JP3796130B2 - Method for continuous casting of molten metal - Google Patents

Method for continuous casting of molten metal Download PDF

Info

Publication number
JP3796130B2
JP3796130B2 JP2001114393A JP2001114393A JP3796130B2 JP 3796130 B2 JP3796130 B2 JP 3796130B2 JP 2001114393 A JP2001114393 A JP 2001114393A JP 2001114393 A JP2001114393 A JP 2001114393A JP 3796130 B2 JP3796130 B2 JP 3796130B2
Authority
JP
Japan
Prior art keywords
molten metal
mold
magnetic field
effect
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001114393A
Other languages
Japanese (ja)
Other versions
JP2002307147A (en
Inventor
雅弘 谷
寛 原田
健彦 藤
健司 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001114393A priority Critical patent/JP3796130B2/en
Publication of JP2002307147A publication Critical patent/JP2002307147A/en
Application granted granted Critical
Publication of JP3796130B2 publication Critical patent/JP3796130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属から鋳片を連続的に鋳造する方法に関し、潤滑改善効果と鋳片表面性状改善効果を安定して得ることのできることを特徴とする溶融金属の連続鋳造方法に関する。
【0002】
【従来の技術】
連続鋳造にあたっては、溶融金属からの熱で溶融したパウダーは、上下に振動する鋳型と、一定速度で引き抜かれる凝固シェルの相対運動によって、これらの間隙に流入する。この溶融パウダーの流入の際に発生する動圧によってメニスカス凝固シェル先端が変形する。この変形は鋳型オシレーションの周期で繰り返されるため、鋳片表面にはオシレーションマークとよばれる周期的な皺が形成される。
【0003】
ここで、通常程度の深さの規則的なオシレーションマークの形成は、鋳造操業や鋳片表面品質の安定化に寄与することが知られている。以上述べた初期凝固を制御する方法として、特開昭64−83348号公報に記載された、電磁コイルによって鋳型内の溶融金属に電磁力を与える際に、交流磁場をパルス状に付与することによって、電磁力を間欠的に印加して、パウダーキャスティングにおいて、さらなる表面性状の改善を行う方法も提案されている。
【0004】
上記の特開昭64−83348号公報に示されているように、電磁コイルによって鋳型内の溶融金属に間欠的に電磁力を与えることによって、凝固シェルと鋳型壁間へのパウダーの流れが一層促進され、鋳片の表面性状が改善された。
【0005】
しかしながら、鋳型断面が大きい場合、溶融金属表面に不安定な波動が生成する場合が見られる。この波動は、溶融金属プールメニスカスの擾乱を引き起こして電磁力印加の効果の妨げとなり、鋳片の表面性状改善効果を低減させるという問題を抱えていた。
【0006】
また、特開平5−293613号公報に記載された、電磁コイルによって鋳型内の溶融金属に電磁力を与える際に、交流電流に直流電流を重畳させ、交流磁界による電磁力をメニスカス近傍に与えつつ、同時に発生せんとする溶融金属内の流動を直流磁界によって抑制する方法も提案されている。
【0007】
しかしながら、直流磁界による溶融金属の流動の抑制効果が小さすぎる場合、溶融金属プールメニスカスの擾乱を引き起こして交流電磁力印加の効果の妨げとなり、鋳片の表面性状改善効果が低減してしまう。また、直流磁界による溶融金属の流動の抑制効果が大きすぎる場合、メニスカスへの温度供給が低減し、鋳片の表面性状が悪化してしまう。つまり、交流磁場と直流磁場を独立に制御する方法では、安定的に鋳片の表面性状改善効果を得ることができなかった。
【0008】
【発明が解決しようとする課題】
本発明は、溶融金属から鋳片を連続的に鋳造する方法に関し、メニスカス部に印加する交流磁場強度と直流磁場強度の範囲を限定することにより、溶融金属メニスカス挙動を安定化し、潤滑改善効果と鋳片表面性状改善効果を安定して得ることのできる鋳造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために、扁平な矩形断面形状を有する鋳型を取り囲むようにソレノイド式電磁コイルを配設或いは鋳型壁内に埋設し、交流電流を前記ソレノイド式電磁コイルに通電して前記鋳型内の溶融金属に電磁力を付与し、メニスカス形状を変化させながら鋳造を行う際に、下記(1)式で表される直流磁場を重畳する。
【数2】

Figure 0003796130
【0010】
本発明は上記鋳造方法において、通電する交流電流を大電流通電期間と小電流通電期間に周期的に変化させながら鋳造を行う。
【0011】
本発明に係る上述の連続鋳造方法によって、溶融金属のメニスカス挙動を安定化させ、潤滑改善効果と鋳片表面性状改善効果を安定して得ることのできる。
【0012】
【発明の実施の形態】
溶融金属の連続鋳造プロセスにおいて、図1の電磁力発生原理の概要図に示されるとおり、ソレノイダル状電磁コイル4に交流電流を通電し、鋳型内に注入され凝固を開始せんとする溶融金属2に電磁力7を印加しながら連続鋳造するもので、誘導電流9と誘導磁場8の方向から前記電磁力7の方向に作用する。すると、図3(a)に示すように電磁力7によって凝固シェル5先端との間隔が拡大され、鋳型壁と凝固シェル間に潤滑材としてのパウダー供給が促進され、鋳片の表面性状が改善される。
【0013】
さらには、直流磁場を印加すると、前記電磁力7により溶融金属内に誘起される溶鋼流動が抑制される。
【0014】
本発明者は、鋳型内の直流磁束密度の最大値と鋳型内の交流磁束密度の最大値の比が0.4未満の場合、直流磁界による溶融金属の流動の抑制効果が小さすぎ、溶融金属プールメニスカスの擾乱を引き起こして交流電磁力印加の効果の妨げとなり、鋳片の表面性状改善効果が低減してしまうことを見出した。
【0015】
また、本発明者は、鋳型内の直流磁束密度の最大値と鋳型内の交流磁束密度の最大値の比が6.5より大きい場合、直流磁界による溶融金属の流動の抑制効果が大きすぎ、メニスカスへの温度供給が低減し、鋳片の表面性状が悪化してしまうことを見出した。
【0016】
本発明者は、鋳型内の直流磁束密度の最大値と鋳型内の交流磁束密度の最大値の比を0.4以上、6.5以下とすることにより、溶融金属メニスカスの安定性と温度供給を保持し、潤滑改善効果と鋳片表面性状改善効果を安定して得ることができることが可能になった。
【0017】
また、本発明は上記鋳造方法において、図2に示すように通電する交流電流を大電流通電期間と小電流通電期間に周期的に変化させることにより、図3(a)〜(c)に示すような凝固殻と鋳型間の間隙のくびれが周期的に発生してパウダー供給がさらに促進され、潤滑改善効果と鋳片表面性状改善効果を安定して得ることができることが可能になった。
【0018】
このような磁場の印加により、溶融金属の初期凝固不安定性が抑制され、潤滑改善効果と鋳片表面性状改善効果を安定して得ることができる。
【0019】
【実施例】
本発明の実施例として、下記試験条件によって鋳造した。
Figure 0003796130
上記試験条件で得られた結果を表1に示す。なお、この表1は鋳造時の鋳型内の直流磁束密度の最大値と鋳型内の交流磁束密度の最大値の比を示しているものである。
【0020】
【表1】
Figure 0003796130
【0021】
図4から明らかなように、BDC/BACが0.4以上になると、直流磁場の流動制動効果により溶鋼湯面変動が小さくなり、メニスカス形状を安定的に保持できるようになる。
【0022】
次に、図5から明らかなように、BDC/BACが6.5より大きくなると、直流磁場の流動制動効果が大きくなり、湯面へ温度供給が不十分になることがわかる。
【0023】
図6から明らかなように、以上説明した機構により、鋳型内の直流磁束密度の最大値と鋳型内の交流磁束密度の最大値の比を0.4以上、6.5以下とすることにより、溶融金属メニスカスの安定性と温度供給を保持し、潤滑改善効果と鋳片表面性状改善効果を安定して得ることができることが確認できた。
【0024】
【発明の効果】
以上説明したように本発明は、鋳型内の直流磁束密度の最大値と鋳型内の交流磁束密度の最大値の比を0.4以上、6.5以下とすることにより、溶融金属メニスカスの安定性と温度供給を保持し、潤滑改善効果と鋳片表面性状改善効果を安定して得ることができることができるので工業的効果は甚大である。
【図面の簡単な説明】
【図1】本発明の電磁力を示す図である。
【図2】従来のステップ状で非通電期がないモードを示す図である。
【図3】従来の電磁力による変形を示し、(a)変形したメニスカス、(b)静止メニスカス、(c)繰り返し時の凝固シェルを示す図である。
【図4】鋳造時の湯面変動を渦流式メニスカスレベル計にて測定した結果であり、(a)は交流磁場の連続的印加条件、(b)は交流磁場の間欠印加条件である。
【図5】鋳造時の湯面における溶鋼温度を測定した結果であり、(a)は交流磁場の連続的印加条件、(b)は交流磁場の間欠印加条件である。
【図6】得られた鋳片の表面素度を測定した結果であり、(a)は交流磁場の連続的印加条件、(b)は交流磁場の間欠印加条件である。
【符号の説明】
1…鋳型
2…溶融金属
3…メニスカス
4…電磁コイル
5…凝固シェル
6…電磁場付加メニスカス
7…電磁力
8…誘導電流
9…誘導磁場[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for continuously casting a slab from a molten metal, and relates to a method for continuously casting a molten metal, characterized in that a lubrication improving effect and a slab surface property improving effect can be stably obtained.
[0002]
[Prior art]
In continuous casting, the powder melted by the heat from the molten metal flows into these gaps by the relative movement of the mold that vibrates up and down and the solidified shell that is drawn at a constant speed. The tip of the meniscus solidified shell is deformed by the dynamic pressure generated when the molten powder flows. Since this deformation is repeated in the mold oscillation cycle, periodic ridges called oscillation marks are formed on the surface of the slab.
[0003]
Here, it is known that the formation of regular oscillation marks having a normal depth contributes to the stabilization of casting operation and slab surface quality. As a method for controlling the initial solidification described above, when an electromagnetic force is applied to the molten metal in the mold by an electromagnetic coil as described in JP-A No. 64-83348, an alternating magnetic field is applied in a pulsed manner. In addition, a method has been proposed in which electromagnetic force is intermittently applied to further improve surface properties in powder casting.
[0004]
As shown in the above-mentioned Japanese Patent Application Laid-Open No. 64-83348, the electromagnetic force is intermittently applied to the molten metal in the mold by the electromagnetic coil, thereby further increasing the flow of the powder between the solidified shell and the mold wall. The surface quality of the slab was improved.
[0005]
However, when the mold cross section is large, there are cases where unstable waves are generated on the surface of the molten metal. This wave has a problem of causing disturbance of the molten metal pool meniscus and hindering the effect of applying electromagnetic force, and reducing the effect of improving the surface properties of the slab.
[0006]
In addition, when an electromagnetic force is applied to molten metal in a mold by an electromagnetic coil as described in JP-A-5-293613, a direct current is superimposed on an alternating current, and an electromagnetic force by an alternating magnetic field is applied in the vicinity of the meniscus. In addition, a method for suppressing the flow in the molten metal that is generated simultaneously by a DC magnetic field has been proposed.
[0007]
However, if the effect of suppressing the flow of the molten metal due to the DC magnetic field is too small, the molten metal pool meniscus is disturbed to hinder the effect of applying the AC electromagnetic force, and the effect of improving the surface property of the slab is reduced. In addition, when the effect of suppressing the flow of the molten metal by the DC magnetic field is too great, the temperature supply to the meniscus is reduced and the surface properties of the slab are deteriorated. That is, the method of independently controlling the alternating magnetic field and the direct magnetic field cannot stably obtain the effect of improving the surface property of the slab.
[0008]
[Problems to be solved by the invention]
The present invention relates to a method for continuously casting a slab from molten metal, and by limiting the range of the alternating magnetic field strength and the direct magnetic field strength applied to the meniscus portion, the molten metal meniscus behavior is stabilized, and the lubrication improving effect is obtained. It aims at providing the casting method which can acquire the slab surface property improvement effect stably.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a solenoid type electromagnetic coil disposed around a mold having a flat rectangular cross-sectional shape or embedded in a mold wall so that an alternating current is passed through the solenoid type electromagnetic coil. When casting is performed while applying electromagnetic force to the molten metal in the mold and changing the meniscus shape, a DC magnetic field expressed by the following formula (1) is superimposed.
[Expression 2]
Figure 0003796130
[0010]
In the above casting method, the present invention performs casting while periodically changing an alternating current to be passed between a large current conduction period and a small current conduction period.
[0011]
By the above-described continuous casting method according to the present invention, the meniscus behavior of the molten metal can be stabilized, and the lubrication improving effect and the slab surface property improving effect can be stably obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the continuous casting process of molten metal, as shown in the schematic diagram of the principle of electromagnetic force generation in FIG. 1, an alternating current is passed through the solenoid coil 4 and injected into the mold to start solidification. The casting is carried out while applying the electromagnetic force 7, and acts in the direction of the electromagnetic force 7 from the direction of the induced current 9 and the induced magnetic field 8. Then, as shown in FIG. 3 (a), the space between the tip of the solidified shell 5 is expanded by the electromagnetic force 7, the supply of powder as a lubricant between the mold wall and the solidified shell is promoted, and the surface property of the slab is improved. Is done.
[0013]
Furthermore, when a DC magnetic field is applied, the molten steel flow induced in the molten metal by the electromagnetic force 7 is suppressed.
[0014]
When the ratio between the maximum value of the DC magnetic flux density in the mold and the maximum value of the AC magnetic flux density in the mold is less than 0.4, the inventor has too little effect of suppressing the flow of the molten metal due to the DC magnetic field. It has been found that the disturbance of the pool meniscus causes disturbance of the effect of application of AC electromagnetic force and the effect of improving the surface properties of the slab is reduced.
[0015]
In addition, when the ratio between the maximum value of the DC magnetic flux density in the mold and the maximum value of the AC magnetic flux density in the mold is larger than 6.5, the inventor has an excessively large effect of suppressing the flow of the molten metal due to the DC magnetic field, It has been found that the temperature supply to the meniscus is reduced and the surface properties of the slab are deteriorated.
[0016]
The inventor makes the ratio of the maximum value of the DC magnetic flux density in the mold and the maximum value of the AC magnetic flux density in the mold to be 0.4 or more and 6.5 or less, so that the stability of the molten metal meniscus and the temperature supply are improved. Thus, it is possible to stably obtain the lubrication improving effect and the slab surface property improving effect.
[0017]
Further, in the above casting method, the present invention is shown in FIGS. 3 (a) to 3 (c) by periodically changing the alternating current to be supplied as shown in FIG. 2 between a large current supply period and a small current supply period. Such narrowing of the gap between the solidified shell and the mold is periodically generated to further promote the powder supply, and it is possible to stably obtain the lubrication improving effect and the slab surface property improving effect.
[0018]
By applying such a magnetic field, the initial solidification instability of the molten metal is suppressed, and the lubrication improving effect and the slab surface property improving effect can be stably obtained.
[0019]
【Example】
As an example of the present invention, casting was performed under the following test conditions.
Figure 0003796130
Table 1 shows the results obtained under the above test conditions. Table 1 shows the ratio of the maximum value of the DC magnetic flux density in the mold during casting to the maximum value of the AC magnetic flux density in the mold.
[0020]
[Table 1]
Figure 0003796130
[0021]
As is apparent from FIG. 4, when B DC / B AC is 0.4 or more, the molten steel surface fluctuation is reduced by the flow braking effect of the DC magnetic field, and the meniscus shape can be stably maintained.
[0022]
Next, as is apparent from FIG. 5, it is understood that when B DC / B AC is greater than 6.5, the flow braking effect of the DC magnetic field increases, and the temperature supply to the molten metal surface becomes insufficient.
[0023]
As apparent from FIG. 6, by the mechanism described above, the ratio of the maximum value of the DC magnetic flux density in the mold and the maximum value of the AC magnetic flux density in the mold is set to 0.4 or more and 6.5 or less, It was confirmed that the stability and temperature supply of the molten metal meniscus can be maintained, and the lubrication improving effect and the slab surface property improving effect can be stably obtained.
[0024]
【The invention's effect】
As described above, the present invention stabilizes the molten metal meniscus by setting the ratio of the maximum value of the DC magnetic flux density in the mold to the maximum value of the AC magnetic flux density in the mold to be 0.4 or more and 6.5 or less. The effect of improving lubrication and the effect of improving the slab surface property can be stably obtained while maintaining the properties and temperature supply, and the industrial effect is enormous.
[Brief description of the drawings]
FIG. 1 is a diagram showing electromagnetic force of the present invention.
FIG. 2 is a diagram showing a conventional step-like mode without a non-energization period.
FIG. 3 is a diagram showing deformation by a conventional electromagnetic force, and shows (a) a deformed meniscus, (b) a stationary meniscus, and (c) a solidified shell during repetition.
FIGS. 4A and 4B are results obtained by measuring fluctuations in the molten metal surface during casting with an eddy current meniscus level meter. FIG. 4A shows a condition for continuous application of an alternating magnetic field, and FIG.
FIG. 5 shows the results of measuring the molten steel temperature on the molten metal surface during casting, where (a) shows the continuous application condition of the alternating magnetic field, and (b) shows the intermittent application condition of the alternating magnetic field.
FIG. 6 shows the results of measuring the surface texture of the obtained slab, where (a) shows the continuous application condition of the alternating magnetic field, and (b) shows the intermittent application condition of the alternating magnetic field.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Molten metal 3 ... Meniscus 4 ... Electromagnetic coil 5 ... Solidification shell 6 ... Electromagnetic field addition meniscus 7 ... Electromagnetic force 8 ... Induction current 9 ... Induction magnetic field

Claims (2)

扁平な矩形断面形状を有する鋳型を取り囲むようにソレノイド式電磁コイルを配設或いは鋳型壁内に埋設し、交流電流を前記ソレノイド式電磁コイルに通電して前記鋳型内の溶融金属に電磁力を付与し、メニスカス形状を変化させながら鋳造を行う際に、下記(1)式で表される直流磁場を重畳することを特徴とする溶融金属の連続鋳造方法。
Figure 0003796130
A solenoid type electromagnetic coil is disposed so as to surround a mold having a flat rectangular cross section or is embedded in a mold wall, and an electromagnetic current is applied to the molten metal in the mold by passing an alternating current through the solenoid type electromagnetic coil. Then, when performing casting while changing the meniscus shape, a continuous casting method of molten metal characterized by superimposing a DC magnetic field represented by the following formula (1).
Figure 0003796130
扁平な矩形断面形状を有する鋳型を取り囲むようにソレノイド式電磁コイルを配設或いは鋳型壁内に埋設し、振幅又は波形を周期的に変化させた大電流通電期間と小電流通電期間を有する交流電流を前記ソレノイド式電磁コイルに通電して前記鋳型内の溶融金属に電磁力を付与し、メニスカス形状を変化させながら鋳造を行う、請求項1記載の溶融金属の連続鋳造方法。An alternating current having a large current energizing period and a small current energizing period in which a solenoid type electromagnetic coil is disposed so as to surround a mold having a flat rectangular cross section or embedded in a mold wall, and the amplitude or waveform is periodically changed. The molten metal continuous casting method according to claim 1, wherein the solenoid-type electromagnetic coil is energized to apply electromagnetic force to the molten metal in the mold to perform casting while changing the meniscus shape.
JP2001114393A 2001-04-12 2001-04-12 Method for continuous casting of molten metal Expired - Lifetime JP3796130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114393A JP3796130B2 (en) 2001-04-12 2001-04-12 Method for continuous casting of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114393A JP3796130B2 (en) 2001-04-12 2001-04-12 Method for continuous casting of molten metal

Publications (2)

Publication Number Publication Date
JP2002307147A JP2002307147A (en) 2002-10-22
JP3796130B2 true JP3796130B2 (en) 2006-07-12

Family

ID=18965477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114393A Expired - Lifetime JP3796130B2 (en) 2001-04-12 2001-04-12 Method for continuous casting of molten metal

Country Status (1)

Country Link
JP (1) JP3796130B2 (en)

Also Published As

Publication number Publication date
JP2002307147A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
KR100202040B1 (en) Method of continuously casting molten metal and apparatus therfor
JP3796130B2 (en) Method for continuous casting of molten metal
JP4102316B2 (en) Method for continuous casting of molten metal
JP3191594B2 (en) Continuous casting method using electromagnetic force
JP3595529B2 (en) Continuous casting machine for molten metal
JP3056656B2 (en) Continuous casting method of molten metal
JP2002120049A (en) Method for continuously casting molten metal
JPH11188467A (en) Continuous casting method for molten metal
JP4256800B2 (en) Method and apparatus for continuous casting of molten metal
KR100430083B1 (en) Method of Continuous Casting of Molten Metal
JP3130515B2 (en) Method and apparatus for continuous casting of molten metal
JPH082486B2 (en) Powder supply method in continuous casting
JP2968046B2 (en) Method and apparatus for continuous casting of molten metal
JP2885824B2 (en) Metal continuous casting method
JP3887200B2 (en) Steel continuous casting method and apparatus
JPH08197211A (en) Method for continuously casting molten metal and mold for continuous casting
JP3388686B2 (en) Flow control method in continuous casting strand
JP2004042057A (en) Method and apparatus for continuously casting steel
JP3216312B2 (en) Metal continuous casting equipment
JP3243893B2 (en) Steel continuous casting method
JP3158936B2 (en) High frequency coil for continuous casting and continuous casting method
JPH05293613A (en) Method for continuously casting steel
JPH06182497A (en) Method for continuously casting metal
JPH11267812A (en) Continuous casting method for molten metal
JPH11285794A (en) Production of cast slab having fine structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R151 Written notification of patent or utility model registration

Ref document number: 3796130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term