という。)」、「SH基およびSM基の少なくとも1つが含窒素芳香族複素環に直接結合される化合物(ただし、Mは金属または置換もしくは無置換のアンモニウムである。)(以下「メルカプト基含有含窒素芳香族複素環化合物」という。)」ならびに「硼素(B)を含有する化合物(以下「硼素含有化合物」という。)」から形成される。なお、これらの化合物は、第2の実施の形態に係る抵抗発熱シームレス管状物において発熱樹脂層112の必須成分である。また、第2の実施の形態において、金属表面導電性粒子、メルカプト基含有含窒素芳香族複素環化合物および硼素含有化合物は、耐熱絶縁材料に含有されている。 (1-1) Heat generation resin layer The heat
また、この発熱樹脂層112には、必要に応じて「モリブデン(Mo)、バナジウム(V)、タングステン(W)、チタン(Ti)、アルミニウム(Al)およびニオブ(Nb)の少なくとも一つの元素を含有するポリ酸由来の化合物(以下「ポリ酸由来化合物」という。)」がさらに含まれていてもよいし、導電補助材としてカーボンナノチューブ、カーボンナノファイバー等のカーボンナノ材料が含まれていてもよいし、熱伝導性等の向上を目的として、アルミナ、窒化硼素、窒化アルミニウム、炭化珪素、酸化チタン、シリカ、チタン酸カリウム、アルミナ、窒化珪素等の電気絶縁性粒子が含まれてもよいし、機械的特性等の向上を目的としてチタン酸カリウム繊維、針状酸化チタン、ホウ酸アルミニウムウィスカ、テトラポット状酸化亜鉛ウィスカ、セピオライト、ガラス繊維等の繊維状粒子、モンモリロナイト、タルク等の粘度鉱物が含まれてもよい。ただし、これらの任意成分は、本発明の本質を損なわない程度に添加されることが要求される。また、これらの任意成分は、耐熱絶縁材料に含有されることになる。以下、上述の必須成分および任意成分について詳述する。
Further, if necessary, the heat generating resin layer 112 may include “molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium (Nb) at least one element. The polyacid-derived compound (hereinafter referred to as “polyacid-derived compound”) ”may be further included, or carbon nanomaterials such as carbon nanotubes and carbon nanofibers may be included as a conductive auxiliary material. Alternatively, for the purpose of improving thermal conductivity, etc., electrically insulating particles such as alumina, boron nitride, aluminum nitride, silicon carbide, titanium oxide, silica, potassium titanate, alumina, silicon nitride may be included. For the purpose of improving mechanical properties, potassium titanate fiber, acicular titanium oxide, aluminum borate whisker, tetrapot shape Zinc whiskers, sepiolite, fibrous particles such as glass fiber, montmorillonite, may include clay minerals such as talc. However, these optional components are required to be added to such an extent that the essence of the present invention is not impaired. These optional components are contained in the heat-resistant insulating material. Hereinafter, the above-mentioned essential components and optional components will be described in detail.
(1-1-1)耐熱絶縁材料
耐熱絶縁材料としては、例えば、耐熱性樹脂等が挙げられる。なお、本実施の形態に係る抵抗発熱シームレス管状物100において、耐熱性樹脂は、ポリイミド樹脂を主成分とする樹脂であることが好ましく、ポリイミド樹脂そのものであることがより好ましい。なお、ポリイミド樹脂の詳細は第1の実施の形態で十分に説明されているため、その説明を省略する。また、耐熱性樹脂がポリイミド樹脂を主成分とする樹脂である場合、耐熱性樹脂には、本発明の本質を損なわない範囲内で、ポリアミドイミドやポリエーテルスルホンなどの他の耐熱性樹脂が添加されてもよい。 (1-1-1) Heat-resistant insulating material Examples of the heat-resistant insulating material include a heat-resistant resin. In the resistance heating seamlesstubular article 100 according to the present embodiment, the heat-resistant resin is preferably a resin containing a polyimide resin as a main component, and more preferably a polyimide resin itself. Note that details of the polyimide resin are sufficiently described in the first embodiment, and thus description thereof is omitted. In addition, when the heat-resistant resin is a resin mainly composed of a polyimide resin, other heat-resistant resins such as polyamide imide and polyether sulfone are added to the heat-resistant resin within a range that does not impair the essence of the present invention. May be.
耐熱絶縁材料としては、例えば、耐熱性樹脂等が挙げられる。なお、本実施の形態に係る抵抗発熱シームレス管状物100において、耐熱性樹脂は、ポリイミド樹脂を主成分とする樹脂であることが好ましく、ポリイミド樹脂そのものであることがより好ましい。なお、ポリイミド樹脂の詳細は第1の実施の形態で十分に説明されているため、その説明を省略する。また、耐熱性樹脂がポリイミド樹脂を主成分とする樹脂である場合、耐熱性樹脂には、本発明の本質を損なわない範囲内で、ポリアミドイミドやポリエーテルスルホンなどの他の耐熱性樹脂が添加されてもよい。 (1-1-1) Heat-resistant insulating material Examples of the heat-resistant insulating material include a heat-resistant resin. In the resistance heating seamless
(1-1-2)金属表面導電性粒子
第2の実施の形態に係る金属表面導電性粒子は、金属粒子、または、コア粒子に金属シェルが被覆されている導電性粒子(以下「コア-シェル型導電性粒子」と称する。)である。なお、金属表面導電性粒子がコア-シェル型導電性粒子である場合、導電性粒子含有樹脂溶液(後述)のコスト低減あるいは軽量化を図ることができる。 (1-1-2) Metal Surface Conductive Particles The metal surface conductive particles according to the second embodiment are metal particles or conductive particles (hereinafter referred to as “core— This is referred to as “shell-type conductive particles”. When the metal surface conductive particles are core-shell type conductive particles, the cost or weight of the conductive particle-containing resin solution (described later) can be reduced.
第2の実施の形態に係る金属表面導電性粒子は、金属粒子、または、コア粒子に金属シェルが被覆されている導電性粒子(以下「コア-シェル型導電性粒子」と称する。)である。なお、金属表面導電性粒子がコア-シェル型導電性粒子である場合、導電性粒子含有樹脂溶液(後述)のコスト低減あるいは軽量化を図ることができる。 (1-1-2) Metal Surface Conductive Particles The metal surface conductive particles according to the second embodiment are metal particles or conductive particles (hereinafter referred to as “core— This is referred to as “shell-type conductive particles”. When the metal surface conductive particles are core-shell type conductive particles, the cost or weight of the conductive particle-containing resin solution (described later) can be reduced.
第2の実施の形態において金属粒子は特に限定されるものではないが、白金、金、銀、ニッケル、パラジウム等の導電性の高い金属粒子であるのが好ましい。また、この金属粒子は、鱗片状、針状、樹枝状、フィラメント状など、任意の形状のものであってよいが、少量で導電ネットワークを構築することができるという点からフィラメント状が好ましい。なお、本実施の形態において、金属粒子は、図11に示されるような「ストランドが三次元的に連なった形状を有する金属粒子(以下「ストランド連続金属粒子」という。)」であることが特に好ましい。このようなストランド連続金属粒子は、平均粒子径が0.1μm以上5.0μm以下の範囲内であり、比表面積が1.0m2/g以上100m2/gであるのが好ましい。また、このストランド連続金属粒子は、カーボンナノチューブ、カーボンナノファイバー等のカーボンナノ材料が併用される場合、カーボンナノ材料と線状に絡み合うことによって、低抵抗の発熱抵抗体を形成することができ、均一な体積抵抗率を有する発熱樹脂層を成形することができる。
In the second embodiment, the metal particles are not particularly limited, but are preferably highly conductive metal particles such as platinum, gold, silver, nickel, and palladium. The metal particles may have any shape such as a scale shape, a needle shape, a dendritic shape, or a filament shape, but a filament shape is preferable because a conductive network can be constructed with a small amount. In the present embodiment, the metal particles are particularly “metal particles having a shape in which strands are three-dimensionally connected” (hereinafter referred to as “strand continuous metal particles”) as shown in FIG. preferable. Such strand continuous metal particles preferably have an average particle diameter in the range of 0.1 μm to 5.0 μm and a specific surface area of 1.0 m 2 / g to 100 m 2 / g. In addition, when carbon nanomaterials such as carbon nanotubes and carbon nanofibers are used in combination, the strand continuous metal particles can form a low-resistance heating resistor by being intertwined linearly with the carbon nanomaterial, A heat generating resin layer having a uniform volume resistivity can be formed.
また、本実施の形態においてコア-シェル型導電性粒子のコア粒子は特に限定されるものではないが、コスト面および耐熱性等の特性の面から、カーボン、ガラス、セラミックスなどの無機粒子であるのが好ましい。無機粒子としては、鱗片状、針状、樹枝状など任意の形状のものを用いることができる。また、この無機微粒子は、ポリイミド前駆体溶液に混合したときの分散性、安定性および軽量化の面から、中空状、発泡状の微粒子であるのが好ましい。また、金属シェルは、コア粒子の表面積の80%以上を被覆しているのが好ましく、90%以上を被覆しているのがより好ましく、95%以上を被覆しているのがさらに好ましい。金属シェルは、単層であってもよいし、複数層であってもよい。また、かかる場合、金属シェルで被覆されていないコア粒子部分には、が他の金属で被覆されていてもよい。他の導電性金属としては、例えば、白金,金およびパラジウムなどの貴金属、モリブデン,ニッケル,コバルト,鉄,銅,亜鉛,錫,アンチモン,タングステン,マンガン,チタン,バナジウムおよびクロム等の卑金属が挙げられる。なお、コア粒子上に金属シェルを形成する方法としては、特に限定されず、例えば、電解めっき、無電解めっき、真空蒸着、スパッタリング等が挙げられる。
Further, in the present embodiment, the core particle of the core-shell type conductive particle is not particularly limited, but is an inorganic particle such as carbon, glass, ceramics, etc. from the viewpoint of characteristics such as cost and heat resistance. Is preferred. As the inorganic particles, particles having an arbitrary shape such as a scaly shape, a needle shape, or a dendritic shape can be used. The inorganic fine particles are preferably hollow and foamed fine particles in terms of dispersibility, stability and weight reduction when mixed with the polyimide precursor solution. The metal shell preferably covers 80% or more of the surface area of the core particle, more preferably 90% or more, and even more preferably 95% or more. The metal shell may be a single layer or a plurality of layers. In such a case, the core particle portion not covered with the metal shell may be covered with another metal. Examples of other conductive metals include noble metals such as platinum, gold and palladium, and base metals such as molybdenum, nickel, cobalt, iron, copper, zinc, tin, antimony, tungsten, manganese, titanium, vanadium and chromium. . In addition, it does not specifically limit as a method of forming a metal shell on a core particle, For example, electrolytic plating, electroless plating, vacuum evaporation, sputtering etc. are mentioned.
また、金属表面導電性微粒子の平均粒子径は、1μm以上50μm未満の範囲内であるのが好ましい。金属表面導電性微粒子の平均粒子径がこの範囲内であると、導電性粒子含有樹脂溶液(後述)中で金属表面導電性微粒子が凝集しにくくなると共に、導電性粒子含有樹脂溶液から得られる塗膜やフィルムの表面粗度が低くなるからである。
The average particle diameter of the metal surface conductive fine particles is preferably in the range of 1 μm or more and less than 50 μm. When the average particle diameter of the metal surface conductive fine particles is within this range, the metal surface conductive fine particles are less likely to aggregate in the conductive particle-containing resin solution (described later), and the coating obtained from the conductive particle-containing resin solution is used. This is because the surface roughness of the film or film is lowered.
本実施の形態において、耐熱絶縁材料に対する金属表面導電性粒子の体積分率は20体積%以上70体積%以下の範囲内であることが好ましく、30体積%以上60体積%以下の範囲内であることがより好ましく、35体積%以上55体積%以下の範囲内であることがさらに好ましく、40体積%以上50体積%以下の範囲内であることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値に依存して変更される必要があるが、同体積分率がこの範囲内であると発熱樹脂層112の機械的特性と発熱特性のバランスに優れる。
In the present embodiment, the volume fraction of the metal surface conductive particles relative to the heat-resistant insulating material is preferably in the range of 20% by volume to 70% by volume, and in the range of 30% by volume to 60% by volume. More preferably, it is more preferably in the range of 35% to 55% by volume, and particularly preferably in the range of 40% to 50% by volume. Of course, the volume fraction needs to be changed depending on the target resistance value, but when the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent.
また、本実施の形態において、発熱樹脂層112中の金属表面導電性粒子の形状が針状等である場合、その金属表面導電性粒子は長さ方向に配向して存在していることが好ましい。このようにすれば、比較的少量の金属表面導電性粒子で電気抵抗値を効率的に下げることができ、かつ、均一な発熱特性が得られるからである。
In the present embodiment, when the shape of the metal surface conductive particles in the heat generating resin layer 112 is needle-shaped or the like, it is preferable that the metal surface conductive particles are oriented in the length direction. . This is because the electrical resistance value can be efficiently lowered with a relatively small amount of metal surface conductive particles, and uniform heat generation characteristics can be obtained.
(1-1-3)メルカプト基含有含窒素芳香族複素環化合物
本実施の形態において、メルカプト基含有含窒素芳香族複素環化合物は、下記の化学式(1)で表されるピリミジンチオール化合物、下記の化学式(2)で表されるトリアジンチオール化合物、メルカプト基および置換メルカプト基の少なくとも一方を有するイミダゾール化合物、メルカプト基および置換メルカプト基の少なくとも一方を有するチアゾール化合物であるのが好ましい。なお、このメルカプト基含有含窒素芳香族複素環化合物は、本実施の形態において金属捕捉剤としてのみならずイミド化剤としても機能するものである。 (1-1-3) Mercapto group-containing nitrogen-containing aromatic heterocyclic compound In the present embodiment, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound is a pyrimidine thiol compound represented by the following chemical formula (1), The triazine thiol compound represented by the chemical formula (2), an imidazole compound having at least one of a mercapto group and a substituted mercapto group, and a thiazole compound having at least one of a mercapto group and a substituted mercapto group are preferable. The mercapto group-containing nitrogen-containing aromatic heterocyclic compound functions not only as a metal scavenger but also as an imidizing agent in the present embodiment.
本実施の形態において、メルカプト基含有含窒素芳香族複素環化合物は、下記の化学式(1)で表されるピリミジンチオール化合物、下記の化学式(2)で表されるトリアジンチオール化合物、メルカプト基および置換メルカプト基の少なくとも一方を有するイミダゾール化合物、メルカプト基および置換メルカプト基の少なくとも一方を有するチアゾール化合物であるのが好ましい。なお、このメルカプト基含有含窒素芳香族複素環化合物は、本実施の形態において金属捕捉剤としてのみならずイミド化剤としても機能するものである。 (1-1-3) Mercapto group-containing nitrogen-containing aromatic heterocyclic compound In the present embodiment, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound is a pyrimidine thiol compound represented by the following chemical formula (1), The triazine thiol compound represented by the chemical formula (2), an imidazole compound having at least one of a mercapto group and a substituted mercapto group, and a thiazole compound having at least one of a mercapto group and a substituted mercapto group are preferable. The mercapto group-containing nitrogen-containing aromatic heterocyclic compound functions not only as a metal scavenger but also as an imidizing agent in the present embodiment.
ピリミジンチオール化合物は、特に限定されるものではなく、ピリミジン骨格を有し、少なくとも1つのSH基(チオール基)またはSM基(チオール基の金属塩または置換もしくは無置換のアンモニウム塩)を有する化合物であればよい。また、金属塩の金属原子としては、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、銅などが例示される。そして、このピリミジンチオール化合物としては、具体的には、例えば、2-メルカプトピリミジン(2MP)、2-ヒドロキシ-4-メルカプトピリミジン、4-ヒドロキシ-2-メルカプトピリミジン、2、4-ジアミノ-6-メルカプトピリミジン、4,6-ジアミノ-2-メルカプトピリミジン、4-アミノ-6-ヒドロキシ-2-メルカプトピリミジン、2-チオバルビツール酸、4-ヒドロキシ-2-メルカプト-6-メチルピリミジン、4,6-ジメチル-2-ピリミジンチオール(DMPT)、4,5-ジアミノ-2,6-ジメルカプトピリミジン、4,5-ジアミノ-6-ヒドロキシ-2-メルカプトピリミジン等ならびにそれらの塩等が挙げられる。なお、これらのピリミジンチオール化合物は単独で用いられてもよいし併用されてもよい。
The pyrimidine thiol compound is not particularly limited, and is a compound having a pyrimidine skeleton and having at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or unsubstituted ammonium salt). I just need it. Further, the metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Specific examples of the pyrimidine thiol compound include 2-mercaptopyrimidine (2MP), 2-hydroxy-4-mercaptopyrimidine, 4-hydroxy-2-mercaptopyrimidine, and 2,4-diamino-6- Mercaptopyrimidine, 4,6-diamino-2-mercaptopyrimidine, 4-amino-6-hydroxy-2-mercaptopyrimidine, 2-thiobarbituric acid, 4-hydroxy-2-mercapto-6-methylpyrimidine, 4,6 -Dimethyl-2-pyrimidine thiol (DMPT), 4,5-diamino-2,6-dimercaptopyrimidine, 4,5-diamino-6-hydroxy-2-mercaptopyrimidine, and salts thereof. In addition, these pyrimidine thiol compounds may be used independently and may be used together.
トリアジンチオール化合物は、特に限定されるものではなく、トリアジン骨格を有し、少なくとも1つのSH基(チオール基)またはSM基(チオール基の金属塩または置換もしくは無置換のアンモニウム塩)を有する化合物であればよい。金属塩の金属原子としては、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、銅などが例示される。そして、このトリアジンチオール化合物としては、具体的には、例えば、2-アミノ-1,3,5-トリアジン-4,6-ジチオール(ATDT)、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-1,3,5-トリアジン(DBDMT)、2-フェニルアミノ-4,6-ジメルカプト-1,3,5-トリアジン、トリチオシアヌル酸(TTCA)等ならびにそれらの塩等が挙げられる。なお、これらのトリアジンチオール化合物の中でもトリチオシアヌル酸のナトリウム塩であるトリチオシアヌル酸モノナトリウム塩、トリチオシアヌル酸トリナトリウム塩(TTCA-3Na)が特に好適である。なお、これらのトリアジンチオール化合物は単独で用いられてもよいし併用されてもよい。
The triazine thiol compound is not particularly limited, and is a compound having a triazine skeleton and having at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or unsubstituted ammonium salt). I just need it. The metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Specific examples of the triazine thiol compound include 2-amino-1,3,5-triazine-4,6-dithiol (ATDT), 2-di-n-butylamino-4,6- Examples include dimercapto-1,3,5-triazine (DBDMT), 2-phenylamino-4,6-dimercapto-1,3,5-triazine, trithiocyanuric acid (TTCA), and salts thereof. Of these triazine thiol compounds, trithiocyanuric acid monosodium salt and trithiocyanuric acid trisodium salt (TTCA-3Na) are particularly preferred. In addition, these triazine thiol compounds may be used independently and may be used together.
メルカプト基および置換メルカプト基の少なくとも一方を有するイミダゾール化合物は、特に限定されるものではなく、イミダゾール骨格を有し、少なくとも1つのSH基(チオール基)またはSM基(チオール基の金属塩または置換もしくは無置換のアンモニウム塩)を有する化合物であればよい。金属塩の金属原子としては、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、銅などが例示される。そして、このイミダゾール化合物としては、具体的には、例えば、2-メルカプトベンズイミダゾール(MBI)、2-メルカプトイミダゾール、2-メルカプト-1-メチルイミダゾール、2-メルカプト-5-メチルイミダゾール、5-アミノ-2-メルカプトベンズイミダゾール、2-メルカプト-5-メチルベンズイミダゾール(MMI)、2-メルカプト-5-ニトロベンズイミダゾール、2-メルカプト-5-メトキシベンズイミダゾール、2-メルカプトベンズイミダゾール-5-カルボン酸等ならびにそれらの塩等が挙げられる。なお、これらのイミダゾール化合物は単独で用いられてもよいし併用されてもよい。
The imidazole compound having at least one of a mercapto group and a substituted mercapto group is not particularly limited, has an imidazole skeleton, and has at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or Any compound having an unsubstituted ammonium salt) may be used. The metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Specific examples of the imidazole compound include 2-mercaptobenzimidazole (MBI), 2-mercaptoimidazole, 2-mercapto-1-methylimidazole, 2-mercapto-5-methylimidazole, 5-amino -2-Mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole (MMI), 2-mercapto-5-nitrobenzimidazole, 2-mercapto-5-methoxybenzimidazole, 2-mercaptobenzimidazole-5-carboxylic acid And their salts. In addition, these imidazole compounds may be used independently and may be used together.
メルカプト基および置換メルカプト基の少なくとも一方を有するチアゾール化合物は、特に限定されるものではなく、チアゾール骨格を有し、少なくとも1つのSH基(チオール基)またはSM基(チオール基の金属塩または置換もしくは無置換のアンモニウム塩)を有する化合物であればよい。金属塩の金属原子としては、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、銅などが例示される。そして、このイミダゾール化合物としては、具体的には、例えば、2-ベンゾチアゾールチオール(BTT)、6-アミノ-2-メルカプトベンゾチアゾール、2-メルカプトチアゾール等ならびにそれらの塩等が挙げられる。なお、チアゾール化合物は単独で用いられてもよいし併用されてもよい。
The thiazole compound having at least one of a mercapto group and a substituted mercapto group is not particularly limited, has a thiazole skeleton, and has at least one SH group (thiol group) or SM group (metal salt of thiol group or substituted or Any compound having an unsubstituted ammonium salt) may be used. The metal atom of the metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Specific examples of the imidazole compound include 2-benzothiazole thiol (BTT), 6-amino-2-mercaptobenzothiazole, 2-mercaptothiazole, and salts thereof. In addition, a thiazole compound may be used independently and may be used together.
(1-1-4)硼素含有化合物
本実施の形態において、硼素含有化合物は、特に限定されないが、例えば、酸化硼素等である。 (1-1-4) Boron-containing compound In the present embodiment, the boron-containing compound is not particularly limited, and is, for example, boron oxide.
本実施の形態において、硼素含有化合物は、特に限定されないが、例えば、酸化硼素等である。 (1-1-4) Boron-containing compound In the present embodiment, the boron-containing compound is not particularly limited, and is, for example, boron oxide.
(1-1-5)ポリ酸由来化合物
本実施の形態において、ポリ酸由来化合物は、モリブデン(Mo)、バナジウム(V)、タングステン(W)、チタン(Ti)、アルミニウム(Al)およびニオブ(Nb)の少なくとも一つの元素を含有する化合物であって、ポリ酸そのもの又はポリ酸塩そのものであってもよいし、ポリ酸又はポリ酸塩の加熱生成物であってもよいし、ポリ酸又はポリ酸塩と他の化合物の加熱生成物であってもよい。ポリ酸塩が金属塩である場合の金属原子としては、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、銅などが例示される。 (1-1-5) Polyacid-derived compound In the present embodiment, the polyacid-derived compound includes molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium ( A compound containing at least one element of Nb), which may be a polyacid itself or a polyacid salt itself, a polyacid or a heated product of the polyacid salt, a polyacid or It may be a heat product of a polyacid salt and another compound. The metal atom in the case where the polyacid salt is a metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Is done.
本実施の形態において、ポリ酸由来化合物は、モリブデン(Mo)、バナジウム(V)、タングステン(W)、チタン(Ti)、アルミニウム(Al)およびニオブ(Nb)の少なくとも一つの元素を含有する化合物であって、ポリ酸そのもの又はポリ酸塩そのものであってもよいし、ポリ酸又はポリ酸塩の加熱生成物であってもよいし、ポリ酸又はポリ酸塩と他の化合物の加熱生成物であってもよい。ポリ酸塩が金属塩である場合の金属原子としては、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、銅などが例示される。 (1-1-5) Polyacid-derived compound In the present embodiment, the polyacid-derived compound includes molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium ( A compound containing at least one element of Nb), which may be a polyacid itself or a polyacid salt itself, a polyacid or a heated product of the polyacid salt, a polyacid or It may be a heat product of a polyacid salt and another compound. The metal atom in the case where the polyacid salt is a metal salt is not particularly limited, and examples thereof include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Is done.
このようなポリ酸由来化合物を生成するポリ酸としては、例えば、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、ケイモリブデン酸(シリコノモリブデン酸)、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、ケイタングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、リンタングストモリブデン酸、リンバナドモリブデン酸などが挙げられる。また、このようなポリ酸由来化合物を生成するポリ酸塩としては、例えば、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸アンモニウム等が挙げられる。
Examples of polyacids that produce such polyacid-derived compounds include phosphovanadic acid, germanovanadate, arsenic vanadic acid, phosphoniobic acid, germanoniobic acid, silicomolybdic acid (siliconomolybdic acid), phosphomolybdic acid, titanium Molybdic acid, germanomolybdic acid, arsenic molybdic acid, tin molybdic acid, phosphotungstic acid, germanotungstic acid, tin tungstic acid, silicotungstic acid, phosphomolybdovanadic acid, phosphotungstovanadic acid, germanotungstovanadic acid , Phosphomolybdo-tungstovanadic acid, germano-molybdo-tungstovanadic acid, lymmolybdotungstic acid, lymmolybdniobic acid, lintoungstomolybdic acid, phosphovanadomolybdic acid and the like. Examples of the polyacid salt that generates such a polyacid-derived compound include ammonium phosphomolybdate, sodium phosphomolybdate, ammonium molybdate, and ammonium tungstate.
なお、本実施の形態において特に好ましいポリ酸は、ケイタングステン酸、リンタングステン酸、リンモリブデン酸である。これらのポリ酸は、単独で用いられてもよいし、併用されてもよい。すなわち、ケイタングステン酸、リンタングステン酸およびリンモリブデン酸の少なくとも一種のポリ酸が用いられればよい。すなわち、本実施の形態において特に好ましいポリ酸由来化合物には、モリブデン(Mo)およびタングステン(W)の少なくとも一方が含まれることになる。
In this embodiment, particularly preferred polyacids are silicotungstic acid, phosphotungstic acid, and phosphomolybdic acid. These polyacids may be used alone or in combination. That is, at least one polyacid of silicotungstic acid, phosphotungstic acid and phosphomolybdic acid may be used. In other words, the polyacid-derived compound particularly preferable in the present embodiment includes at least one of molybdenum (Mo) and tungsten (W).
なお、この発熱樹脂層112の厚みは10μm以上であることが好ましい。発熱樹脂層112の厚みがこの条件を満たせば発熱樹脂層112の厚みに少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この抵抗発熱シームレス管状物100を大量生産した場合であってもその発熱量を安定させることができるからである。なお、製造しやすさや抵抗発熱シームレス管状物100の可撓性を考慮すると、この厚みは200μm以下であることが好ましい。
Note that the thickness of the heat generating resin layer 112 is preferably 10 μm or more. If the thickness of the heat generating resin layer 112 satisfies this condition, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. This is because the amount of heat generated can be stabilized even in the case of production. In consideration of ease of manufacture and flexibility of the resistance heating seamless tubular article 100, the thickness is preferably 200 μm or less.
<第2の実施の形態に係る抵抗発熱シームレス管状物の特性>
(1)初期抵抗値
第2の実施の形態に係る抵抗発熱シームレス管状物100の初期抵抗値は、第1の実施の形態に係る抵抗発熱シームレス管状物100の初期抵抗値と同様である。 <Characteristics of the resistance exothermic seamless tubular article according to the second embodiment>
(1) Initial resistance value The initial resistance value of the resistance heating seamlesstubular article 100 according to the second embodiment is the same as the initial resistance value of the resistance heating seamless tubular article 100 according to the first embodiment.
(1)初期抵抗値
第2の実施の形態に係る抵抗発熱シームレス管状物100の初期抵抗値は、第1の実施の形態に係る抵抗発熱シームレス管状物100の初期抵抗値と同様である。 <Characteristics of the resistance exothermic seamless tubular article according to the second embodiment>
(1) Initial resistance value The initial resistance value of the resistance heating seamless
(2)抵抗値変動率
第2の実施の形態に係る抵抗発熱シームレス管状物100の抵抗値変動率は、第1の実施の形態に係る抵抗発熱シームレス管状物100の抵抗値変動率と同様である。 (2) Resistance value fluctuation rate The resistance value fluctuation rate of the resistance heating seamlesstubular object 100 according to the second embodiment is the same as the resistance value fluctuation rate of the resistance heating seamless tubular object 100 according to the first embodiment. is there.
第2の実施の形態に係る抵抗発熱シームレス管状物100の抵抗値変動率は、第1の実施の形態に係る抵抗発熱シームレス管状物100の抵抗値変動率と同様である。 (2) Resistance value fluctuation rate The resistance value fluctuation rate of the resistance heating seamless
<第2の実施の形態に係る抵抗発熱シームレス管状物の製造方法の一例>
本実施の形態に係る抵抗発熱シームレス管状物100は、主に、導電性粒子含有ポリイミド前駆体溶液調製工程、発熱樹脂層成形工程、電極成形工程、プライマー塗布工程、離型層成形工程、焼成工程および脱型工程を経て製造される。ただし、本製造方法は、一例に過ぎず、本願発明を限定することはない。以下、上記各製造工程について詳述する。 <An example of a method for producing a resistance exothermic seamless tubular article according to the second embodiment>
The resistance exothermic seamlesstubular article 100 according to the present embodiment is mainly composed of a conductive particle-containing polyimide precursor solution preparation step, an exothermic resin layer forming step, an electrode forming step, a primer coating step, a release layer forming step, and a firing step. It is manufactured through a demolding process. However, this manufacturing method is only an example and does not limit the present invention. Hereafter, each said manufacturing process is explained in full detail.
本実施の形態に係る抵抗発熱シームレス管状物100は、主に、導電性粒子含有ポリイミド前駆体溶液調製工程、発熱樹脂層成形工程、電極成形工程、プライマー塗布工程、離型層成形工程、焼成工程および脱型工程を経て製造される。ただし、本製造方法は、一例に過ぎず、本願発明を限定することはない。以下、上記各製造工程について詳述する。 <An example of a method for producing a resistance exothermic seamless tubular article according to the second embodiment>
The resistance exothermic seamless
(1)導電性粒子含有ポリイミド前駆体溶液調製工程
導電性粒子含有ポリイミド前駆体溶液調製工程では、以下の通りに調製されるポリイミド前駆体溶液に上述の金属表面導電性粒子、上述のメルカプト基含有含窒素芳香族複素環化合物および硼酸が添加されて導電性粒子含有ポリイミド前駆体溶液が得られる。なお、本実施の形態において、メルカプト基含有含窒素芳香族複素環化合物および硼酸は、抵抗発熱シームレス管状物100の抵抗値を安定化する抵抗値安定化剤として機能する。また、この導電性粒子含有ポリイミド前駆体溶液には、任意成分として、上述のポリ酸、上述のカーボンナノ材料、上述の電気絶縁性粒子、上述の繊維状粒子、上述の粘度鉱物が添加されてもよい。なお、これらの粒子や化合物の添加方法は特に限定されず、ポリイミド前駆体溶液にこれらの粒子や化合物を直接添加する方法はもちろん、ポリイミド前駆体溶液調製中にこれらの粒子や化合物を添加する方法であってもよい。 (1) Conductive particle-containing polyimide precursor solution preparation step In the conductive particle-containing polyimide precursor solution preparation step, the above-described metal surface conductive particles and the above-described mercapto group are contained in the polyimide precursor solution prepared as follows. A nitrogen-containing aromatic heterocyclic compound and boric acid are added to obtain a conductive particle-containing polyimide precursor solution. In the present embodiment, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound and boric acid function as a resistance value stabilizer that stabilizes the resistance value of the resistance exothermic seamlesstubular body 100. Further, the conductive particle-containing polyimide precursor solution is added with the above-described polyacid, the above-mentioned carbon nanomaterial, the above-mentioned electrically insulating particles, the above-mentioned fibrous particles, and the above-mentioned viscosity mineral as optional components. Also good. In addition, the addition method of these particle | grains and compounds is not specifically limited, The method of adding these particle | grains and compounds during polyimide precursor solution preparation as well as the method of adding these particles and compounds directly to a polyimide precursor solution. It may be.
導電性粒子含有ポリイミド前駆体溶液調製工程では、以下の通りに調製されるポリイミド前駆体溶液に上述の金属表面導電性粒子、上述のメルカプト基含有含窒素芳香族複素環化合物および硼酸が添加されて導電性粒子含有ポリイミド前駆体溶液が得られる。なお、本実施の形態において、メルカプト基含有含窒素芳香族複素環化合物および硼酸は、抵抗発熱シームレス管状物100の抵抗値を安定化する抵抗値安定化剤として機能する。また、この導電性粒子含有ポリイミド前駆体溶液には、任意成分として、上述のポリ酸、上述のカーボンナノ材料、上述の電気絶縁性粒子、上述の繊維状粒子、上述の粘度鉱物が添加されてもよい。なお、これらの粒子や化合物の添加方法は特に限定されず、ポリイミド前駆体溶液にこれらの粒子や化合物を直接添加する方法はもちろん、ポリイミド前駆体溶液調製中にこれらの粒子や化合物を添加する方法であってもよい。 (1) Conductive particle-containing polyimide precursor solution preparation step In the conductive particle-containing polyimide precursor solution preparation step, the above-described metal surface conductive particles and the above-described mercapto group are contained in the polyimide precursor solution prepared as follows. A nitrogen-containing aromatic heterocyclic compound and boric acid are added to obtain a conductive particle-containing polyimide precursor solution. In the present embodiment, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound and boric acid function as a resistance value stabilizer that stabilizes the resistance value of the resistance exothermic seamless
なお、第2の実施の形態において、金属表面導電性粒子は、導電性粒子含有ポリイミド前駆体溶液の固形分に対する体積分率が5体積%以上70体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが好ましく、10体積%以上60体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがより好ましく、15体積%以上50体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがさらに好ましく、20体積%以上40体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値に依存して変更される必要があるが、同体積分率がこの範囲内であると発熱樹脂層112の機械的特性と発熱特性のバランスに優れる。
In the second embodiment, the metal surface conductive particles are polyimide precursors such that the volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution is in the range of 5% by volume to 70% by volume. It is preferably added to the body solution, more preferably added to the polyimide precursor solution so as to be in the range of 10% by volume to 60% by volume, and in the range of 15% by volume to 50% by volume. More preferably, it is added to the polyimide precursor solution, particularly preferably added to the polyimide precursor solution so as to be in the range of 20% by volume to 40% by volume. Of course, the volume fraction needs to be changed depending on the target resistance value, but when the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent.
また、第2の実施の形態において、メルカプト基含有含窒素芳香族複素環化合物は、導電性粒子含有ポリイミド前駆体溶液の固形分に対する体積分率が0.01体積%以上10体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが好ましく、0.1体積%以上5体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがより好ましく、0.2体積%以上3体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがさらに好ましく、0.5体積%以上2体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値安定度に依存して変更される必要があるが、同体積分率がこの範囲内であると抵抗値安定化効率と低コスト化とのバランスに優れる。
In the second embodiment, the mercapto group-containing nitrogen-containing aromatic heterocyclic compound has a volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution in the range of 0.01% by volume to 10% by volume. It is preferably added to the polyimide precursor solution so as to be within, more preferably added to the polyimide precursor solution so as to be within the range of 0.1% by volume or more and 5% by volume or less, More preferably, it is added to the polyimide precursor solution so as to be in the range of not less than 3% by volume and not more than 3% by volume, and is added to the polyimide precursor solution so as to be in the range of not less than 0.5% by volume and not more than 2% by volume. It is particularly preferred that Of course, the volume fraction needs to be changed depending on the target resistance stability, but if the volume fraction is within this range, the balance between resistance stabilization efficiency and cost reduction is excellent. .
また、第2の実施の形態において、硼酸は、導電性粒子含有ポリイミド前駆体溶液の固形分に対する体積分率が0.01体積%以上30体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが好ましく、0.1体積%以上20体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがより好ましく、0.2体積%以上10体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがさらに好ましく、1体積%以上5体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値安定度に依存して変更される必要があるが、同体積分率がこの範囲内であると抵抗値安定化効率と低コスト化とのバランスに優れる。
In the second embodiment, boric acid is a polyimide precursor solution so that the volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution is in the range of 0.01 volume% to 30 volume%. It is preferably added to the polyimide precursor solution so as to be in the range of 0.1 volume% or more and 20 volume% or less, and in the range of 0.2 volume% or more and 10 volume% or less. More preferably, it is added to the polyimide precursor solution so as to be within the range, and particularly preferably added to the polyimide precursor solution so as to be within the range of 1% by volume or more and 5% by volume or less. Of course, the volume fraction needs to be changed depending on the target resistance stability, but if the volume fraction is within this range, the balance between resistance stabilization efficiency and cost reduction is excellent. .
また、第2の実施の形態において、ポリ酸またはポリ酸塩は、導電性粒子含有ポリイミド前駆体溶液の固形分に対する体積分率が0.01体積%以上20体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが好ましく、0.1体積%以上10体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがより好ましく、0.2体積%以上5体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがさらに好ましく、0.5体積%以上3体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値安定度に依存して変更される必要があるが、同体積分率がこの範囲内であると抵抗値安定化効率と低コスト化とのバランスに優れる。
In the second embodiment, the polyacid or polyacid salt has a volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution in the range of 0.01% by volume to 20% by volume. It is preferably added to the polyimide precursor solution, more preferably added to the polyimide precursor solution so as to be in the range of 0.1% by volume or more and 10% by volume or less, and 0.2% by volume or more and 5% by volume. More preferably, it is added to the polyimide precursor solution so as to be in the range of volume% or less, and may be added to the polyimide precursor solution so as to be in the range of 0.5 volume% or more and 3 volume% or less. Particularly preferred. Of course, the volume fraction needs to be changed depending on the target resistance stability, but if the volume fraction is within this range, the balance between resistance stabilization efficiency and cost reduction is excellent. .
また、第2の実施の形態において、カーボンナノ材料は、導電性粒子含有ポリイミド前駆体溶液の固形分に対する体積分率が0.1体積%以上50体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが好ましく、0.5体積%以上40体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがより好ましく、1体積%以上30体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることがさらに好ましく、2体積%以上25体積%以下の範囲内となるようにポリイミド前駆体溶液に添加されることが特に好ましい。もちろん、同体積分率は、目標とする抵抗値に依存して変更される必要があるが、同体積分率がこの範囲内であると発熱樹脂層112の機械的特性と発熱特性のバランスに優れる。
In the second embodiment, the carbon nanomaterial is a polyimide precursor that has a volume fraction with respect to the solid content of the conductive particle-containing polyimide precursor solution in the range of 0.1% by volume to 50% by volume. It is preferably added to the body solution, more preferably added to the polyimide precursor solution so as to be in the range of 0.5 volume% or more and 40 volume% or less, and the range of 1 volume% or more and 30 volume% or less. More preferably, it is added to the polyimide precursor solution so as to be inside, and it is particularly preferable that it is added to the polyimide precursor solution so as to be in the range of 2% by volume or more and 25% by volume or less. Of course, the volume fraction needs to be changed depending on the target resistance value, but when the volume fraction is within this range, the balance between the mechanical characteristics and the heat generation characteristics of the heat generating resin layer 112 is excellent.
なお、ポリイミド前駆体溶液は、第1の実施の形態で説明された通りに調製される。ただし、第2の実施の形態では、ジアミンとして4,4’-ジアミノジフェニルエーテルを用いると共にテトラカルボン酸二無水物としてピロメリット酸二無水物を用いることが好ましく、ジアミンとしてパラフェニレンジアミンを用いると共にテトラカルボン酸二無水物として3,3',4,4'-ビフェニルテトラカルボン酸二無水物を用いることが特に好ましい。これらのモノマーから得られるポリイミド樹脂は機械的特性に優れ強靭であり、抵抗発熱シームレス管状物100の温度が上昇しても熱可塑性樹脂のように軟化、あるいは溶融することがなく、優れた耐熱性を有するからである。
Note that the polyimide precursor solution is prepared as described in the first embodiment. However, in the second embodiment, it is preferable to use 4,4′-diaminodiphenyl ether as the diamine and pyromellitic dianhydride as the tetracarboxylic dianhydride, and use paraphenylenediamine as the diamine and tetra It is particularly preferable to use 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the carboxylic dianhydride. Polyimide resins obtained from these monomers are excellent in mechanical properties and tough, and do not soften or melt like thermoplastic resins even when the temperature of the resistance exothermic seamless tubular article 100 rises, and have excellent heat resistance It is because it has.
(2)発熱樹脂層成形工程
発熱樹脂層成形工程では、図8に示されるように、リング状ダイス620を用いて導電性粒子含有ポリイミド前駆体溶液VSを円柱状の芯体610の外周面に均一に塗布した後、その塗膜CV付きの芯体610を加熱する。なお、このときの加熱温度は、有機極性溶媒が揮発するがイミド化が進行しない程度の温度、例えば200℃以上250℃以下の範囲内の温度であることが好ましいが、段階的に300℃~450℃まで上昇させてもかまわない。かかる際において導電性粒子含有ポリイミド前駆体溶液に針状の金属表面導電性粒子や、カーボンナノチューブ、カーボンナノファイバー等が添加されている場合、それらは、リング状ダイスが走行した方向に向かって略一方向に並び、配向された状態となる。 (2) Exothermic resin layer molding process In the exothermic resin layer molding process, as shown in FIG. 8, the conductive particle-containing polyimide precursor solution VS is applied to the outer peripheral surface of thecylindrical core body 610 using a ring-shaped die 620. After uniformly coating, the core body 610 with the coating film CV is heated. The heating temperature at this time is preferably a temperature at which the organic polar solvent volatilizes but imidization does not proceed, for example, a temperature in the range of 200 ° C. or more and 250 ° C. or less. You may raise to 450 degreeC. In such a case, when conductive metal surface conductive particles, carbon nanotubes, carbon nanofibers, or the like are added to the conductive particle-containing polyimide precursor solution, they are approximately in the direction in which the ring-shaped die travels. They are aligned and oriented in one direction.
発熱樹脂層成形工程では、図8に示されるように、リング状ダイス620を用いて導電性粒子含有ポリイミド前駆体溶液VSを円柱状の芯体610の外周面に均一に塗布した後、その塗膜CV付きの芯体610を加熱する。なお、このときの加熱温度は、有機極性溶媒が揮発するがイミド化が進行しない程度の温度、例えば200℃以上250℃以下の範囲内の温度であることが好ましいが、段階的に300℃~450℃まで上昇させてもかまわない。かかる際において導電性粒子含有ポリイミド前駆体溶液に針状の金属表面導電性粒子や、カーボンナノチューブ、カーボンナノファイバー等が添加されている場合、それらは、リング状ダイスが走行した方向に向かって略一方向に並び、配向された状態となる。 (2) Exothermic resin layer molding process In the exothermic resin layer molding process, as shown in FIG. 8, the conductive particle-containing polyimide precursor solution VS is applied to the outer peripheral surface of the
(3)電極成形工程
電極成形工程は、第1の実施の形態に係る電極成形工程と同様である。なお、金属表面導電性粒子として「ニッケル粒子」または「ニッケルをシェルとするコア-シェル型導電性粒子」が利用される場合において銀ペーストが使用されると、通常、発熱樹脂層112と電極120との接触部分から徐々に劣化が進行してしまうが、導電性粒子含有ポリイミド前駆体溶液にポリ酸、特にリンモリブデン酸が添加されている場合には、この劣化を防止することができる。このため、導電性粒子含有ポリイミド前駆体溶液にはポリ酸が添加されるのが好ましい。 (3) Electrode forming step The electrode forming step is the same as the electrode forming step according to the first embodiment. When “nickel particles” or “core-shell type conductive particles having nickel as a shell” are used as the metal surface conductive particles, when the silver paste is used, the heat generatingresin layer 112 and the electrode 120 are usually used. However, when a polyacid, especially phosphomolybdic acid is added to the conductive particle-containing polyimide precursor solution, this deterioration can be prevented. For this reason, it is preferable that polyacid is added to the conductive particle-containing polyimide precursor solution.
電極成形工程は、第1の実施の形態に係る電極成形工程と同様である。なお、金属表面導電性粒子として「ニッケル粒子」または「ニッケルをシェルとするコア-シェル型導電性粒子」が利用される場合において銀ペーストが使用されると、通常、発熱樹脂層112と電極120との接触部分から徐々に劣化が進行してしまうが、導電性粒子含有ポリイミド前駆体溶液にポリ酸、特にリンモリブデン酸が添加されている場合には、この劣化を防止することができる。このため、導電性粒子含有ポリイミド前駆体溶液にはポリ酸が添加されるのが好ましい。 (3) Electrode forming step The electrode forming step is the same as the electrode forming step according to the first embodiment. When “nickel particles” or “core-shell type conductive particles having nickel as a shell” are used as the metal surface conductive particles, when the silver paste is used, the heat generating
(4)プライマー塗布工程、離型層成形工程、焼成工程および脱型工程
プライマー塗布工程、離型層成形工程、焼成工程および脱型工程は、第1の実施の形態に係るプライマー塗布工程、離型層成形工程、焼成工程および脱型工程と同様である。 (4) Primer coating process, release layer molding process, firing process and demolding process The primer coating process, release layer molding process, firing process and demolding process are the primer coating process, release process according to the first embodiment. This is the same as the mold layer forming step, firing step, and demolding step.
プライマー塗布工程、離型層成形工程、焼成工程および脱型工程は、第1の実施の形態に係るプライマー塗布工程、離型層成形工程、焼成工程および脱型工程と同様である。 (4) Primer coating process, release layer molding process, firing process and demolding process The primer coating process, release layer molding process, firing process and demolding process are the primer coating process, release process according to the first embodiment. This is the same as the mold layer forming step, firing step, and demolding step.
<第2の実施の形態に係る抵抗発熱シームレス管状物の特徴>
(1)
第2の実施の形態に係る抵抗発熱シームレス管状物100は300℃の温度下において100時間経過したときの抗値変動率が±30%の範囲内である。このため、この抵抗発熱シームレス管状物100は、使用に伴う抵抗値変動が十分に小さい。また、この抵抗発熱シームレス管状物100は発熱樹脂層112を有しており、その発熱樹脂層112では、導電性粒子として、金属表面導電性粒子が耐熱性樹脂中に添加されている。このため、この抵抗発熱シームレス管状物100は、その抵抗値を小さくすることができる。したがって、この抵抗発熱シームレス管状物100は、使用に伴う抵抗値変動が小さいながらも小型化することができる。 <Features of Resistance Heating Seamless Tubular Material According to Second Embodiment>
(1)
The resistance exothermic seamlesstubular article 100 according to the second embodiment has a resistance fluctuation rate within a range of ± 30% when 100 hours have passed at a temperature of 300 ° C. For this reason, this resistance exothermic seamless tubular object 100 has a sufficiently small resistance value variation with use. The resistance heat generating seamless tubular article 100 has a heat generating resin layer 112. In the heat generating resin layer 112, metal surface conductive particles are added to the heat resistant resin as conductive particles. For this reason, this resistance exothermic seamless tubular object 100 can make the resistance value small. Therefore, this resistance heat generation seamless tubular object 100 can be reduced in size while the resistance value fluctuation accompanying use is small.
(1)
第2の実施の形態に係る抵抗発熱シームレス管状物100は300℃の温度下において100時間経過したときの抗値変動率が±30%の範囲内である。このため、この抵抗発熱シームレス管状物100は、使用に伴う抵抗値変動が十分に小さい。また、この抵抗発熱シームレス管状物100は発熱樹脂層112を有しており、その発熱樹脂層112では、導電性粒子として、金属表面導電性粒子が耐熱性樹脂中に添加されている。このため、この抵抗発熱シームレス管状物100は、その抵抗値を小さくすることができる。したがって、この抵抗発熱シームレス管状物100は、使用に伴う抵抗値変動が小さいながらも小型化することができる。 <Features of Resistance Heating Seamless Tubular Material According to Second Embodiment>
(1)
The resistance exothermic seamless
(2)
第2の実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112の膜厚が10μm以上とされている。このため、発熱樹脂層112の膜厚に少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この抵抗発熱シームレス管状物100を大量生産した場合であってもその発熱量を安定させることができる (2)
In the resistance exothermic seamlesstubular body 100 according to the second embodiment, the heat generating resin layer 112 has a thickness of 10 μm or more. For this reason, even if a slight variation occurs in the thickness of the heat generating resin layer 112, the fluctuation range of the resistance value becomes extremely narrow enough to withstand practical use. Heat generation can be stabilized
第2の実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112の膜厚が10μm以上とされている。このため、発熱樹脂層112の膜厚に少々のバラツキが生じても抵抗値の変動幅が実用に耐え得るほど極めて狭くなり、この抵抗発熱シームレス管状物100を大量生産した場合であってもその発熱量を安定させることができる (2)
In the resistance exothermic seamless
(3)
第2の実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112に対する金属表面導電性粒子の体積分率が20体積%以上70体積%以下の範囲内である。この抵抗発熱シームレス管状物100に良好な柔軟性を付与することができる。 (3)
In the resistance exothermic seamlesstubular article 100 according to the second embodiment, the volume fraction of the metal surface conductive particles with respect to the exothermic resin layer 112 is in the range of 20 volume% or more and 70 volume% or less. Good flexibility can be imparted to the resistance exothermic seamless tubular article 100.
第2の実施の形態に係る抵抗発熱シームレス管状物100では発熱樹脂層112に対する金属表面導電性粒子の体積分率が20体積%以上70体積%以下の範囲内である。この抵抗発熱シームレス管状物100に良好な柔軟性を付与することができる。 (3)
In the resistance exothermic seamless
<変形例>
第2の実施の形態に対して第1の実施の形態の変形例(A)~(J)を適用することができる。なお、変形例(A)については、本体110に基層が設けられる場合、発熱樹脂層112の膜厚は10μm以上であればよい。 <Modification>
Modifications (A) to (J) of the first embodiment can be applied to the second embodiment. In the modification (A), when the base layer is provided on themain body 110, the heat generating resin layer 112 may have a thickness of 10 μm or more.
第2の実施の形態に対して第1の実施の形態の変形例(A)~(J)を適用することができる。なお、変形例(A)については、本体110に基層が設けられる場合、発熱樹脂層112の膜厚は10μm以上であればよい。 <Modification>
Modifications (A) to (J) of the first embodiment can be applied to the second embodiment. In the modification (A), when the base layer is provided on the
<実施例および比較例>
以下、実施例および比較例を示して、本実施の形態に係る面状抵抗発熱体をより詳しく説明する。なお、これらの実施例および比較例によって本願発明が限定されることはない。 <Examples and Comparative Examples>
Hereinafter, the planar resistance heating element according to the present embodiment will be described in more detail with reference to examples and comparative examples. The present invention is not limited by these examples and comparative examples.
以下、実施例および比較例を示して、本実施の形態に係る面状抵抗発熱体をより詳しく説明する。なお、これらの実施例および比較例によって本願発明が限定されることはない。 <Examples and Comparative Examples>
Hereinafter, the planar resistance heating element according to the present embodiment will be described in more detail with reference to examples and comparative examples. The present invention is not limited by these examples and comparative examples.
(1)カーボンナノファイバー含有ポリイミド前駆体溶液Aの調製
ポリアミック酸溶液(組成:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下「BPDA」と略する。)/パラフェニレンジアミン(以下「PPD」と略する。)、固形分17.0質量%)331.25g、Nーメチルピロリドン(以下「NMP」と略する。)156.66gおよびカーボンナノファイバー(以下「CNF」と略する。)32.09gを混合してCNF含有ポリイミド前駆体溶液Aを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Aの固形分に対して、CNFが28.51体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of carbon nanofiber-containing polyimide precursor solution A Polyamic acid solution (composition: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as “BPDA”) / paraphenylene Diamine (hereinafter abbreviated as “PPD”), solid content 17.0% by mass 331.25 g, N-methylpyrrolidone (hereinafter abbreviated as “NMP”) 156.66 g and carbon nanofiber (hereinafter “CNF”) The mixture was mixed with 32.09 g to prepare a CNF-containing polyimide precursor solution A. In addition, the addition amount of CNF is calculated so that CNF may occupy 28.51 volume% with respect to solid content of the CNF containing polyimide precursor solution A at this time (refer Table 1).
ポリアミック酸溶液(組成:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下「BPDA」と略する。)/パラフェニレンジアミン(以下「PPD」と略する。)、固形分17.0質量%)331.25g、Nーメチルピロリドン(以下「NMP」と略する。)156.66gおよびカーボンナノファイバー(以下「CNF」と略する。)32.09gを混合してCNF含有ポリイミド前駆体溶液Aを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Aの固形分に対して、CNFが28.51体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of carbon nanofiber-containing polyimide precursor solution A Polyamic acid solution (composition: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as “BPDA”) / paraphenylene Diamine (hereinafter abbreviated as “PPD”), solid content 17.0% by mass 331.25 g, N-methylpyrrolidone (hereinafter abbreviated as “NMP”) 156.66 g and carbon nanofiber (hereinafter “CNF”) The mixture was mixed with 32.09 g to prepare a CNF-containing polyimide precursor solution A. In addition, the addition amount of CNF is calculated so that CNF may occupy 28.51 volume% with respect to solid content of the CNF containing polyimide precursor solution A at this time (refer Table 1).
(2)銀粉含有ポリイミド前駆体溶液Bの調製
ポリアミック酸溶液(組成PMDA/ODA、固形分15.4質量%)164.64g、銀粉59.44g、NMP38.35gおよび2-ジ-n-ブチルアミノ-4,6-ジメルカプト-1,3,5-トリアジン(以下「DBDMT」と略する。)0.12gを混合して銀粉含有ポリイミド前駆体溶液Bを得た。 (2) Preparation of silver powder-containing polyimide precursor solution B Polyamic acid solution (composition PMDA / ODA, solid content 15.4% by mass) 164.64 g, silver powder 59.44 g, NMP 38.35 g and 2-di-n-butylamino 0.12 g of -4,6-dimercapto-1,3,5-triazine (hereinafter abbreviated as “DBDMT”) was mixed to obtain a silver powder-containing polyimide precursor solution B.
ポリアミック酸溶液(組成PMDA/ODA、固形分15.4質量%)164.64g、銀粉59.44g、NMP38.35gおよび2-ジ-n-ブチルアミノ-4,6-ジメルカプト-1,3,5-トリアジン(以下「DBDMT」と略する。)0.12gを混合して銀粉含有ポリイミド前駆体溶液Bを得た。 (2) Preparation of silver powder-containing polyimide precursor solution B Polyamic acid solution (composition PMDA / ODA, solid content 15.4% by mass) 164.64 g, silver powder 59.44 g, NMP 38.35 g and 2-di-n-butylamino 0.12 g of -4,6-dimercapto-1,3,5-triazine (hereinafter abbreviated as “DBDMT”) was mixed to obtain a silver powder-containing polyimide precursor solution B.
(3)抵抗発熱シームレス管状物の作製
先ず、表面が離型処理された円筒金型の表面にCNF含有ポリイミド前駆体溶液Aを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、厚み60μmのポリイミド管状物Aを得た。 (3) Production of resistance exothermic seamless tubular body First, the CNF-containing polyimide precursor solution A was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, and then the coating film was applied at 100 ° C. for 10 minutes, 150 A polyimide tubular product A having a thickness of 60 μm was obtained by heating sequentially at 20 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
先ず、表面が離型処理された円筒金型の表面にCNF含有ポリイミド前駆体溶液Aを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、厚み60μmのポリイミド管状物Aを得た。 (3) Production of resistance exothermic seamless tubular body First, the CNF-containing polyimide precursor solution A was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, and then the coating film was applied at 100 ° C. for 10 minutes, 150 A polyimide tubular product A having a thickness of 60 μm was obtained by heating sequentially at 20 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes.
次に、ポリイミド管状物Aの両端25mmの表面に、銀粉含有ポリイミド前駆体溶液Bを均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Aの両端に厚み20μmの電極を形成した。
Next, after uniformly applying the silver powder-containing polyimide precursor solution B to the surfaces of both ends of the polyimide tubular product A at 25 mm, the coating film was 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 μm on both ends of the polyimide tubular product A.
次いで、「電極が形成されていないポリイミド管状物Aの中央部分の外表面」および「電極の中央部分側の端から5mmの部分の外表面」に、プライマー液を塗布し、その塗膜を150℃で10分間加熱した。そして、プライマー液塗布部分にシリコーンゴムを均一に塗布した後、150℃で30分間、200℃で30分間の条件で順に加熱してシリコーンゴムの加硫を行って厚み300μmの弾性層を形成した。
Next, a primer solution is applied to “the outer surface of the central portion of the polyimide tubular article A on which no electrode is formed” and “the outer surface of a portion 5 mm from the end on the side of the central portion of the electrode”. Heated at 0 ° C. for 10 minutes. And after uniformly apply | coating silicone rubber to a primer liquid application part, it heated at 150 degreeC for 30 minutes and 200 degreeC for 30 minutes in order, and vulcanized silicone rubber, and formed the 300-micrometer-thick elastic layer. .
続いて、弾性層の外表面にプライマー液を塗布し、その塗膜を150℃で10分間加熱した。そして、プライマー塗布部分にフッ素樹脂分散液を均一に塗布した後、その塗膜を60℃で10分間乾燥し、さらに340℃で10分間焼成して厚み20μmの離型層を形成した。その結果、厚み382μm、内径18.00mm、長さ390mmの抵抗発熱シームレス管状物を得た。なお、この抵抗発熱シームレス管状物の電極間距離は230mmであった。
Subsequently, a primer solution was applied to the outer surface of the elastic layer, and the coating film was heated at 150 ° C. for 10 minutes. And after apply | coating a fluororesin dispersion liquid uniformly to a primer application part, the coating film was dried for 10 minutes at 60 degreeC, and also it baked for 10 minutes at 340 degreeC, and the 20-micrometer-thick release layer was formed. As a result, a resistance heating seamless tubular product having a thickness of 382 μm, an inner diameter of 18.00 mm, and a length of 390 mm was obtained. In addition, the distance between electrodes of this resistance exothermic seamless tubular product was 230 mm.
(4)初期抵抗値の測定
デジタルマルチメーターModel7562(横河電気株式会社製)を用いた四端子法により、抵抗発熱シームレス管状物の電極間の初期抵抗値を測定した。その初期抵抗値は19.08Ωであった(表1参照)。 (4) Measurement of initial resistance value The initial resistance value between electrodes of the resistance heating seamless tubular material was measured by a four-terminal method using a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation). The initial resistance value was 19.08Ω (see Table 1).
デジタルマルチメーターModel7562(横河電気株式会社製)を用いた四端子法により、抵抗発熱シームレス管状物の電極間の初期抵抗値を測定した。その初期抵抗値は19.08Ωであった(表1参照)。 (4) Measurement of initial resistance value The initial resistance value between electrodes of the resistance heating seamless tubular material was measured by a four-terminal method using a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation). The initial resistance value was 19.08Ω (see Table 1).
(5)300℃暴露時の抵抗値の測定
3つの抵抗発熱シームレス管状物を用意した。そして、これらの抵抗発熱シームレス管状物それぞれを300℃環境下に48時間、100時間、125時間放置した後、それらの抵抗発熱シームレス管状物を常温まで冷やした。そして、その抵抗発熱シームレス管状物の抵抗値を上述と同様にして求めた。48時間暴露後の抵抗発熱シームレス管状物の抵抗値は17.70Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は17.45Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は17.39Ωであった(表1参照)。 (5) Measurement of resistance value when exposed to 300 ° C. Three resistance exothermic seamless tubular materials were prepared. Each of these resistance exothermic seamless tubular materials was allowed to stand in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours, and then the resistance exothermic seamless tubular materials were cooled to room temperature. And the resistance value of the resistance exothermic seamless tubular thing was calculated | required similarly to the above-mentioned. The resistance value of the resistance exothermic seamless tube after exposure for 48 hours is 17.70Ω, the resistance value of the resistance exothermic seamless tube after exposure for 100 hours is 17.45Ω, and the resistance exothermic seamless tube after exposure for 125 hours The resistance value was 17.39Ω (see Table 1).
3つの抵抗発熱シームレス管状物を用意した。そして、これらの抵抗発熱シームレス管状物それぞれを300℃環境下に48時間、100時間、125時間放置した後、それらの抵抗発熱シームレス管状物を常温まで冷やした。そして、その抵抗発熱シームレス管状物の抵抗値を上述と同様にして求めた。48時間暴露後の抵抗発熱シームレス管状物の抵抗値は17.70Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は17.45Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は17.39Ωであった(表1参照)。 (5) Measurement of resistance value when exposed to 300 ° C. Three resistance exothermic seamless tubular materials were prepared. Each of these resistance exothermic seamless tubular materials was allowed to stand in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours, and then the resistance exothermic seamless tubular materials were cooled to room temperature. And the resistance value of the resistance exothermic seamless tubular thing was calculated | required similarly to the above-mentioned. The resistance value of the resistance exothermic seamless tube after exposure for 48 hours is 17.70Ω, the resistance value of the resistance exothermic seamless tube after exposure for 100 hours is 17.45Ω, and the resistance exothermic seamless tube after exposure for 125 hours The resistance value was 17.39Ω (see Table 1).
(6)抵抗値変動率の算出
抵抗値変動率は、((300℃×t時間暴露後の抵抗値)-(初期抵抗値))/(初期抵抗値)×100で算出される。すなわち、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-7.23%(=(17.70Ω-19.08Ω)/19.08Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.54%(=(17.45Ω-19.08Ω)/19.08Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.86%(=(17.39Ω-19.08Ω)/19.08Ω×100)であった(表1参照)。 (6) Calculation of resistance value fluctuation rate The resistance value fluctuation rate is calculated by ((300 ° C. × resistance value after exposure for t time) − (initial resistance value)) / (initial resistance value) × 100. That is, the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 48 hours is −7.23% (= (17.70Ω−19.08Ω) /19.08Ω×100), and the resistance after exposure for 100 hours is The resistance fluctuation rate of the exothermic seamless tubular material is −8.54% (= (17.45Ω-19.08Ω) /19.08Ω×100), and the resistance value fluctuation of the resistance exothermic seamless tubular material after 125 hours exposure The rate was −8.86% (= (17.39Ω−19.08Ω) /19.08Ω×100) (see Table 1).
抵抗値変動率は、((300℃×t時間暴露後の抵抗値)-(初期抵抗値))/(初期抵抗値)×100で算出される。すなわち、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-7.23%(=(17.70Ω-19.08Ω)/19.08Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.54%(=(17.45Ω-19.08Ω)/19.08Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.86%(=(17.39Ω-19.08Ω)/19.08Ω×100)であった(表1参照)。 (6) Calculation of resistance value fluctuation rate The resistance value fluctuation rate is calculated by ((300 ° C. × resistance value after exposure for t time) − (initial resistance value)) / (initial resistance value) × 100. That is, the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 48 hours is −7.23% (= (17.70Ω−19.08Ω) /19.08Ω×100), and the resistance after exposure for 100 hours is The resistance fluctuation rate of the exothermic seamless tubular material is −8.54% (= (17.45Ω-19.08Ω) /19.08Ω×100), and the resistance value fluctuation of the resistance exothermic seamless tubular material after 125 hours exposure The rate was −8.86% (= (17.39Ω−19.08Ω) /19.08Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Cの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)401.85g、NMP98.06gおよびCNF20.09gを混合してCNF含有ポリイミド前駆体溶液Cを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Cの固形分に対して、CNFが17.07体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution C A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 401.85 g, NMP 98.06 g and CNF 20.09 g were mixed to obtain a CNF-containing polyimide precursor solution. C was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 17.07 volume% with respect to solid content of the CNF containing polyimide precursor solution C at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)401.85g、NMP98.06gおよびCNF20.09gを混合してCNF含有ポリイミド前駆体溶液Cを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Cの固形分に対して、CNFが17.07体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution C A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 401.85 g, NMP 98.06 g and CNF 20.09 g were mixed to obtain a CNF-containing polyimide precursor solution. C was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 17.07 volume% with respect to solid content of the CNF containing polyimide precursor solution C at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Cを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが382μm(うち基層60μm、弾性層300μm、離型層20μm)であり、内径が18.00mmであり、長さが390mmであり、電極間距離が230mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution C was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 382 μm (including a base layer of 60 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 18.00 mm, a length of 390 mm, and an interelectrode distance of 230 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Cを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが382μm(うち基層60μm、弾性層300μm、離型層20μm)であり、内径が18.00mmであり、長さが390mmであり、電極間距離が230mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution C was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 382 μm (including a base layer of 60 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 18.00 mm, a length of 390 mm, and an interelectrode distance of 230 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は69.26Ωであった(表1参照)。 (3) Measurement of initial resistance value The initial resistance value of the resistance heating seamless tubular product was measured by the same method as in Example 1. The initial resistance value was 69.26Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は69.26Ωであった(表1参照)。 (3) Measurement of initial resistance value The initial resistance value of the resistance heating seamless tubular product was measured by the same method as in Example 1. The initial resistance value was 69.26Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は62.77Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は61.07Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は60.75Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 62.77Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 61.07Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 60.75Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は62.77Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は61.07Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は60.75Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 62.77Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 61.07Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 60.75Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.37%(=(62.77Ω-69.26Ω)/69.26Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.83%(=(61.07Ω-69.26Ω)/69.26Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-12.29%(=(60.75Ω-69.26Ω)/69.26Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −9.37% (= (62.77Ω−69.26Ω) /69.26Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular material after exposure for 100 hours is −11.83% ( = (61.07Ω-69.26Ω) /69.26Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours was -12.29% (= (60.75Ω-69. 26Ω) /69.26Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.37%(=(62.77Ω-69.26Ω)/69.26Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.83%(=(61.07Ω-69.26Ω)/69.26Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-12.29%(=(60.75Ω-69.26Ω)/69.26Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −9.37% (= (62.77Ω−69.26Ω) /69.26Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular material after exposure for 100 hours is −11.83% ( = (61.07Ω-69.26Ω) /69.26Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours was -12.29% (= (60.75Ω-69. 26Ω) /69.26Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Dの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)269.20g、NMP208.16gおよびCNF42.64gを混合してCNF含有ポリイミド前駆体溶液Dを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Dの固形分に対して、CNFが39.47体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution D A polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 269.20 g, NMP 208.16 g, and CNF 42.64 g were mixed to obtain a CNF-containing polyimide precursor solution. D was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 39.47 volume% with respect to solid content of the CNF containing polyimide precursor solution D at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)269.20g、NMP208.16gおよびCNF42.64gを混合してCNF含有ポリイミド前駆体溶液Dを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Dの固形分に対して、CNFが39.47体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution D A polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 269.20 g, NMP 208.16 g, and CNF 42.64 g were mixed to obtain a CNF-containing polyimide precursor solution. D was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 39.47 volume% with respect to solid content of the CNF containing polyimide precursor solution D at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Dを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が25.00mmであり、長さが390mmであり、電極間距離が340mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 25.00 mm, a length of 390 mm, and a distance between electrodes of 340 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Dを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が25.00mmであり、長さが390mmであり、電極間距離が340mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 25.00 mm, a length of 390 mm, and a distance between electrodes of 340 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は5.06Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular article was measured by the same method as in Example 1, the initial resistance value was 5.06Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は5.06Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular article was measured by the same method as in Example 1, the initial resistance value was 5.06Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は4.74Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は4.09Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は3.85Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 4.74Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 4.09Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 3.85Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は4.74Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は4.09Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は3.85Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 4.74Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 4.09Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 3.85Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-6.32%(=(4.74Ω-5.06Ω)/5.06Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-19.17%(=(4.09Ω-5.06Ω)/5.06Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-23.91%(=(3.85Ω-5.06Ω)/5.06Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −6.32% (= (4.74Ω−5.06Ω) /5.06Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 100 hours is −19.17% ( = (4.09Ω−5.06Ω) /5.06Ω×100), and the resistance value fluctuation rate of the resistance exothermic seamless tube after exposure for 125 hours was −23.91% (= (3.85Ω−5. 06Ω) /5.06Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-6.32%(=(4.74Ω-5.06Ω)/5.06Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-19.17%(=(4.09Ω-5.06Ω)/5.06Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-23.91%(=(3.85Ω-5.06Ω)/5.06Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −6.32% (= (4.74Ω−5.06Ω) /5.06Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 100 hours is −19.17% ( = (4.09Ω−5.06Ω) /5.06Ω×100), and the resistance value fluctuation rate of the resistance exothermic seamless tube after exposure for 125 hours was −23.91% (= (3.85Ω−5. 06Ω) /5.06Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Eの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)452.70g、NMP55.86gおよびCNF11.44gを混合してCNF含有ポリイミド前駆体溶液Eを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Eの固形分に対して、CNFが9.43体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution E 45.70 g of a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 55.86 g and CNF 11.44 g were mixed to obtain a CNF-containing polyimide precursor solution. E was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 9.43 volume% with respect to solid content of the CNF containing polyimide precursor solution E at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)452.70g、NMP55.86gおよびCNF11.44gを混合してCNF含有ポリイミド前駆体溶液Eを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Eの固形分に対して、CNFが9.43体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution E 45.70 g of a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 55.86 g and CNF 11.44 g were mixed to obtain a CNF-containing polyimide precursor solution. E was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 9.43 volume% with respect to solid content of the CNF containing polyimide precursor solution E at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Eを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が25.00mmであり、長さが390mmであり、電極間距離が340mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution E was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 25.00 mm, a length of 390 mm, and a distance between electrodes of 340 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Eを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が25.00mmであり、長さが390mmであり、電極間距離が340mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution E was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 25.00 mm, a length of 390 mm, and a distance between electrodes of 340 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は149.50Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured by the same method as in Example 1, the initial resistance value was 149.50Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は149.50Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured by the same method as in Example 1, the initial resistance value was 149.50Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は130.66Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は117.22Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は112.29Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 130.66Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 117.22Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 112.29Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は130.66Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は117.22Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は112.29Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 130.66Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 117.22Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 112.29Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-12.60%(=(130.66Ω-149.50Ω)/149.50Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-21.59%(=(117.22Ω-149.50Ω)/149.50Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-24.89%(=(112.29Ω-149.50Ω)/149.50Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −12.60% (= (130.66Ω−149.50Ω) /149.50Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 100 hours is −21.59% ( = (117.22Ω-149.50Ω) /149.50Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 125 hours was −24.89% (= (112.29Ω-149.100). 50Ω) /149.50Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-12.60%(=(130.66Ω-149.50Ω)/149.50Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-21.59%(=(117.22Ω-149.50Ω)/149.50Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-24.89%(=(112.29Ω-149.50Ω)/149.50Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −12.60% (= (130.66Ω−149.50Ω) /149.50Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 100 hours is −21.59% ( = (117.22Ω-149.50Ω) /149.50Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 125 hours was −24.89% (= (112.29Ω-149.100). 50Ω) /149.50Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Fの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)388.51g、NMP109.14gおよびCNF22.35gを混合してCNF含有ポリイミド前駆体溶液Fを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Fの固形分に対して、CNFが19.15体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution F A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 388.51 g, NMP 109.14 g and CNF 22.35 g were mixed to obtain a CNF-containing polyimide precursor solution. F was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 19.15 volume% with respect to solid content of the CNF containing polyimide precursor solution F at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)388.51g、NMP109.14gおよびCNF22.35gを混合してCNF含有ポリイミド前駆体溶液Fを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Fの固形分に対して、CNFが19.15体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution F A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 388.51 g, NMP 109.14 g and CNF 22.35 g were mixed to obtain a CNF-containing polyimide precursor solution. F was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 19.15 volume% with respect to solid content of the CNF containing polyimide precursor solution F at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Fを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが522μm(うち基層200μm、弾性層300μm、離型層20μm)であり、内径が15.00mmであり、長さが400mmであり、電極間距離が350mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 522 μm (including a base layer of 200 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 15.00 mm, a length of 400 mm, and a distance between electrodes of 350 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Fを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが522μm(うち基層200μm、弾性層300μm、離型層20μm)であり、内径が15.00mmであり、長さが400mmであり、電極間距離が350mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 522 μm (including a base layer of 200 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 15.00 mm, a length of 400 mm, and a distance between electrodes of 350 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は30.12Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular material was measured by the same method as in Example 1, the initial resistance value was 30.12Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は30.12Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular material was measured by the same method as in Example 1, the initial resistance value was 30.12Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は27.79Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は27.60Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は27.50Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 27.79Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 27.60Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 27.50Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は27.79Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は27.60Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は27.50Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 27.79Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 27.60Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 27.50Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-7.74%(=(27.79Ω-30.12Ω)/30.12Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.37%(=(27.60Ω-30.12Ω)/30.12Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.70%(=(27.50Ω-30.12Ω)/30.12Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −7.74% (= (27.79Ω−30.12Ω) /30.12Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after 100 hours exposure is −8.37% ( = (27.60Ω-30.12Ω) /30.12Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours is −8.70% (= (27.50Ω−30.30). 12Ω) /30.12Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-7.74%(=(27.79Ω-30.12Ω)/30.12Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.37%(=(27.60Ω-30.12Ω)/30.12Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.70%(=(27.50Ω-30.12Ω)/30.12Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −7.74% (= (27.79Ω−30.12Ω) /30.12Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after 100 hours exposure is −8.37% ( = (27.60Ω-30.12Ω) /30.12Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours is −8.70% (= (27.50Ω−30.30). 12Ω) /30.12Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Gの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)291.92g、NMP189.31gおよびCNF38.77gを混合してCNF含有ポリイミド前駆体溶液Gを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Gの固形分に対して、CNFが35.36体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution G A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 291.92 g, NMP 189.31 g and CNF 38.77 g were mixed to obtain a CNF-containing polyimide precursor solution. G was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 35.36 volume% with respect to solid content of the CNF containing polyimide precursor solution G at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)291.92g、NMP189.31gおよびCNF38.77gを混合してCNF含有ポリイミド前駆体溶液Gを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Gの固形分に対して、CNFが35.36体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution G A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 291.92 g, NMP 189.31 g and CNF 38.77 g were mixed to obtain a CNF-containing polyimide precursor solution. G was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 35.36 volume% with respect to solid content of the CNF containing polyimide precursor solution G at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Gを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが372μm(うち基層50μm、弾性層300μm、離型層20μm)であり、内径が3.18mmであり、長さが300mmであり、電極間距離が250mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution A was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 372 μm (including a base layer of 50 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 3.18 mm, a length of 300 mm, and an interelectrode distance of 250 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Gを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが372μm(うち基層50μm、弾性層300μm、離型層20μm)であり、内径が3.18mmであり、長さが300mmであり、電極間距離が250mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution A was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 372 μm (including a base layer of 50 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 3.18 mm, a length of 300 mm, and an interelectrode distance of 250 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は65.04Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured in the same manner as in Example 1, the initial resistance value was 65.04Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は65.04Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured in the same manner as in Example 1, the initial resistance value was 65.04Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は59.06Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は57.65Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は57.43Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 59.06Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 57.65Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 57.43Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は59.06Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は57.65Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は57.43Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 59.06Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 57.65Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 57.43Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.19%(=(59.06Ω-65.04Ω)/65.04Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.36%(=(57.65Ω-65.04Ω)/65.04Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.70%(=(57.43Ω-65.04Ω)/65.04Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −9.19% (= (59.06Ω−65.04Ω) /65.04Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 100 hours is −11.36% ( = (57.65Ω−65.04Ω) /65.04Ω×100), and the resistance value fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours is −11.70% (= (57.43Ω−65.65). 04Ω) /65.04Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.19%(=(59.06Ω-65.04Ω)/65.04Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.36%(=(57.65Ω-65.04Ω)/65.04Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.70%(=(57.43Ω-65.04Ω)/65.04Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −9.19% (= (59.06Ω−65.04Ω) /65.04Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 100 hours is −11.36% ( = (57.65Ω−65.04Ω) /65.04Ω×100), and the resistance value fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours is −11.70% (= (57.43Ω−65.65). 04Ω) /65.04Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Hの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)368.40g、NMP125.83gおよびCNF25.77gを混合してCNF含有ポリイミド前駆体溶液Hを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Hの固形分に対して、CNFが22.36体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution H A polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 368.40 g, NMP 125.83 g and CNF 25.77 g were mixed to obtain a CNF-containing polyimide precursor solution. H was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 22.36 volume% with respect to solid content of the CNF containing polyimide precursor solution H at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)368.40g、NMP125.83gおよびCNF25.77gを混合してCNF含有ポリイミド前駆体溶液Hを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Hの固形分に対して、CNFが22.36体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution H A polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 368.40 g, NMP 125.83 g and CNF 25.77 g were mixed to obtain a CNF-containing polyimide precursor solution. H was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 22.36 volume% with respect to solid content of the CNF containing polyimide precursor solution H at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Hを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが397μm(うち基層75μm、弾性層300μm、離型層20μm)であり、周長が150mmであり、長さが350mmであり、電極間距離が300mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 397 μm (including a base layer of 75 μm, an elastic layer of 300 μm, a release layer of 20 μm), a circumference of 150 mm, a length of 350 mm, and an interelectrode distance of 300 mm. It was.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Hを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが397μm(うち基層75μm、弾性層300μm、離型層20μm)であり、周長が150mmであり、長さが350mmであり、電極間距離が300mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF containing polyimide precursor solution A was used instead of the CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 397 μm (including a base layer of 75 μm, an elastic layer of 300 μm, a release layer of 20 μm), a circumference of 150 mm, a length of 350 mm, and an interelectrode distance of 300 mm. It was.
(3)シート状抵抗発熱体
上述の抵抗発熱シームレス管状物を長手方向に沿って切断して、長さ350mm、幅150mmのシート状抵抗発熱体を得た。 (3) Sheet-like resistance heating element The above-described resistance heating seamless tubular material was cut along the longitudinal direction to obtain a sheet-like resistance heating element having a length of 350 mm and a width of 150 mm.
上述の抵抗発熱シームレス管状物を長手方向に沿って切断して、長さ350mm、幅150mmのシート状抵抗発熱体を得た。 (3) Sheet-like resistance heating element The above-described resistance heating seamless tubular material was cut along the longitudinal direction to obtain a sheet-like resistance heating element having a length of 350 mm and a width of 150 mm.
(4)初期抵抗値の測定
実施例1と同様の方法により、上述のシート状抵抗発熱体の初期抵抗値を測定したところ、その初期抵抗値は15.03Ωであった(表1参照)。 (4) Measurement of initial resistance value When the initial resistance value of the sheet-like resistance heating element was measured by the same method as in Example 1, the initial resistance value was 15.03Ω (see Table 1).
実施例1と同様の方法により、上述のシート状抵抗発熱体の初期抵抗値を測定したところ、その初期抵抗値は15.03Ωであった(表1参照)。 (4) Measurement of initial resistance value When the initial resistance value of the sheet-like resistance heating element was measured by the same method as in Example 1, the initial resistance value was 15.03Ω (see Table 1).
(5)300℃暴露後の抵抗値の測定
実施例1と同様にシート状抵抗発熱体を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、シート状抵抗発熱体の抵抗値を測定したところ、48時間暴露後のシート状抵抗発熱体の抵抗値は13.97Ωであり、100時間暴露後のシート状抵抗発熱体の抵抗値は13.64Ωであり、125時間暴露後のシート状抵抗発熱体の抵抗値は13.52Ωであった(表1参照)。 (5) Measurement of resistance value after exposure at 300 ° C. After the sheet-like resistance heating element was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours as in Example 1, the same method as in Example 1 was used. When the resistance value of the sheet resistance heating element was measured, the resistance value of the sheet resistance heating element after exposure for 48 hours was 13.97Ω, and the resistance value of the sheet resistance heating element after exposure for 100 hours was 13.64Ω. The resistance value of the sheet resistance heating element after exposure for 125 hours was 13.52Ω (see Table 1).
実施例1と同様にシート状抵抗発熱体を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、シート状抵抗発熱体の抵抗値を測定したところ、48時間暴露後のシート状抵抗発熱体の抵抗値は13.97Ωであり、100時間暴露後のシート状抵抗発熱体の抵抗値は13.64Ωであり、125時間暴露後のシート状抵抗発熱体の抵抗値は13.52Ωであった(表1参照)。 (5) Measurement of resistance value after exposure at 300 ° C. After the sheet-like resistance heating element was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours as in Example 1, the same method as in Example 1 was used. When the resistance value of the sheet resistance heating element was measured, the resistance value of the sheet resistance heating element after exposure for 48 hours was 13.97Ω, and the resistance value of the sheet resistance heating element after exposure for 100 hours was 13.64Ω. The resistance value of the sheet resistance heating element after exposure for 125 hours was 13.52Ω (see Table 1).
(6)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各シート状抵抗発熱体の抵抗値変動率を求めたところ、48時間暴露後のシート状抵抗発熱体の抵抗値変動率は-7.05%(=(13.97Ω-15.03Ω)/15.03Ω×100)であり、100時間暴露後のシート状抵抗発熱体の抵抗値変動率は-9.25%(=(13.64Ω-15.03Ω)/15.03Ω×100)であり、125時間暴露後のシート状抵抗発熱体の抵抗値変動率は-10.05%(=(13.52Ω-15.03Ω)/15.03Ω×100)であった(表1参照)。 (6) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each sheet-like resistance heating element described above was determined by the same calculation method as in Example 1, the resistance value fluctuation of the sheet-like resistance heating element after 48 hours exposure was obtained. The rate is −7.05% (= (13.97Ω-15.03Ω) /15.03Ω×100), and the resistance value fluctuation rate of the sheet resistance heating element after exposure for 100 hours is −9.25% ( = (13.64Ω-15.03Ω) /15.03Ω×100), and the resistance fluctuation rate of the sheet-like resistance heating element after 125 hours exposure is −10.05% (= (13.52Ω-15.Ω). 03Ω) /15.03Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各シート状抵抗発熱体の抵抗値変動率を求めたところ、48時間暴露後のシート状抵抗発熱体の抵抗値変動率は-7.05%(=(13.97Ω-15.03Ω)/15.03Ω×100)であり、100時間暴露後のシート状抵抗発熱体の抵抗値変動率は-9.25%(=(13.64Ω-15.03Ω)/15.03Ω×100)であり、125時間暴露後のシート状抵抗発熱体の抵抗値変動率は-10.05%(=(13.52Ω-15.03Ω)/15.03Ω×100)であった(表1参照)。 (6) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each sheet-like resistance heating element described above was determined by the same calculation method as in Example 1, the resistance value fluctuation of the sheet-like resistance heating element after 48 hours exposure was obtained. The rate is −7.05% (= (13.97Ω-15.03Ω) /15.03Ω×100), and the resistance value fluctuation rate of the sheet resistance heating element after exposure for 100 hours is −9.25% ( = (13.64Ω-15.03Ω) /15.03Ω×100), and the resistance fluctuation rate of the sheet-like resistance heating element after 125 hours exposure is −10.05% (= (13.52Ω-15.Ω). 03Ω) /15.03Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Iの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)151.15g、NMP306.15gおよびCNF62.70gを混合してCNF含有ポリイミド前駆体溶液Iを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Iの固形分に対して、CNFが63.08体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution I 151.15 g of a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 306.15 g and CNF 62.70 g were mixed to obtain a CNF-containing polyimide precursor solution. I was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 63.08 volume% with respect to solid content of the CNF containing polyimide precursor solution I at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)151.15g、NMP306.15gおよびCNF62.70gを混合してCNF含有ポリイミド前駆体溶液Iを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Iの固形分に対して、CNFが63.08体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution I 151.15 g of a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 306.15 g and CNF 62.70 g were mixed to obtain a CNF-containing polyimide precursor solution. I was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 63.08 volume% with respect to solid content of the CNF containing polyimide precursor solution I at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Iを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが342μm(うち基層20μm、弾性層300μm、離型層20μm)であり、内径が3.18mmであり、長さが400mmであり、電極間距離が350mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution I was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 342 μm (including a base layer of 20 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 3.18 mm, a length of 400 mm, and an interelectrode distance of 350 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Iを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが342μm(うち基層20μm、弾性層300μm、離型層20μm)であり、内径が3.18mmであり、長さが400mmであり、電極間距離が350mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution I was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 342 μm (including a base layer of 20 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 3.18 mm, a length of 400 mm, and an interelectrode distance of 350 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は10.02Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured by the same method as in Example 1, the initial resistance value was 10.02Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は10.02Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured by the same method as in Example 1, the initial resistance value was 10.02Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は9.35Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は8.87Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は8.65Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 9.35Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 8.87Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 8.65Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は9.35Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は8.87Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は8.65Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 9.35Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 8.87Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 8.65Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-6.69%(=(9.35Ω-10.02Ω)/10.02Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.48%(=(8.87Ω-10.02Ω)/10.02Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-13.67%(=(8.65Ω-10.02Ω)/10.02Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −6.69% (= (9.35Ω−10.02Ω) /10.02Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after 100 hours exposure is −11.48% ( = (8.87Ω-10.02Ω) /10.02Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 125 hours was −13.67% (= (8.65Ω−10. 02Ω) /10.02Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-6.69%(=(9.35Ω-10.02Ω)/10.02Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-11.48%(=(8.87Ω-10.02Ω)/10.02Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-13.67%(=(8.65Ω-10.02Ω)/10.02Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −6.69% (= (9.35Ω−10.02Ω) /10.02Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after 100 hours exposure is −11.48% ( = (8.87Ω-10.02Ω) /10.02Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 125 hours was −13.67% (= (8.65Ω−10. 02Ω) /10.02Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Jの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)481.30g、NMP32.12gおよびCNF6.58gを混合してCNF含有ポリイミド前駆体溶液Jを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Jの固形分に対して、CNFが5.33体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution J A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 481.30 g, NMP 32.12 g and CNF 6.58 g were mixed to obtain a CNF-containing polyimide precursor solution. J was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 5.33 volume% with respect to solid content of the CNF containing polyimide precursor solution J at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)481.30g、NMP32.12gおよびCNF6.58gを混合してCNF含有ポリイミド前駆体溶液Jを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Jの固形分に対して、CNFが5.33体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution J A polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 481.30 g, NMP 32.12 g and CNF 6.58 g were mixed to obtain a CNF-containing polyimide precursor solution. J was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 5.33 volume% with respect to solid content of the CNF containing polyimide precursor solution J at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Jを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが367μm(うち基層45μm、弾性層300μm、離型層20μm)であり、内径が79.62mmであり、長さが270mmであり、電極間距離が220mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution J was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 367 μm (including a base layer of 45 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 79.62 mm, a length of 270 mm, and an interelectrode distance of 220 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Jを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが367μm(うち基層45μm、弾性層300μm、離型層20μm)であり、内径が79.62mmであり、長さが270mmであり、電極間距離が220mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution J was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 367 μm (including a base layer of 45 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 79.62 mm, a length of 270 mm, and an interelectrode distance of 220 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は75.05Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured in the same manner as in Example 1, the initial resistance value was 75.05Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は75.05Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured in the same manner as in Example 1, the initial resistance value was 75.05Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は67.84Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は65.68Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は65.20Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 67.84Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 65.68Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 65.20Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は67.84Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は65.68Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は65.20Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 67.84Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 65.68Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 65.20Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.61%(=(67.84Ω-75.05Ω)/75.05Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-12.49%(=(65.68Ω-75.05Ω)/75.05Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-13.12%(=(65.20Ω-75.05Ω)/75.05Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −9.61% (= (67.84Ω−75.05Ω) /75.05Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 100 hours is −12.49% ( = (65.68Ω−75.05Ω) /75.05Ω×100), and the resistance value fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours is −13.12% (= (65.20Ω−75.75). 05Ω) /75.05Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.61%(=(67.84Ω-75.05Ω)/75.05Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-12.49%(=(65.68Ω-75.05Ω)/75.05Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-13.12%(=(65.20Ω-75.05Ω)/75.05Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is −9.61% (= (67.84Ω−75.05Ω) /75.05Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 100 hours is −12.49% ( = (65.68Ω−75.05Ω) /75.05Ω×100), and the resistance value fluctuation rate of the resistance exothermic seamless tubular material after exposure for 125 hours is −13.12% (= (65.20Ω−75.75). 05Ω) /75.05Ω×100) (see Table 1).
(1)CNF含有ポリイミド前駆体溶液Kの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)322.30g、NMP164.09gおよびCNF33.61gを混合してCNF含有ポリイミド前駆体溶液Kを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Kの固形分に対して、CNFが30.04体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution K Polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 322.30 g, NMP164.09 g and CNF 33.61 g were mixed to obtain a CNF-containing polyimide precursor solution. K was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 30.04 volume% with respect to solid content of the CNF containing polyimide precursor solution K at this time (refer Table 1).
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)322.30g、NMP164.09gおよびCNF33.61gを混合してCNF含有ポリイミド前駆体溶液Kを調製した。なお、このとき、CNF含有ポリイミド前駆体溶液Kの固形分に対して、CNFが30.04体積%を占めるように、CNFの添加量が計算されている(表1参照)。 (1) Preparation of CNF-containing polyimide precursor solution K Polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 322.30 g, NMP164.09 g and CNF 33.61 g were mixed to obtain a CNF-containing polyimide precursor solution. K was prepared. In addition, the addition amount of CNF is calculated so that CNF may occupy 30.04 volume% with respect to solid content of the CNF containing polyimide precursor solution K at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Kを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが422μm(うち基層100μm、弾性層300μm、離型層20μm)であり、内径が14.65mmであり、長さが400mmであり、電極間距離が350mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution K was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 422 μm (including a base layer of 100 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 14.65 mm, a length of 400 mm, and a distance between electrodes of 350 mm. there were.
CNF含有ポリイミド前駆体溶液Aに代えてCNF含有ポリイミド前駆体溶液Kを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが422μm(うち基層100μm、弾性層300μm、離型層20μm)であり、内径が14.65mmであり、長さが400mmであり、電極間距離が350mmあった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the CNF-containing polyimide precursor solution K was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 422 μm (including a base layer of 100 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 14.65 mm, a length of 400 mm, and a distance between electrodes of 350 mm. there were.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は18.01Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured by the same method as in Example 1, the initial resistance value was 18.01Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は18.01Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance heating seamless tubular product was measured by the same method as in Example 1, the initial resistance value was 18.01Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は16.71Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は16.44Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は16.37Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 16.71Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 16.44Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 16.37Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間、100時間、125時間放置した後、実施例1と同様の方法により、抵抗発熱シームレス管状物の抵抗値を測定したところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値は16.71Ωであり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値は16.44Ωであり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値は16.37Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours, 100 hours, and 125 hours in the same manner as in Example 1, the same method as in Example 1 was used. When the resistance value of the resistance exothermic seamless tubular material was measured, the resistance value of the resistance exothermic seamless tubular material after exposure for 48 hours was 16.71Ω, and the resistance value of the resistance exothermic seamless tubular material after exposure for 100 hours was 16.44Ω. The resistance value of the resistance exothermic seamless tubular product after exposure for 125 hours was 16.37Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-7.22%(=(16.71Ω-18.01Ω)/18.01Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.72%(=(16.44Ω-18.01Ω)/18.01Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.11%(=(16.37Ω-18.01Ω)/18.01Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is -7.22% (= (16.71Ω-18.01Ω) /18.01Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 100 hours is −8.72% ( = (16.44Ω-18.01Ω) /18.01Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 125 hours is −9.11% (= (16.37Ω-18. 01Ω) /18.01Ω×100) (see Table 1).
実施例1と同一の計算方法により上述の各抵抗発熱シームレス管状物の抵抗値変動率を求めたところ、48時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-7.22%(=(16.71Ω-18.01Ω)/18.01Ω×100)であり、100時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-8.72%(=(16.44Ω-18.01Ω)/18.01Ω×100)であり、125時間暴露後の抵抗発熱シームレス管状物の抵抗値変動率は-9.11%(=(16.37Ω-18.01Ω)/18.01Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate of each of the resistance exothermic seamless tubular objects described above was obtained by the same calculation method as in Example 1, the resistance value fluctuation of the resistance exothermic seamless tubular object after 48 hours exposure was obtained. The rate is -7.22% (= (16.71Ω-18.01Ω) /18.01Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tube after exposure for 100 hours is −8.72% ( = (16.44Ω-18.01Ω) /18.01Ω×100), and the resistance fluctuation rate of the resistance exothermic seamless tubular product after exposure for 125 hours is −9.11% (= (16.37Ω-18. 01Ω) /18.01Ω×100) (see Table 1).
(比較例1)
(1)CNFニッケル粉含有ポリイミド前駆体溶液Lの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)195.01g、NMP260.23g、CNF12.80gおよびニッケル粉末40.00gを混合してCNFニッケル粉ポリイミド前駆体溶液Lを調製した。なお、このとき、CNFニッケル粉ポリイミド前駆体溶液Lの固形分に対して、CNFが13.00体積%を占めると共にニッケル粉末が18.40体積%を占めるように、CNFおよびニッケル粉末の添加量が計算されている(表1参照)。 (Comparative Example 1)
(1) Preparation of CNF nickel powder-containing polyimide precursor solution L A mixture of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 195.01 g, NMP 260.23 g, CNF 12.80 g and nickel powder 40.00 g Thus, a CNF nickel powder polyimide precursor solution L was prepared. At this time, the amount of CNF and nickel powder added so that CNF occupies 13.00% by volume and nickel powder occupies 18.40% by volume with respect to the solid content of the CNF nickel powder polyimide precursor solution L. Is calculated (see Table 1).
(1)CNFニッケル粉含有ポリイミド前駆体溶液Lの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)195.01g、NMP260.23g、CNF12.80gおよびニッケル粉末40.00gを混合してCNFニッケル粉ポリイミド前駆体溶液Lを調製した。なお、このとき、CNFニッケル粉ポリイミド前駆体溶液Lの固形分に対して、CNFが13.00体積%を占めると共にニッケル粉末が18.40体積%を占めるように、CNFおよびニッケル粉末の添加量が計算されている(表1参照)。 (Comparative Example 1)
(1) Preparation of CNF nickel powder-containing polyimide precursor solution L A mixture of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 195.01 g, NMP 260.23 g, CNF 12.80 g and nickel powder 40.00 g Thus, a CNF nickel powder polyimide precursor solution L was prepared. At this time, the amount of CNF and nickel powder added so that CNF occupies 13.00% by volume and nickel powder occupies 18.40% by volume with respect to the solid content of the CNF nickel powder polyimide precursor solution L. Is calculated (see Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えてCNFニッケル粉含有ポリイミド前駆体溶液Lを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が30.01mmであり、長さが390mmであり、電極間距離が340mmであった。 (2) Production of Resistance Exothermic Seamless Tubular Material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that CNF nickel powder containing polyimide precursor solution L was used instead of CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 30.01 mm, a length of 390 mm, and an interelectrode distance of 340 mm. Met.
CNF含有ポリイミド前駆体溶液Aに代えてCNFニッケル粉含有ポリイミド前駆体溶液Lを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が30.01mmであり、長さが390mmであり、電極間距離が340mmであった。 (2) Production of Resistance Exothermic Seamless Tubular Material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that CNF nickel powder containing polyimide precursor solution L was used instead of CNF containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 30.01 mm, a length of 390 mm, and an interelectrode distance of 340 mm. Met.
(3)初期抵抗値の測定
実施例1と同様の方法により、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は34.00Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured by the same method as in Example 1, the initial resistance value was 34.00Ω (see Table 1).
実施例1と同様の方法により、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は34.00Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured by the same method as in Example 1, the initial resistance value was 34.00Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間放置した後、実施例1と同様の方法により、その抵抗発熱シームレス管状物の抵抗値を測定したところ、その抵抗値は66.60Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours in the same manner as in Example 1, the resistance exothermic seamless tubular product was subjected to the same method as in Example 1. As a result, the resistance value was 66.60Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間放置した後、実施例1と同様の方法により、その抵抗発熱シームレス管状物の抵抗値を測定したところ、その抵抗値は66.60Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours in the same manner as in Example 1, the resistance exothermic seamless tubular product was subjected to the same method as in Example 1. As a result, the resistance value was 66.60Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により抵抗値変動率を求めたところ、この抵抗発熱シームレス管状物の抵抗値変動率は+95.88%(=(66.60Ω-34.00Ω)/34.00Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate was determined by the same calculation method as in Example 1, the resistance value fluctuation rate of this resistance heating seamless tubular product was + 95.88% (= (66.60Ω- 34.00Ω) /34.00Ω×100) (see Table 1).
実施例1と同一の計算方法により抵抗値変動率を求めたところ、この抵抗発熱シームレス管状物の抵抗値変動率は+95.88%(=(66.60Ω-34.00Ω)/34.00Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate was determined by the same calculation method as in Example 1, the resistance value fluctuation rate of this resistance heating seamless tubular product was + 95.88% (= (66.60Ω- 34.00Ω) /34.00Ω×100) (see Table 1).
(比較例2)
(1)黒鉛粉末含有ポリイミド前駆体溶液Mの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)328.00g、NMP150.65gおよび黒鉛粉末29.96gを混合して黒鉛粉末含有ポリイミド前駆体溶液Mを調製した。なお、このとき、黒鉛粉末含有ポリイミド前駆体溶液Mの固形分に対して、黒鉛粉末が25.00体積%を占めるように、黒鉛粉末の添加量が計算されている(表1参照)。 (Comparative Example 2)
(1) Preparation of graphite powder-containing polyimide precursor solution M Polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 328.00 g, NMP 150.65 g and graphite powder 29.96 g were mixed to contain graphite powder. A polyimide precursor solution M was prepared. In addition, the addition amount of graphite powder is calculated so that graphite powder may occupy 25.00 volume% with respect to solid content of the graphite powder containing polyimide precursor solution M at this time (refer Table 1).
(1)黒鉛粉末含有ポリイミド前駆体溶液Mの調製
ポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)328.00g、NMP150.65gおよび黒鉛粉末29.96gを混合して黒鉛粉末含有ポリイミド前駆体溶液Mを調製した。なお、このとき、黒鉛粉末含有ポリイミド前駆体溶液Mの固形分に対して、黒鉛粉末が25.00体積%を占めるように、黒鉛粉末の添加量が計算されている(表1参照)。 (Comparative Example 2)
(1) Preparation of graphite powder-containing polyimide precursor solution M Polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 328.00 g, NMP 150.65 g and graphite powder 29.96 g were mixed to contain graphite powder. A polyimide precursor solution M was prepared. In addition, the addition amount of graphite powder is calculated so that graphite powder may occupy 25.00 volume% with respect to solid content of the graphite powder containing polyimide precursor solution M at this time (refer Table 1).
(2)抵抗発熱シームレス管状物の作製
CNF含有ポリイミド前駆体溶液Aに代えて黒鉛粉末含有ポリイミド前駆体溶液Mを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が30.01mmであり、長さが390mmであり、電極間距離が340mmであった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the graphite powder-containing polyimide precursor solution M was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 30.01 mm, a length of 390 mm, and an interelectrode distance of 340 mm. Met.
CNF含有ポリイミド前駆体溶液Aに代えて黒鉛粉末含有ポリイミド前駆体溶液Mを用いた以外は実施例1と同様にして抵抗発熱シームレス管状物を作製した。なお、この抵抗発熱シームレス管状物は、厚みが392μm(うち基層70μm、弾性層300μm、離型層20μm)であり、内径が30.01mmであり、長さが390mmであり、電極間距離が340mmであった。 (2) Production of resistance exothermic seamless tubular material A resistance exothermic seamless tubular product was produced in the same manner as in Example 1 except that the graphite powder-containing polyimide precursor solution M was used instead of the CNF-containing polyimide precursor solution A. The resistance heating seamless tubular product has a thickness of 392 μm (including a base layer of 70 μm, an elastic layer of 300 μm, a release layer of 20 μm), an inner diameter of 30.01 mm, a length of 390 mm, and an interelectrode distance of 340 mm. Met.
(3)初期抵抗値の測定
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は1208.56Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured in the same manner as in Example 1, the initial resistance value was 1208.56Ω (see Table 1).
実施例1と同様の方法により、その抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は1208.56Ωであった(表1参照)。 (3) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured in the same manner as in Example 1, the initial resistance value was 1208.56Ω (see Table 1).
(4)300℃暴露後の抵抗値の測定
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間放置した後、実施例1と同様の方法により、その抵抗発熱シームレス管状物の抵抗値を測定したところ、その抵抗値は837.05Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours in the same manner as in Example 1, the resistance exothermic seamless tubular product was subjected to the same method as in Example 1. As a result, the resistance value was 837.05Ω (see Table 1).
実施例1と同様に抵抗発熱シームレス管状物を300℃環境下に48時間放置した後、実施例1と同様の方法により、その抵抗発熱シームレス管状物の抵抗値を測定したところ、その抵抗値は837.05Ωであった(表1参照)。 (4) Measurement of resistance value after exposure to 300 ° C. After the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 48 hours in the same manner as in Example 1, the resistance exothermic seamless tubular product was subjected to the same method as in Example 1. As a result, the resistance value was 837.05Ω (see Table 1).
(5)抵抗値変動率の算出
実施例1と同一の計算方法により抵抗値変動率を求めたところ、この抵抗発熱シームレス管状物の抵抗値変動率は-30.74%(=(837.05Ω-1208.56Ω)/1208.56Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate was determined by the same calculation method as in Example 1, the resistance value fluctuation rate of this resistance heating seamless tubular product was -30.74% (= (837.05Ω). −1208.56Ω) /1208.56Ω×100) (see Table 1).
実施例1と同一の計算方法により抵抗値変動率を求めたところ、この抵抗発熱シームレス管状物の抵抗値変動率は-30.74%(=(837.05Ω-1208.56Ω)/1208.56Ω×100)であった(表1参照)。 (5) Calculation of resistance value fluctuation rate When the resistance value fluctuation rate was determined by the same calculation method as in Example 1, the resistance value fluctuation rate of this resistance heating seamless tubular product was -30.74% (= (837.05Ω). −1208.56Ω) /1208.56Ω×100) (see Table 1).
(1)導電性微粒子含有ポリイミド前駆体溶液Nの調製
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)35g、Nーメチルピロリドン(以下「NMP」と略する。)1.70g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)16.57g、トリチオシアヌル酸(以下「TTCA」と略する。)(和光純薬製)0.0510gおよび硼酸(ナカライテスク製)0.1980gを混合し、導電性微粒子含有ポリイミド前駆体溶液Nを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCAおよび硼酸の添加量が計算されている(表2参照)。 (1) Preparation of Conductive Fine Particle-Containing Polyimide Precursor Solution N Polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 35 g, N-methylpyrrolidone (hereinafter abbreviated as “NMP”) 1.70 g In addition, 16.57 g of filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET), 0.0510 g of trithiocyanuric acid (hereinafter abbreviated as “TTCA”) (manufactured by Wako Pure Chemical Industries) and 0.1980 g of boric acid (manufactured by Nacalai Tesque) are mixed, Fine particle-containing polyimide precursor solution N was prepared. At this time, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N, filamentous nickel fine particles occupy 30.0% by volume, TTCA occupies 0.5% by volume, and boric acid 1.0% by volume. %, The addition amount of filamentary nickel fine particles, TTCA and boric acid is calculated (see Table 2).
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)35g、Nーメチルピロリドン(以下「NMP」と略する。)1.70g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)16.57g、トリチオシアヌル酸(以下「TTCA」と略する。)(和光純薬製)0.0510gおよび硼酸(ナカライテスク製)0.1980gを混合し、導電性微粒子含有ポリイミド前駆体溶液Nを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCAおよび硼酸の添加量が計算されている(表2参照)。 (1) Preparation of Conductive Fine Particle-Containing Polyimide Precursor Solution N Polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) 35 g, N-methylpyrrolidone (hereinafter abbreviated as “NMP”) 1.70 g In addition, 16.57 g of filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET), 0.0510 g of trithiocyanuric acid (hereinafter abbreviated as “TTCA”) (manufactured by Wako Pure Chemical Industries) and 0.1980 g of boric acid (manufactured by Nacalai Tesque) are mixed, Fine particle-containing polyimide precursor solution N was prepared. At this time, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N, filamentous nickel fine particles occupy 30.0% by volume, TTCA occupies 0.5% by volume, and boric acid 1.0% by volume. %, The addition amount of filamentary nickel fine particles, TTCA and boric acid is calculated (see Table 2).
(2)銀粉含有ポリイミド前駆体溶液Oの調製
ポリアミック酸溶液(組成PMDA/ODA、固形分15.4質量%)150g、銀粉(AgC―A、福田金属箔粉工業製、平均粒子径3.1μm、密度14g/cm3)26.57g、NMP37.5gおよび2-ジ-n-ブチルアミノ-4,6-ジメルカプト-1,3,5-トリアジン(以下「DBDMT」と略する。)0.018gを混合して銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O Polyamic acid solution (composition PMDA / ODA, solid content 15.4% by mass) 150 g, silver powder (AgC-A, manufactured by Fukuda Metal Foil Powder Industry, average particle size 3.1 μm) , Density 14 g / cm 3 ) 26.57 g, NMP 37.5 g and 2-di-n-butylamino-4,6-dimercapto-1,3,5-triazine (hereinafter abbreviated as “DBDMT”) 0.018 g Were mixed to prepare a silver powder-containing polyimide precursor solution O.
ポリアミック酸溶液(組成PMDA/ODA、固形分15.4質量%)150g、銀粉(AgC―A、福田金属箔粉工業製、平均粒子径3.1μm、密度14g/cm3)26.57g、NMP37.5gおよび2-ジ-n-ブチルアミノ-4,6-ジメルカプト-1,3,5-トリアジン(以下「DBDMT」と略する。)0.018gを混合して銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O Polyamic acid solution (composition PMDA / ODA, solid content 15.4% by mass) 150 g, silver powder (AgC-A, manufactured by Fukuda Metal Foil Powder Industry, average particle size 3.1 μm) , Density 14 g / cm 3 ) 26.57 g, NMP 37.5 g and 2-di-n-butylamino-4,6-dimercapto-1,3,5-triazine (hereinafter abbreviated as “DBDMT”) 0.018 g Were mixed to prepare a silver powder-containing polyimide precursor solution O.
(3)抵抗発熱シームレス管状物の作製
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
次に、基層の表面に導電性微粒子含有ポリイミド前駆体溶液Nを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Bを作製した。円筒金型からこのポリイミド管状物Bを抜き取って、厚み、内径および長さを測定したところ、厚みは70μmであり、内径は18mmであり、長さは265mmであった。
Next, after uniformly applying the conductive fine particle-containing polyimide precursor solution N to the surface of the base layer, the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes. The polyimide tubular product B was produced by sequentially heating under the conditions of the above, removing the solvent and imidizing. When this polyimide tubular product B was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 μm, the inner diameter was 18 mm, and the length was 265 mm.
次に、ポリイミド管状物Bの両端25mmの表面に、銀粉含有ポリイミド前駆体溶液Oを均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Bの両端に厚み20μmの電極を形成した。
Next, after uniformly applying the silver powder-containing polyimide precursor solution O to the surfaces of 25 mm on both ends of the polyimide tubular body B, the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to perform solvent removal and imidization treatment to form electrodes having a thickness of 20 μm on both ends of the polyimide tubular product B.
次いで、「電極が形成されていないポリイミド管状物Bの中央部分の外表面」および「電極の中央部分側の端から5mmの部分の外表面」に、ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行って絶縁層を形成した。その結果、厚み120μm、内径18mm、長さ265mmの抵抗発熱シームレス管状物を得た。なお、この抵抗発熱シームレス管状物の電極間距離は215mmであった。
Next, a polyamic acid solution (composition BPDA / PPD, solid content) is added to “the outer surface of the central portion of the polyimide tubular body B on which no electrode is formed” and “the outer surface of the portion 5 mm from the end on the side of the central portion of the electrode”. 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes. The insulating layer was formed by heating to remove the solvent and imidization treatment. As a result, a resistance exothermic seamless tubular product having a thickness of 120 μm, an inner diameter of 18 mm, and a length of 265 mm was obtained. In addition, the distance between electrodes of this resistance heat generation seamless tubular thing was 215 mm.
(4)初期抵抗値の測定
デジタルマルチメーターModel7562(横河電気株式会社製)を用いた四端子法により、抵抗発熱シームレス管状物の電極間の初期抵抗値を測定した。その初期抵抗値は17.6Ωであった(表2参照)。 (4) Measurement of initial resistance value The initial resistance value between electrodes of the resistance heating seamless tubular material was measured by a four-terminal method using a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation). The initial resistance value was 17.6Ω (see Table 2).
デジタルマルチメーターModel7562(横河電気株式会社製)を用いた四端子法により、抵抗発熱シームレス管状物の電極間の初期抵抗値を測定した。その初期抵抗値は17.6Ωであった(表2参照)。 (4) Measurement of initial resistance value The initial resistance value between electrodes of the resistance heating seamless tubular material was measured by a four-terminal method using a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation). The initial resistance value was 17.6Ω (see Table 2).
(5)300℃×100時間暴露後の抵抗値の測定
抵抗発熱シームレス管状物を300℃環境下に100時間放置した後、その抵抗発熱シームレス管状物を常温まで冷やした。そして、その抵抗発熱シームレス管状物の抵抗値を、上述と同様にして求めた。その抵抗値は17.5Ωであった(表2参照)。 (5) Measurement of resistance value after exposure at 300 ° C. for 100 hours The resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours, and then the resistance exothermic seamless tubular material was cooled to room temperature. And the resistance value of the resistance exothermic seamless tubular thing was calculated | required similarly to the above-mentioned. Its resistance value was 17.5Ω (see Table 2).
抵抗発熱シームレス管状物を300℃環境下に100時間放置した後、その抵抗発熱シームレス管状物を常温まで冷やした。そして、その抵抗発熱シームレス管状物の抵抗値を、上述と同様にして求めた。その抵抗値は17.5Ωであった(表2参照)。 (5) Measurement of resistance value after exposure at 300 ° C. for 100 hours The resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours, and then the resistance exothermic seamless tubular material was cooled to room temperature. And the resistance value of the resistance exothermic seamless tubular thing was calculated | required similarly to the above-mentioned. Its resistance value was 17.5Ω (see Table 2).
(6)抵抗値変動率の算出
抵抗値変動率は、((300℃×100時間暴露後の抵抗値)-(初期抵抗値))/(初期抵抗値)×100で算出される。すなわち、この抵抗発熱シームレス管状物の抵抗値変動率は-0.6%(=(17.5Ω-17.6Ω)/17.6Ω×100)であった(表2参照)。 (6) Calculation of resistance value fluctuation rate The resistance value fluctuation rate is calculated by ((300 ° C. × resistance value after 100 hours exposure) − (initial resistance value)) / (initial resistance value) × 100. That is, the resistance value variation rate of this resistance exothermic seamless tubular product was −0.6% (= (17.5Ω-17.6Ω) /17.6Ω×100) (see Table 2).
抵抗値変動率は、((300℃×100時間暴露後の抵抗値)-(初期抵抗値))/(初期抵抗値)×100で算出される。すなわち、この抵抗発熱シームレス管状物の抵抗値変動率は-0.6%(=(17.5Ω-17.6Ω)/17.6Ω×100)であった(表2参照)。 (6) Calculation of resistance value fluctuation rate The resistance value fluctuation rate is calculated by ((300 ° C. × resistance value after 100 hours exposure) − (initial resistance value)) / (initial resistance value) × 100. That is, the resistance value variation rate of this resistance exothermic seamless tubular product was −0.6% (= (17.5Ω-17.6Ω) /17.6Ω×100) (see Table 2).
(7)電極劣化の観察
この抵抗発熱シームレス管状物を300℃の温度で100時間暴露した後にその電極を観察したが、電極は強固に密着しており、電極には剥離、ブリスタ等の劣化は見られなかった(表2参照)。 (7) Observation of electrode deterioration The electrode was observed after exposing this resistance heating seamless tubular material at a temperature of 300 ° C. for 100 hours, but the electrode was firmly adhered, and the electrode was not peeled or deteriorated such as blister. It was not seen (see Table 2).
この抵抗発熱シームレス管状物を300℃の温度で100時間暴露した後にその電極を観察したが、電極は強固に密着しており、電極には剥離、ブリスタ等の劣化は見られなかった(表2参照)。 (7) Observation of electrode deterioration The electrode was observed after exposing this resistance heating seamless tubular material at a temperature of 300 ° C. for 100 hours, but the electrode was firmly adhered, and the electrode was not peeled or deteriorated such as blister. It was not seen (see Table 2).
TTCA0.0510gを2-メルカプトベンズイミダゾール(以下「MBI」と略する。)0.0440gに代えた以外は、実施例11と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、MBIが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、MBIおよび硼酸の添加量が計算されている(表2参照)。
A resistance exothermic seamless tubular product was prepared in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0440 g of 2-mercaptobenzimidazole (hereinafter abbreviated as “MBI”). The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In the present example, the filamentous nickel fine particles occupy 30.0% by volume, MBI occupies 0.5% by volume, and boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution N. The addition amount of filamentary nickel fine particles, MBI and boric acid is calculated so as to occupy 0% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は21.3Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は17.5Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は-17.9%(=(17.5Ω-21.3Ω)/21.3Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化は観察されなかった(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 21.3Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 17.5Ω (see Table 2). The resistance value fluctuation rate was calculated and found to be −17.9% (= (17.5Ω-21.3Ω) /21.3Ω×100) (see Table 2). Moreover, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 2).
TTCA0.0510gを4,6-ジメチル-2-ピリミジンチオール(以下「DMP」と略する。)0.0370gに代えた以外は、実施例11と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、DMPが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、DMPおよび硼酸の添加量が計算されている(表2参照)。
A resistance exothermic seamless tubular material was prepared and carried out in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0370 g of 4,6-dimethyl-2-pyrimidinethiol (hereinafter abbreviated as “DMP”). In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, the DMP occupies 0.5% by volume, and the boric acid is 1.% with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N. The amount of filamentary nickel fine particles, DMP and boric acid added is calculated so as to occupy 0% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は14.5Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は12.2Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は-15.9%(=(12.2Ω-14.5Ω)/14.5Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化は観察されなかった(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 14.5Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 12.2Ω (see Table 2). When the resistance value fluctuation rate was calculated, it was −15.9% (= (12.2Ω-14.5Ω) /14.5Ω×100) (see Table 2). Moreover, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 2).
TTCA0.0510gを6-ジブチルアミノ-1,3,5-トリアジン-2,4-ジチオール(以下「DBTDT」と略する。)0.0380gに代えた以外は、実施例11と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、DBTDTが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、DBTDTおよび硼酸の添加量が計算されている(表2参照)。
Resistance heat generation was performed in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0380 g of 6-dibutylamino-1,3,5-triazine-2,4-dithiol (hereinafter abbreviated as “DBTDT”). A seamless tubular product was prepared, and the resistance characteristics of the resistance-heat generating seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, DBTDT occupies 0.5% by volume, and boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution N. The addition amount of filamentary nickel fine particles, DBTDT and boric acid is calculated so as to occupy 0% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は13.9Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は13.2Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は-4.7%(=(13.2Ω-13.9Ω)/13.9Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化は観察されなかった(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 13.9Ω (see Table 2). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 13.2Ω (see Table 2). The resistance value fluctuation rate was calculated and found to be -4.7% (= (13.2Ω-13.9Ω) /13.9Ω×100) (see Table 2). Moreover, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 2).
TTCA0.0510gを2-ベンゾチアゾールチオール(以下「BTT」と略する。)0.0440gに代えた以外は、実施例11と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、BTTが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、BTTおよび硼酸の添加量が計算されている(表2参照)。
A resistance exothermic seamless tubular product was prepared in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0440 g of 2-benzothiazolethiol (hereinafter abbreviated as “BTT”). The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, the BTT accounts for 0.5% by volume, and the boric acid is 1.% with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N. The amount of filamentary nickel fine particles, BTT and boric acid added is calculated so as to occupy 0% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は15.8Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は15.1Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は-4.5%(=(15.1Ω-15.8Ω)/15.8Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極部を被覆している絶縁層ポリイミドにブリスタが認められると共に電極の剥落が認められ、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 15.8Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 15.1Ω (see Table 2). When the resistance value fluctuation rate was calculated, it was -4.5% (= (15.1Ω-15.8Ω) /15.8Ω×100) (see Table 2). Moreover, in this resistance heating seamless tubular product, blisters were observed in the insulating layer polyimide covering the electrode part, and electrode peeling was observed, and electrode deterioration was observed (see Table 2).
TTCA0.0510gを2-メルカプト-5-メチルベンズイミダゾール(以下「MMI」と略する。)0.0410gに代えた以外は、実施例11と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Nの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、MMIが0.5体積%を占め、硼酸が1.0体積%を占めるように、フィラメント状ニッケル微粒子、MMIおよび硼酸の添加量が計算されている(表2参照)。
A resistance exothermic seamless tubular product was produced in the same manner as in Example 11 except that 0.0510 g of TTCA was replaced with 0.0410 g of 2-mercapto-5-methylbenzimidazole (hereinafter abbreviated as “MMI”). In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, the MMI occupies 0.5% by volume, and the boric acid is 1.% with respect to the solid content of the conductive fine particle-containing polyimide precursor solution N. The addition amounts of filamentary nickel fine particles, MMI and boric acid are calculated so as to occupy 0% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は19.6Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は14.3Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は-27.1%(=(14.3Ω-19.6Ω)/19.6Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 19.6Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 14.3Ω (see Table 2). When the resistance value fluctuation rate was calculated, it was -27.1% (= (14.3Ω-19.6Ω) /19.6Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
(1)導電性微粒子含有ポリイミド前駆体溶液Pの調製
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)45g、NMP6.71g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53g、カーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、トリチオシアヌル酸トリナトリウム塩15重量%水溶液(以下「TTCA-3Na」と略する。)(Fluka製)2.41gおよび硼酸(ナカライテスク製)3.594gを混合し、導電性微粒子含有ポリイミド前駆体溶液Pを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、フィラメント状ニッケル微粒子が26.4体積%を占め、カーボンナノファイバーが13.2体積%を占め、TTCA-3Naが2.0体積%を占め、硼酸が10.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよび硼酸の添加量が計算されている(表2参照)。 (1) Preparation of conductive fine particle-containing polyimide precursor solution P 45 g of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 6.71 g, 26.53 g of filamentous nickel fine particles (TYPE525 made by NOVAMET), Carbon nanofiber (VGCF-H, manufactured by Showa Denko KK) 2.981 g, trithiocyanuric acid trisodium salt 15 wt% aqueous solution (hereinafter abbreviated as “TTCA-3Na”) (Fluka) 2.41 g and boric acid (Nacalai Tesque) (Manufactured) 3.594 g was mixed to prepare a polyimide precursor solution P containing conductive fine particles. At this time, filamentous nickel fine particles occupy 26.4% by volume, carbon nanofibers occupy 13.2% by volume, and TTCA-3Na is based on the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so as to occupy 2.0% by volume and boric acid occupy 10.0% by volume (see Table 2).
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)45g、NMP6.71g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53g、カーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、トリチオシアヌル酸トリナトリウム塩15重量%水溶液(以下「TTCA-3Na」と略する。)(Fluka製)2.41gおよび硼酸(ナカライテスク製)3.594gを混合し、導電性微粒子含有ポリイミド前駆体溶液Pを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、フィラメント状ニッケル微粒子が26.4体積%を占め、カーボンナノファイバーが13.2体積%を占め、TTCA-3Naが2.0体積%を占め、硼酸が10.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよび硼酸の添加量が計算されている(表2参照)。 (1) Preparation of conductive fine particle-containing polyimide precursor solution P 45 g of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), NMP 6.71 g, 26.53 g of filamentous nickel fine particles (TYPE525 made by NOVAMET), Carbon nanofiber (VGCF-H, manufactured by Showa Denko KK) 2.981 g, trithiocyanuric acid trisodium salt 15 wt% aqueous solution (hereinafter abbreviated as “TTCA-3Na”) (Fluka) 2.41 g and boric acid (Nacalai Tesque) (Manufactured) 3.594 g was mixed to prepare a polyimide precursor solution P containing conductive fine particles. At this time, filamentous nickel fine particles occupy 26.4% by volume, carbon nanofibers occupy 13.2% by volume, and TTCA-3Na is based on the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so as to occupy 2.0% by volume and boric acid occupy 10.0% by volume (see Table 2).
(2)銀粉含有ポリイミド前駆体溶液Oの調製
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
(3)抵抗発熱シームレス管状物の作製
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
次に、基層の表面に導電性微粒子含有ポリイミド前駆体溶液Pを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Cを作製した。円筒金型からこのポリイミド管状物Cを抜き取って、厚み、内径および長さを測定したところ、厚みは70μmであり、内径は18mmであり、長さは265mmであった。
Next, after uniformly applying the conductive fine particle-containing polyimide precursor solution P to the surface of the base layer, the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes. The polyimide tubular product C was produced by sequentially heating under the above conditions, removing the solvent and imidizing. When this polyimide tubular product C was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 μm, the inner diameter was 18 mm, and the length was 265 mm.
次に、ポリイミド管状物Cの両端25mmの表面に、銀粉含有ポリイミド前駆体溶液Oを均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Cの両端に厚み20μmの電極を形成した。
Next, after uniformly applying the silver powder-containing polyimide precursor solution O to the surfaces of both ends 25 mm of the polyimide tubular product C, the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 μm on both ends of the polyimide tubular product C.
次いで、「電極が形成されていないポリイミド管状物Cの中央部分の外表面」および「電極の中央部分側の端から5mmの部分の外表面」に、ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行って絶縁層を形成した。その結果、厚み120μm、内径18mm、長さ265mmの抵抗発熱シームレス管状物を得た。なお、この抵抗発熱シームレス管状物の電極間距離は215mmであった。
Next, the polyamic acid solution (composition BPDA / PPD, solid content) was added to “the outer surface of the central portion of the polyimide tubular article C on which no electrode was formed” and “the outer surface of the portion 5 mm from the end on the side of the central portion of the electrode”. 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes. The insulating layer was formed by heating to remove the solvent and imidization treatment. As a result, a resistance exothermic seamless tubular product having a thickness of 120 μm, an inner diameter of 18 mm, and a length of 265 mm was obtained. In addition, the distance between electrodes of this resistance heat generation seamless tubular thing was 215 mm.
(4)初期抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は41.7Ωであった(表2参照)。 (4) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured in the same manner as in Example 11, the initial resistance value was 41.7Ω (see Table 2).
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は41.7Ωであった(表2参照)。 (4) Measurement of initial resistance value When the initial resistance value of the resistance exothermic seamless tubular material was measured in the same manner as in Example 11, the initial resistance value was 41.7Ω (see Table 2).
(5)300℃×100時間暴露後の抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その抵抗値は46.0Ωであった(表2参照)。 (5) Measurement of resistance value after exposure to 300 ° C. × 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was measured, the resistance value was measured. Was 46.0Ω (see Table 2).
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その抵抗値は46.0Ωであった(表2参照)。 (5) Measurement of resistance value after exposure to 300 ° C. × 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was measured, the resistance value was measured. Was 46.0Ω (see Table 2).
(6)抵抗値変動率の算出
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は+10.2%(=(46.0Ω-41.7Ω)/41.7Ω×100)であった(表2参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, when the resistance value fluctuation rate of this resistance heating seamless tubular product was calculated, the value was + 10.2% (= (46.0Ω-41.7Ω). ) /41.7Ω×100) (see Table 2).
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は+10.2%(=(46.0Ω-41.7Ω)/41.7Ω×100)であった(表2参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, when the resistance value fluctuation rate of this resistance heating seamless tubular product was calculated, the value was + 10.2% (= (46.0Ω-41.7Ω). ) /41.7Ω×100) (see Table 2).
(7)電極劣化の観察
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化が観察された(表2参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, electrode deterioration was observed in this resistance heating seamless tubular material (see Table 2).
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化が観察された(表2参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, electrode deterioration was observed in this resistance heating seamless tubular material (see Table 2).
NMPの添加量を6.30gに代え、TTCA-3Naの添加量を0.550gに代え、硼酸の添加量を0.8152gに代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、フィラメント状ニッケル微粒子が29.1体積%を占め、カーボンナノファイバーが14.6体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.5体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよび硼酸の添加量が計算されている(表2参照)。
Resistive exothermic seamless tubular material as in Example 17, except that the amount of NMP added was changed to 6.30 g, the amount of TTCA-3Na added was changed to 0.550 g, and the amount of boric acid added was changed to 0.8152 g. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles account for 29.1% by volume and the carbon nanofibers account for 14.6% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so that 3Na occupies 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は34.9Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は37.0Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+5.9%(=(37.0Ω-34.9Ω)/34.9Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 34.9Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 37.0Ω (see Table 2). When the resistance value fluctuation rate was calculated, it was + 5.9% (= (37.0Ω−34.9Ω) /34.9Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
フィラメント状ニッケル微粒子の添加量を22.11gに代え、カーボンナノファイバーの添加量を3.974gに代え、TTCA-3Na2.41gをTTCA0.0849gに代え、硼酸の添加量を0.8152gに代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、フィラメント状ニッケル微粒子が24.3体積%を占め、カーボンナノファイバーが19.4体積%を占め、TTCAが0.5体積%を占め、硼酸が2.5体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCAおよび硼酸の添加量が計算されている(表2参照)。
The addition amount of filamentary nickel fine particles was changed to 22.11 g, the addition amount of carbon nanofibers was changed to 3.974 g, 2.41 g of TTCA-3Na was changed to 0.0849 g of TTCA, and the addition amount of boric acid was changed to 0.8152 g. Except for the above, a resistance exothermic seamless tubular product was produced in the same manner as in Example 17, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 24.3 volume%, the carbon nanofibers occupy 19.4 volume%, and the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は62.0Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は67.2Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+8.4%(=(67.2Ω-62.0Ω)/62.0Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 62.0Ω (see Table 2). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 67.2Ω (see Table 2). The resistance value fluctuation rate was calculated and found to be + 8.4% (= (67.2Ω-62.0Ω) /62.0Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
フィラメント状ニッケル微粒子の添加量を30.95gに代え、カーボンナノファイバーの添加量を1.987gに代え、TTCA-3Na2.41gをTTCA0.0849gに代え、硼酸の添加量を0.8152gに代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、フィラメント状ニッケル微粒子が34.0体積%を占め、カーボンナノファイバーが9.7体積%を占め、TTCAが0.5体積%を占め、硼酸が2.5体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCAおよび硼酸の添加量が計算されている(表2参照)。
The addition amount of filamentary nickel fine particles was changed to 30.95 g, the addition amount of carbon nanofibers was changed to 1.987 g, 2.41 g of TTCA-3Na was changed to 0.0849 g of TTCA, and the addition amount of boric acid was changed to 0.8152 g. Except for the above, a resistance exothermic seamless tubular product was produced in the same manner as in Example 17, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed. In this example, the filamentous nickel fine particles account for 34.0% by volume, the carbon nanofibers account for 9.7% by volume, and the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of filamentary nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は17.1Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は17.2Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+0.7%(=(17.2Ω-17.1Ω)/17.1Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 17.1Ω (see Table 2). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 17.2Ω (see Table 2). When the resistance value fluctuation rate was calculated, the value was + 0.7% (= (17.2Ω−17.1Ω) /17.1Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、鱗片状ニッケル微粒子が26.4体積%を占め、カーボンナノファイバーが13.2体積%を占め、TTCA-3Naが2.0体積%を占め、硼酸が10.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよび硼酸の添加量が計算されている(表2参照)。
A resistance exothermic seamless tubular product was prepared in the same manner as in Example 17 except that the filamentary nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (NOCAMET HCA-1). The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles occupy 26.4% by volume and the carbon nanofibers occupy 13.2% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amount of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid is calculated so that 3Na occupies 2.0% by volume and boric acid occupies 10.0% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は24.2Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は26.2Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+8.3%(=(26.2Ω-24.2Ω)/24.2Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 24.2Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 26.2Ω (see Table 2). The resistance value fluctuation rate was calculated and found to be + 8.3% (= (26.2Ω−24.2Ω) /24.2Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
NMPの添加量を6.30gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、TTCA-3Naの添加量を0.550gに代え、硼酸の添加量を0.8152gに代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、鱗片状ニッケル微粒子が29.1体積%を占め、カーボンナノファイバーが14.6体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.5体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよび硼酸の添加量が計算されている(表2参照)。
The amount of NMP added was changed to 6.30 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 0.550 g, A resistance exothermic seamless tubular product was prepared in the same manner as in Example 17 except that the amount added was changed to 0.8152 g, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode was deteriorated. Was observed. In this example, the scale-like nickel fine particles occupy 29.1% by volume and the carbon nanofibers occupy 14.6% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and boric acid are calculated so that 3Na occupies 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は24.6Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は26.7Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+8.7%(=(26.7Ω-24.6Ω)/24.6Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 24.6Ω (see Table 2). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 26.7Ω (see Table 2). When the resistance value fluctuation rate was calculated, the value was + 8.7% (= (26.7Ω-24.6Ω) /24.6Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
NMPの添加量を6.30gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)22.11gに代え、カーボンナノファイバーの添加量を3.974gに代え、TTCA-3Na2.41gをTTCA0.0894gに代え、硼酸の添加量を0.8152gに代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、鱗片状ニッケル微粒子が24.3体積%を占め、カーボンナノファイバーが19.4体積%を占め、TTCAが0.5体積%を占め、硼酸が2.5体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCAおよび硼酸の添加量が計算されている(表2参照)。
The amount of NMP added was changed to 6.30 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 22.11 g of scale-like nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofibers added was changed to 3.11 g. A resistance exothermic seamless tubular product was prepared in the same manner as in Example 17 except that 2.41 g of TTCA-3Na was replaced by 0.0894 g of TTCA and 984% of boric acid was replaced by 0.8152 g instead of 974 g. Similarly, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 24.3% by volume, the carbon nanofibers account for 19.4% by volume, and the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of the scaly nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は48.1Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は54.9Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+14.1%(=(54.9Ω-48.1Ω)/48.1Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 48.1Ω (see Table 2). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 54.9Ω (see Table 2). When the resistance value fluctuation rate was calculated, it was + 14.1% (= (54.9Ω-48.1Ω) /48.1Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
NMPの添加量を6.30gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)30.95gに代え、カーボンナノファイバーの添加量を1.987gに代え、TTCA-3Na2.41gをTTCA0.0849gに代え、硼酸の添加量を0.8152gに代えた以外は、実施例17と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Pの固形分に対して、鱗片状ニッケル微粒子が34.0体積%を占め、カーボンナノファイバーが9.7体積%を占め、TTCAが0.5体積%を占め、硼酸が2.5体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCAおよび硼酸の添加量が計算されている(表2参照)。
The amount of NMP added was changed to 6.30 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 30.95 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofiber added was 1. Instead of 987 g, 2.41 g of TTCA-3Na was replaced with 0.0849 g of TTCA, and the amount of boric acid was changed to 0.8152 g, and a resistance exothermic seamless tubular product was produced as in Example 11. Similarly, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles occupy 34.0% by volume, the carbon nanofibers occupy 9.7% by volume, and the TTCA is based on the solid content of the conductive fine particle-containing polyimide precursor solution P. The addition amounts of the scaly nickel fine particles, carbon nanofibers, TTCA and boric acid are calculated so as to occupy 0.5% by volume and boric acid occupies 2.5% by volume (see Table 2).
そして、この抵抗発熱シームレス管状物の初期抵抗値は13.5Ωであった(表2参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は14.0Ωであった(表2参照)。そして、抵抗値変動率を算出したところ、その値は+3.7%(=(14.0Ω-13.5Ω)/13.5Ω×100)であった(表2参照)。また、この抵抗発熱シームレス管状物では、電極劣化が観察された(表2参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 13.5Ω (see Table 2). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 14.0Ω (see Table 2). The resistance value fluctuation rate was calculated and found to be + 3.7% (= (14.0Ω-13.5Ω) /13.5Ω×100) (see Table 2). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 2).
(1)導電性微粒子含有ポリイミド前駆体溶液Qの調製
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)35g、NMP2.18g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)16.81g、TTCA0.0520g、硼酸0.2000gおよびリンモリブデン酸(以下「PMoA」と略する。)(ナカライテスク製)0.195gを混合し、導電性微粒子含有ポリイミド前駆体溶液Qを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Qの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA、硼酸およびPMoAの添加量が計算されている(表3参照)。 (1) Preparation of conductive fine particle-containing polyimide precursor solution Q 35 g of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), 2.18 g of NMP, 16.81 g of filamentous nickel fine particles (TYPE525 made by NOVAMET), 0.0520 g of TTCA, 0.2000 g of boric acid and 0.195 g of phosphomolybdic acid (hereinafter abbreviated as “PMoA”) (manufactured by Nacalai Tesque) were mixed to prepare a conductive fine particle-containing polyimide precursor solution Q. At this time, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution Q, the filamentous nickel fine particles occupy 30.0% by volume, TTCA accounts for 0.5% by volume, and boric acid is 1.0% by volume. %, And the addition amount of filamentary nickel fine particles, TTCA, boric acid and PMoA is calculated so that PMoA accounts for 1.0% by volume (see Table 3).
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)35g、NMP2.18g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)16.81g、TTCA0.0520g、硼酸0.2000gおよびリンモリブデン酸(以下「PMoA」と略する。)(ナカライテスク製)0.195gを混合し、導電性微粒子含有ポリイミド前駆体溶液Qを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Qの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA、硼酸およびPMoAの添加量が計算されている(表3参照)。 (1) Preparation of conductive fine particle-containing polyimide precursor solution Q 35 g of polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass), 2.18 g of NMP, 16.81 g of filamentous nickel fine particles (TYPE525 made by NOVAMET), 0.0520 g of TTCA, 0.2000 g of boric acid and 0.195 g of phosphomolybdic acid (hereinafter abbreviated as “PMoA”) (manufactured by Nacalai Tesque) were mixed to prepare a conductive fine particle-containing polyimide precursor solution Q. At this time, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution Q, the filamentous nickel fine particles occupy 30.0% by volume, TTCA accounts for 0.5% by volume, and boric acid is 1.0% by volume. %, And the addition amount of filamentary nickel fine particles, TTCA, boric acid and PMoA is calculated so that PMoA accounts for 1.0% by volume (see Table 3).
(2)銀粉含有ポリイミド前駆体溶液Oの調製
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
(3)抵抗発熱シームレス管状物の作製
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
次に、基層の表面に導電性微粒子含有ポリイミド前駆体溶液Qを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Dを作製した。円筒金型からこのポリイミド管状物Dを抜き取って、厚み、内径および長さを測定したところ、厚みは70μmであり、内径は18mmであり、長さは265mmであった。
Next, after uniformly applying the conductive fine particle-containing polyimide precursor solution Q to the surface of the base layer, the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes. The polyimide tubular product D was prepared by sequentially heating under the above conditions, removing the solvent and imidizing. When this polyimide tubular product D was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 μm, the inner diameter was 18 mm, and the length was 265 mm.
次に、ポリイミド管状物Dの両端25mmの表面に、銀粉含有ポリイミド前駆体溶液Oを均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Dの両端に厚み20μmの電極を形成した。
Next, after uniformly applying the silver powder-containing polyimide precursor solution O to the surfaces of both ends 25 mm of the polyimide tubular product D, the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 μm on both ends of the polyimide tubular product D.
次いで、「電極が形成されていないポリイミド管状物Dの中央部分の外表面」および「電極の中央部分側の端から5mmの部分の外表面」に、ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行って絶縁層を形成した。その結果、厚み120μm、内径18mm、長さ265mmの抵抗発熱シームレス管状物を得た。なお、この抵抗発熱シームレス管状物の電極間距離は215mmであった。
Next, the polyamic acid solution (composition BPDA / PPD, solid content) was added to the “outer surface of the central portion of the polyimide tubular article D on which no electrode was formed” and “the outer surface of the portion 5 mm from the end on the side of the central portion of the electrode”. 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes. The insulating layer was formed by heating to remove the solvent and imidization treatment. As a result, a resistance exothermic seamless tubular product having a thickness of 120 μm, an inner diameter of 18 mm, and a length of 265 mm was obtained. In addition, the distance between electrodes of this resistance heat generation seamless tubular thing was 215 mm.
(4)初期抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は21.3Ωであった(表3参照)。 (4) Measurement of initial resistance value In the same manner as in Example 11, the initial resistance value of the resistance exothermic seamless tubular product was measured and found to be 21.3Ω (see Table 3).
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は21.3Ωであった(表3参照)。 (4) Measurement of initial resistance value In the same manner as in Example 11, the initial resistance value of the resistance exothermic seamless tubular product was measured and found to be 21.3Ω (see Table 3).
(5)300℃×100時間暴露後の抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その抵抗値は19.1Ωであった(表3参照)。 (5) Measurement of resistance value after exposure to 300 ° C. × 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was measured, the resistance value was measured. Was 19.1Ω (see Table 3).
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その抵抗値は19.1Ωであった(表3参照)。 (5) Measurement of resistance value after exposure to 300 ° C. × 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was measured, the resistance value was measured. Was 19.1Ω (see Table 3).
(6)抵抗値変動率の算出
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は-10.3%(=(19.1Ω-21.3Ω)/21.3Ω×100)であった(表3参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, the resistance value fluctuation rate of the resistance heating seamless tubular product was calculated, and the value was -10.3% (= (19.1Ω-21. 3Ω) /21.3Ω×100) (see Table 3).
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は-10.3%(=(19.1Ω-21.3Ω)/21.3Ω×100)であった(表3参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, the resistance value fluctuation rate of the resistance heating seamless tubular product was calculated, and the value was -10.3% (= (19.1Ω-21. 3Ω) /21.3Ω×100) (see Table 3).
(7)電極劣化の観察
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, no electrode deterioration was observed in this resistance heating seamless tubular material (see Table 3).
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, no electrode deterioration was observed in this resistance heating seamless tubular material (see Table 3).
PMoAをリンタングステン酸(以下「PWA」と略する。)に代えた以外は、実施例25と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Qの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占め、PWAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA、硼酸およびPWAの添加量が計算されている(表3参照)。
A resistance exothermic seamless tubular product was prepared in the same manner as in Example 25 except that PMoA was replaced with phosphotungstic acid (hereinafter abbreviated as “PWA”). The resistance characteristics of the electrode were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, the TTCA occupies 0.5% by volume, and the boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution Q. The addition amounts of the filamentous nickel fine particles, TTCA, boric acid and PWA are calculated so as to occupy 0% by volume and PWA account for 1.0% by volume (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は17.1Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は17.9Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+4.8%(=(17.9Ω-17.1Ω)/17.1Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 17.1Ω (see Table 3). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 17.9Ω (see Table 3). When the resistance value fluctuation rate was calculated, the value was + 4.8% (= (17.9Ω−17.1Ω) /17.1Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
PMoAをケイタングステン酸(以下「SiWA」と略する。)に代えた以外は、実施例25と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Qの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占め、SiWAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA、硼酸およびSiWAの添加量が計算されている(表3参照)。
A resistance exothermic seamless tubular product was prepared in the same manner as in Example 25 except that PMoA was replaced with silicotungstic acid (hereinafter abbreviated as “SiWA”). The resistance characteristics of the electrode were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, the TTCA occupies 0.5% by volume, and the boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution Q. The addition amounts of filamentary nickel fine particles, TTCA, boric acid and SiWA are calculated so that 0% by volume and SiWA account for 1.0% by volume (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は19.0Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は19.5Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+2.7%(=(19.5Ω-19.0Ω)/19.0Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 19.0Ω (see Table 3). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 19.5Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be + 2.7% (= (19.5Ω-19.0Ω) /19.0Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
導電性微粒子含有ポリイミド前駆体溶液Qの調製においてポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代え、NMPの添加量を1.09gに代え、TTCAの添加量を0.0470gに代え、硼酸の添加量を0.1820gに代え、PMoAの添加量を0.177gに代えた以外は、実施例25と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Qの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占め、TTCAが0.5体積%を占め、硼酸が1.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA、硼酸およびPMoAの添加量が計算されている(表3参照)。
In the preparation of the conductive fine particle-containing polyimide precursor solution Q, the polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) is replaced with a polyamic acid solution (composition PMDA / ODA, solid content 15.4% by mass), Example 25 except that the addition amount of NMP was changed to 1.09 g, the addition amount of TTCA was changed to 0.0470 g, the addition amount of boric acid was changed to 0.1820 g, and the addition amount of PMoA was changed to 0.177 g. In the same manner as described above, a resistance exothermic seamless tubular product was produced. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular product were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 30.0% by volume, the TTCA occupies 0.5% by volume, and the boric acid is 1.% of the solid content of the conductive fine particle-containing polyimide precursor solution Q. The addition amounts of filamentary nickel fine particles, TTCA, boric acid and PMoA are calculated so that 0% by volume and PMoA account for 1.0% by volume (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は17.9Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は18.5Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+3.4%(=(18.5Ω-17.9Ω)/17.9Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 17.9Ω (see Table 3). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 18.5Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was + 3.4% (= (18.5Ω-17.9Ω) /17.9Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
(1)導電性微粒子含有ポリイミド前駆体溶液Rの調製
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)45g、NMP6.59g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53g、カーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA0.549g、硼酸0.6560gおよびPMoA0.319gを混合し、導電性微粒子含有ポリイミド前駆体溶液Rを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、フィラメント状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。 (1) Preparation of conductive fine particle-containing polyimide precursor solution R Polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 45 g, NMP 6.59 g, filamentous nickel fine particles (TYPE525 from NOVAMET) 26.53 g, Carbon nanofibers (VGCF-H, manufactured by Showa Denko KK) 2.981 g, TTCA 0.549 g, boric acid 0.6560 g, and PMoA 0.319 g were mixed to prepare conductive fine particle-containing polyimide precursor solution R. At this time, the filamentous nickel fine particles occupy 29.0% by volume, the carbon nanofibers occupy 14.5% by volume, and TTCA-3Na is based on the solid content of the conductive fine particle-containing polyimide precursor solution R. The addition amount of filamentary nickel fine particles, TTCA-3Na, boric acid and PMoA is calculated so that 0.5 volume%, boric acid accounts for 2.0 volume%, and PMoA accounts for 1.0 volume%. (See Table 3).
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)45g、NMP6.59g、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53g、カーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA0.549g、硼酸0.6560gおよびPMoA0.319gを混合し、導電性微粒子含有ポリイミド前駆体溶液Rを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、フィラメント状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。 (1) Preparation of conductive fine particle-containing polyimide precursor solution R Polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass) 45 g, NMP 6.59 g, filamentous nickel fine particles (TYPE525 from NOVAMET) 26.53 g, Carbon nanofibers (VGCF-H, manufactured by Showa Denko KK) 2.981 g, TTCA 0.549 g, boric acid 0.6560 g, and PMoA 0.319 g were mixed to prepare conductive fine particle-containing polyimide precursor solution R. At this time, the filamentous nickel fine particles occupy 29.0% by volume, the carbon nanofibers occupy 14.5% by volume, and TTCA-3Na is based on the solid content of the conductive fine particle-containing polyimide precursor solution R. The addition amount of filamentary nickel fine particles, TTCA-3Na, boric acid and PMoA is calculated so that 0.5 volume%, boric acid accounts for 2.0 volume%, and PMoA accounts for 1.0 volume%. (See Table 3).
(2)銀粉含有ポリイミド前駆体溶液Oの調製
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
(3)抵抗発熱シームレス管状物の作製
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
次に、基層の表面に導電性微粒子含有ポリイミド前駆体溶液Rを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Eを作製した。円筒金型からこのポリイミド管状物Eを抜き取って、厚み、内径および長さを測定したところ、厚みは70μmであり、内径は18mmであり、長さは265mmであった。
Next, after uniformly applying the conductive fine particle-containing polyimide precursor solution R to the surface of the base layer, the coating film is 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes. The polyimide tubular product E was produced by sequentially heating under the above conditions to remove the solvent and imidize. The polyimide tubular product E was extracted from the cylindrical mold and the thickness, inner diameter and length were measured. The thickness was 70 μm, the inner diameter was 18 mm, and the length was 265 mm.
次に、ポリイミド管状物Eの両端25mmの表面に、銀粉含有ポリイミド前駆体溶液Oを均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Eの両端に厚み20μmの電極を形成した。
Next, after uniformly applying the silver powder-containing polyimide precursor solution O to the surfaces of both ends 25 mm of the polyimide tubular product E, the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to perform solvent removal and imidization treatment to form electrodes having a thickness of 20 μm on both ends of the polyimide tubular product E.
次いで、「電極が形成されていないポリイミド管状物Eの中央部分の外表面」および「電極の中央部分側の端から5mmの部分の外表面」に、ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行って絶縁層を形成した。その結果、厚み120μm、内径18mm、長さ265mmの抵抗発熱シームレス管状物を得た。なお、この抵抗発熱シームレス管状物の電極間距離は215mmであった。
Next, the polyamic acid solution (composition BPDA / PPD, solid content) was added to the “outer surface of the central portion of the polyimide tubular body E on which no electrode was formed” and “the outer surface of the portion 5 mm from the end on the central portion side of the electrode” 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes. The insulating layer was formed by heating to remove the solvent and imidization treatment. As a result, a resistance exothermic seamless tubular product having a thickness of 120 μm, an inner diameter of 18 mm, and a length of 265 mm was obtained. In addition, the distance between electrodes of this resistance heat generation seamless tubular thing was 215 mm.
(4)初期抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は31.3Ωであった(表3参照)。 (4) Measurement of initial resistance value In the same manner as in Example 11, the initial resistance value of the resistance exothermic seamless tubular product was measured, and the initial resistance value was 31.3Ω (see Table 3).
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は31.3Ωであった(表3参照)。 (4) Measurement of initial resistance value In the same manner as in Example 11, the initial resistance value of the resistance exothermic seamless tubular product was measured, and the initial resistance value was 31.3Ω (see Table 3).
(5)300℃×100時間暴露後の抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その値は29.5Ωであった(表3参照)。 (5) Measurement of resistance value after exposure at 300 ° C. for 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular product was left in a 300 ° C. environment for 100 hours was measured, the value was 29.5Ω (see Table 3).
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その値は29.5Ωであった(表3参照)。 (5) Measurement of resistance value after exposure at 300 ° C. for 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular product was left in a 300 ° C. environment for 100 hours was measured, the value was 29.5Ω (see Table 3).
(6)抵抗値変動率の算出
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は-5.7%(=(29.5Ω-31.3Ω)/31.3Ω×100)であった(表3参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, when the resistance value fluctuation rate of this resistance heating seamless tubular product was calculated, the value was -5.7% (= (29.5Ω-31.31). 3Ω) /31.3Ω×100) (see Table 3).
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は-5.7%(=(29.5Ω-31.3Ω)/31.3Ω×100)であった(表3参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, when the resistance value fluctuation rate of this resistance heating seamless tubular product was calculated, the value was -5.7% (= (29.5Ω-31.31). 3Ω) /31.3Ω×100) (see Table 3).
(7)電極劣化の観察
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, no electrode deterioration was observed in this resistance heating seamless tubular material (see Table 3).
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, no electrode deterioration was observed in this resistance heating seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、フィラメント状ニッケル微粒子が27.9体積%を占め、カーボンナノファイバーが14.0体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
Implementation was performed except that the addition amount of NMP was changed to 7.45 g, the addition amount of TTCA-3Na was changed to 1.14 g, the addition amount of boric acid was changed to 1.700 g, and the addition amount of PMoA was changed to 0.331 g. A resistance exothermic seamless tubular product was prepared in the same manner as in Example 29, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 27.9% by volume, the carbon nanofibers occupy 14.0% by volume, and TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は51.1Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は64.6Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+26.5%(=(64.6Ω-51.1Ω)/51.1Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 51.1Ω (see Table 3). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 64.6Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was + 26.5% (= (64.6Ω-51.1Ω) /51.1Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代え、さらに抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、フィラメント状ニッケル微粒子が27.9体積%を占め、カーボンナノファイバーが14.0体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 7.45 g, the amount of TTCA-3Na added was changed to 1.14 g, the amount of boric acid added was changed to 1.700 g, the amount of PMoA added was changed to 0.331 g, and resistance exothermic seamless A resistance exothermic seamless tubular product was produced in the same manner as in Example 29 except that the polyamic acid solution for forming the insulating layer was replaced with a polyamic acid solution (composition PMDA / ODA, solid content: 15.4% by mass) in the production of the tubular product. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the filamentous nickel fine particles occupy 27.9% by volume, the carbon nanofibers occupy 14.0% by volume, and TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は65.7Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は65.7Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+0.0%(=(65.7Ω-65.7Ω)/65.7Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 65.7Ω (see Table 3). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 65.7Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was + 0.0% (= (65.7Ω−65.7Ω) /65.7Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、フィラメント状ニッケル微粒子の添加量を19.90gに代え、カーボンナノファイバーの添加量を4.471gに代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、フィラメント状ニッケル微粒子が20.9体積%を占め、カーボンナノファイバーが20.9体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 7.45 g, the amount of filamentary nickel fine particles added was changed to 19.90 g, the amount of carbon nanofiber added was changed to 4.471 g, and the amount of TTCA-3Na added was changed to 1.14 g. The addition amount of boric acid is changed to 1.700 g, the addition amount of PMoA is changed to 0.331 g, and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA, A resistance exothermic seamless tubular product was prepared in the same manner as in Example 29 except that the solid content was changed to 15.4% by mass, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11. Electrode degradation was observed. In this example, the filamentous nickel fine particles occupy 20.9% by volume, the carbon nanofibers occupy 20.9% by volume, and TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は202.9Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は248.1Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+22.3%(=(248.1Ω-202.9Ω)/202.9Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 202.9Ω (see Table 3). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 248.1Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was + 22.3% (= (248.1Ω−202.9Ω) /202.9Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が27.9体積%を占め、カーボンナノファイバーが14.0体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, A resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the addition amount was changed to 1.700 g and the addition amount of PMoA was changed to 0.331 g. The resistance characteristics of the tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 27.9% by volume, the carbon nanofibers account for 14.0% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は27.4Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は28.9Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+5.5%(=(28.9Ω-27.4Ω)/27.4Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 27.4Ω (see Table 3). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 28.9Ω (see Table 3). When the resistance value fluctuation rate was calculated, the value was + 5.5% (= (28.9Ω-27.4Ω) /27.4Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代え、さらに、得られた抵抗発熱シームレス管状物を400℃温度下で2時間アニール処理した以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が27.9体積%を占め、カーボンナノファイバーが14.0体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, The addition amount was changed to 1.700 g, the addition amount of PMoA was changed to 0.331 g, and the obtained resistance exothermic seamless tubular material was annealed at 400 ° C. for 2 hours, as in Example 29. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 27.9% by volume, the carbon nanofibers account for 14.0% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は27.0Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は27.4Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+1.5%(=(27.4Ω-27.0Ω)/27.0Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 27.0Ω (see Table 3). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 27.4Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be + 1.5% (= (27.4Ω-27.0Ω) /27.0Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が27.9体積%を占め、カーボンナノファイバーが14.0体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, The addition amount is changed to 1.700 g, the addition amount of PMoA is changed to 0.331 g, and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA, solids 15 .4 mass%) except that the resistance exothermic seamless tubular material was prepared in the same manner as in Example 29, and the resistance characteristics of the resistance exothermic seamless tubular material were measured in the same manner as in Example 11 and the electrode was deteriorated. Observed. In this example, the scale-like nickel fine particles account for 27.9% by volume, the carbon nanofibers account for 14.0% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は22.5Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は21.4Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-4.9%(=(21.4Ω-22.5Ω)/22.5Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 22.5Ω (see Table 3). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 21.4Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be -4.9% (= (21.4Ω-22.5Ω) /22.5Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を7.45gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、TTCA-3Naの添加量を1.14gに代え、硼酸の添加量を1.700gに代え、PMoAの添加量を0.331gに代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代え、得られた抵抗発熱シームレス管状物を400℃温度下で2時間アニール処理した以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が27.9体積%を占め、カーボンナノファイバーが14.0体積%を占め、TTCA-3Naが1.0体積%を占め、硼酸が5.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 7.45 g, the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to scale-like nickel fine particles (NOCAMET HCA-1), the amount of TTCA-3Na was changed to 1.14 g, The addition amount is changed to 1.700 g, the addition amount of PMoA is changed to 0.331 g, and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA, solids 15 4 mass%), a resistance exothermic seamless tubular product was produced in the same manner as in Example 29 except that the obtained resistance exothermic seamless tubular product was annealed at 400 ° C. for 2 hours. Similarly, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 27.9% by volume, the carbon nanofibers account for 14.0% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 1.0% by volume, boric acid occupies 5.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は24.0Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は22.5Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-6.3%(=(22.5Ω-24.0Ω)/24.0Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 24.0Ω (see Table 3). In addition, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 22.5Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was −6.3% (= (22.5Ω−24.0Ω) /24.0Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
A resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (NOCAMET HCA-1). The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は22.9Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は20.1Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-12.4%(=(20.1Ω-22.9Ω)/22.9Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 22.9Ω (see Table 3). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 20.1Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be −12.4% (= (20.1Ω−22.9Ω) /22.9Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The filamentous nickel fine particles (TYPE 525 made by NOVAMET) are replaced with scaly nickel fine particles (HCA-1 made by NOVAMET), and the polyamic acid solution for forming an insulating layer is made into a polyamic acid solution (composition PMDA / ODA) in the production of a resistance exothermic seamless tubular product. , Except that the solid content was changed to 15.4% by mass), a resistance exothermic seamless tubular product was prepared in the same manner as in Example 29, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11. In addition, electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は22.2Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は18.6Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-16.3%(=(18.6Ω-22.2Ω)/22.2Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 22.2Ω (see Table 3). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 18.6Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be -16.3% (= (18.6Ω-22.2Ω) /22.2Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を9.96gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)17.68gに代え、カーボンナノファイバーの添加量を4.968gに代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が19.3体積%を占め、カーボンナノファイバーが24.1体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 9.96 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 17.68 g of scaly nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofibers added was changed to 4.68 g. A resistance exothermic seamless tubular product was produced in the same manner as in Example 29 except that the amount was changed to 968 g, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed. In this example, scale-like nickel fine particles occupy 19.3% by volume, carbon nanofibers occupy 24.1% by volume, and TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は153.2Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は172.2Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+12.4%(=(172.2Ω-153.2Ω)/153.2Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 153.2Ω (see Table 3). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 172.2Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be + 12.4% (= (172.2Ω-153.2Ω) /153.2Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
NMPの添加量を9.96gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)17.68gに代え、カーボンナノファイバーの添加量を4.968gに代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が19.3体積%を占め、カーボンナノファイバーが24.1体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPMoAの添加量が計算されている(表3参照)。
The amount of NMP added was changed to 9.96 g, 26.53 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 17.68 g of scaly nickel fine particles (HCA-1 made by NOVAMET), and the amount of carbon nanofibers added was changed to 4.68 g. Instead of 968 g, the same procedure as in Example 29 was performed except that the polyamic acid solution for forming the insulating layer was replaced with a polyamic acid solution (composition PMDA / ODA, solid content: 15.4% by mass) in the production of the resistance exothermic seamless tubular product. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed. In this example, scale-like nickel fine particles occupy 19.3% by volume, carbon nanofibers occupy 24.1% by volume, and TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PMoA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PMoA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は141.3Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は140.0Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-0.9%(=(140.0Ω-141.3Ω)/141.3Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 141.3Ω (see Table 3). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 140.0Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was −0.9% (= (140.0Ω−141.3Ω) /141.3Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)26.53gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)36.47gに代え、NMPの添加量を9.61gに代え、カーボンナノファイバーの添加量を4.098gに代え、TTCA-3Naの添加量を0.755gに代え、硼酸の添加量を0.9010gに代え、PMoAの添加量を0.439gに代え、さらに、導電性微粒子含有ポリイミド前駆体溶液Rに丸み状アルミナ(昭和電工株式会社製AS-50)8.11gを追加した以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PMoAが1.0体積%を占め、アルミナが14.5体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸、PMoAおよびアルミナの添加量が計算されている(表3参照)。
26.53 g of filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET) are replaced with 36.47 g of scaly nickel fine particles (HCA-1 manufactured by NOVAMET), NMP is added in an amount of 9.61 g, and carbon nanofibers are added in an amount of 4. In place of 098 g, the addition amount of TTCA-3Na is changed to 0.755 g, the addition amount of boric acid is changed to 0.9010 g, the addition amount of PMoA is changed to 0.439 g, and the conductive fine particle-containing polyimide precursor solution R A resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that 8.11 g of round alumina (AS-50, Showa Denko Co., Ltd.) was added. The resistance characteristics of the tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Scalar nickel fine particles, carbon nanofibers, so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume, PMoA occupies 1.0% by volume, and alumina occupies 14.5% by volume. , TTCA-3Na, boric acid, PMoA and alumina addition amounts have been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は15.3Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は14.9Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-2.4%(=(14.9Ω-15.3Ω)/15.3Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 15.3Ω (see Table 3). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 14.9Ω (see Table 3). When the resistance value fluctuation rate was calculated, the value was −2.4% (= (14.9Ω−15.3Ω) /15.3Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、PMoAをSiWAに代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、SiWAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびSiWAの添加量が計算されている(表3参照)。
A resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (NOCAMET HCA-1) and PMoA was replaced by SiWA. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and SiWA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and SiWA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は27.6Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は30.2Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+9.4%(=(30.2Ω-27.6Ω)/27.6Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 27.6Ω (see Table 3). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 30.2Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be + 9.4% (= (30.2Ω-27.6Ω) /27.6Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、PMoAをSiWAに代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、SiWAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびSiWAの添加量が計算されている(表3参照)。
Filamentary nickel fine particles (NOVAMET TYPE 525) are replaced with scaly nickel fine particles (NOVAMET HCA-1), PMoA is replaced with SiWA, and a polyamic acid solution for forming an insulating layer is used as a polyamic acid in the production of a resistance exothermic seamless tubular product. A resistance exothermic seamless tubular product was prepared in the same manner as in Example 29 except that the solution (composition PMDA / ODA, solid content 15.4% by mass) was used. The resistance characteristics of the electrode were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and SiWA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and SiWA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は21.5Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は22.4Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+4.3%(=(22.4Ω-21.5Ω)/21.5Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 21.5Ω (see Table 3). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 22.4Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be + 4.3% (= (22.4Ω-21.5Ω) /21.5Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、PMoAをPWAに代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PWAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPWAの添加量が計算されている(表3参照)。
A resistance exothermic seamless tubular material was prepared in the same manner as in Example 29 except that the filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with scaly nickel fine particles (HCA-1 made by NOVAMET) and PMoA was changed to PWA. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PWA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PWA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は20.7Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は23.9Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は+15.5%(=(23.9Ω-20.7Ω)/20.7Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 20.7Ω (see Table 3). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 23.9Ω (see Table 3). The resistance value fluctuation rate was calculated and found to be + 15.5% (= (23.9Ω-20.7Ω) /20.7Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
フィラメント状ニッケル微粒子(NOVAMET製TYPE525)を鱗片状ニッケル微粒子(NOVAMET製HCA-1)に代え、PMoAをPWAに代え、さらに、抵抗発熱シームレス管状物の作製において絶縁層形成用ポリアミック酸溶液をポリアミック酸溶液(組成PMDA/ODA,固形分15.4質量%)に代えた以外は、実施例29と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本実施例では、導電性微粒子含有ポリイミド前駆体溶液Rの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが14.5体積%を占め、TTCA-3Naが0.5体積%を占め、硼酸が2.0体積%を占め、PWAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Na、硼酸およびPWAの添加量が計算されている(表3参照)。
Filamentous nickel fine particles (TYPE 525 made by NOVAMET) are replaced with scaly nickel fine particles (NOVAMET HCA-1), PMoA is replaced by PWA, and a polyamic acid solution for forming an insulating layer in the production of a resistance exothermic seamless tubular material is polyamic acid. A resistance exothermic seamless tubular product was prepared in the same manner as in Example 29 except that the solution (composition PMDA / ODA, solid content 15.4% by mass) was used. The resistance characteristics of the electrode were measured, and electrode deterioration was observed. In this example, the scale-like nickel fine particles account for 29.0% by volume, the carbon nanofibers account for 14.5% by volume, and the TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution R. Addition of flaky nickel fine particles, carbon nanofibers, TTCA-3Na, boric acid and PWA so that 3Na occupies 0.5% by volume, boric acid occupies 2.0% by volume and PWA occupies 1.0% by volume The quantity has been calculated (see Table 3).
そして、この抵抗発熱シームレス管状物の初期抵抗値は21.5Ωであった(表3参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は20.4Ωであった(表3参照)。そして、抵抗値変動率を算出したところ、その値は-5.1%(=(20.4Ω-21.5Ω)/21.5Ω×100)であった(表3参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表3参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 21.5Ω (see Table 3). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 20.4Ω (see Table 3). When the resistance value fluctuation rate was calculated, it was −5.1% (= (20.4Ω−21.5Ω) /21.5Ω×100) (see Table 3). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 3).
(比較例3)
(1)導電性微粒子含有ポリイミド前駆体溶液Sの調製
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)45g、NMP1.40gおよびフィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを混合し、導電性微粒子含有ポリイミド前駆体溶液Sを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占めるように、フィラメント状ニッケル微粒子の添加量が計算されている(表4参照)。 (Comparative Example 3)
(1) Preparation of Conductive Fine Particle-Containing Polyimide Precursor Solution S 45 g of polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass), 1.40 g of NMP, and 20.84 g of filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET) The mixture was mixed to prepare a conductive fine particle-containing polyimide precursor solution S. At this time, the addition amount of the filamentous nickel fine particles is calculated such that the filamentous nickel fine particles occupy 30.0% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S (Table 4).
(1)導電性微粒子含有ポリイミド前駆体溶液Sの調製
ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)45g、NMP1.40gおよびフィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを混合し、導電性微粒子含有ポリイミド前駆体溶液Sを調製した。なお、このとき、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が30.0体積%を占めるように、フィラメント状ニッケル微粒子の添加量が計算されている(表4参照)。 (Comparative Example 3)
(1) Preparation of Conductive Fine Particle-Containing Polyimide Precursor Solution S 45 g of polyamic acid solution (composition BPDA / PPD, solid content: 17.0% by mass), 1.40 g of NMP, and 20.84 g of filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET) The mixture was mixed to prepare a conductive fine particle-containing polyimide precursor solution S. At this time, the addition amount of the filamentous nickel fine particles is calculated such that the filamentous nickel fine particles occupy 30.0% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S (Table 4).
(2)銀粉含有ポリイミド前駆体溶液Oの調製
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
実施例11と同様にして銀粉含有ポリイミド前駆体溶液Oを調製した。 (2) Preparation of silver powder-containing polyimide precursor solution O A silver powder-containing polyimide precursor solution O was prepared in the same manner as in Example 11.
(3)抵抗発熱シームレス管状物の作製
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
先ず、表面が離型処理された円筒金型の表面にポリアミック酸溶液(組成BPDA/PPD、固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で10分間、120℃で20分間加熱し、厚みが50μmの管状の基層を得た。 (3) Preparation of resistance exothermic seamless tubular material First, a polyamic acid solution (composition BPDA / PPD, solid content 17.0% by mass) was uniformly applied to the surface of a cylindrical mold whose surface was release-treated, The coating film was heated at 100 ° C. for 10 minutes and at 120 ° C. for 20 minutes to obtain a tubular base layer having a thickness of 50 μm.
次に、基層の表面に導電性微粒子含有ポリイミド前駆体溶液Sを均一に塗布した後、その塗膜を100℃で10分間、150℃で20分間、250℃で30分間、400℃で15分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Fを作製した。円筒金型からこのポリイミド管状物Fを抜き取って、厚み、内径および長さを測定したところ、厚みは70μmであり、内径は18mmであり、長さは265mmであった。
Next, after uniformly applying the conductive fine particle-containing polyimide precursor solution S to the surface of the base layer, the coating film was applied at 100 ° C. for 10 minutes, 150 ° C. for 20 minutes, 250 ° C. for 30 minutes, and 400 ° C. for 15 minutes. The polyimide tubular product F was produced by sequentially heating under the above conditions to remove the solvent and imidize. When this polyimide tubular product F was extracted from the cylindrical mold and the thickness, inner diameter and length were measured, the thickness was 70 μm, the inner diameter was 18 mm, and the length was 265 mm.
次に、ポリイミド管状物Fの両端25mmの表面に、銀粉含有ポリイミド前駆体溶液Oを均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行ってポリイミド管状物Fの両端に厚み20μmの電極を形成した。
Next, after uniformly applying the silver powder-containing polyimide precursor solution O to the surfaces of both ends 25 mm of the polyimide tubular product F, the coating film is 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, Heating was performed sequentially at 300 ° C. for 60 minutes and at 350 ° C. for 30 minutes to remove the solvent and imidization treatment to form electrodes having a thickness of 20 μm on both ends of the polyimide tubular product F.
次いで、「電極が形成されていないポリイミド管状物Fの中央部分の外表面」および「電極の中央部分側の端から5mmの部分の外表面」に、ポリアミック酸溶液(組成BPDA/PPD,固形分17.0質量%)を均一に塗布した後、その塗膜を100℃で30分間、150℃で60分間、200℃で60分間、300℃で60分間、350℃で30分間の条件で順に加熱して、溶媒の除去およびイミド化処理を行って絶縁層を形成した。その結果、厚み120μm、内径18mm、長さ265mmの抵抗発熱シームレス管状物を得た。なお、この抵抗発熱シームレス管状物の電極間距離は215mmであった。
Next, the polyamic acid solution (composition BPDA / PPD, solid content) is added to the “outer surface of the central portion of the polyimide tubular article F on which no electrode is formed” and “the outer surface of the portion 5 mm from the end of the central portion of the electrode” 17.0% by mass), and the coating was applied in order under the conditions of 100 ° C. for 30 minutes, 150 ° C. for 60 minutes, 200 ° C. for 60 minutes, 300 ° C. for 60 minutes, and 350 ° C. for 30 minutes. The insulating layer was formed by heating to remove the solvent and imidization treatment. As a result, a resistance exothermic seamless tubular product having a thickness of 120 μm, an inner diameter of 18 mm, and a length of 265 mm was obtained. In addition, the distance between electrodes of this resistance heat generation seamless tubular thing was 215 mm.
(4)初期抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は23.8Ωであった(表4参照)。 (4) Measurement of initial resistance value The initial resistance value of the resistance exothermic seamless tubular material was measured in the same manner as in Example 11. The initial resistance value was 23.8Ω (see Table 4).
実施例11と同様にして、抵抗発熱シームレス管状物の初期抵抗値を測定したところ、その初期抵抗値は23.8Ωであった(表4参照)。 (4) Measurement of initial resistance value The initial resistance value of the resistance exothermic seamless tubular material was measured in the same manner as in Example 11. The initial resistance value was 23.8Ω (see Table 4).
(5)300℃×100時間暴露後の抵抗値の測定
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その値は47.6Ωであった(表4参照)。 (5) Measurement of resistance value after exposure at 300 ° C. for 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular product was left in a 300 ° C. environment for 100 hours was measured, the value was 47.6Ω (see Table 4).
実施例11と同様にして、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値を測定したところ、その値は47.6Ωであった(表4参照)。 (5) Measurement of resistance value after exposure at 300 ° C. for 100 hours In the same manner as in Example 11, when the resistance value after the resistance exothermic seamless tubular product was left in a 300 ° C. environment for 100 hours was measured, the value was 47.6Ω (see Table 4).
(6)抵抗値変動率の算出
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は+100%(=(47.6Ω-23.8Ω)/23.8Ω×100)であった(表4参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, when the resistance value fluctuation rate of this resistance heating seamless tubular product was calculated, the value was + 100% (= (47.6Ω-23.8Ω) / 23.8Ω × 100) (see Table 4).
実施例11と同様にして、この抵抗発熱シームレス管状物の抵抗値変動率を算出したところ、その値は+100%(=(47.6Ω-23.8Ω)/23.8Ω×100)であった(表4参照)。 (6) Calculation of resistance value fluctuation rate In the same manner as in Example 11, when the resistance value fluctuation rate of this resistance heating seamless tubular product was calculated, the value was + 100% (= (47.6Ω-23.8Ω) / 23.8Ω × 100) (see Table 4).
(7)電極劣化の観察
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, electrode deterioration was observed in this resistance heating seamless tubular material (see Table 4).
実施例11と同様にして電極劣化を観察したところ、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。 (7) Observation of electrode deterioration When electrode deterioration was observed in the same manner as in Example 11, electrode deterioration was observed in this resistance heating seamless tubular material (see Table 4).
(比較例4)
NMPを添加せず、フィラメント状ニッケル微粒子の添加量を41.88gに代え、導電性微粒子含有ポリイミド前駆体溶液Sに硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が45.0体積%を占め、硼酸が2.8体積%を占めるように、フィラメント状ニッケル微粒子および硼酸の添加量が計算されている(表4参照)。 (Comparative Example 4)
Comparative Example 3 except that NMP was not added and the amount of filamentary nickel fine particles was changed to 41.88 g, and 0.9160 g of boric acid (manufactured by Nacalai Tesque) was added to the conductive fine particle-containing polyimide precursor solution S. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed. In this comparative example, the filamentous nickel fine particle accounts for 45.0% by volume and the boric acid accounts for 2.8% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of nickel fine particles and boric acid added are calculated (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子の添加量を41.88gに代え、導電性微粒子含有ポリイミド前駆体溶液Sに硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が45.0体積%を占め、硼酸が2.8体積%を占めるように、フィラメント状ニッケル微粒子および硼酸の添加量が計算されている(表4参照)。 (Comparative Example 4)
Comparative Example 3 except that NMP was not added and the amount of filamentary nickel fine particles was changed to 41.88 g, and 0.9160 g of boric acid (manufactured by Nacalai Tesque) was added to the conductive fine particle-containing polyimide precursor solution S. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the deterioration of the electrode was observed. In this comparative example, the filamentous nickel fine particle accounts for 45.0% by volume and the boric acid accounts for 2.8% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of nickel fine particles and boric acid added are calculated (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は25.5Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は89.3Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+250%(=(89.3Ω-25.5Ω)/25.5Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 25.5Ω (see Table 4). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 89.3Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 250% (= (89.3Ω−25.5Ω) /25.5Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例5)
NMPを添加せず、フィラメント状ニッケル微粒子の添加量を38.16gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)0.8370gおよび硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が41.0体積%を占め、カーボンナノファイバーが4.0体積%を占め、硼酸が2.8体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバーおよび硼酸の添加量が計算されている(表4参照)。 (Comparative Example 5)
Without adding NMP, the amount of filamentary nickel fine particles was changed to 38.16 g, and conductive fine particle-containing polyimide precursor solution S was added with carbon nanofiber (VGCF-H, Showa Denko KK) 0.8370 g and boric acid (Nacalai). Except for adding 0.9160 g), a resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3, and the resistance characteristics of the resistance exothermic seamless tubular material were measured in the same manner as in Example 11 and the electrode was deteriorated. Was observed. In this comparative example, the filamentous nickel fine particles occupy 41.0% by volume, the carbon nanofibers occupy 4.0% by volume, and boric acid is contained in the solid content of the conductive fine particle-containing polyimide precursor solution S. The addition amount of filamentary nickel fine particles, carbon nanofibers and boric acid is calculated so as to occupy 2.8% by volume (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子の添加量を38.16gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)0.8370gおよび硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が41.0体積%を占め、カーボンナノファイバーが4.0体積%を占め、硼酸が2.8体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバーおよび硼酸の添加量が計算されている(表4参照)。 (Comparative Example 5)
Without adding NMP, the amount of filamentary nickel fine particles was changed to 38.16 g, and conductive fine particle-containing polyimide precursor solution S was added with carbon nanofiber (VGCF-H, Showa Denko KK) 0.8370 g and boric acid (Nacalai). Except for adding 0.9160 g), a resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3, and the resistance characteristics of the resistance exothermic seamless tubular material were measured in the same manner as in Example 11 and the electrode was deteriorated. Was observed. In this comparative example, the filamentous nickel fine particles occupy 41.0% by volume, the carbon nanofibers occupy 4.0% by volume, and boric acid is contained in the solid content of the conductive fine particle-containing polyimide precursor solution S. The addition amount of filamentary nickel fine particles, carbon nanofibers and boric acid is calculated so as to occupy 2.8% by volume (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は38.1Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は171.8Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+351%(=(171.8Ω-38.1Ω)/38.1Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 38.1Ω (see Table 4). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 171.8Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 351% (= (171.8Ω−38.1Ω) /38.1Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例6)
NMPの添加量を6.35gに代え、フィラメント状ニッケル微粒子の添加量を26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA-3Na0.544gおよびPMoA0.632gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が29.3体積%を占め、カーボンナノファイバーが14.6体積%を占め、TTCA-3Naが0.5体積%を占め、PMoAが2.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3NaおよびPMoAの添加量が計算されている(表4参照)。 (Comparative Example 6)
The amount of NMP added was changed to 6.35 g, the amount of filamentary nickel fine particles was changed to 26.53 g, and the conductive nanoparticle-containing polyimide precursor solution S was added with carbon nanofibers (VGCF-H, manufactured by Showa Denko KK) 2. A resistance exothermic seamless tubular product was prepared in the same manner as in Comparative Example 3 except that 981 g, TTCA-3Na 0.544 g and PMoA 0.632 g were added. The electrode deterioration was observed while measuring. In this comparative example, the filamentous nickel fine particles occupy 29.3% by volume, the carbon nanofibers 14.6% by volume, and TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution S. The added amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and PMoA are calculated so that 3Na occupies 0.5% by volume and PMoA occupies 2.0% by volume (see Table 4).
NMPの添加量を6.35gに代え、フィラメント状ニッケル微粒子の添加量を26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA-3Na0.544gおよびPMoA0.632gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、フィラメント状ニッケル微粒子が29.3体積%を占め、カーボンナノファイバーが14.6体積%を占め、TTCA-3Naが0.5体積%を占め、PMoAが2.0体積%を占めるように、フィラメント状ニッケル微粒子、カーボンナノファイバー、TTCA-3NaおよびPMoAの添加量が計算されている(表4参照)。 (Comparative Example 6)
The amount of NMP added was changed to 6.35 g, the amount of filamentary nickel fine particles was changed to 26.53 g, and the conductive nanoparticle-containing polyimide precursor solution S was added with carbon nanofibers (VGCF-H, manufactured by Showa Denko KK) 2. A resistance exothermic seamless tubular product was prepared in the same manner as in Comparative Example 3 except that 981 g, TTCA-3Na 0.544 g and PMoA 0.632 g were added. The electrode deterioration was observed while measuring. In this comparative example, the filamentous nickel fine particles occupy 29.3% by volume, the carbon nanofibers 14.6% by volume, and TTCA-, based on the solid content of the conductive fine particle-containing polyimide precursor solution S. The added amounts of filamentary nickel fine particles, carbon nanofibers, TTCA-3Na and PMoA are calculated so that 3Na occupies 0.5% by volume and PMoA occupies 2.0% by volume (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は29.9Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は46.3Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+55%(=(46.3Ω-29.9Ω)/29.9Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 29.9Ω (see Table 4). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 46.3Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 55% (= (46.3Ω-29.9Ω) /29.9Ω×100) (see Table 4). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例7)
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)35.37gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)0.9910gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が40.0体積%を占め、カーボンナノファイバーが5.0体積%を占めるように、鱗片状ニッケル微粒子およびカーボンナノファイバーの添加量が計算されている(表4参照)。 (Comparative Example 7)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 35.37 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to the polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3 except that 0.9910 g of VGCF-H (Showa Denko Co., Ltd.) was added. And the deterioration of the electrode was observed. In addition, in this comparative example, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S, the scaly nickel fine particles occupy 40.0% by volume, and the carbon nanofibers occupy 5.0% by volume. The addition amount of scaly nickel fine particles and carbon nanofibers is calculated (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)35.37gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)0.9910gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が40.0体積%を占め、カーボンナノファイバーが5.0体積%を占めるように、鱗片状ニッケル微粒子およびカーボンナノファイバーの添加量が計算されている(表4参照)。 (Comparative Example 7)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 35.37 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to the polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3 except that 0.9910 g of VGCF-H (Showa Denko Co., Ltd.) was added. And the deterioration of the electrode was observed. In addition, in this comparative example, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S, the scaly nickel fine particles occupy 40.0% by volume, and the carbon nanofibers occupy 5.0% by volume. The addition amount of scaly nickel fine particles and carbon nanofibers is calculated (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は14.3Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は46.3Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+224%(=(46.3Ω-14.3Ω)/14.3Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 14.3Ω (see Table 4). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 46.3Ω (see Table 4). When the resistance value fluctuation rate was calculated, it was + 224% (= (46.3Ω-14.3Ω) /14.3Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例8)
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)25.64gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)3.180gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが16.0体積%を占めるように、鱗片状ニッケル微粒子およびカーボンナノファイバーの添加量が計算されている(表4参照)。 (Comparative Example 8)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 25.64 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to the polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3 except that 3.180 g of VGCF-H (Showa Denko Co., Ltd.) was added. And the deterioration of the electrode was observed. In this comparative example, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S, the scaly nickel fine particles occupy 29.0% by volume, and the carbon nanofibers occupy 16.0% by volume. The addition amount of scaly nickel fine particles and carbon nanofibers is calculated (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)25.64gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)3.180gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが16.0体積%を占めるように、鱗片状ニッケル微粒子およびカーボンナノファイバーの添加量が計算されている(表4参照)。 (Comparative Example 8)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 25.64 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to the polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3 except that 3.180 g of VGCF-H (Showa Denko Co., Ltd.) was added. And the deterioration of the electrode was observed. In this comparative example, with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S, the scaly nickel fine particles occupy 29.0% by volume, and the carbon nanofibers occupy 16.0% by volume. The addition amount of scaly nickel fine particles and carbon nanofibers is calculated (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は59.3Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は226.5Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+282%(=(226.5Ω-59.3Ω)/59.3Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 59.3Ω (see Table 4). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 226.5Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 282% (= (226.5Ω−59.3Ω) /59.3Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例9)
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)41.88gに代え、導電性微粒子含有ポリイミド前駆体溶液Sに硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が45.0体積%を占め、硼酸が2.8体積%を占めるように、鱗片状ニッケル微粒子および硼酸の添加量が計算されている(表4参照)。 (Comparative Example 9)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 41.88 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and boronic acid (Nacalai Tesque) was added to the polyimide precursor solution S containing conductive fine particles. (Manufactured) Except that 0.9160 g was added, a resistance exothermic seamless tubular product was prepared in the same manner as in Comparative Example 3, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode degradation was observed. Observed. In this comparative example, the scale-like nickel fine particles account for 45.0% by volume and the boric acid accounts for 2.8% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of nickel fine particles and boric acid added are calculated (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)41.88gに代え、導電性微粒子含有ポリイミド前駆体溶液Sに硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が45.0体積%を占め、硼酸が2.8体積%を占めるように、鱗片状ニッケル微粒子および硼酸の添加量が計算されている(表4参照)。 (Comparative Example 9)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 41.88 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and boronic acid (Nacalai Tesque) was added to the polyimide precursor solution S containing conductive fine particles. (Manufactured) Except that 0.9160 g was added, a resistance exothermic seamless tubular product was prepared in the same manner as in Comparative Example 3, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode degradation was observed. Observed. In this comparative example, the scale-like nickel fine particles account for 45.0% by volume and the boric acid accounts for 2.8% by volume with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of nickel fine particles and boric acid added are calculated (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は43.3Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は570.3Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+1217%(=(570.3Ω-43.3Ω)/43.3Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 43.3Ω (see Table 4). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 570.3Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 1217% (= (570.3Ω-43.3Ω) /43.3Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例10)
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.99gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)3.347gおよび硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが16.0体積%を占め、硼酸が2.8体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバーおよび硼酸の添加量が計算されている(表4参照)。 (Comparative Example 10)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 26.99 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was produced in the same manner as in Comparative Example 3 except that 3.347 g of VGCF-H (manufactured by Showa Denko KK) and 0.9160 g of boric acid (manufactured by Nacalai Tesque) were added. The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this comparative example, the scale-like nickel fine particles occupy 29.0% by volume, the carbon nanofibers occupy 16.0% by volume, and boric acid is contained in the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of scale-like nickel fine particles, carbon nanofibers and boric acid added is calculated so as to occupy 2.8% by volume (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.99gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)3.347gおよび硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.0体積%を占め、カーボンナノファイバーが16.0体積%を占め、硼酸が2.8体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバーおよび硼酸の添加量が計算されている(表4参照)。 (Comparative Example 10)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 26.99 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was produced in the same manner as in Comparative Example 3 except that 3.347 g of VGCF-H (manufactured by Showa Denko KK) and 0.9160 g of boric acid (manufactured by Nacalai Tesque) were added. The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this comparative example, the scale-like nickel fine particles occupy 29.0% by volume, the carbon nanofibers occupy 16.0% by volume, and boric acid is contained in the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of scale-like nickel fine particles, carbon nanofibers and boric acid added is calculated so as to occupy 2.8% by volume (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は157.2Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は479.5Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+205%(=(479.5Ω-157.2Ω)/157.2Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 157.2Ω (see Table 4). Further, the resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 479.5Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 205% (= (479.5Ω-157.2Ω) /157.2Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例11)
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)38.16gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)0.8370gおよび硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が41.0体積%を占め、カーボンナノファイバーが4.0体積%を占め、硼酸が2.8体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバーおよび硼酸の添加量が計算されている(表4参照)。 (Comparative Example 11)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 38.16 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to the polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3 except that 0.8370 g of VGCF-H (manufactured by Showa Denko KK) and 0.9160 g of boric acid (manufactured by Nacalai Tesque) were added. The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this comparative example, the scale-like nickel fine particles occupy 41.0% by volume, the carbon nanofibers occupy 4.0% by volume, and boric acid in the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of scale-like nickel fine particles, carbon nanofibers and boric acid added is calculated so as to occupy 2.8% by volume (see Table 4).
NMPを添加せず、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)38.16gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)0.8370gおよび硼酸(ナカライテスク製)0.9160gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が41.0体積%を占め、カーボンナノファイバーが4.0体積%を占め、硼酸が2.8体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバーおよび硼酸の添加量が計算されている(表4参照)。 (Comparative Example 11)
Without adding NMP, 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were replaced with 38.16 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and carbon nanofibers were added to the polyimide precursor solution S containing conductive fine particles ( A resistance exothermic seamless tubular material was prepared in the same manner as in Comparative Example 3 except that 0.8370 g of VGCF-H (manufactured by Showa Denko KK) and 0.9160 g of boric acid (manufactured by Nacalai Tesque) were added. The resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this comparative example, the scale-like nickel fine particles occupy 41.0% by volume, the carbon nanofibers occupy 4.0% by volume, and boric acid in the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of scale-like nickel fine particles, carbon nanofibers and boric acid added is calculated so as to occupy 2.8% by volume (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は62.5Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は879.4Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+1307%(=(879.4Ω-62.5Ω)/62.5Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化が観察された(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 62.5Ω (see Table 4). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 879.4Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 1307% (= (879.4Ω-62.5Ω) /62.5Ω×100) (see Table 4). Moreover, electrode degradation was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例12)
NMPの添加量を6.35gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA-3Na0.544gおよびPMoA0.632gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.3体積%を占め、カーボンナノファイバーが14.6体積%を占め、TTCA-3Naが0.5体積%を占め、PMoAが2.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3NaおよびPMoAの添加量が計算されている(表4参照)。 (Comparative Example 12)
The amount of NMP added is changed to 6.35 g, and the filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET) are replaced by 26.53 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and the conductive fine particle-containing polyimide precursor solution S A resistance exothermic seamless tubular material was prepared and carried out in the same manner as in Comparative Example 3, except that 2.981 g of carbon nanofibers (VGCF-H manufactured by Showa Denko KK), 0.544 g of TTCA-3Na and 0.632 g of PMoA were added. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this comparative example, the scale-like nickel fine particles occupy 29.3% by volume, the carbon nanofibers occupy 14.6% by volume, and TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The addition amount of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and PMoA is calculated so that 3Na occupies 0.5% by volume and PMoA occupies 2.0% by volume (see Table 4).
NMPの添加量を6.35gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA-3Na0.544gおよびPMoA0.632gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.3体積%を占め、カーボンナノファイバーが14.6体積%を占め、TTCA-3Naが0.5体積%を占め、PMoAが2.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3NaおよびPMoAの添加量が計算されている(表4参照)。 (Comparative Example 12)
The amount of NMP added is changed to 6.35 g, and the filamentous nickel fine particles (TYPE 525 manufactured by NOVAMET) are replaced by 26.53 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and the conductive fine particle-containing polyimide precursor solution S A resistance exothermic seamless tubular material was prepared and carried out in the same manner as in Comparative Example 3, except that 2.981 g of carbon nanofibers (VGCF-H manufactured by Showa Denko KK), 0.544 g of TTCA-3Na and 0.632 g of PMoA were added. In the same manner as in Example 11, the resistance characteristics of the resistance exothermic seamless tubular material were measured, and electrode deterioration was observed. In this comparative example, the scale-like nickel fine particles occupy 29.3% by volume, the carbon nanofibers occupy 14.6% by volume, and TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The addition amount of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and PMoA is calculated so that 3Na occupies 0.5% by volume and PMoA occupies 2.0% by volume (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は20.2Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は32.5Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+61%(=(32.5Ω-20.2Ω)/20.2Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 20.2Ω (see Table 4). Moreover, the resistance value after leaving the resistance exothermic seamless tubular article in a 300 ° C. environment for 100 hours was 32.5Ω (see Table 4). When the resistance value fluctuation rate was calculated, the value was + 61% (= (32.5Ω-20.2Ω) /20.2Ω×100) (see Table 4). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例13)
NMPの添加量を5.56gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA-3Na0.534gおよび85重量%リン酸水溶液(ナカライテスク製)0.06516gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.8体積%を占め、カーボンナノファイバーが14.9体積%を占め、TTCA-3Naが0.5体積%を占め、リン酸が0.3体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよびリン酸の添加量が計算されている(表4参照)。 (Comparative Example 13)
The amount of NMP added was changed to 5.56 g, and 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 26.53 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and the conductive fine particle-containing polyimide precursor solution S Except that 2.981 g of carbon nanofiber (VGCF-H manufactured by Showa Denko KK), 0.534 g of TTCA-3Na and 0.06516 g of 85 wt% phosphoric acid aqueous solution (manufactured by Nacalai Tesque) were added. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode deterioration was observed. In this comparative example, the flaky nickel fine particles account for 29.8% by volume, the carbon nanofibers account for 14.9% by volume, and the TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The addition amount of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and phosphoric acid was calculated so that 3Na accounted for 0.5% by volume and phosphoric acid accounted for 0.3% by volume (see Table 4). ).
NMPの添加量を5.56gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、TTCA-3Na0.534gおよび85重量%リン酸水溶液(ナカライテスク製)0.06516gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.8体積%を占め、カーボンナノファイバーが14.9体積%を占め、TTCA-3Naが0.5体積%を占め、リン酸が0.3体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバー、TTCA-3Naおよびリン酸の添加量が計算されている(表4参照)。 (Comparative Example 13)
The amount of NMP added was changed to 5.56 g, and 20.84 g of filamentous nickel fine particles (TYPE 525 made by NOVAMET) were changed to 26.53 g of flaky nickel fine particles (HCA-1 made by NOVAMET), and the conductive fine particle-containing polyimide precursor solution S Except that 2.981 g of carbon nanofiber (VGCF-H manufactured by Showa Denko KK), 0.534 g of TTCA-3Na and 0.06516 g of 85 wt% phosphoric acid aqueous solution (manufactured by Nacalai Tesque) were added. Then, a resistance exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and the electrode deterioration was observed. In this comparative example, the flaky nickel fine particles account for 29.8% by volume, the carbon nanofibers account for 14.9% by volume, and the TTCA- with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The addition amount of scaly nickel fine particles, carbon nanofibers, TTCA-3Na and phosphoric acid was calculated so that 3Na accounted for 0.5% by volume and phosphoric acid accounted for 0.3% by volume (see Table 4). ).
そして、この抵抗発熱シームレス管状物の初期抵抗値は38.4Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は201.2Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+424%(=(201.2Ω-38.4Ω)/38.4Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 38.4Ω (see Table 4). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 201.2Ω (see Table 4). The resistance value fluctuation rate was calculated and found to be + 424% (= (201.2Ω-38.4Ω) /38.4Ω×100) (see Table 4). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 4).
(比較例14)
NMPの添加量を6.27gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、85重量%リン酸水溶液(ナカライテスク製)0.06483gおよびPMoA0.312gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.6体積%を占め、カーボンナノファイバーが14.8体積%を占め、リン酸が0.3体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバーおよびリン酸の添加量が計算されている(表4参照)。 (Comparative Example 14)
The amount of NMP added is changed to 6.27 g, and the filamentous nickel fine particles (TYPE 525 made by NOVAMET) are replaced by 20.84 g of the scale-like nickel fine particles (NOVAMET HCA-1) 26.53 g, and the conductive fine particle-containing polyimide precursor solution S Resistant in the same manner as in Comparative Example 3 except that 2.981 g of carbon nanofiber (VGCF-H manufactured by Showa Denko KK), 0.06483 g of 85 wt% phosphoric acid aqueous solution (manufactured by Nacalai Tesque) and 0.312 g of PMoA were added. An exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed. In this comparative example, the flaky nickel fine particles occupy 29.6% by volume, the carbon nanofibers occupy 14.8% by volume, and phosphoric acid with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of scale-like nickel fine particles, carbon nanofibers, and phosphoric acid added is calculated so that occupies 0.3% by volume and PMoA occupies 1.0% by volume (see Table 4).
NMPの添加量を6.27gに代え、フィラメント状ニッケル微粒子(NOVAMET製TYPE525)20.84gを鱗片状ニッケル微粒子(NOVAMET製HCA-1)26.53gに代え、導電性微粒子含有ポリイミド前駆体溶液Sにカーボンナノファイバー(昭和電工株式会社製VGCF-H)2.981g、85重量%リン酸水溶液(ナカライテスク製)0.06483gおよびPMoA0.312gを追加した以外は、比較例3と同様にして抵抗発熱シームレス管状物を作製し、実施例11と同様にしてその抵抗発熱シームレス管状物の抵抗特性を測定すると共に電極劣化を観察した。なお、本比較例では、導電性微粒子含有ポリイミド前駆体溶液Sの固形分に対して、鱗片状ニッケル微粒子が29.6体積%を占め、カーボンナノファイバーが14.8体積%を占め、リン酸が0.3体積%を占め、PMoAが1.0体積%を占めるように、鱗片状ニッケル微粒子、カーボンナノファイバーおよびリン酸の添加量が計算されている(表4参照)。 (Comparative Example 14)
The amount of NMP added is changed to 6.27 g, and the filamentous nickel fine particles (TYPE 525 made by NOVAMET) are replaced by 20.84 g of the scale-like nickel fine particles (NOVAMET HCA-1) 26.53 g, and the conductive fine particle-containing polyimide precursor solution S Resistant in the same manner as in Comparative Example 3 except that 2.981 g of carbon nanofiber (VGCF-H manufactured by Showa Denko KK), 0.06483 g of 85 wt% phosphoric acid aqueous solution (manufactured by Nacalai Tesque) and 0.312 g of PMoA were added. An exothermic seamless tubular product was prepared, and the resistance characteristics of the resistance exothermic seamless tubular product were measured in the same manner as in Example 11 and electrode deterioration was observed. In this comparative example, the flaky nickel fine particles occupy 29.6% by volume, the carbon nanofibers occupy 14.8% by volume, and phosphoric acid with respect to the solid content of the conductive fine particle-containing polyimide precursor solution S. The amount of scale-like nickel fine particles, carbon nanofibers, and phosphoric acid added is calculated so that occupies 0.3% by volume and PMoA occupies 1.0% by volume (see Table 4).
そして、この抵抗発熱シームレス管状物の初期抵抗値は89.3Ωであった(表4参照)。また、抵抗発熱シームレス管状物を300℃環境下に100時間放置した後の抵抗値は695.6Ωであった(表4参照)。そして、抵抗値変動率を算出したところ、その値は+695.6%(=(695.6Ω-89.3Ω)/89.3Ω×100)であった(表4参照)。また、この抵抗発熱シームレス管状物では電極劣化は観察されなかった(表4参照)。
And the initial resistance value of this resistance exothermic seamless tubular product was 89.3Ω (see Table 4). The resistance value after the resistance exothermic seamless tubular material was left in a 300 ° C. environment for 100 hours was 695.6Ω (see Table 4). When the resistance value fluctuation rate was calculated, the value was + 695.6% (= (695.6Ω-89.3Ω) /89.3Ω×100) (see Table 4). Further, no electrode deterioration was observed in this resistance exothermic seamless tubular material (see Table 4).
本発明に係る面状抵抗発熱体は、使用に伴う抵抗値変動が十分に小さいという特徴を有し、複写機、レーザービームプリンター等の画像形成装置の画像定着装置並びにその画像定着装置に用いられる定着ベルトや定着チューブ等として利用することができる。また、この面状抵抗発熱体は、シート状であってもよく、複写機、レーザービームプリンター等の画像形成装置の画像定着装置並びにその画像定着装置の用途以外にも加熱手段として広く利用することができる。
The sheet resistance heating element according to the present invention has a feature that the resistance value variation with use is sufficiently small, and is used for an image fixing device of an image forming apparatus such as a copying machine or a laser beam printer and the image fixing device. It can be used as a fixing belt or a fixing tube. The sheet resistance heating element may be in the form of a sheet and is widely used as a heating means in addition to the image fixing device of an image forming apparatus such as a copying machine or a laser beam printer and the use of the image fixing device. Can do.
100,100a,100b 抵抗発熱シームレス管状物
112 発熱樹脂層
120 電極(電極部)
100, 100a, 100b Resistance exothermic seamlesstubular body 112 Exothermic resin layer 120 Electrode (electrode part)
112 発熱樹脂層
120 電極(電極部)
100, 100a, 100b Resistance exothermic seamless
Claims (20)
- 発熱樹脂層と、
一対の電極部と
を備え、
300℃の温度下において100時間経過したときの前記電極部間の抵抗値から前記電極部間の初期抵抗値を差し引いた値を、前記初期抵抗値で除して算出される抵抗値変動率が±30%の範囲内である
面状抵抗発熱体。 An exothermic resin layer;
A pair of electrode parts,
A resistance value variation rate calculated by dividing a value obtained by subtracting the initial resistance value between the electrode parts from the resistance value between the electrode parts after 100 hours at a temperature of 300 ° C. by the initial resistance value is A sheet resistance heating element within a range of ± 30%. - 発熱樹脂層と、
一対の電極部と
を備え、
300℃の温度下において48時間経過したときの前記電極部間の抵抗値から前記電極部間の初期抵抗値を差し引いた値を、前記初期抵抗値で除して算出される抵抗値変動率が±15%の範囲内である
面状抵抗発熱体。 An exothermic resin layer;
A pair of electrode parts,
A resistance value variation rate calculated by dividing a value obtained by subtracting an initial resistance value between the electrode parts from a resistance value between the electrode parts after 48 hours at a temperature of 300 ° C. by the initial resistance value is A sheet resistance heating element within a range of ± 15%. - 前記発熱樹脂層は、カーボンナノチューブおよびカーボンナノファイバーの少なくとも一方を含む非金属系ナノ充填材のみを導電性充填材として含有する樹脂から形成され、
前記樹脂は、ポリイミド樹脂を主成分とする
請求項1または2に記載の面状抵抗発熱体。 The exothermic resin layer is formed from a resin containing only a nonmetallic nanofiller containing at least one of carbon nanotubes and carbon nanofibers as a conductive filler,
The planar resistance heating element according to claim 1 or 2, wherein the resin is mainly composed of a polyimide resin. - 前記発熱樹脂層は、膜厚が20μm以上である
請求項3に記載の面状抵抗発熱体。 The planar resistance heating element according to claim 3, wherein the heat generating resin layer has a thickness of 20 μm or more. - 前記発熱樹脂層に対する前記非金属系ナノ充填材の体積分率が5体積%以上100体積%以下の範囲内である
請求項3または4に記載の面状抵抗発熱体。 The planar resistance heating element according to claim 3 or 4, wherein a volume fraction of the nonmetallic nanofiller with respect to the heat generating resin layer is in a range of 5% by volume to 100% by volume. - 前記発熱樹脂層は、金属表面を有する導電性粒子を含有する樹脂から形成され、
請求項1に記載の面状抵抗発熱体。 The exothermic resin layer is formed from a resin containing conductive particles having a metal surface,
The planar resistance heating element according to claim 1. - 前記樹脂には、抵抗値安定化成分がさらに含有される
請求項6に記載の面状抵抗発熱体。 The planar resistance heating element according to claim 6, wherein the resin further contains a resistance value stabilizing component. - 前記抵抗値安定化成分には、(a)SH基およびSM基の少なくとも1つが含窒素芳香族複素環に直接結合される化合物(ただし、Mは金属又は置換若しくは無置換のアンモニウムである。)ならびに(b)硼素(B)を含有する化合物が含まれる
請求項7に記載の面状抵抗発熱体。 The resistance value stabilizing component includes (a) a compound in which at least one of an SH group and an SM group is directly bonded to a nitrogen-containing aromatic heterocyclic ring (where M is a metal or a substituted or unsubstituted ammonium). The planar resistance heating element according to claim 7, further comprising (b) a compound containing boron (B). - 前記抵抗値安定化成分には、(c)モリブデン(Mo)、バナジウム(V)、タングステン(W)、チタン(Ti)、アルミニウム(Al)およびニオブ(Nb)の少なくとも一つの元素を含有する化合物がさらに含まれる
請求項8に記載の面状抵抗発熱体。 The resistance stabilizing component includes (c) a compound containing at least one element of molybdenum (Mo), vanadium (V), tungsten (W), titanium (Ti), aluminum (Al), and niobium (Nb). The planar resistance heating element according to claim 8, further comprising: - 前記樹脂は、カーボンナノ材料をさらに含有する
請求項6から9のいずれか1項に記載の面状抵抗発熱体。 The planar resistance heating element according to claim 6, wherein the resin further contains a carbon nanomaterial. - 前記発熱樹脂層は、膜厚が10μm以上である
請求項6から10のいずれか1項に記載の面状抵抗発熱体。 The sheet resistance heating element according to any one of claims 6 to 10, wherein the heat generating resin layer has a thickness of 10 µm or more. - 前記導電性粒子の体積分率が20体積%以上70体積%以下の範囲内である
請求項6から11のいずれか1項に記載の面状抵抗発熱体。 The planar resistive heating element according to any one of claims 6 to 11, wherein a volume fraction of the conductive particles is in a range of 20% by volume to 70% by volume. - 前記電極部間の初期抵抗値が5Ω以上150Ω以下の範囲内である
請求項1から13のいずれか1項に記載の面状抵抗発熱体。 The planar resistance heating element according to any one of claims 1 to 13, wherein an initial resistance value between the electrode portions is in a range of 5Ω to 150Ω. - 樹脂または樹脂前駆体と、
金属表面を有する導電性粒子と、
抵抗値安定化剤と、
溶剤と
を含有する導電性粒子含有樹脂溶液。 A resin or resin precursor;
Conductive particles having a metal surface;
A resistance value stabilizer,
A conductive particle-containing resin solution containing a solvent. - 前記抵抗値安定化剤には、(d)SH基およびSM基の少なくとも1つが含窒素芳香族複素環に直接結合される化合物(ただし、Mは金属又は置換若しくは無置換のアンモニウムである。)ならびに(e)硼酸が少なくとも含まれる
請求項14に記載の導電性粒子含有樹脂溶液。 The resistance stabilizer includes (d) a compound in which at least one of an SH group and an SM group is directly bonded to a nitrogen-containing aromatic heterocyclic ring (where M is a metal or a substituted or unsubstituted ammonium). The conductive particle-containing resin solution according to claim 14, further comprising at least (e) boric acid. - 前記抵抗値安定化剤には、(f)ポリ酸またはその塩がさらに含まれる
請求項15に記載の導電性粒子含有樹脂溶液。 The conductive particle-containing resin solution according to claim 15, wherein the resistance value stabilizer further includes (f) a polyacid or a salt thereof. - カーボンナノ材料をさらに含有する
請求項14から16のいずれか1項に記載の導電性粒子含有樹脂溶液。 The conductive particle-containing resin solution according to claim 14, further comprising a carbon nanomaterial. - 請求項14から17のいずれか1項に記載の導電性粒子含有樹脂溶液の塗膜を加熱して得られる、面状抵抗発熱体。 A planar resistance heating element obtained by heating a coating film of the conductive particle-containing resin solution according to any one of claims 14 to 17.
- 発熱樹脂層と、
一対の電極部と
を備え、
300℃の温度下において100時間経過したときの前記電極部間の抵抗値から前記電極部間の初期抵抗値を差し引いた値を、前記初期抵抗値で除して算出される抵抗値変動率が±30%の範囲内である
抵抗発熱シームレス管状物。 An exothermic resin layer;
A pair of electrode parts,
A resistance value variation rate calculated by dividing a value obtained by subtracting the initial resistance value between the electrode parts from the resistance value between the electrode parts after 100 hours at a temperature of 300 ° C. by the initial resistance value is Resistance exothermic seamless tubular material in the range of ± 30%. - 発熱樹脂層と、
一対の電極部と
を備え、
300℃の温度下において48時間経過したときの前記電極部間の抵抗値から前記電極部間の初期抵抗値を差し引いた値を、前記初期抵抗値で除して算出される抵抗値変動率が±15%の範囲内である
抵抗発熱シームレス管状物。 An exothermic resin layer;
A pair of electrode parts,
A resistance value variation rate calculated by dividing a value obtained by subtracting an initial resistance value between the electrode parts from a resistance value between the electrode parts after 48 hours at a temperature of 300 ° C. by the initial resistance value is Resistance exothermic seamless tubular material within ± 15%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016521088A JP6670490B2 (en) | 2014-05-19 | 2015-05-18 | Planar resistance heating element, resistance heating seamless tubular article, and resin solution containing conductive particles |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014103365 | 2014-05-19 | ||
JP2014-103365 | 2014-05-19 | ||
JP2014-103363 | 2014-05-19 | ||
JP2014103363 | 2014-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015178337A1 true WO2015178337A1 (en) | 2015-11-26 |
Family
ID=54554007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064159 WO2015178337A1 (en) | 2014-05-19 | 2015-05-18 | Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6670490B2 (en) |
WO (1) | WO2015178337A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200097368A (en) * | 2019-02-07 | 2020-08-19 | 한국과학기술연구원 | Boron nitride nanotube Composite material and preparation method thereof |
JP2022516345A (en) * | 2019-01-09 | 2022-02-25 | バイオニア コーポレーション | A sample concentration tube to which a heat-resistant surface heating element is adhered, an analyzer containing the tube, and an analysis method using the tube. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007272223A (en) * | 2006-03-10 | 2007-10-18 | Ist Corp | Heating fixing belt, its manufacturing method and image fixing device |
JP2009266631A (en) * | 2008-04-25 | 2009-11-12 | Panasonic Corp | Polymer exothermic body |
JP2011023178A (en) * | 2009-07-14 | 2011-02-03 | Sharp Corp | Heater, manufacturing method for heater, fixing device, and image forming apparatus |
JP2012252190A (en) * | 2011-06-03 | 2012-12-20 | Ist Corp | Fixing device |
JP2013029728A (en) * | 2011-07-29 | 2013-02-07 | Canon Inc | Image heating device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010045025A (en) * | 2008-07-18 | 2010-02-25 | Hodogaya Chem Co Ltd | Exothermic body using fine carbon fiber, and manufacturing method thereof |
US8086154B2 (en) * | 2008-10-23 | 2011-12-27 | Xerox Corporation | Nanomaterial heating element for fusing applications |
-
2015
- 2015-05-18 WO PCT/JP2015/064159 patent/WO2015178337A1/en active Application Filing
- 2015-05-18 JP JP2016521088A patent/JP6670490B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007272223A (en) * | 2006-03-10 | 2007-10-18 | Ist Corp | Heating fixing belt, its manufacturing method and image fixing device |
JP2009266631A (en) * | 2008-04-25 | 2009-11-12 | Panasonic Corp | Polymer exothermic body |
JP2011023178A (en) * | 2009-07-14 | 2011-02-03 | Sharp Corp | Heater, manufacturing method for heater, fixing device, and image forming apparatus |
JP2012252190A (en) * | 2011-06-03 | 2012-12-20 | Ist Corp | Fixing device |
JP2013029728A (en) * | 2011-07-29 | 2013-02-07 | Canon Inc | Image heating device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022516345A (en) * | 2019-01-09 | 2022-02-25 | バイオニア コーポレーション | A sample concentration tube to which a heat-resistant surface heating element is adhered, an analyzer containing the tube, and an analysis method using the tube. |
KR20200097368A (en) * | 2019-02-07 | 2020-08-19 | 한국과학기술연구원 | Boron nitride nanotube Composite material and preparation method thereof |
KR102195612B1 (en) * | 2019-02-07 | 2020-12-30 | 한국과학기술연구원 | Boron nitride nanotube Composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6670490B2 (en) | 2020-03-25 |
JPWO2015178337A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5200278B2 (en) | Heat fixing belt and image fixing device | |
JP5109168B2 (en) | Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus | |
JP5017522B2 (en) | Planar heating element and manufacturing method thereof | |
JP2009092785A5 (en) | ||
JP2009109997A (en) | Image fixing device | |
JP5177558B2 (en) | Conductive paste, and conductive coating film and conductive film using the same | |
JP2009109998A (en) | Heat generation fixing roll and image fixing device | |
JP2013114068A (en) | Polyimide tube, manufacturing method thereof, and fixation belt | |
US20120207525A1 (en) | Resistance heating composition and heating composite, heating apparatus, and fusing apparatus, including resistance heating composition | |
JP2007030501A (en) | Polyimide composite film and its manufacturing process | |
JP5738629B2 (en) | Manufacturing and products of fixing materials | |
JP2003246927A (en) | Polyimide resin composition, polyimide film, polyimide tubular article and electrophotographic tubular article | |
JP2010176130A (en) | Fuser member and method for manufacturing the same | |
JP2004123867A (en) | Polyimide resin composition, polyimide film, and polyimide tube | |
JP2013122531A (en) | Method of forming electrode relating to heat fixing belt, heat fixing belt, and fixing device | |
JP6670490B2 (en) | Planar resistance heating element, resistance heating seamless tubular article, and resin solution containing conductive particles | |
WO2014073402A1 (en) | Planar heater | |
JP2009088164A (en) | Heat dissipation slurry and electronic part using it | |
JP5636818B2 (en) | Endless belt for image forming apparatus and image forming apparatus | |
JP2013008024A (en) | Heat fixation belt, fixation device, and method for forming heat fixation belt | |
JP2006330405A (en) | Resin tube and fixing belt | |
JP2013142847A (en) | Endless heat generator, heat generation belt and fixing device | |
JP6045925B2 (en) | Exothermic rotating body | |
JP2020004659A (en) | Heating element | |
JP4951119B2 (en) | Heat fixing roller and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15796167 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016521088 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15796167 Country of ref document: EP Kind code of ref document: A1 |