JP2004042057A - Method and apparatus for continuously casting steel - Google Patents

Method and apparatus for continuously casting steel Download PDF

Info

Publication number
JP2004042057A
JP2004042057A JP2002200026A JP2002200026A JP2004042057A JP 2004042057 A JP2004042057 A JP 2004042057A JP 2002200026 A JP2002200026 A JP 2002200026A JP 2002200026 A JP2002200026 A JP 2002200026A JP 2004042057 A JP2004042057 A JP 2004042057A
Authority
JP
Japan
Prior art keywords
mold
oscillation
molten metal
continuous casting
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002200026A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
原田 寛
Takehiko Fuji
藤 健彦
Masahiro Tani
谷 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002200026A priority Critical patent/JP2004042057A/en
Publication of JP2004042057A publication Critical patent/JP2004042057A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize solidification at the initial stage by casting while giving the oscillation to a mold with electromagnetic force and to give the lubricating action and the surface characteristic improving action between the mold and molten metal in a method for continuously casting the molten metal. <P>SOLUTION: In the continuous casting method, with which the molten metal is solidified while impressing AC current by disposing a coil on the outer periphery of the mold and giving pinch force to a meniscus part, conditions of the mold oscillation are adjusted so as to satisfy the following relationships (1), (2) and (3). t<SB>P</SB>≥ 0.2 × exp(-αP)...(1), t<SB>N</SB>≥ 0.1 × exp(-βP)...(2), S ≥ 4 × exp(-γP)...(3), wherein, t<SB>P</SB>: positive stripping time, t<SB>N</SB>: negative stripping time, S: oscillation stroke, P: raise-up height and α,β,γ: factors. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属を連続鋳造する方法に関し、特に、鋳型に電磁力による鋳型振動を付与しつつ鋳造することで初期凝固を安定させ、鋳型と溶融金属間に潤滑作用および表面性状改善作用を付与しながら連続鋳造方法に関する。
【0002】
【従来の技術】
一般に、鋼の連続鋳造においてはパウダーが鋳型内溶融金属プール上面に添加され、溶融金属からの熱で溶融したパウダーは、上下に振動する鋳型と、一定速度で引き抜かれる凝固シェルとの相対運動によって、これらの隙間に流入する。この溶融パウダーの流入の際に発生する動圧によってメニスカスや凝固シェル先端が変形する。この変形は鋳型オシレーションの周期で繰り返されるため、鋳片表面にはオシレーションマークと呼ばれる周期的な皺が形成される。この規則的な軽微なオシレーションマークの形成は、鋳造操業や鋳片表面品質の安定化にさほど影響は与えないにしても、深さのある重度のオシレーションマークの形成は、特定元素の偏析、気泡、介在物捕捉増加等の鋳片表面欠陥という問題に繋がることになる。
【0003】
このような問題を解決する方法として、例えば、特開昭58−32824号公報には、図4に示すように、溶融金属2を潤滑剤4と共に一定の周期で振動する水冷鋳型1い注入し、連続的に下方に引き抜く連続鋳造方法において鋳型1の周りに設けた電磁コイル5に交流電流を連続的に通電し交流磁場によって発生する電磁力を利用して溶融金属2を凸状に盛り上げることによって鋳片の表面性状を改善する方法が開示されている。また、特開昭64−83348号公報には、電磁コイルによって鋳型内の溶融金属に電磁力を与え、鋳型周りに設けた誘導コイルに発生した交流に印加することによって電磁力を間歇的に付与し、メニスカス部を凸状に湾曲させて鋳型内面の沿ったパウダーの送り込みを促進させるパウダーキャスティングにおいて、交流磁場をパルス状に印加することによって電磁力を間歇的に付与する鋳型と鋳片間の潤滑を改善する連続鋳造方法が開示されている。更に、再公表WO96/05926号公報には、図5に示すように、鋳型壁1を取り囲むように設置されたソレノイド状電磁コイル5に交流電流を通電し、前記鋳型内の凝固中の溶融金属2に、誘導電流20と誘導磁場21の方向から決まる鋳型壁1から溶融金属側に引き離す方向に作用する電磁力22を印加しながら溶融金属2を凸状に盛り上げて連続鋳造する方法で、通電する交流電流の振幅または波形を波形発生装置24により周期的に変化させて初期凝固を安定させ、鋳片表面性状を改善する方法が開示されている。
【0004】
しかし、この方法においては、鋳型オシレーションの許容条件は従来の鋳造条件に比較して緩和されることになるが、ブレークアウト発生という別の問題が発生し、しかも、表面性状の改善効果がさほど得られないという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、溶融金属を連続鋳造する方法に際し、鋳型に電磁力による鋳型振動を付与しつつ鋳造することで初期凝固を安定させ、鋳型と溶融金属間の潤滑と表面性状改善する鋼の連続鋳造方法する方法を提供する。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は以下のとおりである。
【0007】
(1)鋳型外周にコイルを配置し交流電流を印加しつつ溶融金属のメニスカス部にピンチ力を付与しつつ凝固させる連続鋳造方法において、鋳型オッシレーションの条件を以下の関係式が満足するように調整したことを特徴とする鋼の連続鋳造方法
≧0.2・exp(−αP)−−−−−(1)
≧0.1・exp(−βP)−−−−−(2)
S≧4・exp(−γP)−−−−−−− (3)
ここで、t :ポジティブストリップ時間、t :ネガティブストリップ時間、S:オッシレーションストローク、P:盛り上がり高さ、α、β、γ:係数である。
【0008】
(2)上記(1)において鋳型外周に配置されたコイルに印加する交流電流を間歇的に印加したことを特徴とする鋼の連続鋳造方法。
【0009】
(3)上記(1),(2)において鋳型外周に配置されたコイルに交流電流を印加しつつメニスカス近傍に直流磁界を印加したことを特徴とする鋼の連続鋳造方法。
【0010】
(4)鋳型外周にコイルを配置し交流電流を印加しつつ溶融金属のメニスカス部にピンチ力を付与しつつ凝固させる連続鋳造方法において、印加する電磁力に応じて鋳型オッシレーションの条件を調整できるようにしたことを特徴とする鋼の連続鋳造装置。
【0011】
【発明の実施の形態】
以下に本発明を図面を用いて詳細に説明する。
【0012】
図1は、本発明による方法を実施するための連続鋳造装置の概略を示す横断面である。水冷鋳型1の周囲には交流電流を通電するための通電コイル5が、その上端がメニスカス3の位置となるように前記水冷鋳型1に埋設して配設されている。鋳造時には、水冷鋳型1の上方のタンディシュ(図示せず)から浸漬ノズル6を介して溶融金属が水冷鋳型1内に供給される。
【0013】
浸漬ノズルからの溶融金属の吐出方向は、短辺方向に向けて吐出、長辺、短辺それぞれの面に向けて吐出、プール下方に向けて吐出、これらの重ね合わせ等、鋳造条件によって様々な方向があるが、以下の説明においては、スラブ鋳造において浸漬ノズルの吐出方向が短辺方向である場合を例にとって説明する。
【0014】
なお、以下の説明においては、水冷鋳型の水平断面形状は長方形である鋳型とする。前記水冷鋳型1内の溶融金属2の表面には潤滑剤としてパウダー4が供給され、溶融金属2は水冷鋳型1の上下動によるオッシレーションをうけつつ冷却され、凝固しつつ鋳片として下方に引き抜かれる。この時、通電コイル5には、数十〜数百Hzの交流電流が通電されることにより鋳型内に誘導磁場Bが生成し、これによって誘導電流Jが誘起される。この誘導電流Jと誘導磁場Bの作用により溶融金属2に電磁力Fが水冷鋳型1の中心に向かう方向に作用し、メニスカス3近傍において溶融金属を凸状に盛り上げ、水冷鋳型1との潤滑を円滑に維持しつつ凝固が進行する。
【0015】
その結果、鋳片のオッシレーションマーク等を軽減し表面性状を改善することが可能となるが、オッシレーションの条件によってその効果は異なることが考えられるため、オッシレーション条件について検討した。図2に鋳型オッシレーション条件と鋳造速度との関係を示す。ポジティブストリップ時間とは、鋳型速度が鋳片の引き抜き速度よりも遅い時間帯を示し、ネガティブストリップ時間とは、鋳型速度が鋳片引き抜き速度よりも早い時間を示す。一般的にポジティブストリップ時間とパウダー消費量との相関が認められることから、パウダー消費量を確保する上である一定時間以上確保する必要があると言われている。一方、ネガティブストリップ時間については、操業中の湯面レベル変動は0にはできないため、湯面レベル変動時に一旦鋳型に拘束された凝固シェルを確実に引き抜かれている凝固シェルに押し込み接合させるため、一定時間確保することが必要とされている。また、一般的にオッシレーションマーク深さを低減するために、オッシレーションのストロークを短く、かつ振動数を高めることが行われるが、振動数が過大となりすぎるとメニスカスの変形が追随せず、逆にオッシレーションマーク深さが深くなることもあり、適正なオッシレーション条件があることが知られている。
【0016】
そこで、メニスカス部近傍に加える電磁力と鋳型オッシレーション条件を種々変化させて鋳造し、ブレークアウトの発生の有無、パウダー消費量、オシレーションマーク深さとの関係を調査した。その結果、付与する電磁力の強さすなわち、溶融金属の盛り上がり高さが高くなるほど、ポジティブストリップ時間、ネガティブストリップ時間共に最小値は低くなり、安定的に鋳造できる範囲は下記式で表現できることを知見した。
【0017】
なお、盛り上がり高さについては図4のように定義する。電磁力を印加した場合の厚み中央近傍での湯面レベル(図4(b))と電磁力を印加してない場合の湯面レベル(図4(a))との差を盛り上がり高さとする。測定方法については、例えば、鋳型内に銅被覆した鉄ワイヤーを厚み方向に数本浸漬し引き上げることで湯面レベルの形状を測定することができ、電磁力の各印加条件で比較することで盛り上がり高さを定義することができる。
【0018】
≧0.2・exp(−αP)−−−−−(1)
≧0.1・exp(−βP)−−−−−(2)
ポジティブストリップ時間並びにネガティブストリップ時間の最小値が電磁力の印加により小さくなる理由は、電磁力を付与することで溶融金属のメニスカス部と鋳型間のギャップが拡大するために必然的にパウダー流入量が増えることになる。これは、印加する電磁力、すなわち、溶融金属の盛り上がり高さと関係しており、溶融金属の盛り上がり高さが大きくなれば前記ギャップの拡大量が増大することになる。そのため、パウダー流入量を確保する意味で設けているポジティブストリップ時間は短くできることになる。また、ネガティブストリップ時間については、凝固シェルが鋳型に拘束される可能性が低下し、結果として凝固シェルへの押し込み力を確保し、拘束性ブレークアウトを回避するために設けてあるネガティブストリップ時間の最低値を短くすることが可能となる。尚、鋳造中の湯面レベル変動は操業上0にすることはできないため、電磁力を印加した条件においてもポジティブストリップ時間、ネガティブストリップ時間いずれもいくらかの時間が必要であり、鋳造速度と電磁力の関係から規定されることになる。
【0019】
オシレーションマーク深さとの関係に関して、局部的にオッシレーションマーク深さが深くなるストロークと電磁力との関係については以下の式で表現されることを知見した。これは、電磁力を印加しない場合にストロークを短くすることでメニスカスの変形が追随しきれずオシレーションマークの乱れが確認されたが、電磁力を印加することでメニスカス部と鋳型間の距離が拡大することでオシレーションに伴うメニスカスの変形の影響が伝播されにくくなるため、許容されるオッシレーションのストロークを電磁力によってより短いストロークまで可能にすることができることによる。また、同じストロークの中では(2)式で示される条件の中でネガティブストリップ時間が短いほどオシレーションマーク深さは浅くすることができた。
【0020】
S≧4・exp(γP)−−−−−(3)
なお、電磁力を間歇的に印加する場合とピンチ力に加え湯面でのミクロ的な変動を防止する意味でメニスカス近傍に直流磁場を併せて重畳させた場合についても同様の調査を行ったが、ほぼ同じ関係式を満足することで安定鋳造が可能でかつオシレーションマーク深さを浅くすることができた。また、オッシレーションの波形については、鋳型と鋳片との相対速度が問題であるため、一般的に用いられる正弦波に限定されることはなく、三角波であっても非正弦波であっても構わない。
【0021】
【実施例】
幅:1500mm、高さ:880mm、厚み:250mmを有する鋳型のメニスカス部に、高さ:1500mmのソレノイドコイルをその上端がメニスカス位置になるように設置し、また、メニスカス位置から300mmの深さとなる外径:150mm、内径:90mmの浸漬ノズルを用いた。電磁コイルには、溶融金属の盛り上がりが20mmとなるように周波数150Hzの正弦波交流を通電し、鋳造速度:1.5m/分として幅:1500mm、厚み:250mmの低炭素アルミキルド鋼鋳片を鋳造した。鋳型オッシレーション条件としては、ストローク:8mmで振動数を様々に変化させて鋳造を行った。この結果を図3(a),(b),(c)に示す。
【0022】
図3(a),(b),(c)からわかるように、電磁力を印加しない条件ではネガティブストリップ時間が0.1秒未満、ポジティブストリップ時間が0.2秒未満の場合にはブレークアウトが発生したが、電磁力を付与しその電磁力に応じてオシレーション条件を設定した場合にはブレークアウトの発生は認められなかった。また、電磁力を印加せずオッシレーションのストロークが3.5mmの条件で鋳造した場合にはオッシレーションマークの乱れが確認されたが、印加する電磁力に応じてストロークを短くしネガティブストリップ時間の低減を図った条件ではオッシレーションマークの乱れは観察されずかつオシレーションマーク深さも低減しており、表面性状が極めて良好な鋳片を得ることができた。
【0023】
なお、鋳造速度が高速になるにつれ振動数はハイサクルにする、あるいはそれでも不十分な場合はオッシレーションのストロークを長くすることが一般的であるが、本方法を用いることでオッシレーション条件の許容範囲は大幅に拡大する。あわせてオッシレーションマーク深さを浅くできるため、鋳片表皮下の品質の向上がはかりつつ鋳造速度の高速化が図れる。さらに、鋳片厚が100mm弱の薄スラブを高速で鋳造する方法に本発明を適用することで、鋳型振動の負荷は大幅に低減し、安定して高速鋳造を行うことができる。
【0024】
【発明の効果】
以上述べたように、本発明は鋳型外周に設置したコイルに交流電流を印加することによって溶融金属のメニスカス部にピンチ力を作用させ、溶融金属を上に凸状に盛り上げた状態でその盛り上がり高さとオッシレーション条件を特定することで、メニスカス部のオッシレーションに伴う変形の抑制と潤滑確保が同時に図れ、ブレークアウトを防止しつつ表面性状良好な鋳片を安定的に得ることができる。
【図面の簡単な説明】
【図1】本発明による連続鋳造の実施例を示す概略図。
【図2】本発明による連続鋳造における電磁力のネガティブストリップタイムとポジティブストリップタイムとの関係を示す図。
【図3】(a)は溶鋼盛り上がり高さとネガティブストリップ時間との関係を示す図で、(b)は溶鋼盛り上がり高さとポジティブストリップ時間との関係を示す図で、(c)は溶鋼盛り上がり高さとストロークとの関係を示す図である。
【図4】溶鋼盛り上がり高さの定義を示す図で、(a)は電磁力を印加しない場合の溶鋼盛り上がり高さを示す図で、(b)は電磁力を印加した場合の溶鋼盛り上がり高さを示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for continuously casting molten metal, and in particular, stabilizes initial solidification by performing casting while applying mold vibration by electromagnetic force to a mold, and has a lubricating action and a surface property improving action between the mold and the molten metal. It relates to a continuous casting method while applying.
[0002]
[Prior art]
Generally, in continuous casting of steel, powder is added to the upper surface of a molten metal pool in a mold, and the powder melted by heat from the molten metal is moved by a relative motion between a vertically vibrating mold and a solidified shell drawn at a constant speed. Flows into these gaps. The meniscus and the tip of the solidified shell are deformed by the dynamic pressure generated when the molten powder flows. Since this deformation is repeated at the cycle of the mold oscillation, periodic wrinkles called oscillation marks are formed on the slab surface. Although the formation of this regular minor oscillation mark does not significantly affect the casting operation or the stabilization of the slab surface quality, the formation of a deep and deep oscillation mark can This leads to the problem of slab surface defects such as increased air bubbles and inclusions.
[0003]
As a method for solving such a problem, for example, Japanese Unexamined Patent Application Publication No. 58-32824 discloses a method of injecting a molten metal 2 together with a lubricant 4 into a water-cooled mold 1 which vibrates at a constant cycle, as shown in FIG. In a continuous casting method in which the molten metal 2 is continuously drawn downward, an alternating current is continuously applied to the electromagnetic coil 5 provided around the mold 1 and the molten metal 2 is raised in a convex shape using an electromagnetic force generated by the alternating magnetic field. Discloses a method for improving the surface properties of a slab. JP-A-64-83348 discloses that an electromagnetic force is applied to a molten metal in a mold by an electromagnetic coil, and the electromagnetic force is applied intermittently by applying an alternating current generated in an induction coil provided around the mold. Then, in powder casting in which the meniscus portion is convexly curved to promote powder feeding along the inner surface of the mold, intermittently applying an AC magnetic field in a pulsed manner to intermittently apply an electromagnetic force between the mold and the slab. A continuous casting method that improves lubrication is disclosed. Further, as disclosed in WO96 / 05926, as shown in FIG. 5, an alternating current is applied to a solenoid-shaped electromagnetic coil 5 installed so as to surround a mold wall 1, and the molten metal solidified in the mold is solidified. 2, the molten metal 2 is raised in a convex shape while applying an electromagnetic force 22 acting in a direction separating from the mold wall 1 toward the molten metal side, which is determined by the directions of the induced current 20 and the induced magnetic field 21. A method is disclosed in which the amplitude or waveform of the alternating current is periodically changed by the waveform generator 24 to stabilize the initial solidification and improve the surface properties of the slab.
[0004]
However, in this method, the permissible condition of the mold oscillation is relaxed as compared with the conventional casting condition, but another problem of breakout occurs, and the effect of improving the surface properties is not so large. There is a problem that it cannot be obtained.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for continuously casting molten metal, in which a mold is subjected to casting while applying mold vibration by electromagnetic force, thereby stabilizing initial solidification, and continuously casting steel to improve lubrication and surface properties between the mold and the molten metal. Provide a way to do it.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
[0007]
(1) In a continuous casting method in which a coil is arranged on the outer periphery of a mold and solidified while applying a pinch force to a meniscus portion of a molten metal while applying an alternating current, the condition of the mold oscillation is satisfied so that the following relational expression is satisfied. A continuous casting method for steel characterized by being adjusted t P ≧ 0.2 · exp (−αP) −−−−− (1)
t N ≧ 0.1 · exp (−βP) −−−−− (2)
S ≧ 4 · exp (−γP) −−−−−−− (3)
Here, t P : positive strip time, t N : negative strip time, S: oscillation stroke, P: height of rise, α, β, γ: coefficient.
[0008]
(2) A continuous casting method for steel according to the above (1), wherein an alternating current to be applied to the coil disposed on the outer periphery of the mold is intermittently applied.
[0009]
(3) A continuous casting method for steel according to (1) or (2), wherein a DC magnetic field is applied near the meniscus while applying an AC current to the coil disposed on the outer periphery of the mold.
[0010]
(4) In a continuous casting method in which a coil is arranged on the outer periphery of a mold and solidification is performed while applying a pinch force to a meniscus portion of a molten metal while applying an alternating current, conditions for mold oscillation can be adjusted according to the applied electromagnetic force. A continuous casting apparatus for steel, characterized in that:
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a schematic cross section of a continuous casting apparatus for performing a method according to the present invention. An energizing coil 5 for passing an alternating current is provided around the water-cooled mold 1 so as to be buried in the water-cooled mold 1 so that an upper end thereof is located at the meniscus 3. During casting, molten metal is supplied into the water-cooled mold 1 from a tundish (not shown) above the water-cooled mold 1 via the immersion nozzle 6.
[0013]
The discharge direction of the molten metal from the immersion nozzle varies depending on the casting conditions, such as discharge toward the short side, discharge toward the long side and short side, discharge below the pool, and superposition of these. Although there is a direction, in the following description, an example in which the discharge direction of the immersion nozzle is the short side direction in slab casting will be described.
[0014]
In the following description, it is assumed that the horizontal cross-sectional shape of the water-cooled mold is a rectangular mold. Powder 4 is supplied as a lubricant to the surface of the molten metal 2 in the water-cooled mold 1, and the molten metal 2 is cooled while being oscillated by the vertical movement of the water-cooled mold 1, solidified and drawn downward as a slab. It is. At this time, when an AC current of several tens to several hundreds of Hz is applied to the energizing coil 5, an induction magnetic field B is generated in the mold, and an induction current J is induced. The electromagnetic force F acts on the molten metal 2 in the direction toward the center of the water-cooled mold 1 by the action of the induced current J and the induced magnetic field B, and the molten metal is raised in a convex shape in the vicinity of the meniscus 3 to lubricate the water-cooled mold 1. Solidification proceeds while maintaining smoothness.
[0015]
As a result, it is possible to reduce the oscillation mark and the like of the slab and improve the surface properties, but the effect is considered to be different depending on the oscillation condition, so the oscillation conditions were examined. FIG. 2 shows the relationship between mold oscillation conditions and casting speed. The positive strip time indicates a time zone in which the mold speed is lower than the slab pull-out speed, and the negative strip time indicates a time in which the mold speed is faster than the slab pull-out speed. Generally, since a correlation between the positive strip time and the powder consumption is recognized, it is said that it is necessary to secure a certain time or more in order to secure the powder consumption. On the other hand, as for the negative strip time, since the level change during the operation cannot be 0, the solidified shell once restrained by the mold is securely pushed into the solidified shell that has been drawn out and joined at the time of the level change, It is necessary to secure a certain time. In general, in order to reduce the depth of the oscillation mark, the stroke of the oscillation is shortened and the frequency is increased.However, if the frequency is too large, the deformation of the meniscus does not follow, and In some cases, the oscillation mark depth may be deeper, and it is known that there is an appropriate oscillation condition.
[0016]
Therefore, the casting was performed by changing the electromagnetic force applied to the vicinity of the meniscus portion and the mold oscillation conditions in various ways, and the relationship between occurrence of breakout, powder consumption, and oscillation mark depth was investigated. As a result, it was found that the higher the height of the electromagnetic force to be applied, that is, the higher the swelling height of the molten metal, the lower the minimum value for both the positive strip time and the negative strip time, and the stable casting range can be expressed by the following equation. did.
[0017]
The height of the swell is defined as shown in FIG. The difference between the level (FIG. 4B) near the center of the thickness when the electromagnetic force is applied and the level (FIG. 4A) when the electromagnetic force is not applied is defined as the swelling height. . For the measurement method, for example, it is possible to measure the shape of the molten metal level by immersing several copper-coated iron wires in the mold in the thickness direction and pulling them up. Height can be defined.
[0018]
t P ≧ 0.2 · exp (−αP) −−−−− (1)
t N ≧ 0.1 · exp (−βP) −−−−− (2)
The reason that the minimum value of the positive strip time and the negative strip time is reduced by the application of the electromagnetic force is that by applying the electromagnetic force, the gap between the meniscus portion of the molten metal and the mold is enlarged, so that the powder inflow amount is inevitable. Will increase. This is related to the applied electromagnetic force, that is, the height of the raised portion of the molten metal, and the larger the height of the raised portion of the molten metal, the larger the amount of expansion of the gap. Therefore, the positive strip time provided to secure the powder inflow amount can be shortened. Further, regarding the negative strip time, the possibility that the solidified shell is restrained by the mold is reduced, and as a result, the negative strip time provided to secure the pushing force to the solidified shell and avoid the restraint breakout is reduced. The minimum value can be shortened. Since the level change during casting cannot be reduced to zero during operation, some time is required for both the positive strip time and the negative strip time even under the condition where the electromagnetic force is applied. From the relationship.
[0019]
With respect to the relationship with the oscillation mark depth, it has been found that the relationship between the stroke at which the oscillation mark depth is locally increased and the electromagnetic force is expressed by the following equation. This is because when the electromagnetic force was not applied, the stroke was shortened and the deformation of the meniscus could not follow, and the oscillation mark was disturbed.However, the distance between the meniscus and the mold was expanded by applying the electromagnetic force. This makes it difficult for the influence of the deformation of the meniscus due to the oscillation to propagate, so that the allowable oscillation stroke can be made shorter by the electromagnetic force. In addition, within the same stroke, the depth of the oscillation mark could be reduced as the negative strip time was shorter under the condition represented by the expression (2).
[0020]
S ≧ 4 · exp (γP) −−−−− (3)
In addition, the same investigation was performed for the case where a DC magnetic field was also superimposed in the vicinity of the meniscus in the sense of intermittently applying the electromagnetic force and in the sense of preventing microscopic fluctuations in the molten metal surface in addition to the pinch force. By satisfying almost the same relational expression, stable casting was possible and the depth of the oscillation mark was reduced. In addition, the waveform of the oscillation is not limited to a commonly used sine wave because the relative speed between the mold and the slab is a problem. I do not care.
[0021]
【Example】
A solenoid coil having a height of 1500 mm is placed on the meniscus portion of a mold having a width of 1500 mm, a height of 880 mm and a thickness of 250 mm so that the upper end thereof is at the meniscus position, and has a depth of 300 mm from the meniscus position. An immersion nozzle having an outer diameter of 150 mm and an inner diameter of 90 mm was used. A sine wave alternating current with a frequency of 150 Hz is applied to the electromagnetic coil so that the height of the molten metal becomes 20 mm, and a casting speed: 1.5 m / min and a low carbon aluminum killed steel slab having a width of 1500 mm and a thickness of 250 mm are cast. did. As the mold oscillation conditions, casting was performed with a stroke of 8 mm and various vibration frequencies. The results are shown in FIGS. 3 (a), 3 (b) and 3 (c).
[0022]
As can be seen from FIGS. 3 (a), 3 (b) and 3 (c), a breakout occurs when the negative strip time is less than 0.1 second under the condition where no electromagnetic force is applied and when the positive strip time is less than 0.2 second. However, when an electromagnetic force was applied and the oscillation conditions were set according to the electromagnetic force, no breakout was observed. When casting was performed under the condition that the oscillation stroke was 3.5 mm without applying an electromagnetic force, disturbance of the oscillation mark was confirmed. However, the stroke was shortened according to the applied electromagnetic force and the negative strip time was reduced. Under the reduced conditions, no disturbance of the oscillation mark was observed and the depth of the oscillation mark was also reduced, so that a slab with extremely good surface properties could be obtained.
[0023]
In general, as the casting speed increases, the frequency is set to a high cycle, or if the frequency is still insufficient, the oscillation stroke is generally lengthened. Greatly expands. In addition, since the depth of the oscillation mark can be reduced, the casting speed can be increased while improving the quality under the surface of the slab. Furthermore, by applying the present invention to a method of casting a thin slab having a slab thickness of less than 100 mm at a high speed, the load of mold vibration can be greatly reduced, and high-speed casting can be performed stably.
[0024]
【The invention's effect】
As described above, the present invention applies a pinch force to the meniscus portion of the molten metal by applying an alternating current to the coil installed on the outer periphery of the mold, and the raised height of the molten metal is raised in a convex shape. By specifying the oscillation conditions and the oscillation conditions, it is possible to simultaneously suppress deformation due to oscillation of the meniscus portion and ensure lubrication, and it is possible to stably obtain a cast piece having good surface properties while preventing breakout.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of continuous casting according to the present invention.
FIG. 2 is a diagram showing a relationship between a negative strip time and a positive strip time of electromagnetic force in continuous casting according to the present invention.
3A is a diagram showing the relationship between the molten steel swell height and the negative strip time, FIG. 3B is a diagram showing the relationship between the molten steel swell height and the positive strip time, and FIG. It is a figure showing the relation with a stroke.
4A and 4B are diagrams showing the definition of the molten steel swelling height, wherein FIG. 4A shows the molten steel swelling height when no electromagnetic force is applied, and FIG. 4B shows the molten steel swelling height when an electromagnetic force is applied. FIG.

Claims (4)

鋳型外周にコイルを配置し交流電流を印加しつつ溶融金属のメニスカス部にピンチ力を付与しつつ凝固させる連続鋳造方法において、鋳型オッシレーションの条件を以下の関係式が満足するように調整したことを特徴とする鋼の連続鋳造方法
≧0.2・exp(−αP)−−−−−(1)
≧0.1・exp(−βP)−−−−−(2)
S≧4・exp(−γP)−−−−−−− (3)
ここで、t :ポジティブストリップ時間、t :ネガティブストリップ時間、S:オッシレーションストローク、P:盛り上がり高さ、α、β、γ:係数である。
In a continuous casting method in which a coil is arranged around the mold and solidification is performed while applying a pinch force to the meniscus portion of the molten metal while applying an alternating current, the conditions of the mold oscillation are adjusted so that the following relational expression is satisfied. Steel continuous casting method characterized by the following formula: t P ≧ 0.2 · exp (−αP) --- (1)
t N ≧ 0.1 · exp (−βP) −−−−− (2)
S ≧ 4 · exp (−γP) −−−−−−− (3)
Here, t P : positive strip time, t N : negative strip time, S: oscillation stroke, P: height of rise, α, β, γ: coefficient.
請求項1において鋳型外周に配置されたコイルに印加する交流電流を間歇的に印加したことを特徴とする鋼の連続鋳造方法。2. The continuous casting method for steel according to claim 1, wherein the alternating current applied to the coil disposed on the outer periphery of the mold is intermittently applied. 請求項1,2において鋳型外周に配置されたコイルに交流電流を印加しつつメニスカス近傍に直流磁界を印加したことを特徴とする鋼の連続鋳造方法。3. A continuous casting method for steel according to claim 1, wherein a direct current magnetic field is applied near the meniscus while applying an alternating current to the coil disposed on the outer periphery of the mold. 鋳型外周にコイルを配置し交流電流を印加しつつ溶融金属のメニスカス部にピンチ力を付与しつつ凝固させる連続鋳造方法において、印加する電磁力に応じて鋳型オッシレーションの条件を調整できるようにしたことを特徴とする鋼の連続鋳造装置。In a continuous casting method in which a coil is arranged on the outer periphery of a mold and solidification is performed while applying a pinch force to a meniscus portion of a molten metal while applying an alternating current, conditions for mold oscillation can be adjusted according to an applied electromagnetic force. A continuous casting apparatus for steel.
JP2002200026A 2002-07-09 2002-07-09 Method and apparatus for continuously casting steel Pending JP2004042057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200026A JP2004042057A (en) 2002-07-09 2002-07-09 Method and apparatus for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200026A JP2004042057A (en) 2002-07-09 2002-07-09 Method and apparatus for continuously casting steel

Publications (1)

Publication Number Publication Date
JP2004042057A true JP2004042057A (en) 2004-02-12

Family

ID=31707003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200026A Pending JP2004042057A (en) 2002-07-09 2002-07-09 Method and apparatus for continuously casting steel

Country Status (1)

Country Link
JP (1) JP2004042057A (en)

Similar Documents

Publication Publication Date Title
JP2004042057A (en) Method and apparatus for continuously casting steel
JP2000000648A (en) Method and apparatus for continuously casting steel
JP4102316B2 (en) Method for continuous casting of molten metal
JP3887200B2 (en) Steel continuous casting method and apparatus
JP3525717B2 (en) Continuous casting method of molten metal using electromagnetic force
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
JP5712685B2 (en) Continuous casting method
US6453985B2 (en) Method of continuous casting of molten metal
JP4719360B2 (en) Metal continuous casting method and apparatus
JP3056656B2 (en) Continuous casting method of molten metal
JP3796130B2 (en) Method for continuous casting of molten metal
JP2885824B2 (en) Metal continuous casting method
JP3595529B2 (en) Continuous casting machine for molten metal
JP4256800B2 (en) Method and apparatus for continuous casting of molten metal
JP3557886B2 (en) Continuous casting method of molten metal using electromagnetic force
JPH082486B2 (en) Powder supply method in continuous casting
JP2009172638A (en) Continuous casting method utilizing electromagnetic force
JPH11285794A (en) Production of cast slab having fine structure
JP2005305536A (en) Continuous-casting method for molten metal
JPH08187563A (en) Continuous casting method applying electromagnetic force
JPH0780608A (en) Apparatus for continuously casting metal
JP3718481B2 (en) Method for continuous casting of molten metal
JP2002321044A (en) Molding equipment for continuous casting of metal and method of continuous casting
JPH04322842A (en) Mold for continuously casting molten metal
JP2968046B2 (en) Method and apparatus for continuous casting of molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Effective date: 20070918

Free format text: JAPANESE INTERMEDIATE CODE: A02