JPS6015426B2 - Electromagnetic stirring device in continuous slab casting - Google Patents

Electromagnetic stirring device in continuous slab casting

Info

Publication number
JPS6015426B2
JPS6015426B2 JP507482A JP507482A JPS6015426B2 JP S6015426 B2 JPS6015426 B2 JP S6015426B2 JP 507482 A JP507482 A JP 507482A JP 507482 A JP507482 A JP 507482A JP S6015426 B2 JPS6015426 B2 JP S6015426B2
Authority
JP
Japan
Prior art keywords
coil
slab
flow
electromagnetic
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP507482A
Other languages
Japanese (ja)
Other versions
JPS589751A (en
Inventor
昌男 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP507482A priority Critical patent/JPS6015426B2/en
Publication of JPS589751A publication Critical patent/JPS589751A/en
Publication of JPS6015426B2 publication Critical patent/JPS6015426B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は溶融金属の連続鋳造、特に溶鋼の連続鋳造にお
いて、銭片の中対厚みが倍以上であるスラブ、特に広中
のスラブを対象とする溶湯の電磁灘洋装暦に関するもの
である。 本発明の第1の目的は、鋼の連続鋳造において、リムド
、セミキルド鋼を鋳造する場合に傷面附近に均一な流れ
を作用させてスキンホールの少ない健全な材料を提供す
ることにある。また第2の目的は注入される熔湯の介在
物の浮上をたすけ、かつ湯面に均一な温度で熔湯を作用
させて欠陥の減少を図ることにある。一般に、従来から
連続鋳造に電磁櫨梓を適用することについての考え方は
かなり発表されているが、ブルーム、ビレツトに適用し
ようとする考えが多い。 スラブを想定したものとしては最近で、持開昭47−5
554号で一軸方向に平行流を与えて凝固組織を改善す
ることが提唱され、米国特許第3656球7号はスラブ
進行方向に直角に、つまりスラブ中方向に流湯流を形成
させることを目的としている。次に、持開昭47一33
027号は轡曲型達銭設備2次冷却帯の上面側に電磁装
置を設けて凝拝し、介在物の浮上をたすけようとするも
のである。而してこれらの方法で電磁燈梓を行なう目的
の第1は、凝固末端の偏折を減少させることおよび凝固
組織を柱状晶から等軸晶にかえることにある(ただ特開
昭47−33027号のごとく介在物の浮上をたすけよ
うとするものもある)。本発明は米国特許第36565
37号に似て、進行方向に直角に磁界を作用させるが、
目的および実施態様がこれと異なり、究極的には傷面に
均一な流れを形成させ、凝固開始時の殻に洗液流を作用
させて気泡や介在物の附着を防ぎ、特にリムド鋼、セミ
キルド鋼にすぐれた表面を賦与することを目的としてい
るという点で基本的に異なっている。 さて、発明者らは高さが中の4倍ある18一8ステンレ
ス製の槽内に蒼鉛−鉛−錫よりなる低融点合金を入れ、
中方向に移動磁界を発生するコイルを暦き溶湯の流動状
況を把握すべく電磁縄梓を行なってみた。その結果コイ
ルの位置、即ちコイルが配置される高さ方向の位置が変
ると、湯面位置及びコイル位置近傍においてすら溶湯の
流速が大中に変ることを知見した。本発明は本発明者の
電磁嬢拝における従釆の知見及びここに述べた流速のコ
イル位置による依存性の発見に基づき、これらからスラ
ブ連続鋳造において最適なる流動状態(流速など)が得
られるように検討されたものである。 まず第1図はコイル位置とこの溶湯の流動状況、特に流
速との関係を把握するための低融点合金による模型実験
槽の図であり、高さ3の、断面200肋×1000肋の
鋳型に相当する槽D中に低融点合金Eを入れ、槽は二重
シェルとし水蒸気により加熱を行なって低融点合金を溶
解している。 コイルは糟の高さ方向の中心Cにおき、高さ日を変え測
定点A,Bにピトー管をおいて速度を測定する。この図
からスラブの中方向に一方向の電磁縄梓流を作用させた
場合、基本的には、槽の中と同一の深さ付近に大きな循
環流が形成されること、及びコイルの位置が中寸法より
も浅い位置になると、著しい流れの干渉が生じて傷面お
よびコイル位置においてすら流速が低下することが判る
。而して測定点A,Bにおいて測定される流速と、コイ
ル位置の高さ方向の変更との関係は第2図イ,口の通り
であることが判った。本発明者は特願昭48−8004
8号において「スラブの連続鋳造における電磁燈梓装置
」を提出し、複数個のコイルを用いてスラブ面内に強制
的に循環流を形成する効果を認めていたが、コイル1個
であってもスラブ形状とマッチした場合にほぼ良好な循
環流が形成しうろことをこのようにして発見した。また
本発明者は特糠昭48−40642号において「リムド
鋼及びセミキルド鋼の連続鋳造方法」を提出し、このよ
う,な鋼が回転磁界の作用下で特に容易に製造しうろこ
と、またスラブにおいて移動磁界においてもかなり良好
なものを製造しうるが完全に良好とはいえないことを示
した。今前述の知見にもとづいて一つの完全な方案を提
示することができるようになった。本発明は基本的には
移動磁界を発生するコイルを、鋳型に十分接して中方向
に移動磁界が作用するようにかつ銭片中をLとすると、
コイル位置を傷面から音の深さに取りつけることを原則
とする。 当然ながら取付範囲がある程度の中を有するのでその範
囲は(o‐7〜1‐3)X毒となる。この錫合取付位置
を青とすると額梓流は中中′〇に対して対称になる。こ
のため流れが一つの回転流を形成する場合は多少深くて
もよいが、二つの回転流となる場合は互の干渉があり余
り深くはできない。本発明で下限が0.7に限定される
理由は、第2欧)ら明ら力)でぁる。即ちo.窄表満(
7oo肌′川未満)にコイルが設置された場合、流速が
著しく低下し均一な流れが形成され難く、さらに第2図
口のようにB点での測定では、一部が渦により反流さえ
形成されることが知見されているからである。また、上
限の・‐を織るとピンホ−′レカミ発生し、これが成品
の癖となって残るおそれがある。このようにコイル位置
を特定位置に設置すると、湯面附近に均一な流れが作用
する。 このような流れが作用する条件下で鋳造した場合、この
流れが作用している範囲の凝固シェルは均一に洗修され
るためと思われるが、内面の介在物や気泡性欠陥が非常
少ないことが分った。上記の基礎調査を実機に適用すべ
く、中220物舷までの鋳造が可能である連続鋳造機に
長さ2100凧、3相6極の直線移動磁界を発生する電
磁コイルを取りつけることとした。 この種のコイルは既によく知られているものである。し
かし、コイル取付のためにはコイルは銭片に十分近づけ
て配置される必要があるため、従釆通常銭片の支持はガ
イドロールを用いていたものが異なる構造のもので支持
する必要が生じた。また、一般にスラブは中が大いに変
わるため、それに応じてコイル取付位置が変えられ随意
に変えることが可能なものとした。このような条件を満
足させるため、コイル前面は非磁性鋼のスキッド、また
は非磁性鋼で形成された水冷鋳型(冷却板)が水冷され
た純錦鋳型の下方に置かれる。コイル本体は鋳型振動機
を支持する梁又はスプレーゾーンにより吊り下げられ、
且つ鋳型の寸法に応じて取付位置はスクリユゥにより上
下される。第3図はそのような実施例の一例を示してい
る。即ち、1は常のタンディッシュ、2はタンディッシ
ュカ−、3は振動装置、4は鋳型振動機フレーム、5は
鋳型、6はスクリュゥなど電磁燈杵昇降装置、7は電磁
蝿梓装置、8は101こ示すガイドローラのエプロンフ
レーム、9は非磁性鋼冷却スキッド、そして11は銭片
を示している。 而して本発明を厚み150〜25仇帆×中1500〜2
000肌の賢曲型広中スラブ連続鋳造設備に取付けた。
鋳型長さは70仇吻で、鋳型に接して18−8ステンレ
ス製の厚み15側、中45柵、長さ80仇肋のスキツド
9が2仇肋間隔で配列されている。このギャップの間は
、スプレーノズル(図示しない)により水が噴射されて
いる。本スキッド9の支持体は全体として剛性をもつ支
持機構をもち、鋳型5とは直結されずスプレーゾーンと
ともに、鋳型の厚みに応じて位置の調整が可能である。
電磁濃洋装層7はスプレーゾーンのフレーム8に架けら
れ、本スキッド9の80仇帆の長さ全域で移動可能なよ
うにスクリュウなどの昇降装置6をもっている。上記の
設備を用いてリムド鋼を鋳造する場合、本発明の電磁櫨
洋装暦7により移動磁界をスラブ中方向にそってかつス
ラブ半中づつ作用させ溶鋼を鷹拝すると、第4図に示す
如く対称流が形成される。本発明に用いたコイルは3相
6極のコイルであり、対称流が生ずるように結線される
。なお、図中12は湯面を示す。この結果当然蝿梓流は
各々第5図に示されるようになるが、この蝿杵流の特質
を生かして鋳造を行なうために当然新しく工夫が必要と
なった。 特に一方向流を形成するとスラブに対し、熱の場が非対
称となることが問題である。第5図はそのような注意が
なされた注入方案を示している。第5図は第4図に対す
る注入方案を示しており、図中12−1は湯の盛り上が
り部、13は注入流、14はスカム、15は溶湯、16
はパウダー、17は浸債ノズルである。第5図では注入
流位置は二つの循環流の中央部にしかも浸債ノズルを使
って注入を行なった。この注入方式で実際にリムド鋼の
注入を行なった。設備については既述した通りである。
さて、酸素上吹転炉により次の成分の二種の銅を製造し
た。. ○ Si Mn P S
Aム ○溶鋼〔1〕 0.053 0.013
0.28 0.008 0.008 0.028
88ppm(成分)〔n〕 〇.〇57 0.028
0.35 o.o12 o.o13 Tr 212
〔1〕はアルミキルド鋼、〔ロ〕はシリコンセミキルド
鋼である。 通常の注入では〔1〕はアルミナクラスターによるスリ
バー癖が発生する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an electromagnetic method for continuous casting of molten metal, especially continuous casting of molten steel. It is related to. A first object of the present invention is to provide a sound material with fewer skin holes by applying a uniform flow to the vicinity of a flawed surface when casting rimmed or semi-killed steel in continuous steel casting. The second purpose is to help the inclusions of the injected molten metal float up, and to reduce defects by allowing the molten metal to act on the surface of the molten metal at a uniform temperature. In general, many ideas have been published regarding the application of electromagnetic casters to continuous casting, but most of them are aimed at applying them to blooms and billets. It is a recent example that was designed for slabs, and was built in the 1970s.
No. 554 proposed improving the coagulation structure by applying parallel flow in a uniaxial direction, and U.S. Pat. It is said that Next, Mochikai Sho 47-33
No. 027 attempts to install an electromagnetic device on the upper surface side of the secondary cooling zone of the curved coin equipment to help float the inclusions. The first purpose of performing electromagnetic light azagation using these methods is to reduce the polarization of the solidified ends and to change the solidified structure from columnar crystals to equiaxed crystals (as disclosed in Japanese Patent Application Laid-Open No. 47-33027). (There are also methods that try to help the inclusions float up, as shown in the above). This invention is disclosed in US Pat. No. 36565.
Similar to No. 37, it applies a magnetic field perpendicular to the direction of travel, but
The purpose and implementation are different from this, and the ultimate goal is to form a uniform flow on the wound surface and apply the washing liquid flow to the shell at the beginning of solidification to prevent the adhesion of air bubbles and inclusions. They differ fundamentally in that their purpose is to impart a superior surface to steel. Now, the inventors put a low melting point alloy made of blue lead-lead-tin into a 18-18 stainless steel tank that is four times as tall as the medium one.
In order to understand the flow situation of the molten metal, we conducted an electromagnetic rope test using a coil that generates a magnetic field moving in the middle direction. As a result, it was found that when the position of the coil, that is, the position in the height direction where the coil is arranged, changes, the flow velocity of the molten metal changes even at the melt surface position and near the coil position. The present invention is based on the inventor's knowledge of electromagnetic systems and the discovery of the dependence of flow velocity on the coil position described herein, and from these, it is possible to obtain the optimum flow condition (flow velocity, etc.) in continuous slab casting. This was considered in the First of all, Figure 1 is a diagram of a model experimental tank made of a low melting point alloy in order to understand the relationship between the coil position and the flow situation of this molten metal, especially the flow velocity. A low melting point alloy E is placed in a corresponding tank D, and the tank has a double shell and is heated with steam to melt the low melting point alloy. The coil is placed at the center C in the height direction of the rice cake, and the speed is measured by placing pitot tubes at measurement points A and B at different heights. This figure shows that when a unidirectional electromagnetic rope flow is applied to the inside of the slab, a large circulating flow is basically formed near the same depth as the inside of the tank, and the position of the coil is It can be seen that at a position shallower than the middle dimension, significant flow interference occurs and the flow velocity decreases even at the wound surface and coil position. It was thus found that the relationship between the flow velocity measured at measurement points A and B and the change in the height direction of the coil position is as shown in Fig. 2A. The inventor filed a patent application No. 48-8004.
In No. 8, he submitted ``Electromagnetic lighting device for continuous slab casting'' and acknowledged the effect of forcibly forming a circulating flow within the slab surface using multiple coils. In this way, it was discovered that a good circulation flow can be formed when the shape of the slab matches the shape of the slab. In addition, the present inventor has submitted a method for continuous casting of rimmed steel and semi-killed steel in Tokusho No. 48-40642, and such steels are particularly easy to manufacture under the action of a rotating magnetic field, such as scales and slabs. It was shown in 2013 that although it is possible to manufacture a device that is quite good even in a moving magnetic field, it cannot be said to be completely good. Based on the above-mentioned knowledge, it is now possible to present a complete solution. Basically, in the present invention, the coil that generates the moving magnetic field is placed in sufficient contact with the mold so that the moving magnetic field acts in the middle direction, and the inside of the coin is L.
As a general rule, the coil should be installed at the depth of the sound from the wound surface. Naturally, the installation range is within a certain range, so that range is (o-7 to 1-3) X poison. If this tin fitting position is set to blue, the frame Azusa flow will be symmetrical to Naka-Naka'〇. For this reason, if the flow forms one rotating flow, it may be allowed to be somewhat deep, but if two rotating flows form, the depth cannot be made too deep because of mutual interference. The reason why the lower limit is limited to 0.7 in the present invention is due to the following reasons. That is o. Shobyoman (
If the coil is installed in a river (less than 70mm river), the flow velocity will drop significantly and it will be difficult to form a uniform flow.Furthermore, when measuring at point B as shown in Figure 2, there will be some counterflow due to eddies. This is because it is known that it is formed. Furthermore, if the upper limit is .--, pinholes may occur, and this may remain as a defect in the finished product. By installing the coil at a specific position in this way, a uniform flow acts near the hot water surface. When casting under conditions where such a flow acts, the solidified shell in the area where this flow acts is likely to be uniformly washed, but there are very few inclusions or bubble defects on the inner surface. I understand. In order to apply the above basic research to an actual machine, we decided to install an electromagnetic coil with a length of 2100 kites and a 3-phase 6-pole linear moving magnetic field that generates a linearly moving magnetic field into a continuous casting machine that is capable of casting up to 220 moulds. This type of coil is already well known. However, in order to install the coil, the coil needs to be placed sufficiently close to the coin coin, so it is now necessary to support the coin coin with a structure different from that which normally uses guide rolls. Ta. In addition, since the inside of a slab generally changes significantly, the coil mounting position can be changed accordingly and can be changed at will. In order to satisfy these conditions, the front surface of the coil is placed below a pure brocade mold in which a non-magnetic steel skid or a water-cooled mold (cooling plate) made of non-magnetic steel is water-cooled. The coil body is suspended by a beam or spray zone supporting a mold vibrator,
Moreover, the mounting position can be moved up or down by the screw according to the dimensions of the mold. FIG. 3 shows an example of such an embodiment. Namely, 1 is a regular tundish, 2 is a tundish car, 3 is a vibrating device, 4 is a mold vibrator frame, 5 is a mold, 6 is an electromagnetic lamp lifting device such as a screw, 7 is an electromagnetic flywheel device, and 8 101 is an apron frame of the guide roller shown, 9 is a non-magnetic steel cooling skid, and 11 is a coin coin. Therefore, the thickness of the present invention is 150 to 25 mm x medium 1500 to 2 mm.
It was installed on Kenkyoku-type Hironaka continuous slab casting equipment made by 000 Hada.
The length of the mold is 70 ribs, and in contact with the mold, skids 9 made of 18-8 stainless steel with a thickness of 15 sides, a middle 45 fence, and a length of 80 ribs are arranged at intervals of 2 ribs. Water is injected into this gap by a spray nozzle (not shown). The support body of the present skid 9 has a rigid support mechanism as a whole, and is not directly connected to the mold 5, and its position can be adjusted in accordance with the thickness of the mold together with the spray zone.
The electromagnetic thick clothing layer 7 is mounted on a frame 8 in the spray zone, and has a lifting device 6 such as a screw so that it can be moved over the entire 80-length length of the main skid 9. When casting rimmed steel using the above-mentioned equipment, when a moving magnetic field is applied along the middle direction of the slab and applied to each half of the slab using the electromagnetic caster 7 of the present invention, and the molten steel is cast, as shown in Fig. 4. A symmetrical flow is formed. The coil used in the present invention is a 3-phase, 6-pole coil, and is wired so as to generate a symmetrical flow. Note that 12 in the figure indicates the hot water level. Naturally, as a result, the fly azusa flow became as shown in Fig. 5, but in order to make use of the characteristics of the fly azusa flow for casting, new innovations were naturally required. In particular, when a unidirectional flow is formed, the problem is that the heat field becomes asymmetric with respect to the slab. FIG. 5 shows an injection scheme in which such precautions have been taken. Fig. 5 shows the injection method for Fig. 4, in which 12-1 is a bulge of hot water, 13 is an injection flow, 14 is scum, 15 is molten metal, and 16
17 is a powder, and 17 is an immersion nozzle. In FIG. 5, the injection flow was placed at the center of the two circulation flows, and the injection was performed using a immersion nozzle. Rimmed steel was actually injected using this injection method. The equipment is as described above.
Now, two types of copper with the following components were produced using an oxygen top-blown converter. .. ○ Si Mn P S
A ○ Molten steel [1] 0.053 0.013
0.28 0.008 0.008 0.028
88ppm (component) [n] 〇. 〇57 0.028
0.35 o. o12 o. o13 Tr 212
[1] is aluminum killed steel, and [b] is silicon semi-killed steel. In the case of [1], sliver behavior occurs due to alumina clusters during normal injection.

〔0〕は表面に径0.5肌程度の細
いピンホールが発生し使用にたえない。両鋼種を厚み2
0仇肋、中188仇奴のスラブ鋳型で第5図の注入方案
により溶湯をパウダースラグで被覆し、0.8肌/mi
nの鋳込速度で鋳造した。 得られた薄板を検査したところアルミナクラスターにも
とづくことが知られているスリバー癖は大中に減少でき
、表面状況が非常に良好となった。また、〔ロ〕の銅を
鋳造したスラブは端部のみにわずかなピンホールの発生
はあったが、薄板とした段階で十分使用に耐えることが
分った。本実験においてコイルを湯面下103仇吻(1
.1×ず・22o肋(・‐3ち)、・4岬(・‐5も)
の3条件で設置した。 第1と第2の条件では薄板の欠陥は大差なかったが、第
3の条件つまり1.5×壱の場合には薄板の両端部およ
び中央部にピンホール起因の癖の増加がみられた。この
ように本発明によればキルド鋼の表層介在物を減少する
とともに、セミキルド鋼のピンホール除去も可能にする
。 本発明の効果はまずリムド鋼、セミキルド鋼等の製造を
可能ならしめた点を挙げることができる。 リムド、セミキルド鋼を電磁燈拝を用いて実施しようと
する考えはあったが、具体的に本発明で傷面附近に均一
な鷹浮流を形成できるようになって始めてすぐれた材質
のものができることとなつた。本発明においてはコイル
を鋳型下におくことができる。 これによって強い潤拝流が形成される。一部の提案にみ
られるように(例えば特開昭47−26332号)、鋳
型を電磁コイルの場にすることは不可能である。その理
由は連続鋳造においては鋳型に高い熱負荷がかかるため
鋼のように熱伝導度の高い材質以外は使用することはで
きず、このような材料は同時に高い電気伝導度を有する
ため擬梓を起すべく譲起される議導電流は袷んど鋳型中
で消耗してしまうためである。このためこのような方法
ではリムド、セミキルド鋼の銭込や介在物減少に効果あ
る0.2〜0.5肌/s以上の鷹梓流を形成することが
できない。本発明はこのような電気的な問題と流体的な
形状上の問題を解決して得られたすぐれた方案である。
なお、本発明に用いたような進行磁界を誘起する電磁コ
イルは、既に多くの文献でよく知られているものなので
詳細な説明は省いてある。本発明の実施態様 {1} 多相交流による進行磁界を発生するコイルを鏡
片の直行方向と直角に設置し、このコイルの濠面からの
位置は、鍵片の中寸法Lに対して(〇‐7〜・‐3)X
毒であることによって、湯面附近に強い均一な縄梓流を
作用させることを特徴とする、スラブの連続鋳造におけ
る電磁櫨梓装置・の配置方法。 【2’ {1}の実施形態を実現可能なようにスラブ中
に応じてコイル位置を変更できるように設置されている
ことを特徴とする電磁蝿梓装置を有するスラブの連続鋳
造設備。 湖 コイル寸法は適用されるスラブの最大中Lmax以
内であり、鋳造毎のスラブ中Lに応じてほぼ対称1/2
の区間で移動磁界を形成するように結線の変更が可能な
ような電磁燈梓を用いる○ーの方法または■の装置。 ‘41 電磁コイルは水冷された純銅製冷却面を有する
鋳型の下部におかれ、鏡片とコイル本体との間に直接ま
たは間接的に水冷される非磁性鋼のシューが置かれ、コ
イルが可及的に鏡片との距離が短縮されるよう設置せら
れたことを特徴とする前記■の装置。 ‘51【1ーの方法において一方向循環流を適用しつつ
鋳造する場合に、落陽注入流は非対称に上流側におくこ
とを特徴とする注入方法。
[0] has thin pinholes with a diameter of about 0.5 skin on the surface, making it unusable. Thickness 2 for both steel types
The molten metal was coated with powder slag using the pouring method shown in Figure 5 using a slab mold with a diameter of 0.0 and 188.
It was cast at a casting speed of n. When the obtained thin plate was inspected, the sliver tendency, which is known to be caused by alumina clusters, was significantly reduced, and the surface condition was found to be very good. In addition, the copper cast slab in [B] had a few pinholes only at the edges, but it was found that it was sufficiently usable when made into a thin plate. In this experiment, the coil was placed 103 feet (1
.. 1 x Zu・22o Rib (・-3chi),・4 Misaki (・-5 too)
It was installed under three conditions. There was no significant difference in defects in the thin plate between the first and second conditions, but under the third condition, 1.5×1, an increase in defects caused by pinholes was seen at both ends and in the center of the thin plate. . As described above, according to the present invention, surface inclusions in killed steel can be reduced, and pinholes in semi-killed steel can also be removed. One of the effects of the present invention is that it has made it possible to manufacture rimmed steel, semi-killed steel, etc. There was an idea to make rimmed and semi-killed steel using electromagnetic lighting, but it was realized that excellent materials could only be made by using the present invention to form a uniform floating flow near the wound surface. It became. In the present invention, the coil can be placed under the mold. This creates a strong Junhai style. As seen in some proposals (for example, Japanese Patent Laid-Open No. 47-26332), it is impossible to use the mold as a field for the electromagnetic coil. The reason for this is that continuous casting places a high heat load on the mold, so materials other than materials with high thermal conductivity, such as steel, cannot be used. This is because the conductive current that is generated to generate the mold is consumed in the mold. Therefore, with this method, it is not possible to form a hawk flow of 0.2 to 0.5 skin/s or more, which is effective in reducing inclusions and inclusions in rimmed and semi-killed steel. The present invention is an excellent solution to solve these electrical problems and fluid shape problems.
It should be noted that the electromagnetic coil for inducing a traveling magnetic field as used in the present invention is already well known from many documents, so a detailed explanation is omitted. Embodiment of the present invention {1} A coil that generates a traveling magnetic field by multiphase alternating current is installed at right angles to the orthogonal direction of the mirror piece, and the position of this coil from the moat surface is (〇 -7~・-3)X
A method for arranging an electromagnetic casing device in continuous slab casting, which is characterized by applying a strong and uniform casing flow near the hot water surface by being poisonous. [2' A continuous slab casting facility having an electromagnetic flywheel device, which is installed so that the coil position can be changed depending on the slab so that the embodiment {1} can be realized. Lake Coil dimensions are within the maximum medium Lmax of the applied slab, and are approximately 1/2 symmetrical according to the medium L of the slab for each casting.
Method (○) or device (■) using an electromagnetic lamp whose wiring can be changed to form a moving magnetic field in the section. '41 The electromagnetic coil is placed at the bottom of a mold with a water-cooled pure copper cooling surface, and a water-cooled non-magnetic steel shoe is placed directly or indirectly between the mirror piece and the coil body, allowing the coil to move freely. The device according to item (1) above, characterized in that the device is installed so that the distance from the mirror piece to the mirror piece is shortened. '51 [1] A pouring method characterized in that when casting is performed while applying a unidirectional circulation flow, the Rakuyo pouring flow is placed asymmetrically on the upstream side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,口は本発明者がコイル位置と溶湯の流動状況
との関係を把握するため製作した低融点合金による模型
実験槽の平面図と正面図、第2図イ,口は第1図の測定
点A,Bにおける流速とコイル位置高さ方向の変更との
関係を示す図表、第3図は本発明の実施例を示す説明図
、第4図は鋳型中に応じて濃拝流を変えることを説明す
るための略図、第5図は第4図の蝿梓流を得るための注
入方式を示す断面説明図、第6図は本発明によって得ら
れたスラブのマクロ組織図である。 A,B・…・・測定点、C・・…・コイル位置、D・・
・・・・糟、E・・・…低融点合金、1・・・・・・タ
ンディッシュ、2・・・・・・タンディッシュカー、3
・・・・・・振動装置、4…・・・フレーム、5・・・
・・・鋳型、6・・・・・・昇降装置、7・・・・・・
電磁渡洋装置、8・・・・・・エプロンフレーム、9“
“”スキツド、10”“”ガイドローラ、11……銭片
、12・・・・・・傷面、13・・・・・・注入流、1
4・・・・・・スカム、15・・・・・・溶湯、16・
・・・・・パウダー、17...・・・浸濃ノズル。 第0図 第l図 第2図 第3図 第4図 第5図
Figure 1A, the opening is a plan view and front view of a model experimental tank made of a low melting point alloy, which the inventor manufactured in order to understand the relationship between the coil position and the flow situation of the molten metal, and Figure 2A, the opening is the 1st A chart showing the relationship between the flow velocity at measurement points A and B in the figure and changes in the height direction of the coil position, FIG. 3 is an explanatory diagram showing an embodiment of the present invention, and FIG. FIG. 5 is a cross-sectional explanatory diagram showing the injection method for obtaining the fly-azus flow shown in FIG. 4, and FIG. 6 is a macroscopic structure diagram of the slab obtained by the present invention. . A, B...Measurement point, C...Coil position, D...
...Boat, E...Low melting point alloy, 1...Tundish, 2...Tundish car, 3
... Vibration device, 4 ... Frame, 5 ...
... Mold, 6... Lifting device, 7...
Electromagnetic crossing device, 8...Apron frame, 9"
"" skid, 10""" guide roller, 11... money piece, 12... wound surface, 13... injection flow, 1
4... Scum, 15... Molten metal, 16.
...Powder, 17. .. .. ...Immersion nozzle. Figure 0 Figure l Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 スラブの連続鋳造において移動磁界を発生する電磁
コイルでスラブ半巾1/2Lに対しスラブ巾方向に移動
する移動磁界を作用させるにあたり、前記電磁コイルの
中心位置がそれぞれ鋳型内溶湯の湯面下(0.7〜1.
3)×L/2であるように設置することを特徴とする連
続鋳造における電磁撹拌装置。 2 特許請求の範囲第1項の電磁撹拌装置において、移
動磁界を発生する電磁コイルは鋳型に十分接して取付け
られるとともに、且つこの電磁コイルは、鋳片サイズに
より限定される条件に基づいてスラブ進行方向への取付
け位置を変更できるように移動可能に取付けられている
ことを特徴とするスラブの連続鋳造における電磁撹拌装
置。
[Claims] 1. When applying a moving magnetic field that moves in the slab width direction to a slab half width 1/2L using an electromagnetic coil that generates a moving magnetic field in continuous slab casting, the center position of the electromagnetic coil is located within the mold. Below the surface of the molten metal (0.7~1.
3) An electromagnetic stirring device for continuous casting, characterized in that it is installed so that the ratio is xL/2. 2. In the electromagnetic stirring device according to claim 1, the electromagnetic coil that generates the moving magnetic field is installed in sufficient contact with the mold, and this electromagnetic coil controls the progress of the slab based on conditions limited by the slab size. An electromagnetic stirring device for continuous casting of slabs, characterized in that the device is movably mounted so that the mounting position in the direction can be changed.
JP507482A 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting Expired JPS6015426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP507482A JPS6015426B2 (en) 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP507482A JPS6015426B2 (en) 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11893373A Division JPS5748305B2 (en) 1973-10-24 1973-10-24

Publications (2)

Publication Number Publication Date
JPS589751A JPS589751A (en) 1983-01-20
JPS6015426B2 true JPS6015426B2 (en) 1985-04-19

Family

ID=11601232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP507482A Expired JPS6015426B2 (en) 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting

Country Status (1)

Country Link
JP (1) JPS6015426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191620A (en) * 1984-03-13 1985-09-30 Nissan Motor Co Ltd Press die
JPS6250826U (en) * 1985-09-13 1987-03-30
JPS62174725U (en) * 1986-04-04 1987-11-06

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191620A (en) * 1984-03-13 1985-09-30 Nissan Motor Co Ltd Press die
JPS6250826U (en) * 1985-09-13 1987-03-30
JPS62174725U (en) * 1986-04-04 1987-11-06

Also Published As

Publication number Publication date
JPS589751A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
JP4569715B1 (en) Steel continuous casting method
JP4807462B2 (en) Steel continuous casting method
US3976117A (en) Method of and apparatus for converting molten metal into a semi-finished or finished product
KR101604182B1 (en) Process and apparatus for controlling the flows of liquid metal in a crystallizer for the continuous casting of thin flat slabs
KR20010023598A (en) Method and device for control of metal flow during continuous casting using electromagnetic fields
JPS645984B2 (en)
TW200936274A (en) Process and associated electromagnetic equipment for rotating a molten metal within a continuous casting ingot mould for slabs
JPS6015426B2 (en) Electromagnetic stirring device in continuous slab casting
JP4591156B2 (en) Steel continuous casting method
JP7295380B2 (en) tundish
EP0489202B1 (en) Method of controlling flow of molten steel in mold
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
RU2419508C2 (en) Mixer
JP3718481B2 (en) Method for continuous casting of molten metal
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
JP2008173644A (en) Electromagnetic coil for continuous casting mold
JPH05329594A (en) Method for controlling molten steel flow in continuous casting mold
JP4432263B2 (en) Steel continuous casting method
JP3033318B2 (en) Method of supplying lubricant in continuous casting apparatus
JPH06605A (en) Controller for flow of molten steel in continuous casting mold
JPH09182943A (en) Continuous casting method of steel
JP2006281314A (en) Method for continuously casting steel
JPH0646597Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPH06607A (en) Controller for flow of molten steel in continuous casting mold