JP2004039320A - Container for solid oxide type fuel cell - Google Patents

Container for solid oxide type fuel cell Download PDF

Info

Publication number
JP2004039320A
JP2004039320A JP2002191723A JP2002191723A JP2004039320A JP 2004039320 A JP2004039320 A JP 2004039320A JP 2002191723 A JP2002191723 A JP 2002191723A JP 2002191723 A JP2002191723 A JP 2002191723A JP 2004039320 A JP2004039320 A JP 2004039320A
Authority
JP
Japan
Prior art keywords
less
container
fuel cell
solid oxide
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002191723A
Other languages
Japanese (ja)
Other versions
JP3965682B2 (en
Inventor
Akihiro Tsuji
都地 昭宏
Motoi Yamaguchi
山口 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002191723A priority Critical patent/JP3965682B2/en
Publication of JP2004039320A publication Critical patent/JP2004039320A/en
Application granted granted Critical
Publication of JP3965682B2 publication Critical patent/JP3965682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container for a solid oxide type fuel cell having excellent oxidation resistance/heat-resistant fatigue characteristic, even in use at about 700-1000°C over a long period. <P>SOLUTION: This container for the solid oxide type fuel cell includes a cell for the container for the solid oxide type fuel cell in it, and passes through fuel gas through it. The container contains C:0.1% or less, Si:1.0% or less, Mn:2.0% or less, Cr:12-32.0%, Fe:20% or less, Ti:0.03% or less (including 0%), Al:0.5% or less (including 0%) and Mg:0.0005-0.04%, S:0.1% or less (on condition of Mg/S≥1), and contains one kind or two kinds or more out of a rare earth metal element :0.2% or less, Y:0.5% or less, Hf:0.5% or less, and Zr:1.0% or less to bring total of them into 1% or less, and the rest comprises Ni and inevitable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高温腐食環境で使用される固体酸化物型燃料電池用容器に関する。
【0002】
【従来の技術】
燃料電池は、その発電効率が高いこと、SOx、NOx、COの発生量が少ないこと、負荷の変動に対する応答性が良いこと、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、及び自家発電用等の巾広い発電システムへの適用が期待されている。
燃料電池の種類には用いる電解質により、りん酸型、溶融炭酸塩型、固体酸化物型、高分子固体電解質型に分類されるが、なかでも固体酸化物型燃料電池は電解質として安定化ジルコニア等のセラミックスを用いて1000℃付近で運転されるもので、電極反応に触媒を用いる必要がないこと、高温による化石燃料の内部改質が可能で石炭ガス等の多様な燃料を用いることができること、高温排熱を利用しガスタービン或いは蒸気タービン等と組み合わせ、いわゆるコンバインドサイクル発電とすることにより高効率の発電が可能となること、構成物が全て固体であるためコンパクトであること等の優れた特徴を有し、次世代の電力供給源として非常に有望視されている。
【0003】
しかしながら、固体酸化物型燃料電池の実用化のためには多くの検討課題が残されており、特に円筒型の固体酸化物型燃料電池の場合、重要な構成要素として固体酸化物型燃料電池用容器が挙げられる。
この固体酸化物型燃料電池用容器は、束状に接続された数本の円筒型セルの周りを覆い、装置内で燃料と空気を仕切る役目を有する。固体酸化物型燃料電池用容器には、高温での耐酸化性、更に起動、停止の繰り返しによる熱サイクル中において機密性を保つため耐熱疲労特性に優れる等の特性が要求されている。また、装置の小型化のため、固体酸化物型燃料電池用容器は極力薄く加工性に優れた材料で形成されることが望まれている。
そのため、高温での耐酸化性・延性に優れ、かつ加工性に優れる金属材料による固体酸化物型燃料電池用容器の開発が要求され、フェライト系ステンレス鋼、及びCo基合金、Ni基合金等の超耐熱合金等を候補材として挙げることができる。
【0004】
【発明が解決しようとする課題】
上述したフェライト系ステンレス鋼は、他の金属材料に比べて安価で加工性に優れているが、起動、停止過程での約500〜800℃の高温でσ脆性により脆化し、また高温耐酸化性も不十分である。
また、Co基合金は、高温での耐酸化性、延性には優れているが、非常に高価なため実用材料として用いるには不適であり、また、Ni基合金として代表的なAlloy600(Ni−16Cr−8Fe)では、700〜1000℃の高温での耐酸化性が不十分である。本発明の目的は、700〜1000℃程度における長時間の使用においても良好な耐酸化性・耐熱疲労特性を有する固体酸化物型燃料電池用容器を提供することである。
【0005】
【課題を解決するための手段】
本発明者は種々検討の結果、まず対象とする金属材料をNi基合金とした。この理由は、700〜1000℃の高温での耐酸化性とコストを鑑みて、最もバランスのとれた材料だからである。
本発明者は、まずNi基合金の高温耐酸化性の向上を検討したところ、代表的なNi基合金であるAlloy600及びその改良材(例えば、特公平5−480807号に示されるように0.2%程度のTiを含む合金)では酸化被膜から材料内部に向かって粒界に沿うようにTi酸化物が生成し、それによって酸化被膜が剥離し易くなり耐酸化性を低下させることを知見した。
そこで本発明者は、Ti酸化物生成に及ぼすTi量の影響を検討した。その結果、Ti量を低く抑えることで、耐酸化性を改善できることを見出した。そして更に耐酸化性を向上させる方法を検討したところ、希土類元素、Y、Hf、Zrの少量添加により固体酸化物型燃料電池用容器の耐酸化性を著しく向上させられることを見出した。
【0006】
また、更なる耐酸化性向上の手段としてはAl添加があり、Al添加によるAlloy600の改良材も提案されている。
しかし、本発明者は、Tiをほとんど含まないγ’析出強化型Ni基合金において、Alを多量に含有すると高温で材料中に主にNiとAlからなるγ’相が析出し高温延性が低下して、耐熱疲労特性が大きく低下する問題が生じることを知見した。その結果、Al量を低く抑えることで高温延性を大幅に向上でき、その結果として固体酸化物型燃料電池用容器の耐熱疲労特性を大きく改善できることを見出した。
【0007】
次に、固体酸化物型燃料電池用容器は数百μmから数mm程度の薄い金属板から形成されており、熱間加工性、冷間加工性も必要である。特にNi基合金は熱間加工性が悪いことが多いことから、本発明者は熱間加工性についても検討した。
そして、Alloy600やその改良材(例えば、特開昭62−270740号及び特公平5−40807号)ではNiとNiの共晶が粒界に発生していることを知見した。この共晶が熱間加工時に溶融し、割れを引き起こすことを突き止めた。特に、Tiを含有しないNi基合金において、Sによる熱間加工性の劣化が大きい事を実験的に確認した。そこで、Ti量が不純物レベルまで低いNi基合金において、これを改善するためにMg添加によってMgとSの化合物を生成して、Sを除去または固定することが有効であることを見出した。
【0008】
即ち本発明は、固体酸化物型燃料電池のセルを内包し、燃料ガスを通過させる容器であって、質量%にて、C:0.1%以下、Si:1.0%以下、Mn:2.0%以下、Cr:12〜32%、Fe:20%以下、Ti:0.03%以下(0%を含む)、Al:0.5%以下(0%を含む)、Mg:0.0005〜0.04%、S:0.01%以下(但し、Mg/S≧1)を含有し、希土類元素:0.2%以下、Y:0.5%以下、Hf:0.5%以下、Zr:1%以下うちの一種または二種以上を含み且つそれらの合計が1%以下であり、残部Ni及び不可避的不純物からなる固体酸化物型燃料電池用容器である。
好ましくは、質量%にて、Cr:12〜20%、La及びZrのうち一種または二種を含み且つそれらの合計が0.3%以下である固体酸化物型燃料電池用容器である。
【0009】
【発明の実施の形態】
本発明で言う固体酸化物型燃料電池用容器は、例えば円筒型の固体酸化物型燃料電池の場合、束状に接続された数本の円筒型セルの周りを覆うようにセルを内包して、装置内で燃料と空気を仕切る役目を有するものであり、燃料ガスが通過する容器を指す。
以下に本発明における成分限定理由について述べる。
Cは、Crと結びついて炭化物を形成して結晶粒粗大化を防止する作用があり、少量添加が必要である。しかし、過度の添加は多量の炭化物形成による冷間加工性の低下及び耐酸化性に有効なマトリックス中のCrの欠乏を招くため0.1%以下に限定する。好ましくは0.07%以下、更に好ましくは0.05%以下である。
Siは、溶湯に対して強力な脱酸作用を発揮する他、鋳造性を向上させる作用がある。また、SiOは酸化皮膜と母材の中間に形成され、酸化被膜の剥離を阻止する。これらの理由でSiを添加するが、過度の添加は耐酸化性および靭性の低下を招くためSiは1.0%以下に限定する。好ましくは0.5%以下である。
【0010】
Mnは、Siと同じく脱酸作用を発揮するほか、鋳造性を向上させる。また、Fe、Crと供にスピネル型酸化物を形成する。このスピネル型酸化物は、通常Cr程の保護作用はないが、適量の添加は耐剥離性に対して有利に働く。
この理由は、恐らくMnを含むスピネル型酸化物が母材とCr被膜の中間の熱膨張係数を有するため、緩衝材として働き、Cr被膜の密着性を高めるためと思われる。
一方、過度に添加すると前述のようにMn含有のスピネル型酸化物自体の耐酸化性不足のため耐酸化性の低下を招く。従って、Mnは2.0%以下に限定する。好ましくは1.0%以下であり、更に好ましくは0.5%以下である。
【0011】
Crは、マトリックス中に存在することにより、高温において材料表面にCr被膜を形成し耐酸化性を向上させる。高温での十分な耐酸化性を付与させるためには、最低12%以上を必要とする。しかしながら過度の添加は耐酸化性向上にさほど効果がないばかりか加工性の低下を招き、且つCr被膜の剥離を引き起こす。従って、Crの添加量は12〜32%に限定する。望ましいCrの範囲は12〜20%である。更に望ましくは下限14%、上限18%である。
Feは高温強度を低下させる元素であり、添加しないと熱間加工性が著しく悪くなるため、製造上必要な元素である。しかし、過度の添加は燃料電池用容器として使用する高温での強度を低下させ、また、耐酸化性も僅かに低下させる。従って、Feの添加量は20%以下とする。望ましくは10%以下である。
【0012】
Tiが含まれると、高温で使用した際、酸化被膜から材料内部に向かって粒界に沿うようにTi酸化物が生成するため、酸化被膜が剥離し易くなり、耐酸化性が低下する。また、燃料電池用容器は溶接によって形成されるが、Tiはその際の溶接性を低下させる元素である。そのため、Tiの含有量は0.03%以下に限定し、無添加(0%)でも良い。望ましくは0.02%以下(0%を含む)である。
Alは脱酸作用を発揮するほか、多量に添加するとAl被膜が形成され耐酸化性に対して有効である。しかし、上述のように過度の添加は加工性を低下させるとともに、高温で材料中にγ’相が析出して高温延性を低下させるため、耐熱疲労特性が大きく劣化する。従って、本発明においてはCr系酸化被膜のみで耐酸化性を持たせているように合金設計しているため、Alは制限すべき元素の一つである。
そのため、Alの上限は0.5%とし、無添加(0%)でも良く、望ましくは0.25%以下(0%を含む)である。
【0013】
Sは、Ni中の固溶限が小さいため、微量含有するだけで結晶粒界にNiが偏析し、NiとNiの共晶が発生する。この共晶の融点は非常に低く、熱間加工の温度範囲において非常に脆弱になる。そのため、Sは熱間加工時に粒界を脆弱にして割れ等を引き起こし、熱間加工性を低下させる元素である。従って、Sの含有量は0.01%以下である。
Mgは、Sと結びついて化合物を形成し、Sを除去または固定するために必須の元素である。しかしながら、MgはNi中の固溶限が小さいため過度に添加すると粒界にNiMgを形成する。このため、NiとNiMgの共晶が粒界に於いて発生し、熱間加工時には粒界が脆弱になり、熱間加工性が低下する。従って、Mgの添加量は0.0005〜0.04%である。また、Sを確実に除去または固定するためにMg/Sの比率を1以上とすることが必要である。
【0014】
希土類元素、Y、Hf及びZrは、少量添加により固体酸化物型燃料電池用容器に必要な耐酸化性を大幅に改善する効果を有する。
本発明の固体酸化物型燃料電池用容器においてはCr系酸化被膜のみで耐酸化性を持たせているが、このCr系酸化被膜の密着性を向上させるために希土類元素とY、Hf、Zrのうち一種または二種以上を複合添加することは不可欠である。これによって、酸化皮膜の密着性がより向上し、長時間加熱後においても酸化被膜の剥離を防止できる。しかしながら過度の添加は熱間加工性を劣化させるので、希土類元素は0.2%以下、Yは0.5%以下、Hfは0.5%以下、Zrは1%以下のうち一種または二種以上を含み且つそれらの合計が1%以下であることが必要である。
なお、希土類元素の中では、特にLa添加が望ましく、また、ZrはCと結びついて炭化物を形成し、C固定により加工性を向上させ、また強度向上にも寄与するので、非常に有効な元素である。従って、La及びZrのうち一種または二種を含み且つそれらの合計が0.3%以下であることが望ましい。
【0015】
なお、以下の元素は下記の範囲内で本発明の固体酸化物型燃料電池用容器に含まれても良い。
Mo≦1%、W≦1%、Nb≦0.5%、P≦0.04%、Cu≦0.30%、V≦0.5%、Ta≦0.5%、Ca≦0.02%、Co≦2%
【0016】
【実施例】
以下に実施例として本発明を詳しく説明する。本発明の固体酸化物型燃料電池用容器用の材料及び比較材料を真空誘導炉にて溶製し10kgのインゴットを作製した。
その後、熱間鍛造、熱間圧延、及び冷間圧延によって厚さ0.5mmの板に仕上げ、950℃×1Hr空冷の溶体化処理を施した。表1に本発明の固体酸化物型燃料電池用容器用の材料No.1〜7、比較材料No.8〜15の化学組成を示す。なお、表1備考欄において、本発明の固体酸化物型燃料電池用容器用の材料No.1〜7には「本発明」として、比較材料No.8〜15には「比較材料」として示した。
【0017】
【表1】

Figure 2004039320
【0018】
これらの各材料から試験片を切り出し、耐酸化試験及び800℃における高温引張試験を行った。耐酸化試験は、0.5mmt×20mmw×50mmLの短冊状試験片を用いて、大気中1000℃×100Hr及び1050℃×100Hrの加熱処理を行った後、酸化増量を測定した。なお、1050℃×100Hrの加熱処理は、試験時間短縮のため1000℃×750Hr加熱相当の加速試験として行った。(Larson−Miller parameterより算出)
表2に本発明容器用材料及び比較材料について1000℃×100Hr及び1050℃×100Hrの耐酸化試験による酸化増量と800℃における高温伸びの測定結果を示す。
【0019】
【表2】
Figure 2004039320
【0020】
本発明の固体酸化物型燃料電池用容器用の材料は1000℃×100h及び1050℃×100hの耐酸化試験において、酸化増量が少なく且つ酸化膜の剥離がない良好な耐酸化性を示した。また、本発明の固体酸化物型燃料電池用容器用の材料は熱間加工性も良好であるため、熱間加工割れ等の問題も発生しなかった。
【0021】
比較材料に関して、Alが高い材料(No.8)では、耐酸化試験後の酸化増量は少なく良好な耐酸化性を示したが、800℃の高温でγ’相が析出するために伸びが低くなっている。また、Crが12%より少ない(No.9)は耐酸化性が不足するため耐酸化試験後の酸化増量が多くなっている。
反対にCrが32%より多い(No.10)はCrの剥離が発生するため酸化増量が多くなっている。Feが多い(No.11)はわずかに耐酸化性が低下しており、Tiが0.2%程度含まれる(No.12)は酸化被膜の剥離が発生し酸化増量が多くなっている。
Mgが0.04%を超える(No.13)、Mgが0.0005%未満でMg/S<1の(No.14)及びSが0.01%を超えMg/S<1の(No.15)はそれぞれ共晶が発生するために熱間加工中に割れが発生した。これらの熱間加工性が低い材料は容器用素材である薄板形状への成形ができないため、固体酸化物型燃料電池用容器には不適である。
【0022】
以上の結果から、本発明で規定する材料を用いれば、固体酸化物型燃料電池用容器への成形加工ができる。本容器は高温で使用されても、酸化による劣化が少なく、また熱疲労にも強い。
そのため、固体酸化物型燃料電池のセルを内包し、通過させる容器として最適である。
【0023】
【発明の効果】
本発明により、高温で優れた耐酸化性を有し、かつ熱間加工性に優れた固体酸化物型燃料電池用容器を提供可能となり、円筒型固体酸化物型燃料電池の実用化、高効率化、大型化に大きく寄与できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell container used in a high-temperature corrosive environment.
[0002]
[Prior art]
Fuel cells have excellent characteristics such as high power generation efficiency, low generation of SOx, NOx, and CO 2 , good responsiveness to load fluctuation, and compactness. It is expected to be applied to wide-scale power generation systems such as large-scale centralized type, suburban distributed type, and private power generation as alternatives.
Fuel cells are classified into phosphoric acid type, molten carbonate type, solid oxide type, and polymer solid electrolyte type, depending on the electrolyte used. Among them, solid oxide type fuel cells are used as electrolytes, such as stabilized zirconia. It is operated at around 1000 ° C. using ceramics, it is not necessary to use a catalyst for electrode reaction, internal reforming of fossil fuel by high temperature is possible, and various fuels such as coal gas can be used, Excellent features such as high efficiency power generation by combining high temperature waste heat with gas turbine or steam turbine, so-called combined cycle power generation, and compactness because all components are solid. And is very promising as a next-generation power supply source.
[0003]
However, there are many issues to be studied for the practical use of solid oxide fuel cells. Particularly in the case of cylindrical solid oxide fuel cells, an important component for solid oxide fuel cells is Containers.
This container for a solid oxide fuel cell has a role of covering around several cylindrical cells connected in a bundle and separating fuel and air in the device. Solid oxide fuel cell containers are required to have properties such as high resistance to oxidation at high temperatures and excellent thermal fatigue resistance in order to maintain confidentiality during thermal cycling by repeated start and stop. Further, in order to reduce the size of the apparatus, it is desired that the container for a solid oxide fuel cell be formed of a material that is as thin as possible and has excellent workability.
Therefore, the development of a solid oxide fuel cell container made of a metal material having excellent oxidation resistance and ductility at high temperatures and excellent workability is required, and ferrite stainless steel, a Co-based alloy, a Ni-based alloy, etc. A super heat resistant alloy or the like can be cited as a candidate material.
[0004]
[Problems to be solved by the invention]
The above-mentioned ferritic stainless steel is inexpensive and excellent in workability compared to other metal materials, but becomes brittle due to σ embrittlement at a high temperature of about 500 to 800 ° C. in the starting and stopping process, and also has high temperature oxidation resistance. Is also inadequate.
Co-based alloys are excellent in oxidation resistance and ductility at high temperatures, but are not suitable for use as practical materials because they are very expensive. Also, Alloy 600 (Ni- 16Cr-8Fe) has insufficient oxidation resistance at a high temperature of 700 to 1000 ° C. An object of the present invention is to provide a container for a solid oxide fuel cell having good oxidation resistance and thermal fatigue resistance even when used at about 700 to 1000 ° C. for a long time.
[0005]
[Means for Solving the Problems]
As a result of various studies, the present inventor first selected a target metal material as a Ni-based alloy. The reason for this is that the material is the most balanced material in view of the oxidation resistance at a high temperature of 700 to 1000 ° C. and the cost.
The present inventor first studied the improvement of the high-temperature oxidation resistance of the Ni-based alloy. As a result, a representative Ni-based alloy, Alloy 600, and an improved material thereof (for example, as disclosed in Japanese Patent Publication No. 5-480807). In an alloy containing about 2% of Ti), it was found that Ti oxides were generated along the grain boundaries from the oxide film toward the inside of the material, whereby the oxide film was easily peeled off and the oxidation resistance was reduced. .
Therefore, the present inventors examined the effect of the amount of Ti on the formation of Ti oxide. As a result, they have found that oxidation resistance can be improved by suppressing the amount of Ti to a low level. Then, when a method for further improving the oxidation resistance was examined, it was found that the oxidation resistance of the solid oxide fuel cell container could be significantly improved by adding a small amount of rare earth elements, Y, Hf, and Zr.
[0006]
Further, as a means for further improving the oxidation resistance, there is addition of Al, and a material for improving Alloy 600 by adding Al has been proposed.
However, the present inventors have found that, in a γ ′ precipitation-strengthened Ni-base alloy containing almost no Ti, when a large amount of Al is contained, a γ ′ phase mainly composed of Ni and Al precipitates in the material at a high temperature, and the high-temperature ductility decreases. As a result, the inventors have found that a problem that the heat-resistant fatigue property is greatly reduced occurs. As a result, it has been found that the high-temperature ductility can be significantly improved by suppressing the Al content to a low level, and as a result, the thermal fatigue resistance of the solid oxide fuel cell container can be greatly improved.
[0007]
Next, the container for a solid oxide fuel cell is formed from a thin metal plate of several hundred μm to several mm, and requires hot workability and cold workability. In particular, since the Ni-base alloy often has poor hot workability, the present inventors also studied hot workability.
Then, Alloy 600 and their improved materials (e.g., JP-A 62-270740 Patent and Kokoku No. 5-40807) eutectic in Ni and Ni 3 S 2 was found that has occurred at the grain boundaries. This eutectic was found to melt during hot working and cause cracking. In particular, it was experimentally confirmed that in a Ni-based alloy containing no Ti, the hot workability was significantly deteriorated by S. Thus, in a Ni-based alloy in which the amount of Ti is as low as the impurity level, it has been found that it is effective to remove or fix S by generating a compound of Mg and S by adding Mg to improve this.
[0008]
That is, the present invention relates to a container which encloses cells of a solid oxide fuel cell and allows a fuel gas to pass therethrough. In mass%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 12 to 32%, Fe: 20% or less, Ti: 0.03% or less (including 0%), Al: 0.5% or less (including 0%), Mg: 0 0.0005 to 0.04%, S: 0.01% or less (Mg / S ≧ 1), rare earth element: 0.2% or less, Y: 0.5% or less, Hf: 0.5 % Or less, Zr: 1% or less, and the total thereof is 1% or less, and the container is a solid oxide fuel cell container composed of a balance of Ni and unavoidable impurities.
Preferably, the container is a solid oxide fuel cell container containing, by mass%, Cr: 12 to 20%, one or two of La and Zr, and the total of them is 0.3% or less.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The container for a solid oxide fuel cell referred to in the present invention, for example, in the case of a cylindrical solid oxide fuel cell, encloses cells so as to cover around several cylindrical cells connected in a bundle. , Which has a function of separating fuel and air in the apparatus, and refers to a container through which fuel gas passes.
The reasons for limiting the components in the present invention are described below.
C has an effect of forming carbides in combination with Cr to prevent crystal grain coarsening, and thus requires a small amount of addition. However, excessive addition causes a decrease in cold workability due to formation of a large amount of carbides and a deficiency of Cr in the matrix effective for oxidation resistance. Therefore, the excessive addition is limited to 0.1% or less. Preferably it is 0.07% or less, more preferably 0.05% or less.
Si has a strong deoxidizing effect on the molten metal and also has an effect of improving castability. Further, SiO 2 is formed between the oxide film and the base material to prevent the oxide film from peeling off. For these reasons, Si is added. However, excessive addition causes reduction in oxidation resistance and toughness, so that Si is limited to 1.0% or less. Preferably it is 0.5% or less.
[0010]
Mn exerts a deoxidizing action like Si, and also improves castability. Further, a spinel oxide is formed together with Fe and Cr. This spinel-type oxide usually does not have as much protection as Cr 2 O 3, but its addition in an appropriate amount has an advantageous effect on peel resistance.
This is probably because the spinel-type oxide containing Mn has a thermal expansion coefficient intermediate between that of the base material and the Cr 2 O 3 coating, so that it acts as a buffer and enhances the adhesion of the Cr 2 O 3 coating. .
On the other hand, if added excessively, the oxidation resistance of the Mn-containing spinel oxide itself is reduced due to insufficient oxidation resistance as described above. Therefore, Mn is limited to 2.0% or less. It is preferably at most 1.0%, more preferably at most 0.5%.
[0011]
Since Cr is present in the matrix, it forms a Cr 2 O 3 coating on the material surface at a high temperature to improve oxidation resistance. In order to impart sufficient oxidation resistance at high temperatures, at least 12% is required. However, excessive addition not only has little effect on improving the oxidation resistance, but also causes a reduction in workability and causes peeling of the Cr 2 O 3 coating. Therefore, the amount of Cr added is limited to 12 to 32%. The desirable range of Cr is 12 to 20%. More preferably, the lower limit is 14% and the upper limit is 18%.
Fe is an element that lowers the high-temperature strength, and if not added, the hot workability deteriorates significantly. However, excessive addition lowers the strength at high temperatures used as a fuel cell container, and also slightly reduces oxidation resistance. Therefore, the added amount of Fe is set to 20% or less. Desirably, it is 10% or less.
[0012]
When Ti is contained, when used at a high temperature, a Ti oxide is generated along the grain boundaries from the oxide film toward the inside of the material, so that the oxide film is easily peeled off, and the oxidation resistance is reduced. Further, the fuel cell container is formed by welding, and Ti is an element that reduces the weldability at that time. Therefore, the content of Ti is limited to 0.03% or less, and may not be added (0%). Desirably, it is 0.02% or less (including 0%).
Al exerts a deoxidizing effect, and when added in a large amount, forms an Al 2 O 3 film, which is effective for oxidation resistance. However, as described above, excessive addition lowers the workability, and at the same time, the γ 'phase precipitates in the material at a high temperature and lowers the high-temperature ductility, so that the thermal fatigue resistance is greatly deteriorated. Therefore, in the present invention, Al is one of the elements to be restricted because the alloy is designed so that only the Cr-based oxide film has oxidation resistance.
Therefore, the upper limit of Al is set to 0.5%, and may not be added (0%), and is desirably 0.25% or less (including 0%).
[0013]
S, because the solubility limit of the Ni is small, Ni 3 S 2 in the grain boundaries only contained traces of segregated eutectic Ni and Ni 3 S 2 is generated. The melting point of this eutectic is very low and becomes very brittle in the hot working temperature range. For this reason, S is an element that weakens the grain boundaries during hot working to cause cracks and the like, thereby reducing hot workability. Therefore, the content of S is 0.01% or less.
Mg is an element essential for forming a compound by combining with S and removing or fixing S. However, since Mg has a small solid solubility limit in Ni, if it is excessively added, Ni 2 Mg is formed at the grain boundary. For this reason, a eutectic of Ni and Ni 2 Mg is generated at the grain boundary, and the grain boundary becomes brittle at the time of hot working, and the hot workability is reduced. Therefore, the added amount of Mg is 0.0005 to 0.04%. Further, in order to surely remove or fix S, the ratio of Mg / S needs to be 1 or more.
[0014]
The rare earth elements, Y, Hf and Zr, when added in small amounts, have the effect of significantly improving the oxidation resistance required for the solid oxide fuel cell container.
In the container for a solid oxide fuel cell of the present invention, oxidation resistance is provided only by a Cr-based oxide film, but in order to improve the adhesion of the Cr-based oxide film, rare earth elements and Y, Hf, Zr are used. It is indispensable to add one or more of them. Thereby, the adhesion of the oxide film is further improved, and peeling of the oxide film can be prevented even after heating for a long time. However, excessive addition deteriorates hot workability, so rare earth elements are 0.2% or less, Y is 0.5% or less, Hf is 0.5% or less, and Zr is 1% or less. It is necessary that the above is included and the total thereof is 1% or less.
Among the rare earth elements, it is particularly desirable to add La. Zr combines with C to form a carbide, improves workability by fixing C, and also contributes to an increase in strength. It is. Therefore, it is desirable that one or two of La and Zr are contained and the total thereof is 0.3% or less.
[0015]
The following elements may be contained in the solid oxide fuel cell container of the present invention within the following ranges.
Mo ≦ 1%, W ≦ 1%, Nb ≦ 0.5%, P ≦ 0.04%, Cu ≦ 0.30%, V ≦ 0.5%, Ta ≦ 0.5%, Ca ≦ 0.02 %, Co ≦ 2%
[0016]
【Example】
Hereinafter, the present invention will be described in detail as examples. The material for a container for a solid oxide fuel cell of the present invention and the comparative material were melted in a vacuum induction furnace to produce a 10 kg ingot.
After that, a plate having a thickness of 0.5 mm was finished by hot forging, hot rolling, and cold rolling, and was subjected to a solution treatment of 950 ° C. × 1 Hr air cooling. Table 1 shows the material No. of the solid oxide fuel cell container of the present invention. Nos. 1 to 7 and Comparative Material Nos. 8 to 15 show chemical compositions. In addition, in the remarks column of Table 1, the material No. for the container for a solid oxide fuel cell of the present invention. In Comparative Examples Nos. 1 to 7 as "the present invention". 8 to 15 are shown as “comparative materials”.
[0017]
[Table 1]
Figure 2004039320
[0018]
A test piece was cut out from each of these materials and subjected to an oxidation resistance test and a high-temperature tensile test at 800 ° C. In the oxidation resistance test, a strip-shaped test piece of 0.5 mmt × 20 mmw × 50 mmL was subjected to heat treatment at 1000 ° C. × 100 Hr and 1050 ° C. × 100 Hr in the atmosphere, and then the oxidation increase was measured. The heat treatment at 1050 ° C. × 100 hr was performed as an acceleration test corresponding to 1000 ° C. × 750 hr heating to shorten the test time. (Calculated from Larson-Miller parameter)
Table 2 shows the measurement results of the increase in oxidation and the high-temperature elongation at 800 ° C. by the oxidation resistance test of 1000 ° C. × 100 Hr and 1050 ° C. × 100 Hr for the container material of the present invention and the comparative material.
[0019]
[Table 2]
Figure 2004039320
[0020]
The material for a container for a solid oxide fuel cell of the present invention showed good oxidation resistance in an oxidation resistance test at 1000 ° C. × 100 h and at 1050 ° C. × 100 h, with little increase in oxidation and without peeling of an oxide film. Further, since the material for a container for a solid oxide fuel cell of the present invention has good hot workability, no problem such as hot work cracking occurred.
[0021]
With respect to the comparative material, the material having a high Al (No. 8) showed good oxidation resistance after the oxidation resistance test with a small amount of oxidation increase, but the elongation was low due to the precipitation of the γ ′ phase at a high temperature of 800 ° C. Has become. When the content of Cr is less than 12% (No. 9), the oxidation resistance is insufficient, so that the amount of oxidation increase after the oxidation resistance test is large.
On the other hand, when the content of Cr is more than 32% (No. 10), the amount of oxidation increase is increased due to the peeling of Cr 2 O 3 . When the amount of Fe is large (No. 11), the oxidation resistance is slightly lowered. When the amount of Ti is about 0.2% (No. 12), the oxide film is peeled off and the amount of oxidation increase is increased.
Mg exceeds 0.04% (No. 13), Mg is less than 0.0005%, Mg / S <1 (No. 14) and S exceeds 0.01%, Mg / S <1 (No. .15) caused cracks during hot working due to the occurrence of eutectic. Since these materials having low hot workability cannot be formed into a thin plate shape as a container material, they are not suitable for a container for a solid oxide fuel cell.
[0022]
From the above results, the use of the material specified in the present invention enables the formation of a solid oxide fuel cell container. Even when used at a high temperature, the container is hardly deteriorated by oxidation and resistant to thermal fatigue.
Therefore, it is most suitable as a container that contains and passes cells of a solid oxide fuel cell.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION By this invention, it becomes possible to provide the container for solid oxide fuel cells which has excellent oxidation resistance at high temperature and excellent hot workability. It can greatly contribute to the increase in size and size.

Claims (2)

固体酸化物型燃料電池のセルを内包し、燃料ガスを通過させる容器であって、質量%にて、C:0.1%以下、Si:1.0%以下、Mn:2.0%以下、Cr:12〜32%、Fe:20%以下、Ti:0.03%以下(0%を含む)、Al:0.5%以下(0%を含む)、Mg:0.0005〜0.04%、S:0.01%以下(但し、Mg/S≧1)を含有し、更に希土類元素:0.2%以下、Y:0.5%以下、Hf:0.5%以下、Zr:1%以下のうち一種または二種以上を含み且つそれらの合計が1%以下であり、残部Ni及び不可避的不純物からなることを特徴とする固体酸化物型燃料電池用容器。A container that contains cells of a solid oxide fuel cell and allows fuel gas to pass therethrough. In mass%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less , Cr: 12 to 32%, Fe: 20% or less, Ti: 0.03% or less (including 0%), Al: 0.5% or less (including 0%), Mg: 0.0005 to 0. 04%, S: 0.01% or less (however, Mg / S ≧ 1), Rare earth element: 0.2% or less, Y: 0.5% or less, Hf: 0.5% or less, Zr A solid oxide fuel cell container containing 1% or less of 1% or less, the total of them being 1% or less, and the balance consisting of Ni and unavoidable impurities. 質量%にて、Cr:12〜20%、La及びZrのうち一種または二種を含み且つそれらの合計が0.3%以下であることを特徴とする請求項1に記載の固体酸化物型燃料電池用容器。2. The solid oxide type according to claim 1, wherein in mass%, Cr: 12 to 20%, one or two of La and Zr are contained, and the total thereof is 0.3% or less. 3. Container for fuel cell.
JP2002191723A 2002-07-01 2002-07-01 Container for solid oxide fuel cell Expired - Fee Related JP3965682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191723A JP3965682B2 (en) 2002-07-01 2002-07-01 Container for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191723A JP3965682B2 (en) 2002-07-01 2002-07-01 Container for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2004039320A true JP2004039320A (en) 2004-02-05
JP3965682B2 JP3965682B2 (en) 2007-08-29

Family

ID=31701207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191723A Expired - Fee Related JP3965682B2 (en) 2002-07-01 2002-07-01 Container for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3965682B2 (en)

Also Published As

Publication number Publication date
JP3965682B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
RU2377336C2 (en) Alloy for gasturbine engine
JP4546318B2 (en) Ni-based alloy member and manufacturing method thereof, turbine engine component, welding material and manufacturing method thereof
JP5147037B2 (en) Ni-base heat-resistant alloy for gas turbine combustor
EP1591548A1 (en) Method for producing of a low thermal expansion Ni-base superalloy
EP2196551B1 (en) Use of low-thermal-expansion nickel-based superalloy for a boiler component, according boiler component and method for its production
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
EP2781612B1 (en) Seamless austenite heat-resistant alloy tube
CA1066922A (en) Heat-resistant allow for welded structures
JP6805574B2 (en) Austenitic heat resistant steel and austenitic heat transfer member
JP2008297579A (en) Nickel-based alloy excellent in structural stability and high tension strength, and method for producing nickel-based alloy material
JP7270444B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2007009279A (en) Ni-Fe-BASE ALLOY, AND METHOD FOR MANUFACTURING Ni-Fe-BASE ALLOY MATERIAL
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
US6761854B1 (en) Advanced high temperature corrosion resistant alloy
CN109072384A (en) Alfer
KR101326375B1 (en) HEAT-RESISTANT ALLOY CAPABLE OF DEPOSITING FINE Ti-Nb-Cr CARBIDE OR Ti-Nb-Zr-Cr CARBIDE
JP3814822B2 (en) Fins and tubes for high temperature heat exchangers
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP3915717B2 (en) Thin stainless steel sheet
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP4543380B2 (en) Fuel cell stack fastening bolt alloy
US10240223B2 (en) Ni-based alloy having excellent high-temperature creep characteristics, and gas turbine member using the same
JP3965682B2 (en) Container for solid oxide fuel cell
JP3424314B2 (en) Heat resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees