JPS589751A - Electromagnetic agitator in continuous casting for slab - Google Patents

Electromagnetic agitator in continuous casting for slab

Info

Publication number
JPS589751A
JPS589751A JP507482A JP507482A JPS589751A JP S589751 A JPS589751 A JP S589751A JP 507482 A JP507482 A JP 507482A JP 507482 A JP507482 A JP 507482A JP S589751 A JPS589751 A JP S589751A
Authority
JP
Japan
Prior art keywords
slab
mold
molten metal
coil
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP507482A
Other languages
Japanese (ja)
Other versions
JPS6015426B2 (en
Inventor
Masao Onozawa
昌男 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP507482A priority Critical patent/JPS6015426B2/en
Publication of JPS589751A publication Critical patent/JPS589751A/en
Publication of JPS6015426B2 publication Critical patent/JPS6015426B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a sound material having less skin holes in the stage of acting moving magnetic fields in the width direction of a slab by providing electromagnetic coils in the specific positions below the level of the molten metal in a mold thereby acting uniform flow near the molten metal level. CONSTITUTION:In continuous casting of slabs, coils which generate moving magnetic fields are installed in such a way that the central positions of the coils come respectively within the (0.7-1.3)XL/2 range below the level of the molten metal in the mold. Since the coil positions are specified in such way, the moving magnetic fields act in the width direction of the mold in sufficient contact therewith and form the two rotating flows symmetrical to the center of the width, thereby acting the uniform flow near the level of the molten metal. If the slab is cast under such conditions, the solidified shell is washed uniformly, and internal inclusions and hole like defects are reduced.

Description

【発明の詳細な説明】 本発明は溶融金属の連続鋳造、特に溶鋼の連続鋳造にお
いて、鋳片の巾対厚みが倍以上であるスラブ、特に広巾
のスラブを対象とする溶湯の電磁攪拌装置に関するもの
である。本発明の第1の目的は、鋼の連続鋳造において
、リムド、セミキルド鋼を鋳造する場合に湯面附近に均
一な流れを作用させてスキンホールの少ない健全な材料
を提供することにある。また第2の目的は注入される溶
湯の介在物の浮上をたすけ、かつ湯面に均一な温度で溶
湯な作用させて欠陥の減少を図ることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic stirring device for molten metal, which is used for continuous casting of molten metal, particularly for continuous casting of molten steel, for slabs in which the width to thickness of slabs is more than double, especially wide slabs. It is something. The first object of the present invention is to provide a sound material with few skin holes by applying a uniform flow near the surface of the molten metal when casting rimmed or semi-killed steel in continuous steel casting. The second purpose is to help the inclusions of the injected molten metal float up, and to reduce defects by allowing the molten metal to act on the surface of the molten metal at a uniform temperature.

一般に、従来から連続鋳造に電磁攪拌を適用することに
ついての考え方はかなり発表されているが、ブルーム、
ビレットに適用しようとする考えが多い。スラブを想定
したものとしては最近で、特開昭47−5554号で一
軸方向に平行流を与えて凝固組織を改善することが提唱
され、米国特許第3.656,537号はスラブ進行方
向に直角に、つまりスラブ巾方向に流湯流を形成させる
ことを目的としている。次に、特開昭47−33027
号は−曲型連鋳設備2次冷却帯の上面側に電磁装置を設
けて攪拌し、介在物の浮上をたすけようとするものであ
る。而してこれらの方法で電磁攪拌を行なう目的の第1
は、凝固末端の偏析を減少させることおよび凝固組織を
柱状晶から等軸晶にかえることにある(ただ特開昭47
−33027号のごとく介在物の浮上をたすけようとす
るものもある)。
In general, there have been many publications on the idea of applying electromagnetic stirring to continuous casting, but Bloom,
There are many ideas to apply it to billets. Recently, Japanese Patent Application Laid-Open No. 47-5554 proposed improving the coagulation structure by applying parallel flow in the uniaxial direction, and US Patent No. 3,656,537 proposed The purpose is to form a flowing metal flow at right angles, that is, in the width direction of the slab. Next, JP-A-47-33027
No. 1 is a system in which an electromagnetic device is installed on the upper side of the secondary cooling zone of the curved continuous casting equipment to stir and help float up inclusions. Therefore, the first purpose of performing electromagnetic stirring using these methods is
The goal is to reduce the segregation of the solidified ends and to change the solidified structure from columnar crystals to equiaxed crystals (Japanese Patent Application Laid-open No. 47
There are some methods, such as No. 33027, which try to help the floating of inclusions).

本発明は米国特許第3,656,537号に似て、進行
方向に直角に磁界を作用させるが、目的および実施様態
がこれと異なり、究極的には湯面に均一な流れを形成さ
せ、凝固開始時の殻に洗滌流を作用させて気泡や介在物
の耐着を防ぎ、特にリムド鋼、セミキルド鋼にすぐれた
表面を賦辱することを目的としているという点で基本的
に異なっている。
The present invention is similar to U.S. Pat. No. 3,656,537, in which a magnetic field is applied perpendicular to the direction of travel, but the purpose and implementation are different, and the ultimate goal is to form a uniform flow on the surface of the hot water. They are fundamentally different in that the purpose is to apply a washing flow to the shell at the beginning of solidification to prevent bubbles and inclusions from adhering, and to impart an excellent surface to rimmed steel and semi-killed steel in particular. .

さて、発明者らは高さが巾の4倍ある18−8ステンレ
ス製の槽内に蒼鉛−鉛一錫よりなる低融点合金を入れ、
巾方向に移動磁界を発生するコイルを置き溶湯の流動状
況を把握すべく電磁攪拌を行なってみた。その結果コイ
ルの位置、即ちコイルが配置される高さ方向の位置が変
ると、湯面位置及びコイル位置近傍においてすら溶湯の
流速が大巾に変ることを知見した。
Now, the inventors put a low melting point alloy made of blue lead-tin lead into an 18-8 stainless steel tank that is four times as tall as it is wide.
We installed a coil that generates a magnetic field that moves in the width direction, and performed electromagnetic stirring to understand the flow situation of the molten metal. As a result, it was found that when the position of the coil, that is, the position in the height direction where the coil is arranged, changes, the flow velocity of the molten metal changes drastically even at the hot water surface position and near the coil position.

本発明は本発明者の電磁攪拌における従来の知見及びこ
こに述べた流速のコイル位置による依存性の発見に基づ
き、これらからスラブ連続鋳造において最適なる流動状
態(流速など)が得られるように検討されたものである
The present invention is based on the inventor's prior knowledge of electromagnetic stirring and the discovery of the dependence of flow velocity on coil position described herein, and based on these findings, studies were conducted to obtain the optimal flow conditions (flow velocity, etc.) in continuous slab casting. It is what was done.

まず第1図シまコイル位置とこの溶湯の流動状況、特に
流速との関係を把握するための低融点合金による模型実
験槽の図であり、菖さ3m、断面200關X 1000
 、mrxの鋳型に相当する槽り中に低融点合金Eを入
れ、槽は二重シェルとし水蒸気により加熱を行なって低
融点合金を溶解している。コイルは槽の高さ方向の中心
Cにおき、高さHを変え測定点A、Bにピトー管をおい
て速度を測定する。
First of all, Figure 1 is a diagram of a model experimental tank made of a low melting point alloy in order to understand the relationship between the coil position and the flow situation of this molten metal, especially the flow velocity.
, mrx, a low melting point alloy E is placed in a tank corresponding to a mold, the tank has a double shell, and is heated with steam to melt the low melting point alloy. The coil is placed at the center C in the height direction of the tank, the height H is changed, and pitot tubes are placed at measurement points A and B to measure the speed.

この図からスラブの巾方向に一方向の電磁攪拌流を作用
させた場合、基本的には、槽の巾と同一の  :深さ付
近に大きな循環流が形成されること、及びコイルの位置
′が巾寸法よりも浅い位置になると、著しい流れの干渉
が生じて湯面およびコイル位置においてすら流速が低下
することが判る。
This figure shows that when a unidirectional electromagnetic stirring flow is applied in the width direction of the slab, a large circulating flow is formed near the depth, which is basically the same as the width of the tank, and the position of the coil is It can be seen that when the position is shallower than the width dimension, significant flow interference occurs and the flow velocity decreases even at the hot water level and at the coil position.

而して測定点A、Bにおいて測定される流速と、コイル
位置の高さ方向の変更との関係は第2図イ、口の通りで
あることが判った。本発明者は特願昭48−80048
号において[スラブの連続鋳造における電磁攪拌装置]
を提出し、複数個のコイルを用いてスラブ面内に強制的
に循環流を形成する効果を認めていたが、コイル1個で
あってもスラブ形状とマツチした場合にほぼ良好な循環
流が形成しうろことをこのようにして発見した。
It was thus found that the relationship between the flow velocity measured at measurement points A and B and the change in the height direction of the coil position was as shown in Fig. 2A. The inventor filed a patent application No. 48-80048.
In the issue [Electromagnetic stirring device for continuous slab casting]
submitted, and recognized the effect of forcibly forming a circulating flow within the slab surface using multiple coils, but it was found that even a single coil can produce almost good circulating flow when it matches the slab shape. This is how the scales were discovered.

また本発明者は特願昭48−40642号において[リ
ムド鋼及びセミキルド鋼の連続鋳造方法」を提出し、こ
のような鋼が回転磁界の作用下で特に容易に製造しうろ
こと、またスラブにおいて移動磁界においてもかなり良
好なものを製造しうるが完全に良好とはいえないことを
示した。今前述の知見にもとづいて一つの完全な方案な
提示することができるようになった◎ 本発明は基本的には移動磁界を発生するコイルを、鋳型
に十分接して巾方向に移動磁界が作用するようにかつ鋳
片中をLとすると、コイル位置を湯面から7の深さに取
りつけることを原則とする。
In addition, the present inventor has submitted a method for continuous casting of rimmed steel and semi-killed steel in Japanese Patent Application No. 48-40642, which shows that such steel is particularly easy to produce in scales and slabs under the action of a rotating magnetic field. It was shown that even in a moving magnetic field, it is possible to manufacture something fairly good, but it cannot be said to be completely good. Now, based on the above-mentioned knowledge, it has become possible to present a complete solution.◎ Basically, the present invention involves placing a coil that generates a moving magnetic field in sufficient contact with the mold so that the moving magnetic field acts in the width direction. Assuming that the inside of the slab is L, the coil should be installed at a depth of 7 mm from the molten metal surface.

当然ながら取付範囲がある程度の巾を有するので取付位
置を7とすると攪拌流は巾中心に対して対称になる。こ
のため流れが一つの回転流を形成する場合は多少深くて
もよいが、二つの回転流となる場合は互の干渉があり余
り深くはできない@本発明で下限が0.7に限定される
理由は、第2図から明らかである。即ち0.77未満(
700%未満)にコイルが設置された場合、流速が著し
く低下し均一な流れが形成され難(、さらに第2図口の
ようにB点での測定では、一部が渦により反流さえ形成
されることが知見されているからである。
Naturally, the mounting range has a certain width, so if the mounting position is set to 7, the agitation flow will be symmetrical about the center of the width. For this reason, if the flow forms one rotating flow, it may be a little deeper, but if two rotating flows occur, the depth cannot be made too deep because of mutual interference.@The lower limit is limited to 0.7 in the present invention. The reason is clear from FIG. That is, less than 0.77 (
700%), the flow velocity will drop significantly and it will be difficult to form a uniform flow (furthermore, when measuring at point B as shown in the opening of Figure 2, a part of the flow may even form a counterflow due to vortices). This is because it is known that

また、上限の1.3−を超えるとピンホールが発生し、
これが成品の疵となって残るおそれがある。
Also, if the upper limit of 1.3- is exceeded, pinholes will occur,
This may remain as a flaw in the finished product.

このようにコイル位置を特定位置に設置すると、湯面附
近に均一な流れが作用する。このような流れが作用する
条件下で鋳造した場合、この流れが作用している範囲の
凝固シェルは均一に洗滌されるためと思われるが、内面
の介在物や気泡性欠陥が非常に少ないことが分った。
By installing the coil at a specific position in this way, a uniform flow acts near the hot water surface. When casting under such flow conditions, the solidified shell in the area affected by this flow is washed uniformly, and there are very few inclusions or bubble defects on the inner surface. I understand.

上記の基礎調査を実機に適用すべく、巾2200關まで
の鋳造が可能である連続鋳造機に長さ2100玉、3相
6極の直線移動磁界を発生する・電磁コイルを取りつけ
ることとした。この種のコイルは既によく知られている
ものである。しかし、コイル取付のためにはコイルは鋳
片に十分近づけて配置される必要があるため、従来通常
鋳片の支持はガイドロールを用いていたものが異なる構
造のもので支持する必要が生じた。また、一般にスラブ
は巾が太いに変わるため、それに応じてコイル取付位置
が変えられ随意に変えることが可能なものとした。この
ような条件を満足させるため、コイル前面は非磁性鋼の
スキッド、または非磁性鋼で形成された水冷鋳型(冷却
板)が水冷された純銅鋳型の下方に置かれる。コイル本
体は鋳型振動機をXT  □ 支持する梁又はスプレーゾーンにより吊り下げられ、且
つ鋳型の寸法に応じて取付位置はスクリュウにより上下
される。第3図はそのような実施例即ち、1は通常のタ
ンディツシュ、2はタンディツシュカー、3は振動装置
、4は鋳型振動機フレーム、5は鋳型、6はスクリュウ
など電磁攪拌昇降装置、7は電磁攪拌装置、8は10に
示すガイドローラのエプロンフレーム、9は非磁性鋼冷
却スキッド、そして11は鋳片を示している。
In order to apply the above basic research to an actual machine, we decided to install an electromagnetic coil with a length of 2100 balls and a 3-phase 6-pole linearly moving magnetic field that generates a linearly moving magnetic field into a continuous casting machine that can cast up to 2200 mm wide. This type of coil is already well known. However, in order to install the coil, the coil needs to be placed sufficiently close to the slab, so it became necessary to support the slab with a structure different from the conventional guide rolls used to support the slab. . In addition, since the width of the slab generally changes, the coil mounting position can be changed accordingly and can be changed at will. In order to satisfy these conditions, the front surface of the coil is placed under a pure copper mold that is water-cooled with a non-magnetic steel skid or a water-cooled mold (cooling plate) made of non-magnetic steel. The coil body is suspended by a beam or spray zone that supports the mold vibrator, and the mounting position is moved up and down by a screw depending on the dimensions of the mold. FIG. 3 shows an example of such an embodiment, namely, 1 is a normal tundish, 2 is a tundish car, 3 is a vibrating device, 4 is a mold vibrator frame, 5 is a mold, 6 is an electromagnetic stirring lifting device such as a screw, and 7 is a tundish car. An electromagnetic stirring device, 8 is an apron frame of a guide roller shown at 10, 9 is a non-magnetic steel cooling skid, and 11 is a slab.

而して本発明を厚み150〜250 Hl x巾150
0〜2000+mの彎曲型広巾スラブ連続鋳造設備に取
付けた。鋳型長さは700111!で、鋳型に接して1
8−8ステンレス製の厚み15朋、巾45朋、長さ80
゜顛のスキッド9が2011間隔で配列されている。
Therefore, the present invention has a thickness of 150 to 250 Hl x width of 150
It was installed in a curved wide slab continuous casting equipment of 0 to 2000+m. The mold length is 700111! Then, in contact with the mold, 1
8-8 stainless steel thickness 15 mm, width 45 mm, length 80 mm
A number of skids 9 are arranged at 2011 intervals.

このギャップの間は、スプレーノズル(図示しない)に
より水が噴射されている。本スキッド9の支持体は全体
として剛性をもつ支持機構をもち、鋳型5とは直結され
ずスプレーゾーンとともに、鋳型の厚みに応じて位置の
調整が可能である。電磁攪拌装置7はスプレーゾーンの
フレーム8に架けられ、本スキッド9080ON1Lの
長さ全域で移動可能なようにスクリュウなどの昇降装置
6をもっている。
Water is injected into this gap by a spray nozzle (not shown). The support body of the present skid 9 has a rigid support mechanism as a whole, and is not directly connected to the mold 5, and its position can be adjusted in accordance with the thickness of the mold together with the spray zone. The electromagnetic stirring device 7 is mounted on the frame 8 of the spray zone, and has a lifting device 6 such as a screw so that it can be moved over the entire length of the skid 9080ON1L.

上記の設備を用いてリムド鋼を鋳造する場合、本発明の
電磁攪拌装置7により移動磁界をスラブ巾方向にそって
かつスラブ手中づつ作用させ溶鋼を攪拌すると、第4図
に示す如く対称流が形成される。本発明に用いたコイル
は3相6極のコイルであり、対称流が生ずるように結線
される。なお、図中12は湯面を示す。
When casting rimmed steel using the above-mentioned equipment, when the electromagnetic stirring device 7 of the present invention applies a moving magnetic field along the width of the slab and in each hand of the slab to stir the molten steel, a symmetrical flow is created as shown in Fig. 4. It is formed. The coil used in the present invention is a 3-phase, 6-pole coil, and is wired so as to generate a symmetrical flow. Note that 12 in the figure indicates the hot water level.

この結果当然攪拌流は各々第5図に示されるようになる
が、この攪拌流の特質を生かして鋳造を行なうために当
然新しく工夫が必要となった。特に一方向流を形成する
とスラブに対し、熱の場が非対称となることが問題であ
る。第5図はそのような注意がなされた注入方案乞示し
ている。
As a result, the agitation flows are as shown in FIG. 5, but in order to take advantage of the characteristics of these agitation flows for casting, it was necessary to devise a new method. In particular, when a unidirectional flow is formed, the problem is that the heat field becomes asymmetric with respect to the slab. FIG. 5 shows an injection scheme in which such precautions have been taken.

第5図は第4図に対する注入方案を示しており、図中1
2−1は湯の盛り上がり部、13は注入流、14はスカ
ム、15は溶湯、16はノシウダー、17は浸漬ノズル
である。第5図では注入流位置は二つつ循環流の中央部
にしかも浸漬ノズルを使って注入を行なった。この注入
方式で実際にリムド鋼の注入を行なった。設備について
は既述した通りである。さて、酸素上吹転炉により次の
成分の二種の鋼を製造した。
Figure 5 shows the injection method for Figure 4, and 1 in the figure.
2-1 is a rising portion of hot water, 13 is an injection flow, 14 is a scum, 15 is a molten metal, 16 is a nozzle, and 17 is an immersion nozzle. In FIG. 5, there were two injection flow positions, and the injection was carried out at the center of the circulation flow using a submerged nozzle. Rimmed steel was actually injected using this injection method. The equipment is as described above. Now, two types of steel with the following components were manufactured using an oxygen top-blown converter.

CSi  Mn  P   S  Al  0(1)は
アルミキルド鋼、 (II)はシリコンセミキルド鋼で
ある。通常の注入では世はアルミナクラスターによるス
リパー疵が発生する。(U)は表面に径0.5mi+程
度の細いピンホールが発生し使用にたえない。
CSi Mn P S Al 0 (1) is aluminum killed steel, and (II) is silicon semi-killed steel. With normal injection, slipper defects occur due to alumina clusters. (U) has thin pinholes with a diameter of about 0.5 mi+ on the surface and is unusable.

両鋼種を厚み200襲、巾1880顛のスラブ鋳型で第
5図の注入方案により溶湯Y ”ウダースラグで被覆し
、0.18 rr1/minの鋳込速度で鋳造した。得
られた薄板を検査したところアルミナクラスターにもと
づ(ことが知られているスリノ(−疵は大巾に減少でき
、表面状況が非常に良好となった。また、〔■〕の鋼な
@遺したスラブは端部のみにわずかなピンホールの発生
はあったが、薄板とした段階で十分使用に耐えることが
分った。
Both steel types were coated with molten Y'' udder slag in a slab mold with a thickness of 200mm and a width of 1880mm using the pouring method shown in Figure 5, and cast at a casting rate of 0.18rr1/min.The obtained thin plates were inspected. However, based on the alumina clusters (known to be sulino), the number of scratches was greatly reduced and the surface condition became very good. Although there were some small pinholes in the chisel, it was found that it was sufficiently usable once it was made into a thin plate.

本実験においてコイルを湯面下1030 xyi (1
,I X一)、1220 m* (1,3X  )、1
410 朋(1−5X 2 )2 03条件で設置した。第1と第2の条件では薄板の欠陥
は大差なかったが、第3の条件つまり1.5×互の場合
には薄板の両端部および中央部にピンホール起因の疵の
増加がみられた。
In this experiment, the coil was placed 1030 xyi (1
, I X1), 1220 m* (1,3X), 1
410 Tomo (1-5X 2 ) 2 It was installed under 03 conditions. There was no significant difference in the number of defects in the thin plate under the first and second conditions, but under the third condition, that is, in the case of 1.5× reciprocity, an increase in the number of defects caused by pinholes was observed at both ends and in the center of the thin plate. .

このように本発明によればキルド鋼の表層介在物を減少
するとともに、セミキルド鋼のピンホール除去も可能に
する。
As described above, according to the present invention, surface inclusions in killed steel can be reduced, and pinholes in semi-killed steel can also be removed.

本発明の効果はまずリムド鋼、セミキルド鋼等の製造を
可能ならしめた点を挙げることができる。
One of the effects of the present invention is that it has made it possible to manufacture rimmed steel, semi-killed steel, etc.

リムド、セミキルド鋼を電磁攪拌を用いて実施しようと
する考えはあったが、具体的に本発明で湯面附近に均一
な攪拌流を形成できるようになって始めてすぐれた材質
のものができることとなった。
Although there was an idea to produce rimmed and semi-killed steel using electromagnetic stirring, it was realized that excellent materials could only be produced by the present invention when it became possible to form a uniform stirring flow near the surface of the molten metal. became.

本発明においてはコイルを鋳型下におくことができる。In the present invention, the coil can be placed under the mold.

これによって強い攪拌流が形成される。This creates a strong stirring flow.

一部の提案にみられるように(例えば特開昭47−26
332号)、鋳型を電磁コイルの場にすることは不可能
である。その理由は連続鋳造においては鋳型に高い熱負
荷がかかるため鋼のように熱伝導度の高い材質以外は使
用することはできず、このような材料は同7時に高い電
気伝導度を有するため攪拌を起すべく誘起される誘導電
流は殆んど鋳型中で消耗してしまうためである。このた
めこのような方法ではリムド、セミキルド鋼の鋳込や介
在物減少に効果ある0、2〜0.5 m/s以上の攪拌
流を形成することができない。本発明はこのような電気
的な問題と流体的な形状上の問題を解決して得られたす
ぐれた方案である。
As seen in some proposals (for example, JP-A-47-26
No. 332), it is impossible to make the mold a field for an electromagnetic coil. The reason for this is that continuous casting places a high heat load on the mold, so only materials with high thermal conductivity, such as steel, can be used. This is because most of the induced current induced to cause this is consumed in the mold. Therefore, with this method, it is not possible to form a stirring flow of 0.2 to 0.5 m/s or more, which is effective for casting rimmed and semi-killed steels and reducing inclusions. The present invention is an excellent solution to solve these electrical problems and fluid shape problems.

なお、本発明に用いたような進行磁界を誘起する電磁コ
イルは、既に多くの文献でよく知られているものなので
詳細な説明は省いである。
It should be noted that the electromagnetic coil for inducing a traveling magnetic field as used in the present invention is already well known from many documents, so a detailed explanation will be omitted.

本発明の実施態様 (1)  多相交流による進行磁界を発生するコイルを
鋳片の直行方向と直角に設置し、このコイルの湯面から
の位置は、鋳片の中寸法りに対して(0,7〜1.3 
) X−’であることによって、湯面附近に強い均一な
攪拌流を作用させることを特徴とする、スラブの連続鋳
造における電磁攪拌装置の配置方法・ (2)  (1)の実施形態を実現可能なようにスラブ
巾に応じてコイル位置を変更できるように設置されてい
ることを特徴とする電磁攪拌装置を有するスラブの連続
鋳造設備。
Embodiment (1) of the present invention A coil that generates a traveling magnetic field by multiphase alternating current is installed perpendicular to the orthogonal direction of the slab, and the position of this coil from the hot water level is (with respect to the medium dimension of the slab). 0.7-1.3
) A method for arranging an electromagnetic stirring device in continuous slab casting, which is characterized by applying a strong uniform stirring flow near the melt surface by being X-' (2) Realizing the embodiment of (1) 1. Continuous slab casting equipment having an electromagnetic stirring device, characterized in that it is installed so that the coil position can be changed according to the width of the slab.

(3)  コイル寸法は適用されるスラブの最大中Lm
ax以内であり、鋳造毎−のスラブ巾りに応じてほぼ対
称な%Lの区間で移動磁界を形成するように結線の変更
が可能なような電磁攪拌を用いる(1)の方法または(
2)の装置。
(3) The coil dimensions are the maximum medium Lm of the applicable slab.
The method of (1) using electromagnetic stirring in which the wire connection can be changed to form a moving magnetic field in an approximately symmetrical section of %L depending on the slab width for each casting, or (
2) device.

(4)電磁コイルは水冷された純銅製冷却面を有する鋳
型の下部におかれ、鋳片とコイル本体との間に直接また
は間接的に水冷される非磁性鋼のシューが置かれ、コイ
ルが可及的に鋳片との距離が短縮されるよう設置せられ
たこと゛を特徴とする前記(2)の装置。
(4) The electromagnetic coil is placed at the bottom of a mold with a water-cooled pure copper cooling surface, and a water-cooled non-magnetic steel shoe is placed directly or indirectly between the slab and the coil body. The device according to (2) above, characterized in that it is installed so that the distance to the slab is as short as possible.

(51(1)の方法において一方向循環流を適用しつつ
鋳造する場合に、溶湯注入流は非対称に上流側におくこ
とを特徴とする注入方法。
(An injection method characterized in that when casting is performed while applying a unidirectional circulating flow in the method of 51(1), the molten metal injection flow is placed asymmetrically on the upstream side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ、口は本発明者がコイル位置と溶湯の流動状況
との関係を把握するため製作した低融点合金による模型
実験槽の平面図と正面図、第2図イ、口は第1図の測定
点A、Hにおける流速とコイル位置高さ方向の変更との
関係を示す図表、第3図は本発明の実施例を示す説明図
、第4図は鋳型中に応じて攪拌流を変えることを説明す
るための略図、第5図は第4図の攪拌流を得るための注
入方式を示す断面説明図、第6図は本発明によって得ら
れたスラブのマクロ組織図である。 A、B・・測定点、C・・コイル位置、D・・槽、E・
・低融点合金、1・・タンディツシュ、2・・タンディ
ツシュカー、3・・振動装置、4・・フレーム、5・・
鋳型、6・・昇降装置、7・・を磁[P装置、8・・エ
プロンフレーム、9・・スキッド、10・・ガイドロー
ラ、11・・鋳片、12・・湯面、13・・注入流、1
4・・スカム、15−・溶湯、16・・パウダー、17
・・浸漬ノズル。
Figure 1A, the opening is a plan view and front view of a model experimental tank made of a low melting point alloy, which the inventor manufactured in order to understand the relationship between the coil position and the flow situation of the molten metal, and Figure 2A, the opening is the 1st opening. A chart showing the relationship between the flow velocity at measurement points A and H in the figure and changes in the coil position/height direction, Fig. 3 is an explanatory diagram showing an embodiment of the present invention, and Fig. 4 shows the agitation flow depending on the inside of the mold. FIG. 5 is a cross-sectional explanatory diagram showing an injection method for obtaining the stirring flow shown in FIG. 4, and FIG. 6 is a macroscopic structure diagram of a slab obtained by the present invention. A, B...measurement point, C...coil position, D...tank, E...
・Low melting point alloy, 1..Tandish, 2..Tandishka, 3..Vibration device, 4..Frame, 5..
Mold, 6. Lifting device, 7. Magnetizing [P device, 8. Apron frame, 9. Skid, 10. Guide roller, 11. Slab, 12. Molten metal surface, 13. Injection Flow, 1
4. Scum, 15-. Molten metal, 16.. Powder, 17
...Immersion nozzle.

Claims (1)

【特許請求の範囲】[Claims] (1)  スラブの連続鋳造において移動磁界を発生す
る電磁コイルでスラブ手中3ALに対しスラブ巾方向に
移動する移動磁界を作用させるにあたり、前記電磁コイ
ルの中心位置がそれぞれ鋳型内溶湯の湯面下(0,7〜
1.3 ) X−であるように設置することを特徴とす
る連続鋳造における電磁攪拌装置。 (21%許請求の範囲第1項の電磁攪拌装置において、
移動磁界を発生する電磁コイルは鋳型に十分接して取付
けられるとともに、且つこの電磁コイルは、鉤片サイズ
により限定される条件に基づいてスラブ進行方向への取
付は位置を変更できるように移動可能に取付けられてい
ることを特徴とするスラブの連続鋳造における電磁攪拌
装置。
(1) When applying a moving magnetic field that moves in the slab width direction to the slab hand 3AL using an electromagnetic coil that generates a moving magnetic field in continuous slab casting, the center position of the electromagnetic coil is below the surface of the molten metal in the mold ( 0,7~
1.3) An electromagnetic stirring device for continuous casting, characterized in that it is installed so as to be X-. (21% In the electromagnetic stirring device of claim 1,
The electromagnetic coil that generates the moving magnetic field is installed in sufficient contact with the mold, and the electromagnetic coil is movable so that the installation position in the slab advancement direction can be changed based on the conditions limited by the hook size. An electromagnetic stirring device for continuous slab casting, characterized in that it is installed.
JP507482A 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting Expired JPS6015426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP507482A JPS6015426B2 (en) 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP507482A JPS6015426B2 (en) 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11893373A Division JPS5748305B2 (en) 1973-10-24 1973-10-24

Publications (2)

Publication Number Publication Date
JPS589751A true JPS589751A (en) 1983-01-20
JPS6015426B2 JPS6015426B2 (en) 1985-04-19

Family

ID=11601232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP507482A Expired JPS6015426B2 (en) 1982-01-18 1982-01-18 Electromagnetic stirring device in continuous slab casting

Country Status (1)

Country Link
JP (1) JPS6015426B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191620A (en) * 1984-03-13 1985-09-30 Nissan Motor Co Ltd Press die
JPS6250826U (en) * 1985-09-13 1987-03-30
JPS62174725U (en) * 1986-04-04 1987-11-06

Also Published As

Publication number Publication date
JPS6015426B2 (en) 1985-04-19

Similar Documents

Publication Publication Date Title
JP4807462B2 (en) Steel continuous casting method
JP2017515687A (en) Non-contact molten metal flow control
WO2011058770A1 (en) Method of continuous casting of steel
US7628196B2 (en) Method and apparatus for continuous casting of metals
US4030534A (en) Apparatus for continuous casting using linear magnetic field for core agitation
EP2682201A1 (en) Method and apparatus for the continuous casting of aluminium alloys
JPS645984B2 (en)
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
EP0489202B1 (en) Method of controlling flow of molten steel in mold
JPS589751A (en) Electromagnetic agitator in continuous casting for slab
JP4591156B2 (en) Steel continuous casting method
JP2002239695A (en) Continuous casting method and continuous casting equipment
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP3257546B2 (en) Steel continuous casting method
JP3110281B2 (en) Holding container for molten metal induction heating device
JP2008173644A (en) Electromagnetic coil for continuous casting mold
RU2419508C2 (en) Mixer
JPH0515949A (en) Apparatus and method for continuously casting metal
JP4492333B2 (en) Steel continuous casting method
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
JP2002103009A (en) Continuous casting method
JPH10193056A (en) Method for removing inclusion in continuous casting tundish
JPH0646597Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JP2003275849A (en) Method for producing continuously cast slab