KR20200097368A - Boron nitride nanotube Composite material and preparation method thereof - Google Patents

Boron nitride nanotube Composite material and preparation method thereof Download PDF

Info

Publication number
KR20200097368A
KR20200097368A KR1020190014407A KR20190014407A KR20200097368A KR 20200097368 A KR20200097368 A KR 20200097368A KR 1020190014407 A KR1020190014407 A KR 1020190014407A KR 20190014407 A KR20190014407 A KR 20190014407A KR 20200097368 A KR20200097368 A KR 20200097368A
Authority
KR
South Korea
Prior art keywords
boron nitride
nitride nanotube
nanotube composite
producing
composite
Prior art date
Application number
KR1020190014407A
Other languages
Korean (ko)
Other versions
KR102195612B1 (en
Inventor
손동익
임거환
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020190014407A priority Critical patent/KR102195612B1/en
Publication of KR20200097368A publication Critical patent/KR20200097368A/en
Application granted granted Critical
Publication of KR102195612B1 publication Critical patent/KR102195612B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

According to one aspect of the present invention, as a composite film exhibiting exothermic property as voltage is applied, a composite film provides a boron nitride nanotube composite including a carbon material, a binder, and boron nitride nanotube (BNNT).

Description

질화붕소나노튜브 복합체 및 이의 제조 방법 {Boron nitride nanotube Composite material and preparation method thereof}Boron nitride nanotube composite material and preparation method thereof

본 발명은 질화붕소나노튜브 복합체 및 이의 제조방법에 관한 것이다. 보다 상세하게는, 1차원 구조의 질화붕소나노튜브 및 탄소소재를 포함하는 질화붕소나노튜브 복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a boron nitride nanotube composite and a method of manufacturing the same. In more detail, it relates to a boron nitride nanotube composite including a one-dimensional boron nitride nanotube and a carbon material, and a method of manufacturing the same.

기존의 전기 발열기기에서 일반적으로 사용되던 발열물질은 저항체-전도복합체를 기반으로 줄열(joule heating)을 이용하여 발열을 하여, 열적 특성이 우수하나, 균일한 발열에 한계가 있어, 발열효율성이 떨어지는 단점이 있다.The heating material commonly used in conventional electric heating devices generates heat by using joule heating based on a resistor-conducting composite, and has excellent thermal characteristics, but there is a limit to uniform heating, resulting in poor heating efficiency. There are drawbacks.

이러한 발열체로 많이 사용되는 것은 탄소소재로 용융점이 높고 열팽창 계수가 작으며 가공성이 우수하고 고온에서의 안정성이 뛰어나면서도 우수한 전도성을 갖는 특징이 있다. 그러나 탄소소재를 이용한 발열체는 열의 방사가 모든 방향으로 발생하므로 실제로 시편의 가열에 사용되는 열용량은 훨씬 줄어들게 된다. What is widely used as such a heating element is a carbon material that has a high melting point, a low coefficient of thermal expansion, excellent workability, excellent stability at high temperatures, and excellent conductivity. However, since a heating element using a carbon material generates heat in all directions, the heat capacity actually used for heating the specimen is much reduced.

질화붕소나노튜브(BNNT)는 탄소나노튜브(CNT)와 유사한 구조 및 형태를 가지고 있는 것으로, 육각의 격자구조로 연결된 관 형태이며, 탄소나노튜브의 탄소 위치에 보론과 질소 원자들이 교대로 결합하여 구성된 물질이다. 질화붕소나노튜브는 탄소나노튜브와 유사한 열전도도 및 기계적 특성은 가지는 반면 전기적으로 금속성을 띠지 않는다. B-N결합에서 붕소 및 질소의 전기 음성도 차이로 인해 부분적인 이온성질을 가지며, 5~6eV의 밴드갭을 가지기 때문에 전기적으로 절연성을 갖고 있으며, 높은 화학적 안정성 및 열 안정성을 갖고 있다.Boron nitride nanotubes (BNNT) have a structure and shape similar to carbon nanotubes (CNT), and are in the form of a tube connected by a hexagonal lattice structure, and boron and nitrogen atoms are alternately bonded to the carbon position of the carbon nanotubes. It is a composed substance. Boron nitride nanotubes have similar thermal conductivity and mechanical properties to carbon nanotubes, but are not electrically metallic. It has partial ionic properties due to the difference in electronegativity of boron and nitrogen in the B-N bond, and has electrical insulation because it has a band gap of 5-6 eV, and has high chemical stability and thermal stability.

따라서, 본 발명은 종래의 탄소소재 발열체의 문제점을 해결하기 위하여, 발열체 소재로서 1차원 구조의 질화붕소나노튜브 및 탄소소재를 포함하는 질화붕소나노튜브 복합체를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Accordingly, an object of the present invention is to provide a boron nitride nanotube composite including a one-dimensional structure boron nitride nanotube and a carbon material as a heating element material in order to solve the problem of the conventional carbon material heating element. However, these problems are exemplary, and the scope of the present invention is not limited thereby.

상기 목적을 달성하기 위한 본 발명의 일 관점에 따르면, 전압의 인가에 따라 발열성을 나타내는 복합체 필름으로서, 상기 복합체 필름은 탄소소재, 바인더 및 질화붕소나노튜브(Boron nitride nanotube, BNNT)를 포함하는 질화붕소 나노튜브 복합체를 제공한다.According to an aspect of the present invention for achieving the above object, as a composite film exhibiting exothermic property according to the application of voltage, the composite film comprises a carbon material, a binder, and boron nitride nanotube (BNNT). It provides a boron nitride nanotube composite.

또한, 본 발명의 일 실시예에 따르면, 상기 탄소소재는 탄소나노튜브(Carbon nanotube, CNT), 환원 그래핀옥사이드(Redued graphene oxide, rGO), 그래핀(Graphene) 및 카본나노파이버(Carbon nanofiber)중에서 선택되는 하나를 포함할 수 있다. In addition, according to an embodiment of the present invention, the carbon material is carbon nanotube (CNT), reduced graphene oxide (rGO), graphene, and carbon nanofiber. It may include one selected from among.

또한, 본 발명의 일 실시예에 따르면, 상기 바인더는 폴리비닐알코올(Polyvinylalcohol, PVA), 박테리아 셀룰로오스(bacterial cellulose, BC), 에폭시(epoxy), 폴리메틸메타아크릴레이트(poly methylmethacrylate, PMMA), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE) 및 폴리디메틸실록산 (polydimethylsiloxane, PDMS) 중에서 선택되는 하나를 포함할 수 있다.In addition, according to an embodiment of the present invention, the binder is polyvinylalcohol (PVA), bacterial cellulose (BC), epoxy, polymethylmethacrylate (PMMA), poly It may include one selected from tetrafluoroethylene (PTFE) and polydimethylsiloxane (PDMS).

그리고, 상기 과제를 해결하기 위한 본 발명의 다른 일 관점에 따르면, (a)탄소소재, 질화붕소 나노튜브(Boron nitride nanotube, BNNT), 및 바인더를 포함하는 혼합용액을 제조하는 단계 (b)상기 분산용액을 진공 여과(Vacuum Filtration)하여 필름을 제조하는 단계; 및 (c)상기 필름을 건조하는 단계를 포함하는 질화붕소나노튜브 복합체의 제조 방법을 제공 할 수 있다. And, according to another aspect of the present invention for solving the above problem, (a) preparing a mixed solution containing a carbon material, boron nitride nanotube (BNNT), and a binder (b) the above Preparing a film by vacuum filtration of the dispersion solution; And (c) it can provide a method of manufacturing a boron nitride nanotube composite comprising the step of drying the film.

또한, 본 발명의 일 실시예에 따르면, 상기 (c) 단계 이후에 (d)건조된 필름을 열압착 처리 단계를 더 포함할 수 있다. In addition, according to an embodiment of the present invention, after the step (c) (d) may further include a thermal compression treatment step of the dried film.

또한, 본 발명의 일 실시예에 따르면, 상기 탄소소재는 탄소나노튜브(Carbon nanotube, CNT), 환원 그래핀옥사이드(Redued graphene oxide, rGO), 그래핀(Graphene) 및 카본나노파이버(Carbon nanofiber)중에서 선택되는 하나를 포함할 수 있다. In addition, according to an embodiment of the present invention, the carbon material is carbon nanotube (CNT), reduced graphene oxide (rGO), graphene, and carbon nanofiber. It may include one selected from among.

또한, 본 발명의 일 실시예에 따르면, 상기 바인더는 폴리비닐알코올(Polyvinylalcohol, PVA), 박테리아 셀룰로오스(bacterial cellulose, BC), 에폭시(epoxy), 폴리메틸메타아크릴레이트(poly methylmethacrylate, PMMA), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE) 및 폴리디메틸실록산 (polydimethylsiloxane, PDMS) 중에서 선택되는 하나를 포함할 수 있다.In addition, according to an embodiment of the present invention, the binder is polyvinylalcohol (PVA), bacterial cellulose (BC), epoxy, polymethylmethacrylate (PMMA), poly It may include one selected from tetrafluoroethylene (PTFE) and polydimethylsiloxane (PDMS).

또한, 본 발명의 일 실시예에 따르면, 질화붕소나노튜브의 함량은 함유된 탄소소재 질량 대비 5wt% 내지 75wt%일 수 있다.In addition, according to an embodiment of the present invention, the content of boron nitride nanotubes may be 5 wt% to 75 wt% based on the mass of the carbon material contained therein.

또한, 본 발명의 일 실시예에 따르면, 바인더의 함량은 함유된 탄소소재 질량 대비 1wt% 내지 100wt%일 수 있다. Further, according to an embodiment of the present invention, the content of the binder may be 1 wt% to 100 wt% based on the mass of the carbon material contained.

또한, 본 발명의 일 실시예에 따르면, (d)열압착처리의 단계의 온도는 30℃ 내지 200℃일 수 있다. In addition, according to an embodiment of the present invention, (d) the temperature of the step of the thermal compression treatment may be 30 ℃ to 200 ℃.

또한, 본 발명의 일 실시예에 따르면, (d)열압착처리 단계의 압력은 10MPa 내지 50MPa일 수 있다.In addition, according to an embodiment of the present invention, (d) the pressure in the heat compression treatment step may be 10 MPa to 50 MPa.

또한, 본 발명의 일 실시예에 따르면, (d)열압착처리 단계의 시간은 1분 내지 60분일 수 있다.In addition, according to an embodiment of the present invention, (d) the time of the heat compression treatment step may be 1 minute to 60 minutes.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 1차원 구조의 질화붕소나노튜브 및 탄소소재를 포함하는 질화붕소나노튜브 복합체 및 이의 제조방법을 제공하는 효과가 있다. According to an embodiment of the present invention made as described above, there is an effect of providing a boron nitride nanotube composite including a one-dimensional boron nitride nanotube and a carbon material, and a method of manufacturing the same.

그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다. However, these problems are exemplary, and the scope of the present invention is not limited thereby.

도 1은 본 발명의 일 실시예에 따른, 질화붕소나노튜브 복합체의 제조방법을 나타내는 순서도이다.
도 2는 본 발명의 일 실시예에 따른, 질화붕소나노튜브 복합체의 제조방법을 나타내는 모식도이다.
도 3은 본 발명의 실험예 및 비교예의 외관을 관찰한 결과이다.
도 4은 본 발명의 실험예 및 비교예의 면저항을 나타낸 그래프이다.
도 5 내지 도 8은 본 발명의 실험예 및 비교예의 줄 히팅을 통한 발열특성 및 전압에 따른 전류를 나타내는 도면이다.
도 9 내지 도 12는 본 발명의 실험예 및 비교예의 전압인가에 따른 복합체의 발열특성은 나타내는 도면이다.
도 13은 본 발명의 일 실험예에 따른, 탄소나노튜브 및 질화붕소나노튜브 복합체 시트의 질화붕소나노튜브 함량에 따른 온도 변화를 나타낸 그래프이다.
도 14는 본 발명의 일 실험예에 따른, 전압인가에 따른 온도 상승을 나타낸 그래프이다.
도 15는 본 발명의 일 실험예에 따른, 전압인가에 따른 열 내구성을 관찰한 결과이다.
도 16 및 도 17은 본 발명의 일 실험예에 따른, 발열 온도를 500℃로 유지하였을 때 내구성을 관찰한 결과이다.
1 is a flow chart showing a method of manufacturing a boron nitride nanotube composite according to an embodiment of the present invention.
2 is a schematic diagram showing a method of manufacturing a boron nitride nanotube composite according to an embodiment of the present invention.
3 is a result of observing the appearance of the experimental examples and comparative examples of the present invention.
4 is a graph showing sheet resistance of an experimental example and a comparative example of the present invention.
5 to 8 are views showing heat generation characteristics and current according to voltage through Joule heating in Experimental Examples and Comparative Examples of the present invention.
9 to 12 are diagrams showing heating characteristics of composites according to voltage application in Experimental Examples and Comparative Examples of the present invention.
13 is a graph showing a temperature change according to the content of boron nitride nanotubes in a carbon nanotube and boron nitride nanotube composite sheet according to an experimental example of the present invention.
14 is a graph showing a temperature rise according to application of a voltage according to an experimental example of the present invention.
15 is a result of observing thermal durability according to voltage application according to an experimental example of the present invention.
16 and 17 are results of observing durability when the heating temperature is maintained at 500° C. according to an experimental example of the present invention.

후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 편의를 위하여 과장되어 표현될 수도 있다.For a detailed description of the present invention described below, reference is made to the accompanying drawings that illustrate specific embodiments in which the present invention may be practiced. These embodiments are described in detail sufficient to enable a person skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different from each other but need not be mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented in other embodiments without departing from the spirit and scope of the present invention in relation to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the detailed description to be described below is not intended to be taken in a limiting sense, and the scope of the present invention, if appropriately described, is limited only by the appended claims, along with all scopes equivalent to those claimed by the claims. In the drawings, similar reference numerals refer to the same or similar functions over several aspects, and may be exaggerated for convenience.

도 1에는 본 발명의 일 실시예에 따른, 질화붕소나노튜브 복합체의 제조방법을 나타내는 순서도가 나타나 있다. 1 is a flow chart showing a method of manufacturing a boron nitride nanotube composite according to an embodiment of the present invention.

또한, 도 2는 상기의 제조방법에 따라 제조된 질화붕소나노튜브 복합체의 제조방법을 나타내는 모식도이다.In addition, Figure 2 is a schematic diagram showing a method of manufacturing a boron nitride nanotube composite manufactured according to the above manufacturing method.

먼저, 도 2를 참고하면, 질화붕소나노튜브 및 탄소소재, 바인더가 분산되어 있는 분산용액을 진공여과장치를 통하여 제조한, 질화붕소나노튜브 및 탄소소재, 바인더로 이루어져있는 필름을 나타내었다. 필름의 구성은 일정한 규칙 없이 자유롭게 질화붕소나노튜브 및 탄소소재가 포함되어 있으며, 질화붕소나노튜브 및 탄소소재를 바인더가 연결을 해주어 필름이 만들어 지게 된다. 이때, 필름에 전압을 인가하게 되면, 탄소소재가 서로 맞닿는 접점을 통하여 전류가 흐르게 된다.First, referring to FIG. 2, a film made of a boron nitride nanotube, a carbon material, and a binder prepared by using a vacuum filtration device to a dispersion solution in which a boron nitride nanotube and a carbon material and a binder are dispersed is shown. The composition of the film includes boron nitride nanotubes and carbon materials freely without certain rules, and a film is made by connecting the boron nitride nanotubes and carbon materials with a binder. At this time, when voltage is applied to the film, current flows through the contact points where the carbon materials come into contact with each other.

도 1을 참고하면, 질화붕소나노튜브 복합체의 제조방법은 질화붕소나노튜브 및 탄소소재, 바인더를 초순수에 혼합하여 혼합용액을 제조하는 단계(S110), 혼합용액을 초음파 분산하여 분산용액을 제조하는 단계(S120), 분산용액을 진공여과하여 필름을 제조하는 단계(S130), 필름을 질소건을 이용하여 건조시킨 후 여과장치로부터 분리하는 단계(S140), 분리된 필름을 열압착하는 단계(S150)를 포함한다. Referring to Figure 1, the method of manufacturing a boron nitride nanotube composite is the step of preparing a mixed solution by mixing boron nitride nanotubes, a carbon material, and a binder in ultrapure water (S110), and ultrasonically dispersing the mixed solution to prepare a dispersion solution. Step (S120), the step of vacuum filtration of the dispersion solution to prepare a film (S130), the step of separating the film from the filtration device after drying using a nitrogen gun (S140), the step of thermocompressing the separated film (S150) ).

우선, 질화붕소나노튜브 및 탄소소재, 바인더를 포함하는 혼합용액을 준비한다(S110).First, a mixed solution including boron nitride nanotubes, a carbon material, and a binder is prepared (S110).

상기 복합체에 포함되는 질화붕소나노튜브의 함량은 함유된 탄소소재 질량 대비 5% 내지 75%로 포함될 수 있다. 질화붕소나노튜브의 함량이 5wt%미만일 경우 저항이 낮아 전압을 인가하였을 때 높은 온도로 발열이 이루어지지 않을 수 있다. 또한, 75wt%초과일 경우 저항은 높지만 전압을 인가하였을 때 질화붕소나노튜브의 절연특성으로 인하여 전류가 많이 흐르지 못하게 되고, 이로인해 높은 온도로 발열이 이루어지지 못하여 효율이 떨어 지게 된다.The content of boron nitride nanotubes included in the composite may be 5% to 75% based on the mass of the carbon material contained therein. When the content of the boron nitride nanotubes is less than 5 wt%, the resistance is low, and when a voltage is applied, heat may not be generated at a high temperature. In addition, if it exceeds 75wt%, the resistance is high, but when a voltage is applied, a large amount of current does not flow due to the insulating properties of the boron nitride nanotubes, and due to this, heat cannot be generated at a high temperature, resulting in a decrease in efficiency.

상기 탄소소재는 탄소소재는 상기 복합체 내에 전류가 흐를 수 있게 해주는 전기전도성 물질로서, 탄소나노튜브(Carbon nanotube, CNT), 환원 그래핀옥사이드(Redued graphene oxide, rGO), 그래핀(Graphene), 카본 파이버(Carbon fiber) 등을 포함할 수 있다. The carbon material is an electrically conductive material that allows current to flow in the composite, and includes carbon nanotubes (CNTs), reduced graphene oxides (rGO), graphenes, and carbon. It may include a fiber (Carbon fiber) or the like.

상기 바인더는 질화붕소나노튜브 및 탄소소재들을 서로 결합시켜 복합체의 외형을 유지시키게 하는 것으로서, 폴리비닐알코올(Polyvinylalcohol, PVA), 박테리아 셀룰로오스(bacterial cellulose, BC), 에폭시(epoxy), 폴리메틸메타아크릴레이트(poly methylmethacrylate, PMMA), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE) 및 폴리디메틸실록산 (polydimethylsiloxane, PDMS) 등을 포함한다.The binder is to maintain the appearance of the composite by bonding the boron nitride nanotubes and carbon materials to each other, polyvinyl alcohol (PVA), bacterial cellulose (BC), epoxy (epoxy), polymethyl methacrylic And polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), and polydimethylsiloxane (PDMS).

질화붕소나노튜브 및 탄소소재, 바인더가 혼합되어 있는 혼합용액은 초음파 분산기를 이용하여 분산처리 할 수 있다. A mixed solution in which boron nitride nanotubes, a carbon material, and a binder are mixed can be dispersed using an ultrasonic disperser.

혼합용액을 진공여과하기 위하여 진공여과장치에 테프론 멤브레인 필터를 사용하고, 필터 상에 혼합용액을 여과시켜 필름을 제조 할 수 있다.In order to vacuum filter the mixed solution, a Teflon membrane filter is used in a vacuum filtration device, and the mixed solution is filtered on the filter to prepare a film.

진공여과과정을 통하여 제조된 필름은 건조하는 단계(S130)를 포함한다. 이때, 질소 건을 이용하여 건조시킨 후 테프론 멤브레인 필터로부터 필름을 분리한다(S140). The film manufactured through the vacuum filtration process includes a step of drying (S130). At this time, after drying using a nitrogen gun, the film is separated from the Teflon membrane filter (S140).

선택적으로 분리된 필름은 조직의 치밀화를 위해 열압착 처리하는 단계가 더 수행될 수 있다. Optionally, the separated film may be further subjected to a thermocompression treatment for densification of the tissue.

일 예로, 열 압착 처리하는 단계의 온도는 30℃ 내지 200℃에서 수행 될 수 있으며, 상세하게는 120℃에서 수행될 수 있다. For example, the temperature of the thermocompression process may be performed at 30°C to 200°C, and in detail, may be performed at 120°C.

이때, 열 압착 처리가 200℃ 이상에서 수행 될 경우 바인더와 같은 폴리머 물질이 타면서 탄소소재의 바인딩이 약해져 기계적 강도를 약화시키는 문제가 발생할 수 있다.In this case, when the thermal compression treatment is performed at 200° C. or higher, a polymer material such as a binder is burned and the binding of the carbon material is weakened, thereby reducing mechanical strength.

또한, 열 압착 처리하는 단계의 압력은 10MPa 내지 50MPa에서 수행 될 수 있으며, 상세하게는 25MPa 에서 수행 될 수 있다.In addition, the pressure in the step of the thermocompression treatment may be performed at 10 MPa to 50 MPa, and in detail, may be performed at 25 MPa.

이렇게 제조된 질화붕소나노튜브 복합체는 질화붕소나노튜브 및 탄소소재가 바인더에 의해 서로 결합되어 지지되는 구조를 가지게 된다. The boron nitride nanotube composite thus prepared has a structure in which boron nitride nanotubes and a carbon material are bonded to each other by a binder and supported.

본 발명의 이해를 돕기 위한 실험예 및 비교예들을 설명한다. 다만, 하기의 실험예 및 비교예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 실시예 및 실험예들이 아래의 실시예 및 실험예들만으로 한정되는 것은 아니다.Experimental examples and comparative examples for aiding understanding of the present invention will be described. However, the following experimental examples and comparative examples are only for helping understanding of the present invention, and the examples and experimental examples of the present invention are not limited to the following examples and experimental examples.

실험예 및 비교예Experimental Example and Comparative Example

질화붕소나노뷰트/탄소나노튜브(BNNT/CNT) 복합체의 제조Preparation of boron nitride nanobute/carbon nanotube (BNNT/CNT) composite

질화붕소나노튜브 및 탄소나노튜브, PVA를 초순수 30ml에 투입 후 초음파 분산기를 이용하여 15분 동안 분산처리 한다. 그 후 분산용액을 진공여과장치를 이용하여 테프론 멤브레인 필터 상에 여과 시켜 필름을 제조한다. 제조된 필름을 질소건(nitrogen gun)을 이용하여 건조시킨 후 테프론 멤브레인 필터로부터 떼어낸다. 건조된 질화붕소나노튜브/탄소나노튜브 필름을 120℃, 25MPa로 열 압착하여 질화붕소나노튜브/탄소나노튜브 복합체를 제조하였다.After adding boron nitride nanotubes, carbon nanotubes, and PVA to 30ml of ultrapure water, dispersion treatment is performed for 15 minutes using an ultrasonic disperser. Then, the dispersion solution is filtered on a Teflon membrane filter using a vacuum filter to prepare a film. The prepared film is dried using a nitrogen gun and then removed from the Teflon membrane filter. The dried boron nitride nanotube/carbon nanotube film was thermally compressed at 120°C and 25 MPa to prepare a boron nitride nanotube/carbon nanotube composite.

본 방법에 따라 제조된 복합체 중, 탄소나노튜브 질량 대비 질화붕소나노튜브의 함량에 따라 제조된 복합체를 실험예 1 내지 실험예 4로 지칭한다. 또한, 질화붕소나노튜브가 포함되지 않은 탄소나노튜브 필름은 비교예 1로 지칭한다. 표 1에는 실험예 1 내지 실험예 4의 제조에 사용된 탄소나노튜브 및 질화붕소나노튜브의 질량과, 그 비율이 나타나 있다.Among the composites prepared according to the present method, composites prepared according to the content of boron nitride nanotubes relative to the mass of carbon nanotubes are referred to as Experimental Examples 1 to 4. In addition, a carbon nanotube film that does not contain boron nitride nanotubes is referred to as Comparative Example 1. Table 1 shows the masses and ratios of carbon nanotubes and boron nitride nanotubes used in the preparation of Experimental Examples 1 to 4.

질화붕소나노뷰트/환원된 그래핀 옥사이드(BNNT/rGO) 복합체의 제조Preparation of boron nitride nanobut/reduced graphene oxide (BNNT/rGO) composite

질화붕소나노튜브 및 환원된 그래핀 옥사이드(reduced graphene oxide, rGO), 박테리얼 셀룰로오즈(Bacterial cellulose, BC)를 초순수 30ml에 투입 후 초음파 분산기를 이용하여 15분 동안 분산처리 한다. 그 후 분산용액을 진공여과장치를 이용하여 테프론 멤브레인 필터 상에 여과 시켜 필름을 제조한다. 제조된 필름을 질소건을 이용하여 건조시킨 후 테프론 멤브레인 필터로부터 떼어낸다. 건조된 질화붕소나노튜브/환원된 그래핀 옥사이드 필름을 120℃, 25MPa로 열 압착하여 질화붕소나노튜브/환원된 그래핀 옥사이드 복합체를 제조하였다. 이를 실험예 5로 지칭한다. 표 1에는 실험예 5의 환원된 그래핀 옥사이드 및 질화붕소나노튜브의 질량과, 그 비율이 나타나 있다. Boron nitride nanotubes, reduced graphene oxide (rGO), and bacterial cellulose (BC) are added to 30 ml of ultrapure water and then dispersed for 15 minutes using an ultrasonic disperser. Then, the dispersion solution is filtered on a Teflon membrane filter using a vacuum filter to prepare a film. After drying the prepared film using a nitrogen gun, it is removed from the Teflon membrane filter. The dried boron nitride nanotube/reduced graphene oxide film was thermally compressed at 120° C. and 25 MPa to prepare a boron nitride nanotube/reduced graphene oxide composite. This is referred to as Experimental Example 5. Table 1 shows the masses and ratios of the reduced graphene oxide and boron nitride nanotubes of Experimental Example 5.

또한, 질화붕소나노튜브가 포함되지 않은 환원된 그래핀 옥사이드 필름은 비교예 2로 지칭한다.In addition, the reduced graphene oxide film containing no boron nitride nanotubes is referred to as Comparative Example 2.

하기의 [표 1]은 본 발명의 실험예들을 정리한 표이다. [Table 1] below is a table summarizing the experimental examples of the present invention.

BNNT(mg)BNNT(mg) CNT(mg)CNT(mg) rGO(mg)rGO (mg) BNNT:
탄소소재
(weight ratio)
BNNT:
Carbon material
(weight ratio)
PVA(mg)PVA(mg) BC(mg)BC(mg)
실험예 1
(CNT/BNNT
(BNNT25wt%))
Experimental Example 1
(CNT/BNNT
(BNNT25wt%))
7.57.5 22.522.5 -- 1 : 31: 3 1515 --
실험예 2(CNT/BNNT
(BNNT50wt%))
Experimental Example 2 (CNT/BNNT
(BNNT50wt%))
1515 1515 -- 1 : 11: 1 1515 --
실험예 3(CNT/BNNT
(BNNT75wt%))
Experimental Example 3 (CNT/BNNT
(BNNT75wt%))
22.522.5 7.57.5 -- 3 : 13: 1 1515 --
실험예 4(CNT/BNNT
(BNNT90wt%))
Experimental Example 4 (CNT/BNNT
(BNNT90wt%))
2727 33 -- 9 : 19: 1 1515 --
실험예 5
(rGO/BNNT(BNNT50wt%))
Experimental Example 5
(rGO/BNNT(BNNT50wt%))
1515 -- 1515 1 : 11: 1 -- 1515
비교예1
(CNT(w/o BNNT))
Comparative Example 1
(CNT(w/o BNNT))
-- 3030 -- -- 1515 --
비교예2(rGO(w/o BNNT)Comparative Example 2 (rGO (w/o BNNT) -- -- 3030 -- -- 1515

도 3은 본 발명의 실험예 및 비교예의 외관을 관찰한 결과이다. 3 is a result of observing the appearance of the experimental examples and comparative examples of the present invention.

도 3을 참고하면, 도 3의 (a)는 비교예 1의 방법으로 제조한 것이며, (b)는 실험예 1, (c)는 비교예 2, (d)는 실험예 5의 방법으로 제조한 것으로, 검은색 필름 형태로 제조된 것을 확인 할 수 있다.3, (a) is prepared by the method of Comparative Example 1, (b) is prepared by the method of Experimental Example 1, (c) is Comparative Example 2, (d) is prepared by the method of Experimental Example 5. As one thing, it can be seen that it was manufactured in the form of a black film.

도 4는 본 발명의 실험예 및 비교예의 면저항을 나타낸 그래프이다. 4 is a graph showing sheet resistance of an experimental example and a comparative example of the present invention.

도 4를 참고하면, 비교예 1 및 비교예 2와 같이 탄소소재만으로 필름이 제조되었을 때, 실험예 2 및 실험예 5와 같이 질화붕소나노튜브가 포함되었을 때보다 면저항이 낮게 측정되는 것을 확인 할 수 있다. 이는 소재에 의한 특성으로 탄소소재만 사용하였을 경우 전기전도도가 뛰어나 면저항이 낮지만, 질화붕소나노튜브의 경우 전기적으로 절연성을 갖고 있기 때문에 면저항이 높아지게 된다. 줄발열의 경우 저항체에 전압을 가하여 전류를 흘리면 저항열이 발생되게 되는 것으로, 면저항이 높아지게 되면 면저항에 의하여 저항열이 높아지게되고, 이러한 저항열에 의하여 발열체의 발열이 놓아지고 발열체의 능력이 향상되게 된다. Referring to FIG. 4, it can be confirmed that when a film was manufactured with only a carbon material as in Comparative Example 1 and Comparative Example 2, the sheet resistance was measured lower than when the boron nitride nanotubes were included as in Experimental Examples 2 and 5. I can. This is a characteristic of the material, and when only carbon material is used, the sheet resistance is low because of the excellent electrical conductivity, but the boron nitride nanotube has electrical insulation properties, so the sheet resistance is increased. In the case of Joule heating, resistance heat is generated when current is passed by applying a voltage to the resistor. When the sheet resistance increases, the resistance heat increases by the sheet resistance, and the heat generation of the heating element is released by this resistance heat, and the ability of the heating element is improved. .

이에, 본 발명의 발열체의 발열특성을 확인하기 위하여 0V 내지 10V의 전압을 인가하였을 때 발열특성을 확인하여 보았으며, 이를 도 5 내지 도 7에 개시하였다.Accordingly, in order to check the heating characteristics of the heating element of the present invention, when a voltage of 0V to 10V was applied, the heating characteristics were checked, and this was disclosed in FIGS. 5 to 7.

도 5 내지 도 8은 본 발명의 실험예 및 비교예의 줄 히팅을 통한 발열특성 및 전압에 따른 전류를 나타내는 도면으로 0V~10V의 전압을 인가하였을 때 발열특성을 확인한 것이다.5 to 8 are diagrams showing heat generation characteristics and current according to voltage through joule heating in Experimental Examples and Comparative Examples of the present invention, and confirming the heat generation characteristics when a voltage of 0V to 10V is applied.

먼저, 도 5를 참고하면, 탄소나노튜브만 포함되어있는 비교예 1의 필름에 대한 발열특성에 대한 것으로, (a)는 IR 카메라를 이용하여 열을 감지한 것이다. 최대 10V의 전압을 가하였을 때 복합체의 온도는 530℃까지 상승하는 것으로, 1V당 52℃의 온도가 상승하는 것을 확인 할 수 있다.First, referring to FIG. 5, the heat-generating property of the film of Comparative Example 1 containing only carbon nanotubes, (a) is that heat is sensed using an IR camera. When a maximum voltage of 10V is applied, the temperature of the composite rises to 530°C. It can be seen that the temperature of 52°C per 1V rises.

도 5의 (b)는 전압인가에 따른 온도 프로파일을 확인한 것으로 좌우로 치우치는 것 없이 온도가 일정하게 상승하였다가 떨어지는 것을 확인할 수 있다. 도 5의 (c)는 전압에 따른 전류를 나타낸 것으로 10V의 전압을 인가하였을 때 전류값이 0.96A인 것을 확인 할 수 있다. 5B shows the temperature profile according to the application of voltage, and it can be seen that the temperature rises and falls at a constant level without shifting from side to side. 5C shows the current according to the voltage, and it can be confirmed that the current value is 0.96A when a voltage of 10V is applied.

1W는 1V(볼트)의 전압으로 1A(암페어)의 전류가 흐를 때의 전력의 크기에 해당하는 것으로, 전력(W) = 전압(V) Х 전류(A)로 구할 수 있다. 이에 따라 실험예 1의 복합체에 대한 열효율을 계산하여 보면 10V의 전압이 인가하였을 때 9.6W의 전력을 나타내는 것을 확인 할 수 있다. 이는 520℃로 온도가 상승되었을 때 9.6W의 전력이 가해졌다는 것을 의미하며, 최종적으로 1W당 54.2℃의 온도로 상승 하는 것을 확인 할 수 있다.1W is a voltage of 1V (volt), which corresponds to the magnitude of power when a current of 1A (ampere) flows, and can be calculated as power (W) = voltage (V) Х current (A). Accordingly, when the thermal efficiency of the composite of Experimental Example 1 is calculated, it can be seen that the power of 9.6W is displayed when a voltage of 10V is applied. This means that 9.6W of power was applied when the temperature rose to 520℃, and it can be confirmed that the temperature rises to 54.2℃ per 1W.

도 6을 참고하면, 탄소나노튜브 질량 대비 질화붕소나노튜브의 질량이 25%로 포함되어 있는 실험예 1의 복합체에 대한 발열특성에 대한 것이다.Referring to FIG. 6, the heat generation characteristics of the composite of Experimental Example 1 in which the mass of boron nitride nanotubes is 25% relative to the mass of the carbon nanotubes is included.

도 5와 마찬가지로 도 6(a)를 통하여 최대 10V의 전압을 가하였을 때 복합체의 온도는 212℃까지 상승하는 것으로, 1V당 21℃의 온도가 상승하는 것을 확인 할 수 있다.Like FIG. 5, when a maximum voltage of 10V is applied through FIG. 6(a), the temperature of the composite rises to 212°C, and it can be seen that the temperature of 21°C per 1V rises.

또한 도 6(b)를 통하여 좌우로 치우치는 것 없이 온도가 빠르고 일정하게 상승하였다가 떨어지는 것을 확인할 수 있다. 또한, 도 6(c)의 전압에 따른 전류변화에 대한 그래프를 통하여 10V의 전압을 인가하였을 때 0.13A의 전류값이 나타나는 것을 확인 할 수 있었다. In addition, it can be seen from FIG. 6(b) that the temperature rises rapidly and consistently without shifting left and right, and then falls. In addition, it can be confirmed that a current value of 0.13A appears when a voltage of 10V is applied through the graph of the current change according to the voltage of FIG. 6C.

도 5와 마찬가지로 열효율을 계산하여본 결과 10V의 전압을 인가하였을 때, 1.3W의 전력을 나타내는 것을 확인 할 수 있다. 이는 212℃로 온도가 상승되었을 때. 1.3W의 전력이 가해졌다는 것을 의미하며, 최종적으로 1W당 163℃의 온도로 상승 하는 것을 확인 할 수 있다.As a result of calculating the thermal efficiency as in FIG. 5, it can be seen that when a voltage of 10V is applied, the power of 1.3W is displayed. This is when the temperature rises to 212℃. It means that 1.3W of power was applied, and finally, it can be confirmed that the temperature rises to 163℃ per 1W.

실험예 1 및 비교예 1의 1W당 상승온도를 통하여, 탄소나노튜브만 사용하였을 때보다, 탄소나노튜브 및 질화붕소나노튜브를 혼합하여 복합체를 제조하였을 때 더 우수한 발열성능을 내는 것을 확인 할 수 있다.Through the rising temperature per 1 W of Experimental Example 1 and Comparative Example 1, it can be confirmed that more excellent exothermic performance was produced when a composite was prepared by mixing carbon nanotubes and boron nitride nanotubes than when only carbon nanotubes were used. have.

도 7은 환원된 그래핀 옥사이드만 포함되어 있는 비교예 2에 대한 발열특성에 대한 것이다.Figure 7 is for the heating characteristics of Comparative Example 2 containing only the reduced graphene oxide.

앞서 살펴본 도 5 및 도 6와 마찬가지로 도 7(a)를 통하여 최대 10V의 전압을 가하였을 때 복합체의 온도는 170℃까지 상승하는 것으로, 1V당 17℃의 온도가 상승하는 것을 확인 할 수 있다. 또한 도 7(b)를 통하여 좌우로 치우치는 것 없이 온도가 일정하게 상승하였다가 떨어지는 것을 확인할 수 있다. 또한, 도 7(c)의 전압에 따른 전류변화에 대한 그래프를 통하여 10V의 전압을 인가하였을 때 0.096A의 전류값이 나타나는 것을 확인 할 수 있었다. 열효율을 계산하여본 결과 10V의 전압을 인가하였을 때, 0.96W의 전력을 나타내는 것을 확인 할 수 있다. 이는 169℃로 온도가 상승되었을 때. 0.96W의 전력이 가해졌다는 것을 의미하며, 최종적으로 1W당 176℃의 온도로 상승하는 것을 확인 할 수 있다.As in FIGS. 5 and 6 described above, when a maximum voltage of 10V is applied through FIG. 7(a), the temperature of the composite rises to 170°C, and it can be seen that the temperature of 17°C per 1V rises. In addition, it can be seen from FIG. 7(b) that the temperature constantly rises and then falls without being biased from side to side. In addition, it can be confirmed that a current value of 0.096A appears when a voltage of 10V is applied through the graph of the current change according to the voltage in FIG. 7C. As a result of calculating the thermal efficiency, it can be seen that when a voltage of 10V is applied, the power is 0.96W. This is when the temperature rises to 169℃. It means that 0.96W of power was applied, and finally, it can be seen that the temperature rises to 176℃ per 1W.

도 8은 실험예 5에 대한 발열특성을 나타낸 것이다.8 shows the heating characteristics for Experimental Example 5.

도 8(a)를 통하여 최대 10V의 전압을 가하였을 때 복합체의 온도가 44℃로 상승하는 것으로, 1V 당 4.4℃의 온도가 상승하는 것을 확인 할 수 있다. 또한, 도 8의 (b)를 통하여 좌우로 치우치는 것 없이 온도가 일정하게 상승하였다 떨어지는 것을 확인 할 수 있으며, 8(c)의 전압에 따른 전류변화를 살펴보면 10V 인가하였을 때 0.00864A의 전류값이 나타나는 것을 확인 할 수 있다. 열효율을 계산하여본 결과 10V의 전압을 인가하였을 때, 0.086W의 전력을 나타내는 것을 확인 할 수 있다. 이는 44℃로 온도가 상승되었을 때, 0.086W의 전력이 가해졌다는 것을 의미하며, 최종적으로 1W당 512℃의 온도로 상승하는 것을 확인 할 수 있다.8(a) shows that the temperature of the composite rises to 44°C when a maximum voltage of 10V is applied, and it can be seen that the temperature of 4.4°C per 1V is increased. In addition, through (b) of FIG. 8, it can be confirmed that the temperature rises and falls at a constant level without shifting from side to side. Looking at the current change according to the voltage of 8 (c), the current value of 0.00864A when 10V is applied You can see what appears. As a result of calculating the thermal efficiency, it can be seen that when a voltage of 10V is applied, the power of 0.086W is displayed. This means that when the temperature rises to 44°C, 0.086W of power is applied, and it can be confirmed that the temperature rises to 512°C per 1W.

실험예 5 및 비교예 2를 통하여, 상기 실험예 1 및 비교예 1과 마찬가지로 환원된 그래핀 옥사이드만 사용하였을 때보다, 환원된 그래핀 옥사이드 및 질화붕소나노튜브를 혼합하여 복합체를 제조하였을 때 더 우수한 발열성능을 내는 것을 확인 할 수 있다.Through Experimental Example 5 and Comparative Example 2, as in Experimental Example 1 and Comparative Example 1, more than when only reduced graphene oxide was used, when a composite was prepared by mixing the reduced graphene oxide and boron nitride nanotubes. It can be confirmed that it produces excellent heat generation performance.

하기의 표 2는 도 5 내지 도 8의 결과에 따라 1W당 상승 온도를 정리한 것이다.Table 2 below summarizes the temperature rise per 1W according to the results of FIGS. 5 to 8.

실험예 1Experimental Example 1 실험예 5Experimental Example 5 비교예1Comparative Example 1 비교예2Comparative Example 2 10V당전류(A)Current per 10V (A) 0.130.13 0.008640.00864 0.960.96 0.0960.096 1W당 상승온도(℃)Rising temperature per 1W (℃) 163163 512512 54.254.2 176176

도 9 내지 도 12는 본 발명의 실험예 및 비교예의 전압인가에 따른 복합체의 발열특성은 나타내는 도면이다.9 to 12 are diagrams showing heating characteristics of composites according to voltage application in Experimental Examples and Comparative Examples of the present invention.

먼저, 도 9를 참고하면 비교예 1의 발열체에 0V 내지 15V의 전압을 인가하였을 경우 그에 따른 발열특성을 확인한 것으로 전압이 증가함에 따라 온도가 증가하는 것을 확인 할 수 있으며, 15V를 가하였을 때 중앙의 온도는 148.4℃까지 상승하는 것을 확인 할 수 있다. 하지만 온도가 균일하게 상승되는 것이 아니라 국부적으로 상승하는 것을 확인 할 수 있다.First, referring to FIG. 9, when a voltage of 0V to 15V was applied to the heating element of Comparative Example 1, the heating characteristic was confirmed. It can be seen that the temperature increases as the voltage increases, and when 15V is applied, the center It can be seen that the temperature rises to 148.4℃. However, it can be seen that the temperature does not rise uniformly but rises locally.

도 10은 탄소나노튜브 질량 대비 질화붕소나노튜브의 양이 25%로 포함되어 있는 실험예 1의 발열체에 전압을 인가한 것으로 전압이 증가함에 따라, 온도가 균일하게 상승하는 것을 확인 할 수 있으며, 15V를 가하였을 때 중앙의 온도는 330.2℃까지 상승하는 것을 확인 할 수 있다.FIG. 10 is a voltage applied to the heating element of Experimental Example 1 in which the amount of boron nitride nanotubes relative to the mass of the carbon nanotubes is 25%, and it can be seen that the temperature uniformly rises as the voltage increases. When 15V is applied, the central temperature rises to 330.2℃.

도 11은 탄소나노튜브 질량 대비 질화붕소나노튜브의 양이 75%로 있는 실험예 3의 발열체에 전압을 인가한 것으로 전압이 증가함에 따라 온도가 증가하는 것을 확인 할 수 있으나, 실험예 1 및 실험예 2의 발열체와 대비하여 최대 상승 온도가 127℃로 낮은 것을 확인 할 수 있다. 11 is a voltage applied to the heating element of Experimental Example 3 in which the amount of boron nitride nanotubes relative to the mass of the carbon nanotubes is 75%, and it can be seen that the temperature increases as the voltage increases, but Experimental Example 1 and Experiments Compared with the heating element of Example 2, it can be seen that the maximum rising temperature is as low as 127°C.

마지막으로, 도 12는 탄소나노튜브 질량 대비 질화붕소나노튜브의 양이 90%로 포함되어 있는 실험예 4의 발열체에 전압을 인가하는 것으로 전압이 증가하여도 최대온도가 41℃까지 밖에 상승하지 못하며, 온도분포 또한 균일하지 못한 것을 확인 할 수 있다. Finally, FIG. 12 shows that a voltage is applied to the heating element of Experimental Example 4 in which the amount of boron nitride nanotubes is 90% relative to the mass of the carbon nanotubes. Even if the voltage is increased, the maximum temperature only rises to 41°C. , It can be confirmed that the temperature distribution is also not uniform.

도 11 및 도 12를 통하여 질화붕소나노튜브의 함량이 많아지면 온도가 상승하지 못하는 것을 알 수 있는데, 이는 질화붕소나노튜브의 경우 전기 절연성의 특성을 가지고 있어, 복합체 내에 함량이 많아지면서 저항이 지나치게 높아지게 되고 이로 인해 전류가 흐르지 못해 저항열이 낮아져 온도가 상승하지 못하기 때문으로 해석된다. It can be seen from FIGS. 11 and 12 that the temperature does not increase when the content of the boron nitride nanotubes increases. This is because the boron nitride nanotubes have electrical insulating properties, and thus the content in the composite increases and the resistance is excessive. It is interpreted to be because the temperature does not rise due to the decrease in resistance heat due to the inability to flow current.

도 13은 본 발명의 일 실험예에 따른, 탄소나노튜브 및 질화붕소나노튜브 복합체 시트의 질화붕소나노튜브 함량에 따른 온도 변화를 나타낸 그래프이다.13 is a graph showing a temperature change according to the content of boron nitride nanotubes in a carbon nanotube and boron nitride nanotube composite sheet according to an experimental example of the present invention.

도 13을 참고하면, 도 13(a)는 비교예 1의 복합체에 15V의 전압을 인가한 것으로 약150℃까지 상승하는 것을 확인 할 수 있다.Referring to FIG. 13, it can be seen that the voltage of 15V is applied to the composite of Comparative Example 1, and rises to about 150°C.

도 13 (b)는 실험예 2의 복합체에 도 13 (a)와 같은 조건의 전압을 인가한 것으로 약330℃까지 온도가 상승하는 것을 확인 할 수 있다.13 (b) shows that the voltage under the conditions as in FIG. 13 (a) is applied to the composite of Experimental Example 2, and it can be seen that the temperature rises to about 330°C.

도 13 (c)는 실험예 3의 복합체에 전압을 인가한 것으로 170℃ 내지 180℃로 온도가 상승하는 것을 확인 할 수 있으며, (d)는 실험예 4의 복합체에 전압을 인가한 것으로 약40℃로 온도가 거의 상승하지 않은 것을 확인 할 수 있다.13 (c) shows that the voltage was applied to the composite of Experimental Example 3, and it can be seen that the temperature rises to 170 to 180 °C, and (d) shows that the voltage was applied to the composite of Experimental Example 4. It can be seen that the temperature hardly increased to ℃.

이는 앞서 살펴본 도 9 내지 도 12와 마찬가지로 질화붕소나노튜브의 함량이 탄소나노튜브 질량 대비 3배이상으로 많아지게 되면, 전기 절연성 특성에 의하여 발열체 내에 전기가 흐르지 못하게 되고, 이로 인해 발열특성 또한 현저하게 감소하는 것을 확인 할 수 있다. This is similar to the above-described FIGS. 9 to 12, when the content of the boron nitride nanotubes is increased by three times or more compared to the mass of the carbon nanotubes, electricity cannot flow in the heating element due to the electrical insulating properties, and thus the heating characteristic is also remarkably It can be seen that it decreases.

따라서, 복합체 내에 탄소나노튜브 질량 대비 질화붕소나노튜브의 함량이 25% 내지 75% 내로 포함되는 것이 바람직하다. Therefore, it is preferable that the content of boron nitride nanotubes relative to the mass of the carbon nanotubes in the composite is contained within 25% to 75%.

도 14는 본 발명의 일 실험예에 따른, 전압인가에 따른 온도 상승을 나타낸 그래프이다.14 is a graph showing a temperature rise according to application of a voltage according to an experimental example of the present invention.

먼저, 도 14는 전압인가에 따른 발열온도를 확인한 것으로, 탄소나노튜브 질량 대비 질화붕소나노튜브의 함량이 25% 내지 50%로 함유되었을 때 15V이하의 전압을 인가하여 약600℃ 이상의 온도가 상승하는 것을 확인할 수 있었다. 또한, 탄소나노튜브 질량 대비 질화붕소 나노튜브가 75%로 함유되었을 경우 20V의 전압을 인가하였을 때 500℃ 이상으로 온도가 상승하기는 하나 온도의 상승속도가 매우 더딘 것을 확인 할 수 있었다First, FIG. 14 is a check of the heating temperature according to the application of voltage. When the content of boron nitride nanotubes relative to the mass of carbon nanotubes is 25% to 50%, a voltage of 15V or less is applied to increase the temperature of about 600°C or higher. I could confirm that. In addition, when the boron nitride nanotubes were contained in 75% of the mass of the carbon nanotubes, it was confirmed that the temperature rises above 500℃ when a voltage of 20V is applied, but the rate of temperature rise is very slow.

또한, 도 15를 통하여, 전압인가에 따른 열 내구성을 확인하였다. 먼조 도 15의 (a)는 비교예 1로 질화붕소나노튜브가 포함되지 않은 탄소나노튜브만 포함되어 있는 필름으로 10V의 전압을 인가하였을 때, 550℃까지 온도가 상승하였으며, 고온에 의하여 단선이 되는 것을 확인할 수 있었다. 도 15의 (b)는 탄소나노튜브 질량 대비 질화붕소나노튜브가 25%로 포함되어 있는 복합체로 12V의 전압을 인가하였을 때, 610℃까지 온도가 상승하였으며, 고온에 의하여 단선이 되는 것을 확인할 수 있었다. 도 15의 (C)는 탄소나노튜브 질량 대비 질화붕소나노튜브가 50%로 포함되어 있는 복합체로 15V의 전압을 인가하였을 때, 590℃까지 온도가 상승하였으며, 고온에 의하여 단선되는 것을 확인할 수 있었다.In addition, through FIG. 15, thermal durability according to the application of voltage was confirmed. (A) of FIG. 15 is Comparative Example 1, a film containing only carbon nanotubes without boron nitride nanotubes. When a voltage of 10V was applied, the temperature rose to 550°C. I was able to confirm it. Figure 15 (b) is a composite containing 25% boron nitride nanotubes relative to the mass of the carbon nanotubes. When a voltage of 12V was applied, the temperature rose to 610°C, and it can be seen that the wire breaks due to the high temperature. there was. FIG. 15C is a composite containing 50% boron nitride nanotubes relative to the mass of carbon nanotubes. When a voltage of 15V was applied, the temperature rose to 590°C, and it was confirmed that the wire was disconnected due to high temperature. .

따라서, 도 14 및 도 15를 통하여 질화붕소나노튜브가 포함되지 않을 경우 질화붕소나노튜브가 포함되었을 때보다 열적 내구성이 떨어지는 것을 확인 할 수 있었으며, 탄소나노튜브 질량 대비 질화붕소나노튜브가 75%이상 포함될 경우 열적 내구성은 우수하나 온도상승 속도가 느려 발열체로서의 역할은 어려울 것이라고 판단된다.Accordingly, it was confirmed through FIGS. 14 and 15 that when boron nitride nanotubes were not included, thermal durability was lower than when boron nitride nanotubes were included, and boron nitride nanotubes were 75% or more compared to carbon nanotube mass. If included, the thermal durability is excellent, but the temperature rise rate is slow, so it is judged that the role as a heating element will be difficult.

도 16 및 도 17은 본 발명의 일 실험예에 따른, 발열 온도를 500℃로 유지하였을 때 내구성을 나타낸 것이다. 16 and 17 show durability when the heating temperature is maintained at 500° C. according to an experimental example of the present invention.

먼저 도 16는 비교예 1의 질화붕소나노튜브가 함유되지 않을 것으로 500℃로 온도를 유지하였을 때 3분이후에 단선이 되는 것을 확인 할 수 있다. First, FIG. 16 shows that the boron nitride nanotubes of Comparative Example 1 are not contained and that the disconnection occurs after 3 minutes when the temperature is maintained at 500°C.

도 17은 실험예 1의 탄소나노튜브 질량 대비 질화붕소나노튜브가 50%로 함유된 것으로 500℃로 온도를 유지하였을 때 30분 이후에 단선이 되는 것을 확인 할 수 있다. 이를 통하여 질화붕소나노튜브가 함유됨으로써 열적 내구성이 10배 이상 상승하는 것을 확인 할 수 있다.17 shows that 50% of the boron nitride nanotubes were contained relative to the mass of the carbon nanotubes of Experimental Example 1, and when the temperature was maintained at 500°C, it could be confirmed that the wire was disconnected after 30 minutes. Through this, it can be confirmed that the thermal durability is increased more than 10 times by containing the boron nitride nanotubes.

본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been shown and described with reference to a preferred embodiment as described above, it is not limited to the above embodiment, and within the scope of the spirit of the present invention, various It can be transformed and changed. Such modifications and variations are to be viewed as falling within the scope of the present invention and the appended claims.

Claims (13)

전압의 인가에 따라 발열성을 나타내는 복합체 필름으로서,
상기 복합체 필름은,
탄소소재, 바인더, 및 질화붕소나노튜브(Boron nitride nanotube, BNNT)를 포함하는,
질화붕소나노튜브 복합체.
As a composite film exhibiting exothermic property upon application of voltage,
The composite film,
Including a carbon material, a binder, and boron nitride nanotube (BNNT),
Boron nitride nanotube composite.
제1항에 있어서,
상기 탄소소재는 탄소나노튜브(Carbon nanotube, CNT), 환원 그래핀옥사이드(Redued graphene oxide, rGO), 그래핀(Graphene) 및 카본나노파이버(Carbon nanofiber)중에서 선택되는 하나를 포함하는,
질화붕소나노튜브 복합체.
The method of claim 1,
The carbon material includes one selected from among carbon nanotubes (CNT), reduced graphene oxide (rGO), graphene, and carbon nanofibers,
Boron nitride nanotube composite.
제1항에 있어서,
상기 바인더는 폴리비닐알코올(Polyvinylalcohol, PVA), 박테리아 셀룰로오스(bacterial cellulose, BC), 에폭시(epoxy), 폴리메틸메타아크릴레이트(poly methylmethacrylate, PMMA), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE) 및 폴리디메틸실록산 (polydimethylsiloxane, PDMS) 중에서 선택되는 하나를 포함하는,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 1,
The binder is polyvinylalcohol (PVA), bacterial cellulose (BC), epoxy, polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), and polydimethyl Containing one selected from siloxane (polydimethylsiloxane, PDMS),
Method for producing a boron nitride nanotube composite.
(a) 탄소소재, 질화붕소나노튜브(Boron nitride nanotube, BNNT), 및 바인더를 포함하는 혼합용액을 제조하는 단계;
(b) 상기 분산용액을 진공 여과(Vacuum Filtration)하여 필름을 제조하는 단계; 및
(c) 상기 필름을 건조하는 단계; 를 포함하는
질화붕소나노튜브 복합체의 제조 방법.
(a) preparing a mixed solution containing a carbon material, boron nitride nanotube (BNNT), and a binder;
(b) preparing a film by vacuum filtration of the dispersion solution; And
(c) drying the film; Including
Method for producing a boron nitride nanotube composite.
제4항에 있어서, 상기 (c) 단계 이후에
(d)건조된 필름을 열압착 처리 단계; 를 더 포함하는,
질화붕소나노튜브 복합체의 제조방법.
The method of claim 4, wherein after step (c)
(d) heat-pressing the dried film; Further comprising,
Method for producing a boron nitride nanotube composite.
제4항에 있어서,
상기 탄소소재는 탄소나노튜브(Carbon nanotube, CNT), 환원 그래핀옥사이드(Redued graphene oxide, rGO), 그래핀(Graphene) 및 카본나노파이버(Carbon nanofiber)중에서 선택되는 하나를 포함하는,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 4,
The carbon material includes one selected from among carbon nanotubes (CNT), reduced graphene oxide (rGO), graphene, and carbon nanofibers,
Method for producing a boron nitride nanotube composite.
제4항에 있어서,
상기 바인더는 폴리비닐알코올(Polyvinylalcohol, PVA), 박테리아 셀룰로오스(bacterial cellulose, BC), 에폭시(epoxy), 폴리메틸메타아크릴레이트(poly methylmethacrylate, PMMA), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE) 및 폴리디메틸실록산 (polydimethylsiloxane, PDMS) 중에서 선택되는 하나를 포함하는,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 4,
The binder is polyvinylalcohol (PVA), bacterial cellulose (BC), epoxy, polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), and polydimethyl Containing one selected from siloxane (polydimethylsiloxane, PDMS),
Method for producing a boron nitride nanotube composite.
제4항에 있어서,
질화붕소나노튜브의 함량은 함유된 탄소소재 질량 대비 5% 내지 75%인,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 4,
The content of boron nitride nanotubes is 5% to 75% based on the mass of the carbon material contained,
Method for producing a boron nitride nanotube composite.
제5항에 있어서,
바인더의 함량은 함유된 탄소소재 질량 대비 1% 내지 100%인,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 5,
The content of the binder is 1% to 100% based on the mass of the carbon material contained,
Method for producing a boron nitride nanotube composite.
제5항에 있어서,
상기 (b) 초음파 처리는 1분 내지 60분 동안 수행하는,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 5,
The (b) ultrasonic treatment is performed for 1 minute to 60 minutes,
Method for producing a boron nitride nanotube composite.
제5항에 있어서,
상기 (d)열압착처리 단계의 온도는 30℃ 내지 200℃인,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 5,
The temperature of the (d) heat compression treatment step is 30 ℃ to 200 ℃,
Method for producing a boron nitride nanotube composite.
제10항에 있어서,
상기 (d)열압착처리 단계의 압력은 10MPa 내지 50MPa인,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 10,
The pressure in the (d) heat compression treatment step is 10 MPa to 50 MPa,
Method for producing a boron nitride nanotube composite.
제10항에 있어서,
상기 (d)열압착처리 단계의 시간은 1분 내지 60분인,
질화붕소나노튜브 복합체의 제조 방법.
The method of claim 10,
The time of the (d) heat compression treatment step is 1 minute to 60 minutes,
Method for producing a boron nitride nanotube composite.
KR1020190014407A 2019-02-07 2019-02-07 Boron nitride nanotube Composite material and preparation method thereof KR102195612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190014407A KR102195612B1 (en) 2019-02-07 2019-02-07 Boron nitride nanotube Composite material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190014407A KR102195612B1 (en) 2019-02-07 2019-02-07 Boron nitride nanotube Composite material and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20200097368A true KR20200097368A (en) 2020-08-19
KR102195612B1 KR102195612B1 (en) 2020-12-30

Family

ID=72291616

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190014407A KR102195612B1 (en) 2019-02-07 2019-02-07 Boron nitride nanotube Composite material and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102195612B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051291A (en) * 2021-04-27 2022-02-15 上海交通大学 Hybrid heating sheet based on rGO/MWCNTs and preparation method thereof
KR20220071589A (en) 2020-11-24 2022-05-31 한국과학기술연구원 Electromagnetic shielding composite with improved thermal durability and manufacturing method thereof
CN118026698A (en) * 2023-12-29 2024-05-14 泰兴挚富新材料科技有限公司 Novel insulating heat-conducting material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302681A (en) * 1994-04-28 1995-11-14 Tdk Corp Ceramic heater element
WO2015178337A1 (en) * 2014-05-19 2015-11-26 株式会社アイ.エス.テイ Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles
JP2017132661A (en) * 2016-01-28 2017-08-03 積水化学工業株式会社 Boron nitride nano tube material, thermosetting material, cured product, method for producing cured product and laminate
KR20180099672A (en) * 2015-12-28 2018-09-05 니폰 제온 가부시키가이샤 Container containing nanostructure dispersion, method of storing and transporting dispersion of nanostructure, and method of preparing composition and aggregate for composite material using nanostructure dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302681A (en) * 1994-04-28 1995-11-14 Tdk Corp Ceramic heater element
WO2015178337A1 (en) * 2014-05-19 2015-11-26 株式会社アイ.エス.テイ Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles
KR20180099672A (en) * 2015-12-28 2018-09-05 니폰 제온 가부시키가이샤 Container containing nanostructure dispersion, method of storing and transporting dispersion of nanostructure, and method of preparing composition and aggregate for composite material using nanostructure dispersion
JP2017132661A (en) * 2016-01-28 2017-08-03 積水化学工業株式会社 Boron nitride nano tube material, thermosetting material, cured product, method for producing cured product and laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220071589A (en) 2020-11-24 2022-05-31 한국과학기술연구원 Electromagnetic shielding composite with improved thermal durability and manufacturing method thereof
CN114051291A (en) * 2021-04-27 2022-02-15 上海交通大学 Hybrid heating sheet based on rGO/MWCNTs and preparation method thereof
CN118026698A (en) * 2023-12-29 2024-05-14 泰兴挚富新材料科技有限公司 Novel insulating heat-conducting material and preparation method thereof

Also Published As

Publication number Publication date
KR102195612B1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
KR102195612B1 (en) Boron nitride nanotube Composite material and preparation method thereof
Chu et al. Smart conducting polymer composites having zero temperature coefficient of resistance
KR100722812B1 (en) Electroconductive curable resin composition, cured product thereof and process for producing the same
CN101098921A (en) Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition
KR102517816B1 (en) Boron nitride nanotube enhanced electrical components
KR101623781B1 (en) Functional molded article and method for producing same
JP4168341B2 (en) Microcomposite powders based on graphite flakes and fluoropolymers and articles made with these powders
JP6228240B2 (en) Use of anisotropic fluoropolymers for heat conduction
KR101144888B1 (en) Flexible thermoelectric material, method for preparing the same and thermoelectric device comprising the same
US11820054B2 (en) Method for manufacturing fired body of fluororesin, fired body of fluororesin, method for manufacturing fluororesin dispersion, method for manufacturing fired body, fluororesin dispersion, and fired body
KR101809074B1 (en) Carbon fiber non woven fabric and manufacturing method thereof and carbon fiber plane heating elememt using it
Liu et al. Tailoring dielectric properties of polymer composites by controlling alignment of carbon nanotubes
Zhao et al. Enhanced dielectric performance of polyvinylidene fluoride composites with an all-carbon hybrid architecture: vertically aligned carbon nanotube arrays on graphite nanoplatelets
Chu et al. Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance
Zhou et al. Controllable construction of CNT-Interconnected liquid metal networks for thermal management
CN105837950A (en) Polyolefin-based conductive and dielectric composite material and preparation method thereof
KR102135515B1 (en) method for manufacturing carbon fiber nonwoven fabric to which metal-plated carbon fiber is added
KR102003682B1 (en) Flow channel plate for fuel cell and method of manufacturing the same
CN111087836A (en) BN/hydroxyapatite nanowire composite heat-conducting insulating flame-retardant thermal interface material
CN105190789B (en) PTC thermistor component
Javadi et al. Preparation and characterization of P-type and N-type doped expanded graphite polymer composites for thermoelectric applications
KR20150024104A (en) Carbon nanotube contain polytetrafluoroethylene nanoscale composite
CN113308800A (en) Graphene-based high-molecular thermal interface material and preparation method thereof
KR101630715B1 (en) Composites for n-type element of thermoelectric device and manufacturing method of the same
KR102367298B1 (en) thermal conducting sheet and manufacturing method thereof

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant