JP3718481B2 - Method for continuous casting of molten metal - Google Patents

Method for continuous casting of molten metal Download PDF

Info

Publication number
JP3718481B2
JP3718481B2 JP2002098691A JP2002098691A JP3718481B2 JP 3718481 B2 JP3718481 B2 JP 3718481B2 JP 2002098691 A JP2002098691 A JP 2002098691A JP 2002098691 A JP2002098691 A JP 2002098691A JP 3718481 B2 JP3718481 B2 JP 3718481B2
Authority
JP
Japan
Prior art keywords
molten metal
flow
discharge
mold
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002098691A
Other languages
Japanese (ja)
Other versions
JP2003290877A (en
Inventor
健彦 藤
雅弘 谷
寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002098691A priority Critical patent/JP3718481B2/en
Publication of JP2003290877A publication Critical patent/JP2003290877A/en
Application granted granted Critical
Publication of JP3718481B2 publication Critical patent/JP3718481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属の連続鋳造方法に関し、特に、鋳型内の溶融金属に交流電磁場を付与し、溶融金属を凸状に盛り上げつつ連続鋳造する技術に関する。
【0002】
【従来の技術】
連続鋳造において、オシレーションマーク、初期凝固を制御して鋳片の表面性状を改善する方法がこれまで多く提案されているが、磁場を利用するものとして、特開昭58−32824号公報には、溶融金属2を潤滑剤4と共に一定の周期で振動する水冷鋳型1に注入し、連続的に下方に引き抜く連続鋳造方法において、図4に示すように鋳型の周りに設けた電磁コイル5に交流電流を連続通電し、交流磁場によって発生する電磁力を利用して、溶融金属2を凸状に盛り上げることによって、鋳片の表面性状を改善する方法が開示されている。
【0003】
また、特開昭64−83348号公報には、電磁コイルによって鋳型内の溶融金属に電磁力を与える際に、交流磁場をパルス状に印加することによって電磁力を間歇的に付与し、パウダーキャステイングにおいて、更に表面性状の改善を図る方法が開示されている。さらに、再公表公報(WO96/05926)には、図5に示すような連続鋳造鋳型壁1を取り囲むように設置されたソレノイド状電磁コイル5に交流電流を通電し、鋳型内の凝固しつつある溶融金属2に、誘導電流20と誘導磁場21の方向から決まる鋳型壁から溶融金属側に引き離す方向に作用する電磁力22を印加しながら、溶融金属を凸状に盛り上げて、連続鋳造する方法において、通電する交流電流の振幅または波形を波形発生装置24により周期的に変化させることによって、初期の凝固を安定させ、鋳片表面性状を改善する方法が開示されている。
【0004】
このように、溶融金属に交流磁場を付与しつつ連続鋳造することによって、鋳片の表面性状を改善する技術が多く開発されている。
【0005】
【発明が解決しようとする課題】
上述のように、鋳型内の溶融金属に交流磁場を付与することにより、溶融金属を凸状に盛り上げる方向の電磁力を作用させることができる一方、この交流磁場により、鋳型内の溶融金属には、図6に示すように、コイルの垂直中心位置より上方では、鋳型壁に添って下降し、コイルの垂直中心位置より下方では、鋳型壁に沿って上昇する方向の流れ11が誘起される(以下、誘起流とする)。
【0006】
一方、2孔の吐出口を有する通常の浸漬ノズル6から吐出された溶融金属の流れ、吐出流7は、相対する鋳型壁に向かい、引き抜き方向に流れる下降流9と上方に反転して流れる上昇流10に分岐する。この上昇流10と、交流磁場により生じた誘起流11とが干渉し、メニスカス近傍において溶鋼の流れに乱れが生じる。この流れの乱れは、メニスカス近傍の熱流を変動させ凝固界面を不安定にして、鋳片の表面性状を劣化させたり、あるいはパウダーなどの巻き込みを助長して内質欠陥を招くなど、鋳片品質欠陥を引き起こす原因のひとつとなる。
【0007】
連続鋳造用鋳型内の溶融金属の流れが、鋳片品質に大きな影響を与えることは良く知られており、例えば、注入ノズルから吐出した溶融金属の流れが内在する介在物を溶融金属プールの奥深くまで持ち込み、これが凝固シェルに捕捉されて鋳片内部欠陥の原因となっている。このため、溶融金属の流れを制御してこれらの欠陥を防止する技術が多く提案されている。例えば、特開平2−284750号公報には、注入ノズルより下方に設けたコイルにより直流磁界を溶融金属に作用させ、その位置で溶鋼流にブレーキを作用させて溶鋼の下降流を減速させる方法が開示されている。また、特開平9−285854号公報には、図7に示すように、浸漬ノズル6をスリット状吐出口30を備えたものとし、浸漬ノズルからの吐出流が下向き吐出口を中心に鉛直方向から相対する鋳型短辺へ向けて広がる連続した扇状の流れ29が得られるようにするとともに、電磁コイル27と組み合わせることによって溶鋼の流れを制御することが開示されている。
【0008】
しかしながら、特開平9−285854号公報の技術は、溶融金属の下降流に対する直流磁場による制御であり、交流磁場を付与した場合の誘起流と反転上昇流とに関するものではない。
【0009】
本発明は、交流磁場を付与して溶融金属を連続鋳造する際、浸漬ノズルからの吐出流による上昇流と交流磁場による誘起流との干渉による流れの乱れを制御し、鋳片表面性状の変動を解消しうる、連続鋳造方法を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明は、上記の課題を解決するためのものであって、その内容は、以下のとおりである。
【0011】
一定の周期で振動される1対の長辺と1対の短辺からなる水冷鋳型内に浸漬ノズルより溶融金属を注入し、水冷鋳型の周囲に設けた通電コイルによって発生した交流磁場により溶融金属を鋳型壁から引き離す方向に電磁力を作用させつつ凝固させ、下方に連続的に引き抜いて溶融金属を連続鋳造する方法において、前記浸漬ノズルは、溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部と、ノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部とを連続して備えると共に、このスリット部と2孔部との吐出断面積の比を、式(1)の関係として鋳造することを特徴とする溶融金属の連続鋳造方法。
【0012】
(2√2・T・VcCOSθ/V0√S1)−1 < β …(1)
但し、β:スリット部と2孔部との吐出断面積の比
T:鋳造空間の厚さ(m)
Vc:鋳造速度(m/s)
θ:2孔部の中心線が水平面となす角度(度)
1:2孔部の吐出断面積(m2
0:通電コイルの電磁力によって誘起される溶鋼の流れ速度(m/s)
なお、左辺が0以下の場合はβ=0、すなわち、スリット部は設けないものとする。
【0013】
【発明の実施の形態】
以下、本発明を実施例の図面を用いて詳細に説明する。図1は、本発明の方法を実施するための連続鋳造装置の概略を示す断面図である。水冷鋳型1の周りには、交流電流を通電するための通電コイル5が、その上端がほぼメニスカス3の位置となるように、水冷鋳型に埋設するようにして設けられている。鋳造においては、水冷鋳型の上方のタンデイッシュ(図示せず)から浸漬ノズル6を介して溶融金属が水冷鋳型内に供給される。なお、浸漬ノズルからの溶融金属の吐出方向、あるいは浸漬ノズルの吐出口の方向は、通常、水冷鋳型の水平断面の形状が長方形である場合は、その短辺側であり、ほぼ正方形である場合は、何れかの辺側とする。なお、以下においては、水冷鋳型の水平断面形状は長方形である鋳型として説明する。水冷鋳型1内の溶融金属2の表面には潤滑材としてパウダー4が供給され、溶融金属は、水冷鋳型1によりオッシレーションを受けつつ冷却され凝固しつつ、鋳片として下方に引き抜かれる。このとき、通電コイル5には、数10〜数100Hzの交流電流が通電されることにより、鋳型内に誘導磁場Bが生成され、これによって誘導電流Jが誘起される。この誘導電流Jと誘導磁場Bの作用により溶融金属2に電磁力Fが水冷鋳型の中心に向かう方向に作用し、メニスカス3近傍において溶融金属を凸状に盛り上げ、水冷鋳型との潤滑を円滑に維持しつつ凝固が進行する。
【0014】
その結果、鋳片のオッシレーションマーク等を軽減し、表面性状を向上させることができるのであるが、図1に示すように、このコイルへの交流電流の通電によって、鋳型内の溶融金属には、コイルの垂直中心位置より上方では、下降し、一方、コイルの垂直中心位置より下方では、上昇する方向の流れ11(誘起流)が誘起される。
【0015】
一方、浸漬ノズル6からの溶融金属の吐出流7は、鋳型の短辺側の壁面付近でその流れ方向を下方に転じ、大部分が下降流9となるが、吐出流の一部は、上方に反転して上昇流10となり、コイルへの交流電流の通電により生じた上記の誘起流11と干渉し、上述のように、メニスカス近傍において流れに乱れが生じている。
【0016】
発明者らは、この誘起流11とこの上昇流10との干渉によるメニスカス近傍の流れの乱れによる鋳片の表面性状の変動を抑制し、表面性状の優れた鋳片を得るための方法を検討した。
【0017】
すなわち、鋳造条件から決まる短辺側の上昇流を、電磁力による誘起流に対して一定以下とする必要があるとの知見に基づき、ノズルの形状、鋳造条件などと、鋳片の表面性状との関係を詳細に検討した結果、本発明をなしたものである。
【0018】
本発明では、まず、浸漬ノズル6の溶融金属の吐出部を、図2(a)に示すように、溶融金属を相対する鋳型壁面方向から壁面下方方向にかけて吐出させる2孔部12と、ノズル直下の鉛直方向から相対する壁面方向にかけて吐出させるスリット部13とを備える共に、スリット部13を2孔部12に連続して設けた構成とするものである。すなわち、浸漬ノズルの2孔部に連続してスリットを設けた構造とすることによって、図1に示すように、浸漬ノズルの直下から鉛直下方に向かう溶鋼の流れ、下降流8を生成させ、これによって、2孔部からの吐出流7の割合を制限し、この2孔部から短辺側(壁面)に向かう吐出流により生成する上昇流10を緩和することができ、この上昇流と、上述の誘起流11との干渉を抑制することができる。
【0019】
さらに、このように構成した浸漬ノズルにおいて、上述のように誘起流と干渉する上昇流の強さを一定以下にするために、鋳造速度Vc、鋳造空間の厚さT、などの鋳造条件に応じて、上記の浸漬ノズルの2孔部とスリット部の吐出流の配分を決定すればよい。すなわち、スリット部と2孔部との吐出断面積の比β(=スリット部の吐出断面積/2孔部の吐出断面積)が、ノズル2孔部の吐出角度および吐出断面積、電磁力による誘起流の速さV0などとの関係において、式(1)を満たすようにするものである。
【0020】
(2√2・T・VcCOSθ/V0√S1)−1 < β …(1)
なお、(1)式において、左辺が0以下の場合は、β=0すなわちスリット部は設けないものとする。
【0021】
式(1)において、βは、図2(C)示すように浸漬ノズル6の吐出部、すなわち、スリット部の吐出断面積S2と2孔部の吐出断面積S1との比(S2/S1)である。2孔部の形状は、円形、楕円形、矩形、多角形など特に制限されるものではないが、吐出流による溶融金属プール内の流れの乱れを少なくする観点からは、円形、楕円形などが好ましい。その断面積S1は、吐出口部(孔)の形状に応じて求めることができ、また、スリット部の吐出断面積S2は、各矩形断面積の和として求めることができる。
【0022】
なお、スリットは、図2(a)に示すように、2孔部に連続して設けられ、かつスリットの厚さ方向の中心線と浸漬ノズルの2孔部の中心線とは、ほぼ同一方向となるように設けられるものとし、鋳造時においては、鋳型の長辺に平行になるように設置されるものとする。
【0023】
また、図2(b)に示すように、θは、2孔部の中心線が水平面となす角度(度)、すなわち吐出角であり、通常、−15〜55度、好ましくは0〜45度である。
【0024】
また、Tは、鋳造空間の厚さ(m)であり、この場合は鋳型厚さ(鋳型短辺の長さ)である。水平断面形状が正方形の鋳型の場合は、何れかの辺の長さである。Vcは、鋳造速度(m/s)であり、鋳造する溶融金属の種類、溶融金属の温度、鋳片のサイズなどの操業条件等を勘案して決められる。
【0025】
0は、通電コイルの電磁力によって誘起される溶鋼の流れ(誘起流)11の速度(m/s)である。一般に合金は連続鋳造のような比較的凝固速度が速いとき、樹枝状に凝固(デンドライト)し、そのデンドライトは凝固成長中に流れの上流側に傾き、その角度は合金成分、流速で決まることが知られている。したがってこの誘起流の速度V0は、この方法により求めることができる。なお、数値計算によっても求めることができる。
【0026】
図1に示すように、コイルの垂直方向中心位置の上方と下方とで互いに相反する方向の流れとなるが、(1)式におけるV0は、上方、下方のいずれかの誘起流の速度でも良いし、両者の平均速度としても良い。本発明においては、この流れの速度は、コイルの高さ位置近傍で測定した速度とすることが好ましい。すなわち、コイルの下端から上端にかけての範囲で速度を測定することにより、誘起流の速度測定において、浸漬ノズルからの吐出流や、溶融金属プール表面の変動の影響を受けることなく評価できるようにするためである。
【0027】
例えば、Voを、通電コイルの3/4高さ相当、鋳型(長辺)幅の1/2、かつ鋳型壁から1cm内側の位置において、上述の方法により測定ないしは計算により求めることも好ましい。
【0028】
【実施例】
幅が1500mm、高さが880mm、厚み250mmの鋳型のメニスカス部に、高さ150mmのソレノイドコイルを、その上端がメニスカス位置になるようにセットし、また、メニスカスから300mm深さとなる外径150mm、内径90mmの浸漬ノズルで、ノズル吐出口の性状を変えたものを用いて鋳造を行った。ノズルは、図2に示す形状とし、ノズルの吐出口部は、鋳型空間の短辺側に向かう直径60mm、吐出角度θが15度、30度、45度を有する2孔部を有するもの3本、および、さらにそれぞれの下端に、鋳型長辺方向に平行となるように、2孔部に連続して設けた厚さaの異なるスリットを有するもの9本を用いた。
【0029】
表1に、ノズルの2孔部の吐出角θと、これに設けたスリット厚さaを示す。
【0030】
【表1】

Figure 0003718481
【0031】
電磁コイルには、溶融金属の盛り上がりが、20mmとなるように周波数150Hzの正弦波交流を通電し、鋳造速度は1.5m/mimとして、低炭素アルミキルド鋼を鋳造した。なお、このとき、通電コイルの3/4高さ近傍に相当する鋳片デンドライト傾角から測定した流速Voは0.2m/sであった。
【0032】
これらのノズルを用いて鋳造した鋳片の表面性状を測定し、その測定結果を、許容レベルの粗さで規格化した表面粗度として図3に示す。
【0033】
図3から判るように、黒丸で示したスリット1を設けたものは、何れも式(1)の関係を満たしておらず、許容レベルで規格化した表面粗度を大きく超えるものが多く、ばらつきも大きい。
【0034】
一方、本発明の関係を満たす、黒四角で示したスリット2を設けたもの、黒菱で示したスリット3を設けたものは、いずれも許容レベルを下回っており、そのばらつきも小さいことがわかる。
【0035】
また、本発明の関係を満たしている中でも、特に、式(1)の関係を大きく満たしている黒菱で示したスリット3を設けたものは、同じく式(1)の関係を満たしている黒四角で示したスリット2を設けたものに比べてさらに安定した表面性状を有していることがわかる。
【0036】
【発明の効果】
本発明によれば、溶融金属に交流電磁場を付与しつつ連続鋳造するに際し、交流磁場によって溶融金属に誘起される流れと、浸漬ノズルからの吐出流との干渉が解消され、表面性状ならびに鋳片内質にも優れた鋳片を得ることができる。
【図面の簡単な説明】
【図1】本発明の連続鋳造方法の実施例を示す概略図であり、(a)は上面図、(b)は断面図である。
【図2】本発明の実施例のノズル形状を示す概略図であり、(a)、(b)は断面図、(C)はノズルの吐出断面積の形状を示す模式図である。
【図3】本発明の実施例におけるノズルのスリット厚みa、吐出角θと、許容レベルで規格化した鋳片表面粗度との関係を示す図である。
【図4】電磁力を付与して連続鋳造する従来の方法の一例を示す断面概略図。
【図5】電磁力を付与して連続鋳造する従来の他の例を示す断面概略図。
【図6】電磁力を付与して連続鋳造する従来の他の例の概略図であり、(a)は上面図、(b)は断面図である。
【図7】電磁ブレーキを使用した連続鋳造技術を示す概略図であり、(a)は断面図、(b)は上面図である。
【符号の説明】
1…水冷鋳型
2…溶融金属
3…メニスカス
4…パウダー
5…通電コイル
6…浸漬ノズル
7…2孔部からの吐出流
8…スリット部からの吐出流
9…下降流
10…上昇流
11…誘起流
12…ノズルの2孔部
13…ノズルのスリット部
20…誘導電流
21…誘導磁場
22…電磁力
23…電磁力誘起流れ
24…波形発生装置
25…電源装置
26…励磁電流
27…電磁コイル
28…電磁コイル上端
29…分散化した溶鋼下降流のフローパターン
30…スリット状吐出口
S1…2孔部の吐出断面積
S2…スリット部の吐出断面積
θ…吐出角
a…スリット幅
T…鋳型の短辺長さ
B…誘導磁場
F…電磁力
J…誘導電流[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten metal continuous casting method, and more particularly to a technique for applying an alternating current electromagnetic field to molten metal in a mold and continuously casting the molten metal in a convex shape.
[0002]
[Prior art]
In continuous casting, many methods have been proposed so far to improve the surface properties of the slab by controlling the oscillation mark and initial solidification. However, Japanese Patent Application Laid-Open No. 58-32824 discloses that a magnetic field is used. In the continuous casting method in which the molten metal 2 is poured into the water-cooled mold 1 oscillating with a lubricant 4 at a constant cycle and continuously pulled down, an alternating current is applied to the electromagnetic coil 5 provided around the mold as shown in FIG. A method of improving the surface properties of a slab by continuously energizing a current and using the electromagnetic force generated by an alternating magnetic field to raise the molten metal 2 in a convex shape is disclosed.
[0003]
Japanese Patent Application Laid-Open No. 64-83348 discloses that when an electromagnetic force is applied to a molten metal in a mold by an electromagnetic coil, an electromagnetic force is intermittently applied by applying an alternating magnetic field in a pulse shape, and powder casting is performed. Discloses a method for further improving the surface properties. Furthermore, in the republication publication (WO96 / 05926), an alternating current is applied to the solenoidal electromagnetic coil 5 installed so as to surround the continuous casting mold wall 1 as shown in FIG. In a method of continuously casting a molten metal in a convex shape while applying an electromagnetic force 22 acting on the molten metal 2 in a direction away from the mold wall to the molten metal side determined from the directions of the induced current 20 and the induced magnetic field 21 A method is disclosed in which the initial solidification is stabilized and the slab surface property is improved by periodically changing the amplitude or waveform of the alternating current to be energized by the waveform generator 24.
[0004]
As described above, many techniques for improving the surface properties of a slab have been developed by continuously casting molten metal while applying an alternating magnetic field.
[0005]
[Problems to be solved by the invention]
As described above, by applying an alternating magnetic field to the molten metal in the mold, an electromagnetic force in the direction of raising the molten metal in a convex shape can be applied, while this alternating magnetic field causes the molten metal in the mold to As shown in FIG. 6, a flow 11 is induced that descends along the mold wall above the vertical center position of the coil and rises along the mold wall below the vertical center position of the coil ( Hereinafter, this is referred to as induced flow.
[0006]
On the other hand, the flow of the molten metal discharged from the normal immersion nozzle 6 having two discharge ports, the discharge flow 7 is directed to the opposite mold wall, and the upward flow is reversed from the downward flow 9 flowing in the drawing direction. Branch to stream 10. The upward flow 10 and the induced flow 11 generated by the AC magnetic field interfere with each other, and the molten steel flow is disturbed in the vicinity of the meniscus. This turbulent flow causes fluctuations in the heat flow in the vicinity of the meniscus, destabilizing the solidification interface, degrading the surface properties of the slab, or encouraging the inclusion of powder etc. One of the causes of defects.
[0007]
It is well known that the flow of molten metal in a continuous casting mold has a large effect on the quality of the slab.For example, the inclusions containing the flow of molten metal discharged from the injection nozzle are deep inside the molten metal pool. This is trapped by the solidified shell and causes defects inside the slab. For this reason, many techniques for controlling the flow of molten metal to prevent these defects have been proposed. For example, Japanese Patent Laid-Open No. 2-284750 discloses a method in which a DC magnetic field is applied to molten metal by a coil provided below an injection nozzle, and a brake is applied to the molten steel flow at that position to decelerate the downward flow of the molten steel. It is disclosed. Further, in Japanese Patent Application Laid-Open No. 9-285854, as shown in FIG. 7, the immersion nozzle 6 is provided with a slit-like discharge port 30, and the discharge flow from the immersion nozzle starts from the vertical direction centering on the downward discharge port. It is disclosed that a continuous fan-shaped flow 29 spreading toward the opposite mold short side is obtained, and the flow of molten steel is controlled by combining with an electromagnetic coil 27.
[0008]
However, the technique disclosed in Japanese Patent Laid-Open No. 9-285854 is a control by a direct current magnetic field with respect to a descending flow of molten metal, and does not relate to an induced flow and an inverted upflow when an alternating magnetic field is applied.
[0009]
The present invention controls the flow turbulence due to the interference between the upward flow caused by the discharge flow from the immersion nozzle and the induced flow caused by the alternating magnetic field when continuously casting molten metal with an alternating magnetic field, and changes in the slab surface properties It is an object of the present invention to provide a continuous casting method that can eliminate the problem.
[0010]
[Means for Solving the Problems]
The present invention is for solving the above-described problems, and the contents thereof are as follows.
[0011]
Molten metal is injected from a submerged nozzle into a water-cooled mold consisting of a pair of long sides and a pair of short sides that are vibrated at a constant period, and the molten metal is generated by an alternating magnetic field generated by an energizing coil provided around the water-cooled mold. In the method in which the molten metal is solidified while applying an electromagnetic force in the direction of pulling it away from the mold wall and continuously drawn downward to continuously melt the molten metal, the immersion nozzle extends the molten metal from the opposite mold wall direction to the vertically downward direction. A two-hole portion to be discharged and a slit portion to be discharged from the vertically downward direction directly below the nozzle toward the opposite mold wall surface are provided continuously, and the ratio of the discharge cross-sectional area between the slit portion and the two-hole portion is expressed by the formula ( A continuous casting method of molten metal, characterized by casting as the relationship of 1).
[0012]
(2√2 · T · VcCOSθ / V 0 √S 1 ) −1 <β (1)
However, β: Ratio of discharge cross-sectional area between slit and two holes T: Thickness of casting space (m)
Vc: Casting speed (m / s)
θ: Angle (degrees) between the center line of the two holes and the horizontal plane
S 1 : discharge sectional area of two holes (m 2 )
V 0 : Flow velocity of molten steel induced by electromagnetic force of current-carrying coil (m / s)
When the left side is 0 or less, β = 0, that is, no slit portion is provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings of the embodiments. FIG. 1 is a cross-sectional view schematically showing a continuous casting apparatus for carrying out the method of the present invention. Around the water-cooled mold 1, an energizing coil 5 for energizing an alternating current is provided so as to be embedded in the water-cooled mold so that the upper end thereof is substantially at the position of the meniscus 3. In casting, molten metal is supplied from a tundish (not shown) above the water-cooled mold through the immersion nozzle 6 into the water-cooled mold. The direction of the molten metal discharge from the immersion nozzle or the direction of the discharge port of the immersion nozzle is usually the short side when the horizontal cross-sectional shape of the water-cooled mold is rectangular, and is approximately square Is any side. In the following description, the horizontal cross-sectional shape of the water-cooled mold is described as a rectangular mold. Powder 4 is supplied as a lubricant to the surface of the molten metal 2 in the water-cooled mold 1, and the molten metal is cooled and solidified while being oscillated by the water-cooled mold 1, and is drawn downward as a slab. At this time, an alternating current of several tens to several hundreds of Hz is applied to the energizing coil 5 to generate an induced magnetic field B in the mold, thereby inducing an induced current J. Due to the action of the induced current J and the induced magnetic field B, the electromagnetic force F acts on the molten metal 2 in the direction toward the center of the water-cooled mold, and the molten metal is raised in the vicinity of the meniscus 3 to smoothly lubricate the water-cooled mold. Solidification proceeds while maintaining.
[0014]
As a result, it is possible to reduce the oscillation mark of the slab and improve the surface properties, but as shown in FIG. In the meantime, the flow descends above the vertical center position of the coil, while the flow 11 (induced flow) in the ascending direction is induced below the vertical center position of the coil.
[0015]
On the other hand, the molten metal discharge flow 7 from the immersion nozzle 6 changes its flow direction downward in the vicinity of the wall surface on the short side of the mold, and most of the flow becomes a downward flow 9, but a part of the discharge flow is As a result, the flow is disturbed in the vicinity of the meniscus, as described above, resulting in interference with the induced flow 11 generated by the application of alternating current to the coil.
[0016]
The inventors have studied a method for suppressing the fluctuation of the surface property of the slab due to the disturbance of the flow in the vicinity of the meniscus due to the interference between the induced flow 11 and the upward flow 10 and obtaining a slab having an excellent surface property. did.
[0017]
That is, based on the knowledge that the upward flow on the short side determined by the casting conditions must be below a certain level with respect to the induced flow due to electromagnetic force, the shape of the nozzle, the casting conditions, etc., and the surface properties of the slab As a result of examining the relationship in detail, the present invention has been made.
[0018]
In the present invention, first, as shown in FIG. 2A, the molten metal discharge portion of the submerged nozzle 6 is discharged from the opposite mold wall surface direction to the wall surface lower direction, and the portion immediately below the nozzle. And a slit portion 13 that discharges from the vertical direction to the opposite wall surface direction, and the slit portion 13 is provided continuously to the two hole portions 12. That is, by forming a slit continuously in the two holes of the immersion nozzle, as shown in FIG. 1, a flow of molten steel, a downward flow 8 is generated from directly below the immersion nozzle to the vertically downward direction. By limiting the ratio of the discharge flow 7 from the two holes, the upward flow 10 generated by the discharge flow from the two holes toward the short side (wall surface) can be relaxed. Interference with the induced flow 11 can be suppressed.
[0019]
Further, in the immersion nozzle configured as described above, in order to keep the strength of the upward flow that interferes with the induced flow as described above, depending on the casting conditions such as the casting speed Vc and the thickness T of the casting space. Thus, the distribution of the discharge flow between the two holes and the slits of the immersion nozzle may be determined. That is, the ratio β of the discharge cross-sectional area between the slit part and the two hole parts (= discharge cross-sectional area of the slit part / discharge cross-sectional area of the two hole parts) depends on the discharge angle and discharge cross-sectional area of the nozzle two hole parts, and electromagnetic force. In relation to the induced flow speed V 0 and the like, the expression (1) is satisfied.
[0020]
(2√2 · T · VcCOSθ / V 0 √S 1 ) −1 <β (1)
In the equation (1), when the left side is 0 or less, β = 0, that is, no slit portion is provided.
[0021]
In Expression (1), β is the ratio of the discharge cross section S2 of the submerged nozzle 6 as shown in FIG. 2C, that is, the discharge cross sectional area S1 of the two holes (S2 / S1). It is. The shape of the two holes is not particularly limited, such as a circle, an ellipse, a rectangle, or a polygon. From the viewpoint of reducing the flow disturbance in the molten metal pool due to the discharge flow, a circle, an ellipse, etc. preferable. The cross-sectional area S1 can be determined according to the shape of the discharge port portion (hole), and the discharge cross-sectional area S2 of the slit portion can be determined as the sum of the rectangular cross-sectional areas.
[0022]
As shown in FIG. 2 (a), the slit is continuously provided in the two holes, and the center line in the thickness direction of the slit and the center line of the two holes in the immersion nozzle are substantially in the same direction. In casting, it is installed so as to be parallel to the long side of the mold.
[0023]
As shown in FIG. 2B, θ is an angle (degree) formed by the center line of the two holes with the horizontal plane, that is, a discharge angle, and is usually −15 to 55 degrees, preferably 0 to 45 degrees. It is.
[0024]
T is the thickness (m) of the casting space, in this case the mold thickness (the length of the mold short side). When the horizontal cross-sectional shape is a square mold, it is the length of any side. Vc is a casting speed (m / s), and is determined in consideration of operating conditions such as the type of molten metal to be cast, the temperature of the molten metal, and the size of the slab.
[0025]
V 0 is the velocity (m / s) of the molten steel flow (induced flow) 11 induced by the electromagnetic force of the energizing coil. In general, when a solidification rate is relatively high as in continuous casting, the alloy solidifies in a dendritic shape (dendrites), and the dendrites are inclined upstream of the flow during solidification growth, and the angle is determined by the alloy composition and flow velocity. Are known. Therefore, the velocity V 0 of the induced flow can be obtained by this method. It can also be obtained by numerical calculation.
[0026]
As shown in FIG. 1, the flow is in a direction opposite to each other above and below the center position in the vertical direction of the coil, but V 0 in the equation (1) is the velocity of the induced flow either above or below. It is good and it is good also as average speed of both. In the present invention, the flow velocity is preferably a velocity measured in the vicinity of the coil height position. That is, by measuring the speed in the range from the lower end to the upper end of the coil, the induced flow speed measurement can be evaluated without being affected by the discharge flow from the immersion nozzle and the fluctuation of the molten metal pool surface. Because.
[0027]
For example, it is also preferable to obtain Vo by measurement or calculation by the above method at a position corresponding to 3/4 height of the energizing coil, 1/2 of the mold (long side) width, and 1 cm inside of the mold wall.
[0028]
【Example】
A solenoid coil having a height of 150 mm is set on a meniscus portion of a mold having a width of 1500 mm, a height of 880 mm, and a thickness of 250 mm so that the upper end is located at the meniscus position. Casting was performed using a submerged nozzle having an inner diameter of 90 mm and having a different nozzle discharge port. The nozzle has the shape shown in FIG. 2, and the nozzle discharge port has two holes with a diameter of 60 mm toward the short side of the mold space and a discharge angle θ of 15, 30, and 45 degrees. Nine slits having slits with different thickness a provided continuously in the two holes so as to be parallel to the long side direction of the mold were used at the lower ends of the respective lower ends.
[0029]
Table 1 shows the discharge angle θ of the two holes of the nozzle and the slit thickness a provided thereto.
[0030]
[Table 1]
Figure 0003718481
[0031]
A low-carbon aluminum killed steel was cast at a casting speed of 1.5 m / mim by applying a sine wave alternating current with a frequency of 150 Hz so that the swell of molten metal was 20 mm. At this time, the flow velocity Vo measured from the slab dendrite inclination corresponding to the vicinity of 3/4 height of the energizing coil was 0.2 m / s.
[0032]
The surface properties of the cast slab cast using these nozzles are measured, and the measurement results are shown in FIG. 3 as the surface roughness normalized by an acceptable level of roughness.
[0033]
As can be seen from FIG. 3, none of the slits 1 indicated by the black circles satisfy the relationship of the formula (1), and many of them greatly exceed the surface roughness standardized at the allowable level. Is also big.
[0034]
On the other hand, those provided with the slits 2 indicated by black squares and those provided with the slits 3 indicated by black diamonds satisfying the relationship of the present invention are both below the permissible level, and the variation is small. .
[0035]
In addition, among those satisfying the relationship of the present invention, particularly those provided with the slits 3 indicated by black diamonds that greatly satisfy the relationship of the formula (1) are black that also satisfy the relationship of the formula (1). It can be seen that the surface properties are more stable than those provided with the slits 2 indicated by squares.
[0036]
【The invention's effect】
According to the present invention, when continuous casting is performed while applying an AC electromagnetic field to the molten metal, interference between the flow induced in the molten metal by the AC magnetic field and the discharge flow from the immersion nozzle is eliminated, and the surface properties and slab are removed. A slab excellent in internal quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of the continuous casting method of the present invention, wherein (a) is a top view and (b) is a cross-sectional view.
FIGS. 2A and 2B are schematic views showing a nozzle shape according to an embodiment of the present invention, wherein FIGS. 2A and 2B are cross-sectional views, and FIG. 2C is a schematic view showing a discharge cross-sectional area of the nozzle.
FIG. 3 is a diagram illustrating a relationship between a nozzle slit thickness a, a discharge angle θ, and a slab surface roughness normalized by an allowable level in an example of the present invention.
FIG. 4 is a schematic cross-sectional view showing an example of a conventional method for continuous casting by applying electromagnetic force.
FIG. 5 is a schematic cross-sectional view showing another conventional example of continuous casting by applying electromagnetic force.
6A and 6B are schematic views of another conventional example in which continuous casting is performed by applying electromagnetic force, where FIG. 6A is a top view and FIG. 6B is a cross-sectional view.
7A and 7B are schematic views showing a continuous casting technique using an electromagnetic brake, where FIG. 7A is a cross-sectional view, and FIG. 7B is a top view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water cooling mold 2 ... Molten metal 3 ... Meniscus 4 ... Powder 5 ... Energizing coil 6 ... Submerged nozzle 7 ... Discharge flow 8 from 2 hole part ... Discharge flow 9 from slit part ... Downflow 10 ... Ascending flow 11 ... Induction Flow 12 ... Nozzle 2 hole 13 ... Nozzle slit 20 ... Inductive current 21 ... Inductive magnetic field 22 ... Electromagnetic force 23 ... Electromagnetic force induced flow 24 ... Waveform generator 25 ... Power supply device 26 ... Excitation current 27 ... Electromagnetic coil 28 ... Electromagnetic coil upper end 29 ... Dispersed molten steel flow pattern 30 ... Slit discharge port
S1 ... Discharge cross section of 2 holes
S2 ... discharge sectional area θ of slit part ... discharge angle a ... slit width T ... short side length of mold
B ... Induction magnetic field
F ... Electromagnetic force
J: Induction current

Claims (1)

一定の周期で振動される1対の長辺と1対の短辺からなる水冷鋳型内に浸漬ノズルより溶融金属を注入し、水冷鋳型の周囲に設けた通電コイルによって発生した交流磁場により溶融金属を鋳型壁から引き離す方向に電磁力を作用させつつ凝固させ、下方に連続的に引き抜いて溶融金属を連続鋳造する方法において、前記浸漬ノズルは、溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部と、ノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部とを連続して備えると共に、この2孔部とスリット部との吐出断面積の比を、式(1)の関係として鋳造することを特徴とする溶融金属の連続鋳造方法。
(2√2・T・VcCOSθ/V0√S1)−1 < β …(1)
但し、β:スリット部と2孔部との吐出断面積の比
T:鋳造空間の厚さ(m)
Vc:鋳造速度(m/s)
θ:2孔部の中心線が水平面となす角度(度)
1:2孔部の吐出断面積(m2
0:通電コイルの電磁力によって誘起される溶鋼の流れ速度(m/s)
なお、左辺が0以下の場合はβ=0、すなわち、スリット部は設けないものとする。
Molten metal is injected from a submerged nozzle into a water-cooled mold consisting of a pair of long sides and a pair of short sides that are vibrated at a constant period, and the molten metal is generated by an alternating magnetic field generated by an energizing coil provided around the water-cooled mold. In the method in which the molten metal is solidified while applying an electromagnetic force in the direction of pulling it away from the mold wall and continuously drawn downward to continuously melt the molten metal, the immersion nozzle extends the molten metal from the opposite mold wall direction to the vertically downward direction. A two-hole portion to be discharged and a slit portion to be discharged from the vertical downward direction directly below the nozzle to the opposite mold wall surface direction are continuously provided, and the ratio of the discharge cross-sectional area between the two hole portions and the slit portion is expressed by an equation ( A continuous casting method of molten metal, characterized by casting as the relationship of 1).
(2√2 · T · VcCOSθ / V 0 √S 1 ) −1 <β (1)
However, β: Ratio of discharge cross-sectional area between slit and two holes T: Thickness of casting space (m)
Vc: Casting speed (m / s)
θ: Angle (degrees) between the center line of the two holes and the horizontal plane
S 1 : discharge sectional area of two holes (m 2 )
V 0 : Flow velocity of molten steel induced by electromagnetic force of current-carrying coil (m / s)
When the left side is 0 or less, β = 0, that is, no slit portion is provided.
JP2002098691A 2002-04-01 2002-04-01 Method for continuous casting of molten metal Expired - Fee Related JP3718481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098691A JP3718481B2 (en) 2002-04-01 2002-04-01 Method for continuous casting of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098691A JP3718481B2 (en) 2002-04-01 2002-04-01 Method for continuous casting of molten metal

Publications (2)

Publication Number Publication Date
JP2003290877A JP2003290877A (en) 2003-10-14
JP3718481B2 true JP3718481B2 (en) 2005-11-24

Family

ID=29240581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098691A Expired - Fee Related JP3718481B2 (en) 2002-04-01 2002-04-01 Method for continuous casting of molten metal

Country Status (1)

Country Link
JP (1) JP3718481B2 (en)

Also Published As

Publication number Publication date
JP2003290877A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP4401777B2 (en) Apparatus and method for continuous casting
JP4569715B1 (en) Steel continuous casting method
JP4807462B2 (en) Steel continuous casting method
JP3316108B2 (en) Steel continuous casting method
JP3718481B2 (en) Method for continuous casting of molten metal
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
EP0489202B1 (en) Method of controlling flow of molten steel in mold
JP2000000648A (en) Method and apparatus for continuously casting steel
JP2006281218A (en) Method for continuously casting steel
JP4077807B2 (en) Method for continuous casting of molten metal
JP4102316B2 (en) Method for continuous casting of molten metal
JP4719360B2 (en) Metal continuous casting method and apparatus
JP3887200B2 (en) Steel continuous casting method and apparatus
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3257546B2 (en) Steel continuous casting method
JP3966054B2 (en) Continuous casting method of steel
JP4910357B2 (en) Steel continuous casting method
JPS6015426B2 (en) Electromagnetic stirring device in continuous slab casting
JP2005152996A (en) Method for continuously casting steel
RU2419508C2 (en) Mixer
JP2000158108A (en) Continuous steel casting method
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
JPH11188460A (en) Continuous casting of molten metal
JPH0780608A (en) Apparatus for continuously casting metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

R151 Written notification of patent or utility model registration

Ref document number: 3718481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees