JP2004043952A - 電解加工方法及び装置 - Google Patents

電解加工方法及び装置 Download PDF

Info

Publication number
JP2004043952A
JP2004043952A JP2003011660A JP2003011660A JP2004043952A JP 2004043952 A JP2004043952 A JP 2004043952A JP 2003011660 A JP2003011660 A JP 2003011660A JP 2003011660 A JP2003011660 A JP 2003011660A JP 2004043952 A JP2004043952 A JP 2004043952A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
processing
power supply
processing electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003011660A
Other languages
English (en)
Other versions
JP4233331B2 (ja
Inventor
Masayuki Kumegawa
粂川 正行
Hozumi Yasuda
安田 穂積
Itsuki Obata
小畠 厳貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003011660A priority Critical patent/JP4233331B2/ja
Publication of JP2004043952A publication Critical patent/JP2004043952A/ja
Application granted granted Critical
Publication of JP4233331B2 publication Critical patent/JP4233331B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

【課題】例えばCMP処理そのものを省略したり、CMP処理の負荷を極力低減しつつ、基板表面に設けられた導電性材料を平坦に加工したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)できるようにした電解加工装置を提供する。
【解決手段】基板Wよりも大きな径を有する加工電極84と、基板Wに給電する給電電極86と、基板Wを加工電極84に接触させる保持部42と、基板Wと加工電極84及び給電電極86との間に配置されるイオン交換体90,92と、加工電極84と給電電極86との間に電圧を印加する電源46と、基板Wと加工電極84及び給電電極86との間に流体を供給する流体供給部84aと、加工電極84の運動中心が基板Wの外径よりも内側に位置した状態で、基板Wと加工電極84とを相対移動させる駆動部56,60とを備えた。
【選択図】 図8

Description

【0001】
【発明の属する技術分野】
本発明は、電解加工方法及び装置に係り、特に半導体ウェハ等の基板の表面に形成された導電性材料を加工したり、基板の表面に付着した不純物を除去したりするために使用される電解加工方法及び装置に関するものである。
【0002】
【従来の技術】
近年、半導体ウェハ等の基板上に回路を形成するための配線材料として、アルミニウム又はアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋め込むことによって一般に形成される。この銅配線を形成する方法としては、化学気相成長法(CVD:Chemical Vapor Deposition)、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜して、化学機械的研磨(CMP:Chemical Mechanical Polishing)により不要の銅を除去するようにしている。
【0003】
図1(a)乃至図1(c)は、この種の銅配線基板Wの一製造例を工程順に示すものである。図1(a)に示すように、半導体素子が形成された半導体基材1上の導電層1aの上にSiOからなる酸化膜やLow−k材膜などの絶縁膜2が堆積され、リソグラフィ・エッチング技術によりコンタクトホール3と配線用の溝4が形成されている。これらの上にTaN等からなるバリア膜5、更にその上に電解めっきの給電層としてスパッタリングやCVD等によりシード層7が形成されている。
【0004】
そして、基板Wの表面に銅めっきを施すことで、図1(b)に示すように、半導体基材1のコンタクトホール3及び溝4内に銅を充填するとともに、絶縁膜2上に銅膜6を堆積する。その後、化学機械的研磨(CMP)により、絶縁膜2上の銅膜6及びシード層7を除去して、コンタクトホール3及び配線用の溝4に充填させた銅膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図1(c)に示すように銅膜6からなる配線が形成される。
【0005】
また、最近ではあらゆる機器の構成要素において微細化かつ高精度化が進み、サブミクロン領域での物作りが一般的となるにつれて、加工法自体が材料の特性に与える影響は益々大きくなっている。このような状況下においては、従来の機械加工のように、工具が被加工物を物理的に破壊しながら除去していく加工方法では、加工によって被加工物に多くの欠陥を生み出してしまうため、被加工物の特性が劣化してしまう。したがって、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。
【0006】
この問題を解決する手段として開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工方法は、従来の物理的な加工とは対照的に、化学的溶解反応を起こすことによって、除去加工等を行うものである。したがって、塑性変形による加工変質層や転位等の欠陥は発生せず、上述の材料の特性を損なわずに加工を行うといった課題が達成される。
【0007】
近年、半導体基板上に強誘電体を用いたキャパシタを形成する際の電極材料として、白金属の金属乃至その酸化物が候補として上がっている。中でもルテニウムは成膜性が良好であることから、実現性の高い材料として検討が進んでいる。
【0008】
ここで、回路形成部以外の基板の周縁部及び裏面に成膜乃至付着したルテニウムは不要であるばかりでなく、その後の基板の搬送、保管及び各種処理工程において、クロスコンタミネーションの原因となり、例えば、誘電体の性能を低下させることも起こり得る。従って、ルテニウム膜の成膜工程やルテニウム膜に対して何らかの処理を行った後で、これらを完全に除去しておく必要がある。更に、例えば、キャパシタの電極材料としてルテニウムを使用した場合には、回路形成部に成膜したルテニウム膜の一部を除去する工程が必要となる。
【0009】
【発明が解決しようとする課題】
例えば、CMP工程は、一般にかなり複雑な操作が必要で、制御も複雑となり、加工時間もかなり長い。更に、研磨後の基板の後洗浄を十分に行う必要があるばかりでなく、スラリーや洗浄液の廃液処理のための負荷が大きい等の課題がある。このため、CMP自体を省略する、あるいはこの負荷を軽減することが強く求められている。また、今後、絶縁膜も誘電率の小さいLow−k材に変わると予想され、このLow−k材は強度が弱くCMPによるストレスに耐えられなくなる。したがって、CMPのような過大なストレスを基板に与えることなく、平坦化できるようにしたプロセスが望まれている。
【0010】
なお、化学機械的電解研磨のように、めっきをしながらCMPで削るというプロセスも発表されているが、めっき成長面に機械加工が付加されることで、めっきの異常成長を促すことにもなり、膜質に問題を起こしている。
【0011】
本発明は、このような従来技術の問題点に鑑みてなされたもので、例えばCMP処理そのものを省略したり、CMP処理の負荷を極力低減しつつ、基板表面に設けられた導電性材料を平坦に加工したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)できるようにした電解加工方法及び装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
このような従来技術における問題点を解決するために、本発明の第1の態様は、被加工物よりも大きな径を有する加工電極と、上記被加工物に給電する給電電極と、上記被加工物を保持して上記加工電極に接触又は近接させる保持部と、上記被加工物と上記加工電極又は上記給電電極の少なくとも一方との間に配置されるイオン交換体と、上記加工電極と上記給電電極との間に電圧を印加する電源と、上記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給する流体供給部と、上記加工電極の運動中心が上記被加工物の外径よりも内側に位置した状態で、上記保持部で保持した被加工物と上記加工電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置である。
【0013】
本発明の第2の態様は、被加工物よりも大きな径を有する加工電極と上記被加工物に給電する給電電極とを配置し、上記被加工物と上記加工電極又は上記給電電極の少なくとも一方との間にイオン交換体を配置し、上記加工電極と上記給電電極との間に電圧を印加し、上記被加工物を上記加工電極に接触又は近接させ、上記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給し、上記加工電極の運動中心が常に上記被加工物の外径よりも内側に位置した状態で、上記被加工物と上記加工電極とを相対移動させて上記被加工物の表面を加工することを特徴とする電解加工方法である。
【0014】
図2及び図3は、本発明の加工原理を示すものである。図2は、被加工物10の表面に、加工電極14に取り付けたイオン交換体12aと、給電電極16に取り付けたイオン交換体12bとを接触又は近接させ、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14及び給電電極16と被加工物10との間に流体供給部19から超純水等の流体18を供給した状態を示している。図3は、被加工物10の表面に、加工電極14に取り付けたイオン交換体12aを接触又は近接させ、給電電極16を被加工物10に直接接触させて、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14と被加工物10との間に流体供給部19から超純水等の流体18を供給した状態を示している。
【0015】
超純水のような流体自身の抵抗値が大きい液体を使用する場合には、イオン交換体12aを被加工物10の表面に「接触させる」ことが好ましく、このようにイオン交換体12aを被加工物10の表面に接触させることにより、電気抵抗を低減させることができ、印加電圧も小さくて済み、消費電力も低減できる。したがって、本発明に係る加工における「接触」は、例えばCMPのように物理的なエネルギー(応力)を被加工物に与えるために「押し付ける」ものではない。
【0016】
これにより、超純水等の流体18中の水分子20をイオン交換体12a,12bで水酸化物イオン22と水素イオン24に解離し、例えば生成された水酸化物イオン22を、被加工物10と加工電極14との間の電界と超純水等の流体18の流れによって、被加工物10の加工電極14と対面する表面に供給して、ここでの被加工物10近傍の水酸化物イオン22の密度を高め、被加工物10の原子10aと水酸化物イオン22を反応させる。反応によって生成された反応物質26は、超純水18中に溶解し、被加工物10の表面に沿った超純水等の流体18の流れによって被加工物10から除去される。これにより、被加工物10の表面層の除去加工が行われる。
【0017】
このように、本加工法は純粋に被加工物との電気化学的相互作用のみにより被加工物の除去加工を行うものであり、CMPのような研磨部材と被加工物との物理的な相互作用及び研磨液中の化学種との化学的相互作用の混合による加工とは加工原理が異なるものである。この方法では、被加工物10の加工電極14と対面する部分が加工されるので、加工電極14を移動させることで、被加工物10の表面を所望の表面形状に加工することができる。
【0018】
なお、本発明に係る電解加工装置は、電気化学的相互作用による溶解反応のみにより被加工物の除去加工を行うため、CMPのような研磨部材と被加工物との物理的な相互作用及び研磨液中の化学種との化学的相互作用の混合による加工とは加工原理が異なるものである。したがって、材料の特性を損なわずに除去加工を行うことが可能であり、例えば上述したLow−k材に挙げられる機械的強度の小さい材料に対しても、物理的な相互作用を及ぼすことなく除去加工が可能である。また、通常の電解液を用いる電解加工装置と比較しても、加工液に500μS/cm以下の流体、好ましくは純水、更に好ましくは超純水を用いるため、被加工物表面への汚染も大幅に低減させることが可能であり、また加工後の廃液の処理も容易となる。
【0019】
また、電解加工においては、被加工物上の加工電極の存在頻度と印加電圧により加工量が決まる。したがって、被加工物の全面を一様に平坦に加工しようとする場合、加工電極の存在頻度を被加工物の全面に亘って均一にする必要がある。例えば、半導体基板のように被加工物が円板状であり、かつ加工電極も円形状で、その径が被加工物の径よりも小さい場合には、被加工物と加工電極とを相対運動させて、被加工物の全面に加工電極を存在させることによって、被加工物の全面を一様かつ均一に加工することができる。しかしながら、このような方法においても、被加工物表面内の位置によっては、加工電極の存在頻度が不均一となり、これが加工量の不均一性に繋がってしまう。加工電極の径が被加工物の径より大きい場合には、加工電極の存在頻度の均一性は増すものの、加工を行う部分が大型化し、電極が金属であることに起因した重量化が問題となる。また、イオン交換体と被加工物との接触状態により、接触端部において加工量のばらつきが生じやすい。
【0020】
本発明に係る電解加工装置によれば、加工電極が被加工物よりも大きな径を有しているので、高い加工速度を得ることができると同時に、電解加工中には、加工電極の運動中心が被加工物の外径よりも内側に位置するので、被加工物の表面における加工電極の存在頻度を可能な限り均一化することができる。また、加工を行う部分の大きさを最小限にすることができるので、装置全体を大幅に小型化及び軽量化することができる。ここで、加工電極がスクロール運動をする場合にはそのスクロール運動の中心、回転運動する場合にはその回転中心が、それぞれ加工電極の運動中心となる。
【0021】
本発明の第3の態様は、被加工物よりも大きな径を有する加工電極と、上記被加工物に給電する給電電極と、上記被加工物を保持して上記加工電極及び上記給電電極に接触又は近接させる保持部と、上記加工電極と上記給電電極との間に電圧を印加する電源と、上記被加工物と上記加工電極及び上記給電電極との間に流体を供給する流体供給部と、上記加工電極の運動中心が上記被加工物の外径よりも内側に位置した状態で、上記保持部で保持した被加工物と上記加工電極及び上記給電電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置である。
【0022】
本発明の第4の態様は、被加工物よりも大きな径を有する加工電極と上記被加工物に給電する給電電極とを配置し、上記加工電極と上記給電電極との間に電圧を印加し、上記被加工物を上記加工電極及び上記給電電極に接触又は近接させ、上記被加工物と上記加工電極及び上記給電電極との間に流体を供給し、上記加工電極の運動中心が常に上記被加工物の外径よりも内側に位置した状態で、上記被加工物と上記加工電極及び上記給電電極とを相対移動させて上記被加工物の表面を加工することを特徴とする電解加工方法である。
【0023】
本発明の第5の態様は、被加工物よりも大きな径を有する加工電極と、上記加工電極の外周部に配置された複数の給電電極と、上記被加工物を保持して上記加工電極に接触又は近接させる保持部と、上記被加工物と上記加工電極又は上記給電電極の少なくとも一方との間に配置されるイオン交換体と、上記加工電極と上記給電電極との間に電圧を印加する電源と、上記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給する流体供給部と、少なくとも1つの給電電極が常に上記被加工物に給電するように、上記保持部で保持した被加工物と上記加工電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置である。
【0024】
本発明の第6の態様は、被加工物よりも大きな径を有する加工電極の外周部に複数の給電電極を配置し、上記被加工物と上記加工電極又は上記給電電極の少なくとも一方との間にイオン交換体を配置し、上記加工電極と上記給電電極との間に電圧を印加し、上記被加工物を上記加工電極に接触又は近接させ、上記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給し、少なくとも1つの給電電極が常に上記被加工物に給電するように、上記被加工物と上記加工電極とを相対移動させて上記被加工物の表面を加工することを特徴とする電解加工方法である。
【0025】
給電電極が存在する領域では被加工物の加工を行うことができないため、給電電極が配置された領域の加工速度はそれ以外の領域と比較して低くなる。したがって、給電電極が加工速度に与える影響を小さくするためには、給電電極が占有する面積(領域)を小さくすることが好ましい。この観点から、本発明に係る電解加工装置では、小さな面積の給電電極を加工電極の外周部に複数配置し、このうちの少なくとも1つが相対運動中に被加工物に接触又は近接して給電を行うようにしている。このようにすれば、例えば、リング状の給電電極を加工電極の外周部に配置した場合に比べて加工されない領域を小さくすることができ、被加工物の外周部が加工されないまま残ってしまうことを防止することができる。
【0026】
本発明の好ましい一態様は、上記加工電極は、上記給電電極が配置された外周部に位置する外側加工電極と、上記外側加工電極の内側に位置する内側加工電極とを備えたことを特徴としている。好ましくは、上記電源は、上記外側加工電極と上記内側加工電極とに印加する電圧又は電流をそれぞれ制御する。このように、給電電極が加工速度に影響を与える部分と影響を与えない部分とに加工電極を分割し、これらの加工電極における加工速度を独立に制御することで、給電電極が存在する領域における加工速度の低下を防止することができる。すなわち、外側加工電極における加工速度を、内側加工電極における加工速度に対して相対的に高くすることにより、給電電極の存在による影響を抑えて加工電極の全面で均一な加工速度を実現することが可能となる。
【0027】
本発明の第7の態様は、被加工物よりも大きな径を有する加工電極と、上記加工電極の外周部に配置された複数の給電電極と、上記被加工物を保持して上記加工電極に接触又は近接させる保持部と、上記加工電極と上記給電電極との間に電圧を印加する電源と、上記被加工物と上記加工電極及び上記給電電極との間に流体を供給する流体供給部と、少なくとも1つの給電電極が常に上記被加工物に給電するように、上記保持部で保持した被加工物と上記加工電極及び上記給電電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置である。
【0028】
本発明の第8の態様は、被加工物よりも大きな径を有する加工電極の外周部に複数の給電電極を配置し、上記加工電極と上記給電電極との間に電圧を印加し、上記被加工物を上記加工電極及び上記給電電極に接触又は近接させ、上記被加工物と上記加工電極及び上記給電電極との間に流体を供給し、少なくとも1つの給電電極が常に上記被加工物に給電するように、上記被加工物と上記加工電極及び上記給電電極とを相対移動させて上記被加工物の表面を加工することを特徴とする電解加工方法である。
【0029】
【発明の実施の形態】
以下、本発明に係る電解加工装置及びこれを組み込んだ基板処理装置の実施形態について図面を参照して詳細に説明する。なお、以下の説明では、被加工物として基板を使用し、電解加工装置で基板を加工するようにした例を示しているが、本発明を基板以外にも適用できることは言うまでもない。
【0030】
図4は、本発明の一実施形態における基板処理装置の構成を示す平面図である。図4に示すように、この基板処理装置は、例えば、図1(b)に示すように、表面に導電体膜(被加工物)としての銅膜6を有する基板Wを収納したカセットを搬出入する搬出入部としての一対のロード・アンロード部30と、基板Wを反転させる反転機32と、電解加工装置34とを備えている。これらの機器は直列に配置されており、これらの機器の間で基板Wを搬送して授受する搬送装置としての搬送ロボット36がこれらの機器と平行に配置されている。また、電解加工装置34による電解加工の際に、後述する加工電極と給電電極との間に印加する電圧又はこれらの間を流れる電流をモニタするモニタ部38がロード・アンロード部30に隣接して配置されている。
【0031】
図5は、基板処理装置内の電解加工装置34を模式的に示す縦断面図である。図5に示すように、電解加工装置34は、上下動可能かつ水平方向に揺動自在なアーム40と、アーム40の自由端に垂設されて基板Wを下向き(フェイスダウン)に吸着保持する基板保持部42と、基板保持部42の下方に配置される円板状の電極部44と、電極部44に接続される電源46とを備えている。
【0032】
アーム40は、揺動用モータ48に連結された揺動軸50の上端に取り付けられており、揺動用モータ48の駆動に伴って水平方向に揺動するようになっている。また、この揺動軸50は、上下方向に延びるボールねじ52に連結されており、ボールねじ52に連結された上下動用モータ54の駆動に伴ってアーム40とともに上下動するようになっている。
【0033】
基板保持部42は、基板保持部42で保持した基板Wと電極部44とを相対移動させる第1駆動部としての自転用モータ56に接続されており、この自転用モータ56の駆動に伴って回転(自転)するようになっている。また、上述したように、アーム40は上下動及び水平方向に揺動可能となっており、基板保持部42はアーム40と一体となって上下動及び水平方向に揺動可能となっている。
【0034】
電極部44の下方には、基板Wと電極部44とを相対移動させる第2駆動部としての中空モータ60が設置されており、この中空モータ60の主軸62には、この主軸62の中心から偏心した位置に駆動端64が設けられている。電極部44は、その中央において上記駆動端64に軸受(図示せず)を介して回転自在に連結されている。また、電極部44と中空モータ60との間には、周方向に3つ以上の自転防止機構が設けられている。
【0035】
図6(a)は本実施形態における自転防止機構を示す平面図、図6(b)は図6(a)のA−A線断面図である。図6(a)及び図6(b)に示すように、電極部44と中空モータ60との間には、周方向に3つ以上(図6(a)においては4つ)の自転防止機構66が設けられている。図6(b)に示すように、中空モータ60の上面と電極部44の下面の対応する位置には、周方向に等間隔に複数の凹所68,70が形成されており、これらの凹所68,70にはそれぞれ軸受72,74が装着されている。軸受72,74には、距離eだけずれた2つの軸体76,78の一端部がそれぞれ挿入されており、軸体76,78の他端部は連結部材80により互いに連結される。ここで、中空モータ60の主軸62の中心に対する駆動端64の偏心量も上述した距離eと同じになっている。したがって、電極部44は、中空モータ60の駆動に伴って、主軸62の中心と駆動端64との間の距離eを半径とした、自転を行わない公転運動、いわゆるスクロール運動(並進回転運動)を行うようになっている。
【0036】
図7は基板保持部42及び電極部44を模式的に示す縦断面図、図8は基板Wと電極部44との関係を示す平面図である。図8において、基板Wは点線で示されている。図7及び図8に示すように、電極部44は、基板Wの径よりも大きな径を有する略円板状の加工電極84と、この加工電極84の外周部に配置された複数の給電電極86と、加工電極84と給電電極86とを分離する絶縁体88とを備えている。図7に示すように、加工電極84の上面はイオン交換体90により、また給電電極86の上面はイオン交換体92によりそれぞれ覆われている。これらのイオン交換体90,92は一体に形成してもよい。なお、これらのイオン交換体90,92は図8では図示していない。
【0037】
本実施形態では、電極部44及び基板保持部42の大きさの関係で、電解加工中に電極部44の上方から電極部44の上面に流体の供給を行うことができない。したがって、本実施形態では、図7及び図8に示すように、加工電極84に、純水、より好ましくは超純水を供給する流体供給部としての複数の流体供給口84aを形成している。本実施形態においては、加工電極84の中心に対して放射状に複数の流体供給口84aが配置されている。これらの流体供給口84aは、中空モータ60の中空部の内部を延びる純水供給管82(図5参照)に接続されており、流体供給口84aから電極部44の上面に純水又は超純水が供給されるようになっている。
【0038】
本実施形態では、加工電極84を電源46の陰極に接続し、給電電極86を電源46の陽極に接続しているが、加工材料によっては、電源46の陰極に接続される電極を給電電極とし、陽極に接続される電極を加工電極としてもよい。すなわち、被加工材料が例えば銅やモリブデン、鉄である場合には、陰極側に電解加工作用が生じるため、電源46の陰極に接続した電極が加工電極となり、陽極に接続した電極が給電電極となる。一方、被加工材料が例えばアルミニウムやシリコンである場合には、陽極側で電解加工作用が生じるため、電源46の陽極に接続した電極が加工電極となり、陰極に接続した電極が給電電極となる。
【0039】
また、被加工物が錫酸化物やインジウム錫酸化物(ITO)などの導電性酸化物の場合には、被加工物を還元した後に、電解加工を行う。すなわち、図5において、電源46の陽極に接続した電極が還元電極となり、陰極に接続した電極が給電電極となって、導電性酸化物の還元を行う。続いて、先程給電電極であった電極を加工電極として、還元された導電性酸化物の加工を行う。あるいは、導電性酸化物の還元時の極性を反転させることによって還元電極を加工電極にしてもよい。又、被加工物を陰極にして、陽極電極を対向させることによっても導電性酸化物の除去加工ができる。
【0040】
なお、上記の例では、基板の表面に形成した導電体膜としての銅膜6を電解加工するようにした例を示しているが、基板の表面に成膜乃至付着した不要なルテニウム(Ru)膜も同様にして、すなわちルテニウム膜を陽極となし、陰極に接続した電極を加工電極として、電解加工(エッチング除去)することができる。
【0041】
電解加工中には、自転用モータ(第1駆動部)56を駆動して基板Wを回転させ、同時に中空モータ60(第2駆動部)を駆動して電極部44をスクロール中心O(図8参照)を中心としてスクロール運動させる。このように、基板保持部42に保持された基板Wと加工電極84とをスクロール領域S内で相対運動させて基板W(銅膜6)の全面の加工が行われる。本実施形態の電解加工装置34は、この相対運動中に、加工電極84の運動中心(本実施形態ではスクロール運動の中心O)が常に基板Wの外径よりも内側に位置するように構成されている。このように、加工電極84の径を基板Wの径よりも大きくし、かつ加工電極84の運動中心を常に基板Wの外径よりも内側に位置させることで、基板Wの表面における加工電極84の存在頻度を可能な限り均一化することができる。また、このように構成することで、電極部44の大きさを最小限にすることができるので、装置全体を大幅に小型化及び軽量化することができる。なお、加工電極84の径は、基板Wと加工電極84との相対運動距離(本実施形態ではスクロール半径e)と、基板Wの径との合計よりも大きいことが好ましく、また、基板Wの径の2倍よりも小さいことが好ましい。
【0042】
また、給電電極86が存在する領域では基板Wの加工を行うことができないため、給電電極86が配置された外周部の加工速度はそれ以外の領域と比較して低くなる。したがって、給電電極86が加工速度に与える影響を小さくするためには、給電電極86が占有する面積(領域)を小さくすることが好ましい。この観点から、本実施形態では、小さな面積の給電電極86を加工電極84の外周部に複数配置し、このうちの少なくとも1つが相対運動中に基板Wに接触又は近接して給電を行うようにしている。このようにすれば、例えば、リング状の給電電極を加工電極84の外周部に配置した場合に比べて加工されない領域を小さくすることができ、基板Wの外周部が加工されないまま残ってしまうことを防止することができる。
【0043】
次に、本実施形態における基板処理装置を用いた基板処理(電解加工)について説明する。まず、例えば、図1(b)に示すように、表面に導電体膜(被加工部)として銅膜6を形成した基板Wを収納したカセットをロード・アンロード部30にセットし、このカセットから1枚の基板Wを搬送ロボット36で取り出す。搬送ロボット36は、取り出した基板Wを必要に応じて反転機32に搬送し、基板Wの導電体膜(銅膜6)を形成した表面が下を向くように反転させる。
【0044】
搬送ロボット36は反転させた基板Wを受け取り、これを電解加工装置34に搬送し、基板保持部42に吸着保持させる。そして、アーム40を揺動させて基板Wを保持した基板保持部42を電極部44の直上方の加工位置まで移動させる。次に、上下動用モータ54を駆動して基板保持部42を下降させ、この基板保持部42で保持した基板Wを電極部44のイオン交換体90,92の表面に接触又は近接させる。この状態で、自転用モータ(第1駆動部)56を駆動して基板Wを回転させ、同時に中空モータ60(第2駆動部)を駆動して電極部44をスクロール中心Oを中心としてスクロール運動させる。このとき、加工電極84の流体供給口84aから基板Wとイオン交換体90,92との間に純水又は超純水を供給する。
【0045】
そして、電源46により加工電極84と給電電極86との間に所定の電圧を印加し、イオン交換体90,92により生成された水素イオン又は水酸化物イオンによって、加工電極(陰極)において基板Wの表面の導電体膜(銅膜6)の電解加工を行う。このとき、加工電極84と対面する部分において加工が進行するが、上述したように、基板Wと加工電極84とを相対移動させることにより基板Wの全面の加工を行っている。上述したように、加工電極84が基板Wより大きな径を有しており、また、上記相対運動中に、加工電極84の運動中心Oが常に基板Wの外径よりも内側に位置するようになっているので、基板Wの表面における加工電極84の存在頻度を可能な限り均一化することができる。また、このような構成により、電極部44の大きさを最小限にすることができ、装置全体を大幅に小型化及び軽量化することができる。
【0046】
電解加工中には、加工電極と給電電極との間に印加する電圧、又はこの間を流れる電流をモニタ部38でモニタして、エンドポイント(加工終点)を検知する。すなわち、同じ電圧(電流)を印加した状態で電解加工を行うと、材料によって流れる電流(印加される電圧)に違いが生じる。例えば、図9(a)に示すように、表面に材料Bと材料Aとを順次成膜した基板Wの該表面に電解加工を施したときに流れる電流をモニタすると、材料Aを電解加工している間は一定の電流が流れるが、異なる材料Bの加工に移行する時点で流れる電流が変化する。同様に、加工電極と給電電極との間に印加される電圧にあっても、図9(b)に示すように、材料Aを電解加工している間は一定の電圧が印加されるが、異なる材料Bの加工に移行する時点で印加される電圧が変化する。なお、図9(a)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電流が流れにくくなる場合を、図9(b)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電圧が高くなる場合の例を示している。これにより、この電流又は電圧の変化をモニタすることでエンドポイントを確実に検知することができる。
【0047】
なお、モニタ部38で加工電極と給電電極との間に印加する電圧、又はこの間を流れる電流をモニタして加工終点を検知するようにした例を説明したが、このモニタ部38で、加工中の基板の状態の変化をモニタして、任意に設定した加工終点を検知するようにしてもよい。この場合、加工終点は、被加工面の指定した部位について、所望の加工量に達した時点、又は加工量と相関関係を有するパラメータが所望の加工量に相当する量に達した時点を指す。このように、加工の途中においても、加工終点を任意に設定して検知できるようにすることで、多段プロセスでの電解加工が可能となる。
【0048】
例えば、基板が異材料に達した時に生じる摩擦係数の違いによる摩擦力の変化や、基板の表面の凹凸を平坦化する際、凹凸を除去したことにより生じる摩擦力の変化等を検出することで加工量を判断し、加工終点を検出することとしてもよい。また、被加工面の電気抵抗による発熱や、加工面と被加工面との間に液体(純水)の中を移動するイオンと水分子の衝突による発熱が生じ、例えば基板の表面に堆積した銅膜を定電圧制御で電解研磨する際には、電解加工が進み、バリア層や絶縁膜が露出するのに伴って、電気抵抗が大きくなり電流値が小さくなって発熱量が順に減少する。したがって、この発熱量の変化を検出することで加工量を判断し、加工終点を検出することとしてもよい。あるいは、異材料に達した時に生じる反射率の違いによる反射光の強度の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。また、銅膜等の導電性膜の内部にうず電流を発生させ、基板の内部を流れるうず電流をモニタし、例えば周波数の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。更に、電解加工にあっては、加工電極と給電電極との間を流れる電流値で加工レートが決まり、加工量は、この電流値と加工時間の積で求められる電気量に比例する。したがって、電流値と加工時間の積で求められる電気量を積算し、この積算値が所定の値に達したことを検出することで加工量を判断し、加工終点を検出してもよい。
【0049】
電解加工完了後、電源46の接続を切り、基板保持部42の回転と電極部44のスクロール運動を停止させ、しかる後、基板保持部42を上昇させ、アーム40を移動させて基板Wを搬送ロボット36に受け渡す。基板Wを受け取った搬送ロボット36は、必要に応じて反転機32に搬送して反転させた後、基板Wをロード・アンロード部30のカセットに戻す。
【0050】
ここで、電解加工中に基板Wとイオン交換体90,92との間に供給する純水は、例えば電気伝導度(1atm、25℃換算値、以下同じ)が10μS/cm以下の水であり、超純水は、例えば電気伝導度が0.1μS/cm以下の水である。このように電解質を含まない純水又は超純水を使用して電解加工を行うことで、基板Wの表面に電解質等の余分な不純物が付着したり、残留したりすることをなくすことができる。更に、電解によって溶解した銅イオン等が、イオン交換体90,92にイオン交換反応で即座に捕捉されるため、溶解した銅イオン等が基板Wの他の部分に再度析出したり、酸化されて微粒子となり基板Wの表面を汚染したりすることがない。
【0051】
また、純水又は超純水の代わりに電気伝導度500μS/cm以下の液体、例えば純水又は超純水に電解質を添加した電解液を使用してもよい。電解液を使用することで、電気抵抗を低減して消費電力を削減することができる。この電解液としては、例えば、NaClやNaSO等の中性塩、HClやHSO等の酸、更には、アンモニア等のアルカリなどの溶液を使用することができ、被加工物の特性によって適宜選択して使用することができる。
【0052】
更に、純水又は超純水の代わりに、純水又は超純水に界面活性剤等を添加して、電気伝導度が500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下(比抵抗で10MΩ・cm以上)にした液体を使用してもよい。このように、純水又は超純水に界面活性剤を添加することで、基板Wとイオン交換体90,92の界面にイオンの移動を防ぐ一様な抑制作用を有する層を形成し、これによって、イオン交換(金属の溶解)の集中を緩和して被加工面の平坦性を向上させることができる。ここで、界面活性剤濃度は、100ppm以下が好ましい。なお、電気伝導度の値が高すぎると電流効率が下がり、加工速度が遅くなるが、500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下の電気伝導度を有する液体を使用することで、所望の加工速度を得ることができる。
【0053】
また、電極部44のイオン交換体90,92は、例えば、アニオン交換能又はカチオン交換能を付与した不織布で構成することができる。カチオン交換体は、好ましくは強酸性カチオン交換基(スルホン酸基)を担持したものであるが、弱酸性カチオン交換基(カルボキシル基)を担持したものでもよい。また、アニオン交換体は、好ましくは強塩基性アニオン交換基(4級アンモニウム基)を担持したものであるが、弱塩基性アニオン交換基(3級以下のアミノ基)を担持したものでもよい。
【0054】
ここで、例えば強塩基アニオン交換能を付与した不織布は、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖をアミノ化して4級アンモニウム基を導入して作製される。導入されるイオン交換基の容量は、導入するグラフト鎖の量により決定される。グラフト重合を行うためには、例えばアクリル酸、スチレン、メタクリル酸グリシジル、更にはスチレンスルホン酸ナトリウム、クロロメチルスチレン等のモノマーを用い、これらのモノマー濃度、反応温度及び反応時間を制御することで、重合するグラフト量を制御することができる。したがって、グラフト重合前の素材の重量に対し、グラフト重合後の重量の比をグラフト率と呼ぶが、このグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0055】
強酸性カチオン交換能を付与した不織布は、上記強塩基性アニオン交換能を付与する方法と同様に、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖を、例えば加熱した硫酸で処理してスルホン酸基を導入して作製される。また、加熱したリン酸で処理すればリン酸基が導入できる。ここでグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0056】
なお、イオン交換体90,92の素材の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子、又はその他有機高分子が挙げられる。また素材形態としては、不織布の他に、織布、シート、多孔質材、短繊維等が挙げられる。ここで、ポリエチレンやポリプロピレンは、放射線(γ線と電子線)を先に素材に照射する(前照射)ことで、素材にラジカルを発生させ、次にモノマーと反応させてグラフト重合することができる。これにより、均一性が高く、不純物が少ないグラフト鎖ができる。一方、その他の有機高分子は、モノマーを含浸させ、そこに放射線(γ線、電子線、紫外線)を照射(同時照射)することで、ラジカル重合することができる。この場合、均一性に欠けるが、ほとんどの素材に適用できる。
【0057】
このように、イオン交換体90,92をアニオン交換能又はカチオン交換能を付与した不織布で構成することで、純水又は超純水や電解液等の液体が不織布の内部を自由に移動して、不織布内部の水分解触媒作用を有する活性点に容易に到達することが可能となって、多くの水分子が水素イオンと水酸化物イオンに解離される。更に、解離によって生成した水酸化物イオンが純水又は超純水や電解液等の液体の移動に伴って効率良く加工電極84の表面に運ばれるため、低い印加電圧でも高電流が得られる。
【0058】
ここで、イオン交換体90,92をアニオン交換能又はカチオン交換能の一方を付与したもののみで構成すると、電解加工できる被加工材料が制限されるばかりでなく、極性により不純物が生成しやすくなる。そこで、アニオン交換能を有するアニオン交換体とカチオン交換能を有するカチオン交換体とを重ね合わせたり、イオン交換体90,92自体にアニオン交換能とカチオン交換能の双方の交換基を付与するようにしたりしてもよく、これにより、被加工材料の範囲を拡げるとともに、不純物を生成しにくくすることができる。
【0059】
また、電極は、電解反応により酸化又は溶出が一般に問題となる。このため、電極の素材として、炭素、比較的不活性な貴金属、導電性酸化物又は導電性セラミックスを使用することが好ましい。電極が酸化すると電極の電気抵抗値が増加し、印加電圧の上昇を招くが、白金などの酸化しにくい材料やイリジウムなどの導電性酸化物で電極表面を保護すれば、電極素材の酸化による導電性の低下を防止することができる。
【0060】
図10は、本発明の他の実施形態の電解加工装置における基板保持部42及び電極部44aを模式的に示す断面図(図7相当図)である。この実施形態の電極部44aは、前述の例と同様に、基板Wの径よりも大きな径を有する略円板状の加工電極84と、この加工電極84の外周部に配置された複数の給電電極86と、加工電極84と給電電極86とを分離する絶縁体88とを備えている。しかし、本実施形態では、電極の上面にイオン交換体を有していない。また、加工電極84に、純水、より好ましくは超純水や電解液等の加工液を供給する流体供給部としての複数の流体供給口84aが加工電極84の中心に対して放射状に配置されている等の他の構成は前述の例と同様である。
【0061】
なお、この実施形態では、電極表面にイオン交換体を載置しない場合を示しているが、電極と被加工物の間に、イオン交換体以外の部材を介在させるようにしもよい。その場合、スポンジなど通液性の部材を用いることにより、電極と被加工物の間の液体を介してイオンを移動させる。
【0062】
なお、電極と被加工物との間に部材を介さない場合は、被加工物と各電極との間の抵抗が、絶縁体88を挟んで互いに隣接する加工電極84と給電電極86との間の抵抗よりも小さくなるように被加工物と各電極間の距離及び絶縁体88を挟んだ加工電極84と給電電極86との間の距離を設定する必要がある。これにより、イオンの移動を隣り合う電極間よりも電極と被加工物との間で行わせるようにして、電流が給電電極→被加工物→加工電極に優先的に流れるようになる。
【0063】
この実施形態の電解加工装置によって、基板Wの表面に成膜乃至付着した不要なルテニウム膜Ruをエッチング除去する時には、加工電極84及び給電電極86と基板Wの被加工部であるルテニウム膜Ruとの間に、例えば、ハロゲン化物を含んだ電解液を供給する。そして、電源の陽極を給電電極86に、陰極を加工電極84にそれぞれ接続し、これによって、基板Wの表面のルテニウム膜Ruを陽極となし、加工電極84を陰極となして、基板Wと加工電極84及び給電電極86との間に電解液を供給して加工電極84に対面している部位をエッチング除去する。
【0064】
ハロゲン化物を溶解させる溶媒としては、例えば、水またはアルコール類、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド等の有機溶媒が使用できる。加工するルテニウム膜の用途、加工後に必要となる洗浄、表面状態等により適宜選択すればよい。半導体製造に使われる基板に対しては、不純物の汚染を極力避けるために、純水を使用することが好ましく、超純水を使用することが更に好ましい。
【0065】
また、ハロゲン化物は、その溶液を電解液としたときに電気化学的相互作用によりルテニウム膜のエッチング加工が進行し、かつ、電解中に生成した化合物がルテニウムと反応し、反応物が電解液中に溶解するか、または揮発して除去されるものであればいずれでもよい。例えば、HCl、HBr、HIの水溶液のようなハロゲン化水素酸、HClO、HBrO、HIO、HClO、HBrO、HIOのようなハロゲンオキソ酸の水溶液、NaClO、KClO、NaClO、KClOのようなハロゲンオキソ酸塩の水溶液、NaCl、KClのような中性塩の水溶液を電解液として使用することができる。加工後のルテニウムの使用用途と残留物質の影響、ルテニウムの膜厚、ルテニウムの下地膜の特性等により適宜選択して使用すればよい。
【0066】
この電解加工装置においては、前述の例と同様に、基板ホルダを介して基板Wを加工電極84及び給電電極86に近接乃至接触させて回転させつつ、電極部44aをスクロール運動させるのであり、これにより、電気化学反応によりルテニウム膜がエッチング除去されるとともに、電解により生成したハロゲン化物とルテニウムが化学反応し、ルテニウム膜のエッチング除去が進行する。加工後の表面は、超純水供給ノズル(図示せず)より供給される超純水により洗浄される。
【0067】
ハロゲン化物の濃度は、1mg/l〜10g/l、好ましくは100mg/l〜1g/l程度である。ハロゲン化物の種類、加工時間、加工面積、陽極としたルテニウム膜と陰極とした加工電極との距離、電解電圧等は、電解加工後の基板の表面状態や廃液処理の能力等により適宜決めればよい。例えば、希薄濃度の電解液を使用して電解電圧を高くすることで、薬液使用量を削減することができ、電解液の濃度を高くすることで、加工速度を速くすることができる。
【0068】
上述の実施形態では、電極部44,44aとして、1つの部材により構成された加工電極84を備えたものを使用した例を説明したが、これに限られるものではない。例えば、図11に示すように、電極部44bとして、格子状に複数に分割した加工電極184を備えたものを使用してもよい。また、図12に示すように、電極部44cとして、リング状に複数に分割した加工電極284を備えたものを使用してもよい。これらの場合において、分割された加工電極を、電気的に一体に構成してもよく、あるいは絶縁体を介して電気的に分離して構成してもよい。加工電極を電気的に分離した場合には、個々の加工電極での加工速度を均一化することが容易ではないため、電極間の加工速度のバラツキを考慮した場合には、加工電極を1つの部材により構成することが好ましい。
【0069】
上述したように、1つの部材により構成された加工電極84を備えた電極部44,44aにおいては、給電電極86が存在する領域では基板Wの加工を行うことができないため、給電電極86が配置された外周部の加工速度はそれ以外の領域と比較して低くなる。したがって、加工電極84の外周部の切欠き幅wと切欠き長さL(図8参照)を調整することで、基板Wの外周部の加工速度を制御することができる。ここで、図13に示すように、加工電極を絶縁体89を介して、給電電極86が加工速度に影響を与える部分、すなわち給電電極86が配置された外周部に位置する外側加工電極384aと、加工速度に影響を与えない部分、すなわち外側加工電極384aの内側に位置する内側加工電極384bとに分割した電極部44dを使用すれば、加工電極の全面で均一な加工速度を実現することができる。すなわち、給電電極86の存在による影響を考慮し、電源46により各加工電極384a,384bに印加する電圧等を調整して、外側加工電極384aにおける加工速度を、内側加工電極384bにおける加工速度に対して相対的に高くすることによって、加工電極の全面で均一な加工速度を実現することができる。
【0070】
また、上述の実施形態では、電極部44をスクロール運動させ、基板Wを回転させた例を説明したが、加工電極84と基板Wとを相対運動させることができれば、どのようなものであってもよい。例えば、電極部44と基板Wの双方を回転させることとしてもよい。この場合には、加工電極の運動中心は回転中心となる。また、上述の実施形態では基板保持部42が基板Wを下向き(フェイスダウン)に吸着保持する例を説明したが、これに限られるものではなく、例えば基板Wを上向き(フェイスアップ)に保持してもよい。
【0071】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0072】
【発明の効果】
上述したように、本発明によれば、基板等の被加工物に物理的な欠陥を与えて被加工物の特性を損なうことを防止しつつ、電気化学的作用によって、例えばCMPに代わる電解加工等を施すことができ、これによって、CMP処理そのものを省略したり、CMP処理の負荷を低減したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)することができる。しかも、純水又は超純水のみを使用しても基板を加工することができ、これによって、基板の表面に電解質等の余分な不純物が付着したり、残留したりすることをなくして、加工除去加工後の洗浄工程を簡略化できるばかりでなく、廃液処理の負荷を極めて小さくすることができる。
【図面の簡単な説明】
【図1】銅配線基板の一製造例を工程順に示す図である。
【図2】加工電極及び給電電極を基板(被加工物)に近接させ、加工電極及び給電電極と基板(被加工物)との間に純水又は電気伝導度が500μS/cm以下の液体を供給するようにしたときの本発明による電解加工の原理の説明に付する図である。
【図3】加工電極のみにイオン交換体を取り付けて、加工電極と基板(被加工物)との間に液体を供給するようにしたときの本発明による電解加工の原理の説明に付する図である。
【図4】本発明の一実施形態における基板処理装置の構成を示す平面図である。
【図5】図4に示す基板処理装置の電解加工装置を模式的に示す縦断面図である。
【図6】図6(a)は図5の電解加工装置における自転防止機構を示す平面図、図6(b)は図6(a)のA−A線断面図である。
【図7】図5の電解加工装置における基板保持部及び電極部を模式的に示す縦断面図である。
【図8】図7の電極部と基板との関係を示す平面図である。
【図9】図9(a)は、異なる材料を成膜した基板の表面に電解加工を施したときに流れる電流と時間の関係を、図9(b)は、同じく印加される電圧と時間の関係をそれぞれ示すグラフである。
【図10】本発明の他の実施形態の電解加工装置における基板保持部及び電極を模式的に示す図である。
【図11】本発明の他の実施形態における電極部を示す平面図である。
【図12】本発明の他の実施形態における電極部を示す斜視図である。
【図13】本発明の他の実施形態における電極部を基板とともに示す平面図である。
【符号の説明】
6  銅膜(導電体膜)
7  シード層
10  被加工物
12a,12b  イオン交換体
14  加工電極
16  給電電極
17  電源
18  超純水
19  流体供給部
20  水分子
22  水酸化物イオン
24  水素イオン
26  反応物質
30  ロード・アンロード部
32  反転機
34  電解加工装置
36  搬送ロボット
38  モニタ部
40  アーム
42  基板保持部
44,44a,44b,44c,44d  電極部
46  電源
48  揺動用モータ
50  揺動軸
52  ボールねじ
54  上下動用モータ
56  自転用モータ
60  中空モータ
62  主軸
64  駆動端
66  自転防止機構
68,70  凹所
72,74  軸受
76,78  軸体
80  連結部材
82  純水供給管
84,184,284,384a,384b  加工電極
86  給電電極
88,89  絶縁体
90,92  イオン交換体

Claims (10)

  1. 被加工物よりも大きな径を有する加工電極と、
    前記被加工物に給電する給電電極と、
    前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、
    前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間に配置されるイオン交換体と、
    前記加工電極と前記給電電極との間に電圧を印加する電源と、
    前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給する流体供給部と、
    前記加工電極の運動中心が前記被加工物の外径よりも内側に位置した状態で、前記保持部で保持した被加工物と前記加工電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置。
  2. 被加工物よりも大きな径を有する加工電極と、
    前記被加工物に給電する給電電極と、
    前記被加工物を保持して前記加工電極及び前記給電電極に接触又は近接させる保持部と、
    前記加工電極と前記給電電極との間に電圧を印加する電源と、
    前記被加工物と前記加工電極及び前記給電電極との間に流体を供給する流体供給部と、
    前記加工電極の運動中心が前記被加工物の外径よりも内側に位置した状態で、前記保持部で保持した被加工物と前記加工電極及び前記給電電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置。
  3. 被加工物よりも大きな径を有する加工電極と、
    前記加工電極の外周部に配置された複数の給電電極と、
    前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、
    前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間に配置されるイオン交換体と、
    前記加工電極と前記給電電極との間に電圧を印加する電源と、
    前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給する流体供給部と、
    少なくとも1つの給電電極が常に前記被加工物に給電するように、前記保持部で保持した被加工物と前記加工電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置。
  4. 被加工物よりも大きな径を有する加工電極と、
    前記加工電極の外周部に配置された複数の給電電極と、
    前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、
    前記加工電極と前記給電電極との間に電圧を印加する電源と、
    前記被加工物と前記加工電極及び前記給電電極との間に流体を供給する流体供給部と、
    少なくとも1つの給電電極が常に前記被加工物に給電するように、前記保持部で保持した被加工物と前記加工電極及び前記給電電極とを相対移動させる駆動部とを備えたことを特徴とする電解加工装置。
  5. 前記加工電極は、前記給電電極が配置された外周部に位置する外側加工電極と、前記外側加工電極の内側に位置する内側加工電極とを備えたことを特徴とする請求項3または4に記載の電解加工装置。
  6. 前記電源は、前記外側加工電極と前記内側加工電極とに印加する電圧又は電流をそれぞれ制御することを特徴とする請求項5に記載の電解加工装置。
  7. 被加工物よりも大きな径を有する加工電極と前記被加工物に給電する給電電極とを配置し、
    前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間にイオン交換体を配置し、
    前記加工電極と前記給電電極との間に電圧を印加し、
    前記被加工物を前記加工電極に接触又は近接させ、
    前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給し、
    前記加工電極の運動中心が常に前記被加工物の外径よりも内側に位置した状態で、前記被加工物と前記加工電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
  8. 被加工物よりも大きな径を有する加工電極と前記被加工物に給電する給電電極とを配置し、
    前記加工電極と前記給電電極との間に電圧を印加し、
    前記被加工物を前記加工電極及び前記給電電極に接触又は近接させ、
    前記被加工物と前記加工電極及び前記給電電極との間に流体を供給し、
    前記加工電極の運動中心が常に前記被加工物の外径よりも内側に位置した状態で、前記被加工物と前記加工電極及び前記給電電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
  9. 被加工物よりも大きな径を有する加工電極の外周部に複数の給電電極を配置し、
    前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間にイオン交換体を配置し、
    前記加工電極と前記給電電極との間に電圧を印加し、
    前記被加工物を前記加工電極に接触又は近接させ、
    前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に流体を供給し、
    少なくとも1つの給電電極が常に前記被加工物に給電するように、前記被加工物と前記加工電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
  10. 被加工物よりも大きな径を有する加工電極の外周部に複数の給電電極を配置し、
    前記加工電極と前記給電電極との間に電圧を印加し、
    前記被加工物を前記加工電極及び前記給電電極に接触又は近接させ、
    前記被加工物と前記加工電極及び前記給電電極との間に流体を供給し、
    少なくとも1つの給電電極が常に前記被加工物に給電するように、前記被加工物と前記加工電極及び前記給電電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
JP2003011660A 2002-05-17 2003-01-20 電解加工方法及び装置 Expired - Fee Related JP4233331B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011660A JP4233331B2 (ja) 2002-05-17 2003-01-20 電解加工方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002142411 2002-05-17
JP2003011660A JP4233331B2 (ja) 2002-05-17 2003-01-20 電解加工方法及び装置

Publications (2)

Publication Number Publication Date
JP2004043952A true JP2004043952A (ja) 2004-02-12
JP4233331B2 JP4233331B2 (ja) 2009-03-04

Family

ID=31719451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011660A Expired - Fee Related JP4233331B2 (ja) 2002-05-17 2003-01-20 電解加工方法及び装置

Country Status (1)

Country Link
JP (1) JP4233331B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026931A1 (ja) * 2005-09-02 2007-03-08 Ebara Corporation 電解加工方法及び電解加工装置
WO2018066297A1 (ja) * 2016-10-07 2018-04-12 東京エレクトロン株式会社 電解処理治具及び電解処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064799A (ja) * 1999-08-27 2001-03-13 Yuzo Mori 電解加工方法及び装置
JP2001160545A (ja) * 1999-12-02 2001-06-12 Okamoto Machine Tool Works Ltd 半導体基板上の白金層の化学機械研磨方法
JP2002093761A (ja) * 2000-09-19 2002-03-29 Sony Corp 研磨方法、研磨装置、メッキ方法およびメッキ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064799A (ja) * 1999-08-27 2001-03-13 Yuzo Mori 電解加工方法及び装置
JP2001160545A (ja) * 1999-12-02 2001-06-12 Okamoto Machine Tool Works Ltd 半導体基板上の白金層の化学機械研磨方法
JP2002093761A (ja) * 2000-09-19 2002-03-29 Sony Corp 研磨方法、研磨装置、メッキ方法およびメッキ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026931A1 (ja) * 2005-09-02 2007-03-08 Ebara Corporation 電解加工方法及び電解加工装置
WO2018066297A1 (ja) * 2016-10-07 2018-04-12 東京エレクトロン株式会社 電解処理治具及び電解処理方法
KR20190060763A (ko) * 2016-10-07 2019-06-03 도쿄엘렉트론가부시키가이샤 전해 처리 지그 및 전해 처리 방법
JPWO2018066297A1 (ja) * 2016-10-07 2019-08-08 東京エレクトロン株式会社 電解処理治具及び電解処理方法
US11427920B2 (en) 2016-10-07 2022-08-30 Tokyo Electron Limited Electrolytic processing jig and electrolytic processing method
KR102499511B1 (ko) 2016-10-07 2023-02-14 도쿄엘렉트론가부시키가이샤 전해 처리 지그 및 전해 처리 방법

Also Published As

Publication number Publication date
JP4233331B2 (ja) 2009-03-04

Similar Documents

Publication Publication Date Title
US7655118B2 (en) Electrolytic processing apparatus and method
KR100849202B1 (ko) 전해처리장치 및 기판처리장치
US20070187259A1 (en) Substrate processing apparatus and method
US20070187257A1 (en) Electrolytic processing apparatus and electrolytic processing method
US7101465B2 (en) Electrolytic processing device and substrate processing apparatus
JP2006502310A (ja) 電解加工装置
US20050155868A1 (en) Electrolytic processing apparatus and electrolytic processing method
JP4233331B2 (ja) 電解加工方法及び装置
US20080121529A1 (en) Flattening Method and Flattening Apparatus
JP2008160134A (ja) 基板処理方法
JP3933520B2 (ja) 基板処理装置及び基板処理方法
US20040256237A1 (en) Electrolytic processing apparatus and method
JP4310085B2 (ja) 電解加工方法及び装置
JP2004002910A (ja) 電解加工方法及び装置
JP4127361B2 (ja) 電解加工装置
US20070095659A1 (en) Electrolytic processing apparatus and electrolytic processing method
JP4172945B2 (ja) 電解加工用イオン交換体の再生方法及び再生装置
JP2004084054A (ja) 電解加工方法及び装置
JP4130073B2 (ja) イオン交換体の再生方法及び再生装置
JP2004255479A (ja) 電解加工方法及び電解加工装置
US7563356B2 (en) Composite processing apparatus and method
JP2006013177A (ja) 電解加工装置及び電解加工方法
JP2003175422A (ja) 電解加工装置及び方法
JP2005199401A (ja) 電解加工装置及び方法
JP2003080421A (ja) 電解加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees