JP3388686B2 - Flow control method in continuous casting strand - Google Patents

Flow control method in continuous casting strand

Info

Publication number
JP3388686B2
JP3388686B2 JP07285197A JP7285197A JP3388686B2 JP 3388686 B2 JP3388686 B2 JP 3388686B2 JP 07285197 A JP07285197 A JP 07285197A JP 7285197 A JP7285197 A JP 7285197A JP 3388686 B2 JP3388686 B2 JP 3388686B2
Authority
JP
Japan
Prior art keywords
mold
flow velocity
energization
electromagnetic coil
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07285197A
Other languages
Japanese (ja)
Other versions
JPH10249496A (en
Inventor
健彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07285197A priority Critical patent/JP3388686B2/en
Publication of JPH10249496A publication Critical patent/JPH10249496A/en
Application granted granted Critical
Publication of JP3388686B2 publication Critical patent/JP3388686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造における
ストランド内の流動制御、特に、電磁コイルに通電した
際に得られる電磁力を用いて軟接触状態の保持、ならび
に良好な皮下性状を保持するための連続鋳造ストランド
内の流動制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to flow control in a strand in continuous casting, and in particular, to maintain a soft contact state by using an electromagnetic force obtained when an electromagnetic coil is energized, and to maintain a good subcutaneous property. The present invention relates to a method for controlling flow in a continuously cast strand for

【0002】[0002]

【従来の技術】連続鋳造においては、一般に、パウダー
が鋳型内溶融金属プール上面に添加される。溶融金属か
らの熱で溶融したパウダーは、上下に振動する鋳型壁
と、一定速度で引き抜かれる凝固シェルの相対運動によ
って間隙へ流入する。この溶融パウダーの流入の際に発
生する動圧により、メニスカスや凝固シェル先端が変形
する。この変形は鋳型オシレーションの周期で繰り返さ
れるため、鋳片表面にはオシレーションマークと呼ばれ
る周期的な皺が形成される。
2. Description of the Related Art In continuous casting, powder is generally added to the upper surface of a molten metal pool in a mold. The powder melted by the heat from the molten metal flows into the gap by the relative motion of the vertically oscillating mold wall and the solidified shell that is pulled out at a constant speed. The dynamic pressure generated when the molten powder flows in deforms the meniscus or the tip of the solidified shell. Since this deformation is repeated in the cycle of mold oscillation, periodic wrinkles called oscillation marks are formed on the surface of the slab.

【0003】初期凝固を制御する方法には、例えば、特
開昭52−32824号公報に記載の方法があり、溶融
金属を潤滑剤と共に一定の周期で振動する水冷鋳型に注
入し、連続的に下方に引き抜くことによる連続鋳造方法
において、鋳型周りに設けた電磁コイルに交流電流を連
続的に通電し、交流電磁場で発生する電磁力を利用して
溶融金属を凸状に盛り上げ、鋳片の表面性状を改善して
いる。
As a method for controlling the initial solidification, for example, there is a method described in Japanese Patent Laid-Open No. 52-32824, in which a molten metal is poured together with a lubricant into a water-cooled mold that vibrates at a constant cycle, and continuously. In the continuous casting method by pulling out downwards, alternating current is continuously applied to the electromagnetic coil provided around the mold, the electromagnetic force generated in the alternating electromagnetic field is used to raise the molten metal in a convex shape, and the surface of the slab is cast. The properties are improved.

【0004】特開昭52−32824号公報に示された
方法によれば、電磁コイルによって鋳型内の溶融金属に
連続的に電磁力を付与することにより、鋳片の表面性状
が改善される。しかし、印加した電磁場がメニスカス形
状を変化させるのみならず、鋳型内で凝固しようとする
溶融金属を加熱してしまい、初期凝固が必ずしも安定し
て進行しないことがある。
According to the method disclosed in Japanese Unexamined Patent Publication No. 52-32824, an electromagnetic coil continuously applies an electromagnetic force to the molten metal in the mold to improve the surface quality of the slab. However, the applied electromagnetic field not only changes the meniscus shape, but also heats the molten metal to be solidified in the mold, and initial solidification may not always proceed stably.

【0005】上記の問題を解決する方法として、本発明
者らは、先に以下に説明する方法を提案した(PCT国
際公開番号WO95/26243)。
As a method for solving the above problems, the present inventors have previously proposed the method described below (PCT International Publication No. WO95 / 26243).

【0006】この方法が適用される連続鋳造装置には、
図6に示すものを用いた。すなわち、鋳型1の上部に
は、鋳型内部のメニスカス10を取り巻くようにして、
円環状の電磁コイル2が埋設(又は、鋳型1の外側に設
置)されている。また、鋳型1の上部の中心部には、タ
ンディッシュ(不図示)に付属する注湯用ノズル3が配
設されている。更に、電磁コイル2には電源装置4が接
続され、この電源装置4には波形発生装置5が接続され
ている。
A continuous casting apparatus to which this method is applied is
The one shown in FIG. 6 was used. That is, on the upper part of the mold 1, the meniscus 10 inside the mold is surrounded,
An annular electromagnetic coil 2 is embedded (or installed outside the mold 1). A pouring nozzle 3 attached to a tundish (not shown) is arranged in the center of the upper portion of the mold 1. Further, a power supply device 4 is connected to the electromagnetic coil 2, and a waveform generator 5 is connected to the power supply device 4.

【0007】波形発生装置5の出力信号に従って電源装
置4が動作し、電磁コイル2に励磁電流6(例えば、周
波数60Hz、波高値3,000Aの交流電流に0.5
秒周期のパルス波形を重畳したもの)を印加する。この
状態で鋳造を行うと、溶融金属7内に電磁コイル2によ
る誘導電流8が生成し、これにより電磁力9が発生す
る。この電磁力9がパウダー11の下側に形成されてい
るメニスカス10に作用し、潤滑剤を用いることなく連
鋳初期の凝固の反復を規則的に進行させることで、鋳片
表面の性状や鋳造安定性を改善することができる。
The power supply device 4 operates in accordance with the output signal of the waveform generator 5, and the electromagnetic coil 2 receives an exciting current 6 (for example, an alternating current having a frequency of 60 Hz and a peak value of 3,000 A) of 0.5.
Pulse waveform of the second cycle is superimposed) is applied. When casting is performed in this state, an induction current 8 is generated in the molten metal 7 by the electromagnetic coil 2, and thereby an electromagnetic force 9 is generated. This electromagnetic force 9 acts on the meniscus 10 formed on the lower side of the powder 11 to cause the solidification at the initial stage of continuous casting to proceed regularly without the use of a lubricant, whereby the characteristics of the surface of the slab and the casting Stability can be improved.

【0008】ここで、電磁コイル2に通電する交流電流
は、図7に示すようにステップ状にしている。すなわ
ち、図7の(a)に示すように、大電流通電期をt1
し、小電流通電期をt2とするとき、メニスカス形状を
変化させるに必要な電磁力印加のための大電流通電の前
後にメニスカス形状を変化させるのとは異なる機能を有
する小電流通電を組み合わせ、或いは図7の(b)のよ
うに、メニスカス形状を変化させるに必要な電磁力印加
のための大電流通電の後にメニスカス形状を変化させる
のとは異なる機能を得るための小電流通電を設け、これ
らを一対もしくは複数対を印加した後に非通電期(t
off)とする通電法により、連続通電もしくは所定周期
の矩形波(通電期をton)にする。このような波形の通
電により、溶融金属の初期凝固不安定性が抑制され、潤
滑改善効果及び鋳片表面性状改善効果を安定して得るこ
とができる。
Here, the alternating current passing through the electromagnetic coil 2 is stepwise as shown in FIG. That is, as shown in FIG. 7A, when the large current conduction period is t 1 and the small current conduction period is t 2 , a large current conduction for applying the electromagnetic force required to change the meniscus shape is set. A combination of small current energization having a different function from changing the meniscus shape before and after, or a large current energization for applying an electromagnetic force necessary to change the meniscus shape as shown in FIG. 7B. A small-current energization is provided to obtain a function different from the function of changing the meniscus shape later, and a non-energization period (t
Depending on the energization method of off ), continuous energization or a rectangular wave with a predetermined cycle (the energization period is t on ). By applying such a waveform, the initial solidification instability of the molten metal is suppressed, and the effect of improving lubrication and the effect of improving the surface property of the slab can be stably obtained.

【0009】更に、メニスカス変形に寄与する大電流通
電時間の周期内通電時間に対する割合〔t1/(t1+t
2)、又はt1/(t1+t2+toff)〕を0.2以上、
0.8以下にすることが好ましい。この選択により、鋳
型壁と凝固シェル間の潤滑改善効果や鋳片表面性状改善
効果を最大化することができる。ここで、比率の下限は
メニスカス形状を変化させてパウダー流入を促進させる
ための必要通電時間からくるものであり、また、比率の
上限はメニスカス(又はフラックス)の攪乱を与えた
り、或いは発熱を防止するに必要な小電流通電時間から
設定されるものである。
Further, the ratio [t 1 / (t 1 + t) of the large-current energization time contributing to meniscus deformation to the in-cycle energization time.
2 ), or t 1 / (t 1 + t 2 + t off )] is 0.2 or more,
It is preferably 0.8 or less. By this selection, the effect of improving the lubrication between the mold wall and the solidified shell and the effect of improving the surface property of the slab can be maximized. Here, the lower limit of the ratio comes from the required energization time for changing the meniscus shape and promoting the powder inflow, and the upper limit of the ratio gives disturbance to the meniscus (or flux) or prevents heat generation. It is set from the small-current energizing time required for the operation.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来例では、特開昭52−32824号公報に示された方
法では電磁コイルを連続駆動しているため、ストランド
内の流速が速くなりすぎやすく、この場合、鋳片表面性
状は改善されない。
However, in the above-mentioned conventional example, since the electromagnetic coil is continuously driven in the method disclosed in Japanese Patent Laid-Open No. 52-32824, the flow velocity in the strand is apt to become too fast, In this case, the surface properties of the slab are not improved.

【0011】また、PCT国際公開番号WO95/26
243では、ストランド内の流速によっては、溶融金属
の間欠的な盛り上がりが生じ、これによってパウダーの
巻き込みが生じる結果、表面性状が悪化するという問題
がある。
In addition, PCT international publication number WO95 / 26
In No. 243, there is a problem that intermittent swelling of the molten metal occurs depending on the flow velocity in the strand, and as a result, entrainment of the powder occurs, so that the surface quality deteriorates.

【0012】つまり、従来技術では表面性状の改善と皮
下介在物量の低減を同時に満足させることは困難であっ
た。
In other words, it has been difficult with the prior art to satisfy both the improvement of the surface texture and the reduction of the amount of subcutaneous inclusions at the same time.

【0013】本発明は上述の問題点に鑑みてなされたも
のであり、ストランド内の溶鋼流速を最適にし、表面性
状の改善と介在物の捕捉の防止を両立させることのでき
る連続鋳造ストランド内の流動制御方法を提供すること
を目的としている。
The present invention has been made in view of the above-mentioned problems. In the continuous cast strand, the molten steel flow rate in the strand can be optimized to improve the surface properties and prevent the inclusions from being trapped. It is intended to provide a flow control method.

【0014】[0014]

【課題を解決するための手段】本出願に係る発明の目的
を実現する方法は、請求項1に記載のように、鋳型の上
部を取り囲むように設置されたソレノイド状のコイルに
所定の通電モードによるパルス状の電流を印加し、流速
が0.1m/s〜0.3m/sで鉛直方向の回転流を鋳
型内の溶鋼金属の凝固シェル介在領域に生じさせるよう
にした連続鋳造ストランド内の流動制御方法にある。
A method for realizing the object of the invention according to the present application is, as described in claim 1, a predetermined energization mode for a solenoidal coil installed so as to surround an upper portion of a mold. In the continuous cast strand in which a pulsed current is applied to generate a vertical rotating flow at a flow velocity of 0.1 m / s to 0.3 m / s in the solidified shell intervening region of the molten steel metal in the mold. There is a flow control method.

【0015】この方法によれば、所望の静圧を溶鋼金属
に付与して鋳型内の溶鋼金属を鋳型内壁に軟接触させ、
同時にパルス状の電流を印加して最適速度の鉛直方向の
回転流を形成する。これにより、軟接触鋳造状態を維持
しながら介在物欠陥の少ない鋳片を得ることができる。
According to this method, a desired static pressure is applied to the molten steel metal to cause the molten steel metal in the mold to softly contact the inner wall of the mold,
At the same time, a pulsed electric current is applied to form a vertical rotating flow at an optimum speed. This makes it possible to obtain a slab with few inclusion defects while maintaining the soft contact casting state.

【0016】本出願に係る発明の目的を実現する具体的
な方法は、請求項2に記載のように、前記通電モード
は、通電期間が20%以上70%以下、それに対応する
休止期間をあわせて1周期とする波形を用いた連続鋳造
ストランド内の流動制御方法にある。
As a concrete method for realizing the object of the invention according to the present application, as described in claim 2, in the energization mode, an energization period is 20% or more and 70% or less, and a corresponding idle period is combined. There is a flow control method in a continuous casting strand using a waveform having one cycle.

【0017】この方法によれば、凝固シェル断面流速及
び鋳片の表層の介在物指標を良好に形成でき、表面性状
の改善及び介在物の捕捉防止を両立させることができ
る。
According to this method, the cross-sectional flow velocity of the solidified shell and the inclusion index in the surface layer of the slab can be satisfactorily formed, and the improvement of the surface properties and the prevention of inclusion inclusion can be achieved at the same time.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明による連続鋳造ストランド内
の流動制御方法の原理を示す説明図である。
FIG. 1 is an explanatory view showing the principle of a flow control method in a continuously cast strand according to the present invention.

【0020】本発明では、表面性状を改善するため、パ
ルス状の電流を電磁コイルに印加し、且つ、0.1m/
s〜0.3m/sの鉛直方向の流速をコイル高さ範囲の
凝固シェルに付与するようにしている。この流速範囲の
設定理由について、図1を参照して説明する。
In the present invention, in order to improve the surface texture, a pulsed current is applied to the electromagnetic coil, and 0.1 m / m
A vertical flow velocity of s to 0.3 m / s is applied to the solidified shell in the coil height range. The reason for setting the flow velocity range will be described with reference to FIG.

【0021】図1の(a)は電磁圧力と電磁コイルの通
電状態の関係を示し、図1の(b)はストランド内の溶
鋼流速と電磁コイルの通電状態の関係を示している。静
圧を制御して表面性状を綺麗にするためには、所定の電
磁圧力の付与が必要であるが、図1の(a)に示すよう
に、電磁圧力は電磁コイルの通電状態に比例する。電磁
コイルが非通電(OFF)のときに電磁圧力は0にな
り、表面性状が悪化する。また、100%連続通電(A
C通電)にした場合に電磁圧力は最大になり、同様に表
面性状が悪化する。
FIG. 1A shows the relationship between the electromagnetic pressure and the energized state of the electromagnetic coil, and FIG. 1B shows the relationship between the molten steel flow velocity in the strand and the energized state of the electromagnetic coil. In order to control the static pressure and clean the surface properties, it is necessary to apply a predetermined electromagnetic pressure, but as shown in FIG. 1A, the electromagnetic pressure is proportional to the energized state of the electromagnetic coil. . When the electromagnetic coil is not energized (OFF), the electromagnetic pressure becomes 0, and the surface quality deteriorates. In addition, 100% continuous energization (A
When the C current is applied, the electromagnetic pressure is maximized and the surface quality is similarly deteriorated.

【0022】また、介在物の捕捉を防止するためには、
ストランド内の溶鋼流速(鉛直方向の流速)を最適にす
る必要がある。図1の(b)に示すように、電磁コイル
が非通電のときには鉛直方向の流速は最小になる。ま
た、連続通電のときには流速が最大になり、介在物は溶
鋼流に巻き込まれて捕捉される。これは、製品品質を低
下させる原因になる。
In order to prevent trapping of inclusions,
It is necessary to optimize the molten steel flow velocity (flow velocity in the vertical direction) in the strand. As shown in FIG. 1B, the flow velocity in the vertical direction is minimum when the electromagnetic coil is not energized. In addition, the flow velocity is maximized during continuous energization, and inclusions are caught in the molten steel flow and captured. This causes deterioration of product quality.

【0023】電磁圧力及び鉛直方向の流速は、電磁コイ
ルに対する通電を図2に示すように周期的、すなわちオ
ン(ON)期間とオフ期間の比率を変えていくと、通電
期間が長くなる(休止期間が短くなる)につれ、電磁圧
力及び流速は徐々に大きくなる。つまり、通電比を変え
ることによって電磁圧力と流速を任意に設定することが
できる。
The electromagnetic pressure and the flow velocity in the vertical direction are such that the energization to the electromagnetic coil is cyclic as shown in FIG. 2, that is, the energization period becomes longer (pause) when the ratio of the ON period and the OFF period is changed. As the period gets shorter), the electromagnetic pressure and flow velocity gradually increase. That is, the electromagnetic pressure and the flow velocity can be arbitrarily set by changing the energization ratio.

【0024】1基の電磁コイルによって静圧と鉛直方向
の流速を同時に制御しようとすれば、両者のバランスを
とった通電条件を規定する必要がある。そこで、本発明
者らは、通電期間aと非通電期間bの比、すなわち(a
÷b)×100(%)を0〜100%の間で所定の変化
比にしながら、その都度、静圧と鉛直方向の流速の状態
を観測した。この判定は、湯面の盛り上がり高さをビデ
オ撮影し、その画像内容を分析することにより行うこと
ができる。
If the static pressure and the flow velocity in the vertical direction are to be simultaneously controlled by one electromagnetic coil, it is necessary to define the energization condition that balances both. Therefore, the present inventors have found that the ratio of the energized period a to the non-energized period b, that is, (a
÷ b) × 100 (%) was set to a predetermined change ratio between 0 and 100%, and the static pressure and the flow velocity in the vertical direction were observed each time. This determination can be performed by video shooting the rising height of the molten metal surface and analyzing the image content.

【0025】この結果、鉛直方向の流速が10〜30c
m/s、電磁圧力が30〜40mmFeのときに表面性
状が最適になり、且つ鋳型内の溶鋼を内壁に対して軟接
触状態を保持した静圧制御を同時に達成することができ
た。そして、この時の鉛直方向の流速を歪みゲージで測
定したところ、0.1m/s〜0.3m/sであった。
このことから、鉛直方向の流速を0.1m/s〜0.3
m/sの範囲になるようにすれば、本発明の目的は達せ
られる。
As a result, the vertical flow velocity is 10 to 30c.
When the m / s and the electromagnetic pressure were 30 to 40 mmFe, the surface properties were optimized, and the static pressure control in which the molten steel in the mold was kept in soft contact with the inner wall could be achieved at the same time. Then, when the flow velocity in the vertical direction at this time was measured with a strain gauge, it was 0.1 m / s to 0.3 m / s.
From this, the vertical flow velocity is 0.1 m / s to 0.3
The object of the present invention can be achieved if the range is m / s.

【0026】(実施の形態1)本発明者らは、図3に示
す構造の鋳型、及び電磁コイルによる連続鋳造設備を用
いて鋳造を実施した。連続鋳造設備は、鋳型12の上部
には、不図示のタンディッシュに連結された注入ノズル
13の下端が浸漬されている。鋳型12内の溶融金属1
4の湯面から所定の深さを取り巻くようにして鋳型内に
電磁コイル15が埋設されている。この電磁コイル15
により、その内側の鋳型内壁近傍に鉛直方向に本発明に
よる流速の回流16が形成される。
(Embodiment 1) The present inventors performed casting using a mold having the structure shown in FIG. 3 and a continuous casting facility using an electromagnetic coil. In the continuous casting equipment, the lower end of the injection nozzle 13 connected to a tundish (not shown) is immersed in the upper part of the mold 12. Molten metal 1 in mold 12
An electromagnetic coil 15 is embedded in the mold so as to surround the molten metal surface at a predetermined depth. This electromagnetic coil 15
Thus, the circulation 16 having the flow velocity according to the present invention is formed in the vertical direction in the vicinity of the inner wall of the mold inside thereof.

【0027】鋳造は以下の条件により行った。 使用材料 :オーステナイト系ステンレス鋼ビレッ
ト 鋳造ストランド:150mm角 鋳造速度 :2m/min 注入ノズル :下向きストレート コイル高さ :200mm コイル位置 :その上端をメニスカス 盛り上がり高さ:40mm 通電電流 :a=70%、b=30% そして、比較例として、電磁コイル15を設けない場合
(試験)、電磁コイル15に連続通電を行った場合
(試験)、電磁コイル15への通電を通電期間a=7
0%、通電期間b=30%にした場合(試験)の3つ
のケースについて、凝固シェル断面流速(cm/s)及
び鋳片の表層10mmの介在物指標を計測したところ、
図4及び図5の結果を得た。
Casting was performed under the following conditions. Materials used: Austenitic stainless steel billet cast strand: 150 mm square casting speed: 2 m / min Injection nozzle: Downward straight coil height: 200 mm Coil position: Meniscus swelling height at its upper end: 40 mm Energizing current: a = 70%, b = 30% Then, as a comparative example, when the electromagnetic coil 15 is not provided (test), when the electromagnetic coil 15 is continuously energized (test), the electromagnetic coil 15 is energized for an energization period a = 7.
When the solidified shell cross-section flow velocity (cm / s) and the inclusion index of the surface layer 10 mm of the slab were measured for three cases of 0% and energization period b = 30% (test),
The results shown in FIGS. 4 and 5 were obtained.

【0028】図4から明らかなように、連続通電による
試験は40cm/sを越える凝固シェル断面流速にな
ったのに対し、本発明によるパルス通電では約20cm
/sになり、介在物の捕捉が低減されることを示してい
る。なお、電磁コイル15を設けない試験は、凝固シ
ェル断面流速が本発明よりも遅くなっている。これは電
磁コイル15に通電を行っていない場合と同じであり、
図1の(a)に示したように、流速が最も遅くなる条件
になるためである。
As is apparent from FIG. 4, the cross-flow velocity of the solidified shell exceeds 40 cm / s in the test by continuous energization, whereas it is about 20 cm in the pulse energization according to the present invention.
/ S, indicating that the trapping of inclusions is reduced. In the test in which the electromagnetic coil 15 is not provided, the cross-sectional flow velocity of the solidified shell is slower than that of the present invention. This is the same as when the electromagnetic coil 15 is not energized,
This is because, as shown in (a) of FIG. 1, the condition is that the flow velocity becomes the slowest.

【0029】次に、図5から明らかなように、連続通電
による試験は、パウダー系(潤滑剤)の介在物の巻き
込みの影響が大きく現れ、介在物指標が極めて大きな値
になっている。これに対し、本発明ではタンディッシ
ュからもちこまれるスラグ系のみが介在物として関与
し、さらに流速がある程度存在し介在物の捕捉が抑制さ
れた結果、介在物指標が極めて小さな値を示している。
なお、電磁コイル15を設けない試験の介在物指標は
試験よりは低い値を示しているが、流速が不足してい
ることにより、スラグ系介在物の捕捉の影響が現れてお
り、本発明による試験に比べて大幅に悪い結果になっ
ている。
Next, as is clear from FIG. 5, in the test by continuous energization, the influence of inclusion of powder-type (lubricant) inclusions is significant, and the inclusion index has an extremely large value. On the other hand, in the present invention, only the slag system brought in from the tundish is involved as inclusions, and the inclusion index is shown to be extremely small as a result of the inclusion of inclusions being suppressed due to the existence of a certain flow velocity.
Although the inclusion index of the test in which the electromagnetic coil 15 is not provided is lower than that of the test, the effect of trapping the slag-based inclusions appears due to the insufficient flow velocity. The result is significantly worse than the test.

【0030】このように、本発明によれば、表面性状の
改善及び介在物の捕捉防止を同時に達成することができ
る。
As described above, according to the present invention, it is possible to simultaneously improve the surface properties and prevent inclusions from being trapped.

【0031】[0031]

【発明の効果】以上説明したように、請求項1に示した
本発明は、電磁コイルに所定の通電モードによるパルス
状の電流を印加し、流速が0.1m/s〜0.3m/s
で鉛直方向の回転流を鋳型内の溶鋼金属の凝固シェル介
在領域に生じさせるようにしたので、軟接触鋳造状態を
維持しながら介在物欠陥の少ない鋳片を得ることができ
る。すなわち、表面性状の改善及び介在物の捕捉防止を
両立させることが可能になる。
As described above, according to the present invention as set forth in claim 1, a pulse current is applied to the electromagnetic coil in a predetermined energizing mode, and the flow velocity is 0.1 m / s to 0.3 m / s.
Since a vertical rotating flow is generated in the solidified shell intervening region of the molten steel metal in the mold, it is possible to obtain a slab with few inclusion defects while maintaining the soft contact casting state. That is, it becomes possible to improve the surface properties and prevent inclusions from being captured.

【0032】請求項2に示した本発明は、通電期間が2
0%以上70%以下、それに対応する休止期間をあわせ
て1周期とする波形の通電モードにしたので、凝固シェ
ル断面流速及び鋳片の表層の介在物指標を良好に形成で
き、表面性状の改善及び介在物の捕捉防止を両立させる
ことができる。
According to the present invention as set forth in claim 2, the energization period is 2
Since the current-carrying mode has a waveform of 0% or more and 70% or less, and the corresponding rest period is one cycle in total, it is possible to satisfactorily form the solidified shell cross-sectional flow velocity and the inclusion index of the surface layer of the cast piece, and improve the surface quality. Also, it is possible to achieve both prevention of trapping of inclusions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による連続鋳造ストランド内の流動制御
方法の原理を示す説明図であり、(a)は電磁圧力と電
磁コイルの通電状態の関係を示し、(b)はストランド
内の溶鋼流速と電磁コイルの通電状態の関係を示してい
る。
FIG. 1 is an explanatory view showing the principle of a flow control method in a continuously cast strand according to the present invention, (a) showing the relationship between electromagnetic pressure and the energization state of an electromagnetic coil, and (b) showing the molten steel flow velocity in the strand. And the energized state of the electromagnetic coil.

【図2】本発明において電磁コイルに通電する電流波形
を示す波形図である。
FIG. 2 is a waveform diagram showing a waveform of a current passed through an electromagnetic coil in the present invention.

【図3】本発明の実施の形態を得るために用いた連続鋳
造設備の概略構成を示す正面断面図である。
FIG. 3 is a front cross-sectional view showing a schematic configuration of a continuous casting facility used to obtain the embodiment of the present invention.

【図4】本発明を実施した際の凝固シェル断面流速特性
を示す流速特性図である。
FIG. 4 is a flow velocity characteristic diagram showing cross-sectional flow velocity characteristics of a solidified shell when the present invention is carried out.

【図5】本発明を実施した際の鋳片の表層における介在
物指標を示す介在物指標特性図である。
FIG. 5 is an inclusion index characteristic diagram showing inclusion indexes in a surface layer of a cast product when the present invention is carried out.

【図6】従来の連続鋳造設備の概略構成を示す正面断面
図である。
FIG. 6 is a front sectional view showing a schematic configuration of a conventional continuous casting facility.

【図7】図6の設備の電磁コイルに通電する交流電流波
形を示す波形図である。
FIG. 7 is a waveform diagram showing an AC current waveform that is applied to an electromagnetic coil of the equipment of FIG.

【符号の説明】[Explanation of symbols]

12 鋳型 13 注入ノズル 14 溶融金属 15 電磁コイル 16 回流 12 Mold 13 injection nozzle 14 Molten metal 15 Electromagnetic coil 16 times

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−197213(JP,A) 特開 平8−155611(JP,A) 特開 平8−90183(JP,A) 特開 平7−96360(JP,A) 特開 平4−13445(JP,A) 特開 昭64−83348(JP,A) 特開 平8−187557(JP,A) 特開 平8−155608(JP,A) 特開 平5−329595(JP,A) 特開 昭55−106664(JP,A) 特開 平5−23803(JP,A) 特開 昭52−32824(JP,A) 国際公開95/26243(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/11 B22D 11/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-197213 (JP, A) JP-A-8-155611 (JP, A) JP-A-8-90183 (JP, A) JP-A-7- 96360 (JP, A) JP 4-13445 (JP, A) JP 64-83348 (JP, A) JP 8-187557 (JP, A) JP 8-155608 (JP, A) JP-A-5-329595 (JP, A) JP-A-55-106664 (JP, A) JP-A-5-23803 (JP, A) JP-A-52-32824 (JP, A) International Publication 95/26243 ( WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/115 B22D 11/11 B22D 11/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳型の上部を取り囲むように設置された
ソレノイド状のコイルに所定の通電モードによるパルス
状の電流を印加し、流速が0.1m/s〜0.3m/s
で鉛直方向の回転流を鋳型内の溶鋼金属の凝固シェル介
在領域に生じさせることを特徴とする連続鋳造ストラン
ド内の流動制御方法。
1. A pulse-shaped current in a predetermined energization mode is applied to a solenoid coil installed so as to surround the upper part of the mold, and the flow velocity is 0.1 m / s to 0.3 m / s.
A method for controlling flow in a continuous casting strand, characterized in that a vertical rotating flow is generated in a solidified shell intervening region of molten steel metal in a mold.
【請求項2】 前記通電モードは、通電期間が20%以
上70%以下、それに対応する休止期間をあわせて1周
期とする波形であることを特徴とする請求項1記載の連
続鋳造ストランド内の流動制御方法。
2. The continuous casting strand according to claim 1, wherein the energization mode has a waveform in which an energization period is 20% or more and 70% or less, and a corresponding rest period is one cycle in total. Flow control method.
JP07285197A 1997-03-11 1997-03-11 Flow control method in continuous casting strand Expired - Lifetime JP3388686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07285197A JP3388686B2 (en) 1997-03-11 1997-03-11 Flow control method in continuous casting strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07285197A JP3388686B2 (en) 1997-03-11 1997-03-11 Flow control method in continuous casting strand

Publications (2)

Publication Number Publication Date
JPH10249496A JPH10249496A (en) 1998-09-22
JP3388686B2 true JP3388686B2 (en) 2003-03-24

Family

ID=13501302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07285197A Expired - Lifetime JP3388686B2 (en) 1997-03-11 1997-03-11 Flow control method in continuous casting strand

Country Status (1)

Country Link
JP (1) JP3388686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999718B (en) * 2017-12-07 2019-05-31 安徽工业大学 A method of improving micro-alloyed steel continuous casting process castability

Also Published As

Publication number Publication date
JPH10249496A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP4401777B2 (en) Apparatus and method for continuous casting
JP3372958B2 (en) Method and apparatus for casting molten metal and cast slab
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
JP3388686B2 (en) Flow control method in continuous casting strand
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JPH05154623A (en) Method for controlling fluidity of molten steel in mold
JP4719360B2 (en) Metal continuous casting method and apparatus
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3056656B2 (en) Continuous casting method of molten metal
JP2885824B2 (en) Metal continuous casting method
JP3412691B2 (en) Continuous casting of molten metal
JP3595529B2 (en) Continuous casting machine for molten metal
JP4254576B2 (en) Steel continuous casting apparatus and continuous casting method
JP3704329B2 (en) Method for casting molten metal
JP3033318B2 (en) Method of supplying lubricant in continuous casting apparatus
JP4910357B2 (en) Steel continuous casting method
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP3216312B2 (en) Metal continuous casting equipment
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP2968046B2 (en) Method and apparatus for continuous casting of molten metal
JPH06182497A (en) Method for continuously casting metal
JPH08197213A (en) Method for continuously casting molten metal
JP2757736B2 (en) Metal continuous casting equipment
JP2005305536A (en) Continuous-casting method for molten metal
JP3796130B2 (en) Method for continuous casting of molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term