JP2004037587A - 光変調器およびその製造方法 - Google Patents

光変調器およびその製造方法 Download PDF

Info

Publication number
JP2004037587A
JP2004037587A JP2002191422A JP2002191422A JP2004037587A JP 2004037587 A JP2004037587 A JP 2004037587A JP 2002191422 A JP2002191422 A JP 2002191422A JP 2002191422 A JP2002191422 A JP 2002191422A JP 2004037587 A JP2004037587 A JP 2004037587A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
optical
photonic crystal
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002191422A
Other languages
English (en)
Inventor
Kenji Iida
飯田 健二
Shiro Shichijo
七条 司朗
Kazuhiro Yamada
山田 一博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002191422A priority Critical patent/JP2004037587A/ja
Publication of JP2004037587A publication Critical patent/JP2004037587A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【目的】分岐光導波路部の省スペース化を実現し,小型化・低伝播損失化を可能とする光変調器を提供することを目的とする。
【構成】高屈折率光導波層9を挟むように低屈折率電気光学結晶クラッド層10と低屈折率空気クラッド層が形成されている3層スラブ構造をした基板内に、屈折率の周期構造となるように前記高屈折率光導波層9面内に四角柱状の低屈折率の空気穴11が形成されており、且つ前記空気穴11が存在しないことで構成される光導波路12が面内に形成された構造をしている。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、結晶の電気光学効果を利用した光変調器に関するものである。
【0002】
【従来の技術】
従来の光変調器は図3に示すものが知られている。図のように、電気光学結晶基板1上にTi熱拡散により光導波路2が描かれており、その構造はY字分岐3を2つ合わせたマッハツェンダ型になっている。Y字分岐部3では伝播する光が分波・合波をするが、その際に光が減衰しないように浅い分岐角度と十分な長さが取られている。また電界を印加するため金属表面電極4が電気光学結晶基板上のSiOバッファ層5を介して素子表面に装荷されている。前記金属表面電極4に電圧を印加すると、Ti拡散された光導波路2中に電界が生じ、電気光学効果によって結晶の光に対する屈折率が変化し、光導波路2中を伝播する光の位相が変化する。この位相変化と光の干渉効果を利用して、マッハツェンダ型導波路を用いた光強度変調器が実現されている。
【0003】
一方で、低伝播損失の光導波路作製には、フォトニック結晶構造が有効であることが知られている。前記構造を適用したフォトニック結晶光導波路については、納富雅也他著「Siフォトニクスに向けたSi系フォトニック結晶材料」レーザー研究2002年2月・第30巻第2号p65〜69などに記載されている。
【0004】
図2は、公開特許公報・特開平11−218627などに示される従来の2次元フォトニック結晶光導波路を示す。フォトニック結晶光導波路は、2層の低屈折率クラッド層7に挟まれた高屈折率なフォトニック結晶構造の導波層8から成り、その材質にはSi、SiOなどのシリコン系材料や、Alなどの金属材料、GaAsなどの化合物半導体材料が用いられている。これらの材質に共通しているのは、エッチング技術や薄膜積層技術が確立しているため、高精度・高アスペクト比を持った2次元フォトニック結晶構造が現行の技術で容易に作製できるといった点である。このような2次元フォトニック結晶構造を用いることで、低伝播損失の光導波路が実現されている。
【0005】
【発明が解決しようとする課題】
しかしながら前記従来の光変調器においては、Y字分岐をしたマッハツェンダ型光導波路を用いているため、一方の分岐部分のみで約5mmもの幅を占めてしまい、変調器の小型化に対する弊害となっている。その一方で、Y字分岐部分の分岐角度を現行より深くすると、分岐部分での光の伝播損失が起きるといった問題がある。
【0006】
また一方で、前記従来の2次元フォトニック結晶構造を作製するには高精度な微細加工技術を必要とする。光変調器で用いられているLiNbO結晶やLiTaO結晶などは、エッチング技術や薄膜積層技術を用いた高精度・高アスペクト比の微細加工技術が確立していないため、低伝播損失の2次元フォトニック結晶構造を作製するのが困難であるといった問題がある。
【0007】
本発明の目的は、上記の課題を克服するため低伝播損失の2次元フォトニック結晶構造を作製し、それを用いることで伝播損失を抑えながらも前記分岐角度を深くすることができ、これによって変調器の小型化を可能とした光変調器を提供することである。
【0008】
【課題を解決するための手段】
本発明は、電極間に電圧を印加して光導波路中に電界を発生し、この電界により結晶の光に対する屈折率が変化する電気光学効果を利用して光導波路部分の屈折率を変化させて光変調を行う光変調器において、前記光導波路の一部、もしくは全部にフォトニック結晶構造を用いたことを特徴とする光変調器である。
【0009】
本発明に従えば、光変調器内部を伝播する光の損失をほとんどゼロにすることができる。
【0010】
さらに本発明は、前記光導波路の一部、もしくは数箇所にフォトニック結晶構造を利用した分岐光導波路を有することが好ましい。
【0011】
このように電気光学結晶上に描かれた前記光導波路の分岐部分にフォトニック結晶構造を利用した分岐光導波路を用いることで、T字分岐などの直角分岐光導波路が適用できるようになり、低伝播損失を維持しながらの分岐部分の省スペース化により変調器を小型化することができる。
【0012】
さらに本発明は、前記光導波路の一部、もしくは全部が3層スラブ構造により縦方向の光の閉じ込めが行われ、且つ横方向を屈折率の周期的変化を持った2次元フォトニック結晶構造によって閉じ込められていることが好ましい。
【0013】
このように縦方向の光の閉じ込めには3層スラブ構造を、横方向の光の閉じ込めには2次元フォトニック結晶構造を適用することで、簡便なプロセスでありながら低伝播損失と小型化の両立が可能となる。
【0014】
さらに本発明は、前記光導波路をマッハツェンダ型とし、かつ変調用電極を前記マッハツェンダ型導波路の各分岐に個別に装荷して、光の強度変調が行えることが好ましい。
【0015】
このような構造で光の強度変調を行えるようにすることで、従来とほとんど変わらない強度変調器のシステムでありながら、変調器の小型化・低伝播損失化ができる。
さらに本発明は、前記フォトニック結晶構造を作製するのに、プロトン交換もしくはイオン注入を行った後に選択エッチングを行うことを特徴とする。
【0016】
このようにプロトン交換技術、もしくはイオン注入技術を用いた選択エッチング技術を適用することで、高精度・高アスペクト比なフォトニック結晶構造を作製することができ、低伝播損失化が可能となる。
【0017】
【発明の実施形態】
本発明者らは、選択エッチング技術により作製した3層スラブの2次元フォトニック結晶構造を電気光学結晶基板に適用し、且つ前記2次元フォトニック結晶構造面内に光導波路を形成することで、所望の周波数帯の光をほぼ完全に前記光導波路内に閉じ込めることが可能であることを見出した。さらにこの効果を用いることで、マッハツェンダ型光導波路の基本部分でもあるY字分岐部分を、低伝播損失を維持しながら小さくできることを見出した。したがって本発明では、電気光学結晶中に描かれている光導波路の一部、もしくは全部にフォトニック結晶構造を用いることで、分岐光導波路部の省スペース化を実現し、変調器の小型化・低伝播損失化をする。
【0018】
以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
【0019】
(実施例1)
本発明の一実施例を、図1を用いて説明する。本実施例の構造は、高屈折率光導波層9を挟むように低屈折率電気光学結晶クラッド層10と低屈折率空気クラッド層が形成されている3層スラブ構造をした基板内に、屈折率の周期構造となるように前記高屈折率光導波層9面内に四角柱状の低屈折率の空気穴11が形成されており、且つ前記空気穴11が存在しないことで構成される光導波路12が面内に形成された構造をしている。また、前記光導波路12はマッハツェンダ型に構成されており、分岐部分はT字型13で形成されており、かつ各分岐路に個別に変調用電極14が装荷されることで、光の強度変調が行えるような構造をしている。
【0020】
フォトニック結晶構造をした屈折率の周期構造と、その面内に形成された光導波路の作製方法についてその一例を、図4〜図6を用いて説明する。まずLiNbO電気光学結晶基板16の上部全面に0.1〜10um程の深さまでTi拡散17をする。これによって、高屈折率Ti拡散光導波層17を挟むように低屈折率LiNbO電気光学結晶クラッド層16と低屈折率空気クラッド層が形成された3層スラブ構造基板ができる(図4(a))。次に前記基板上にレジスト18を塗り、干渉露光を方向を変えて2回行い、現像することで0.1um〜1umの所望の周期間隔をした格子状のパターニングを全面に形成する(図4(b))。次に所望の導波路パターンが形成されたフォトマスクを使用して露光と現像をすることで、格子状に切られた前記レジスト面内に導波路構造19を作製する(図4(c))。上記の過程で作製された基板上にSiO蒸着をすると、レジストが現像で除去された部分にSiOマスク20が形成される(図5(a))。さらに残りのレジスト部分を除去することで、4角形の穴21が開いたSiOマスクが基板上に作製された形になる(図5(b)および断面の図6(a))。以上の過程により作製されたSiOマスク20付きLiNbO電気光学結晶基板16を溶融安息香酸に浸して、SiOマスクが無い部分をプロトン交換してプロトン交換部22を形成する(断面の図6(b))。この際、プロトン交換する深さが前記Ti拡散をした深さよりも大きくなるように、温度や浸漬時間を選択する。その後、前記SiOマスクパターンと前記プロトン交換部22が形成されたLiNbO電気光学結晶基板をフッ酸溶液に浸して、前記SiOマスクパターンと前記プロトン交換された部分を選択的にエッチング除去することで、面内に4角柱状の空気穴23が周期的に形成されたフォトニック結晶構造と、光導波路24が形成されたLiNbO電気光学結晶基板が作製される(図5(c)および断面の図6(c))。
【0021】
従来の変調器に使用されているLiNbO電気光学結晶基板25と、上記の過程で作製された本実施例のLiNbO電気光学結晶基板26の比較を図7に示す。図7(a)のような従来のY字分岐部分を、本発明により図7(b)のようなT字分岐に変更した結果、結晶基板長さが10mm程短く改善されるのがわかる。また、所望の周波数帯の光を制御できるように屈折率周期構造が結晶面内全域に形成されているので、光損失も従来と比べて大幅に低下する。
【0022】
さらに、前記フォトニック結晶構造作製過程におけるフォトマスク露光工程のみを変更することで、図8に示す様な光導波路を持つLiNbO電気光学結晶基板27も作製することができ、よりいっそう小型化することが可能である。
【0023】
本実施例では、電気光学結晶基板にLiNbO結晶を用いたが、LiTaO結晶、BaTiO結晶なども適用可能である。また本実施例では、高屈折率光導波層にTi拡散光導波層を適用したが、外拡散光導波層やプロトン交換導波層、He+やSi+などの各種イオン注入導波層も適用可能である。また、格子状のパターニングをする際に干渉露光法を用いたが、EB描画によるパターニングや鋳型押し付けによるパターニングなども適用できる。また、マスク材料としてSiOマスクが使用されたが、AlやTiOなどの金属酸化物や、GaAs、AlGaAsなどの化合物半導体なども適用できる。また四角柱状の空気穴を作製するのに、プロトン交換部分を選択エッチングする方法を適用したが、イオン注入された部分が選択的にエッチングされる技術を適用することもできる。さらに、本実施例では屈折率周期構造部に四角柱状の空気穴を適用したが、LiNbOより屈折率が低い金属酸化物などを使用してその四角柱部分を埋め込んだ形にしても、同様に作製できる。また本実施例では、屈折率周期構造部に四角柱形状を用いたが、それが円柱状でも三角柱状でも同様にフォトニック結晶構造を作製することができる。また選択エッチング方法として、フッ酸水溶液によるウェットエッチングを使用したが、ドライエッチングなども適用可能である。
【0024】
【発明の効果】
以上のように、本発明の光変調器を用いれば、分岐部分の省スペース化による素子の小型化が可能となり、且つフォトニック結晶構造を適用することで低伝播損失化が可能となる。
【図面の簡単な説明】
【図1】本発明の光変調器を説明する図である。
【図2】従来の2次元フォトニック結晶光導波路を説明する図である。
【図3】従来の光変調器を説明する図である。
【図4】本発明の一例の光変調器の製造方法を説明する図である。
【図5】本発明の一例の光変調器の製造方法を説明する図である。
【図6】本発明の一例の光変調器の製造方法の一部を断面で説明する図である。
【図7】本発明と従来のLiNbO光変調器の一例を比較を表した図である。
【図8】本発明のLiNbO光変調器の別の一例を示した図である。
【符号の説明】
1  電気光学結晶基板、        2  Ti拡散光導波路
3  Y字分岐、                 4  変調用金属表面電極
5  SiOバッファ層、         6  変調用電源
7  高屈折率光導波層、       8  低屈折率SiOクラッド層
9  高屈折率Siフォトニック結晶導波層
10  低屈折率電気光学結晶クラッド層
11  低屈折率4角柱状空気穴、12  高屈折率光導波路
13  T字分岐、               14  変調用金属表面電極
15  変調用電源、             16  LiNbO電気光学結晶基板
17  Ti拡散高屈折率光導波層、      18  レジスト
19  導波路、                  20  SiOマスク
21  4角柱状空気穴(SiOマスク内)
22  プロトン交換部、      23  4角柱状空気穴(Ti拡散層面内)
24  Ti拡散高屈折率光導波路
25  Y字型分岐光導波路を所用したLiNbO電気光学結晶基板
26  T字型分岐光導波路を所用したLiNbO電気光学結晶基板
27  矢印型分岐光導波路を所用したLiNbO電気光学結晶基板

Claims (5)

  1. 電極間に電圧を印加して光導波路中に発生する電界により結晶の光に対する屈折率が変化する電気光学効果を利用して光導波路部分の屈折率を変化させて光変調を行う光変調器において、前記光導波路の一部、もしくは全部にフォトニック結晶構造を用いたことを特徴とする光変調器。
  2. 前記光導波路の一箇所、もしくは数箇所にフォトニック結晶構造を利用した分岐光導波路を有することを特徴とする請求項1に記載の光変調器。
  3. 前記光導波路の一部、もしくは全部が3層スラブ構造により縦方向の光の閉じ込めが行われ、且つ横方向を屈折率の周期的変化を持った2次元フォトニック結晶構造によって閉じ込められていることを特徴とする請求項1または2に記載の光変調器。
  4. 前記光導波路をマッハツェンダ型とし、かつ変調用電極を前記マッハツェンダ型導波路の各分岐に個別に装荷して、光の強度変調が行えることを特徴とする請求項1から3のいずれかに記載の光変調器。
  5. 前記フォトニック結晶構造を作製するのに、プロトン交換もしくはイオン注入を行った後に選択エッチングを行うことを特徴とする請求項1から4のいずれかの光変調器の製造方法。
JP2002191422A 2002-06-28 2002-06-28 光変調器およびその製造方法 Pending JP2004037587A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191422A JP2004037587A (ja) 2002-06-28 2002-06-28 光変調器およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191422A JP2004037587A (ja) 2002-06-28 2002-06-28 光変調器およびその製造方法

Publications (1)

Publication Number Publication Date
JP2004037587A true JP2004037587A (ja) 2004-02-05

Family

ID=31701005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191422A Pending JP2004037587A (ja) 2002-06-28 2002-06-28 光変調器およびその製造方法

Country Status (1)

Country Link
JP (1) JP2004037587A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036902A1 (en) * 2004-09-27 2006-04-06 Hewlett-Packard Development Company, L. P. Mach zehnder photonic crystal sensors and methods
US7660506B2 (en) 2005-05-19 2010-02-09 Ngk Insulators, Ltd. Optical waveguide structures
US7684662B2 (en) * 2007-12-04 2010-03-23 Samsung Electronics Co., Ltd. AD converter using photonic crystal
WO2017107775A1 (zh) * 2015-12-21 2017-06-29 武汉邮电科学研究院 集成电光调制器及通过衬底挖空提高其3dB带宽的方法
CN112924741A (zh) * 2021-01-25 2021-06-08 重庆大学 基于微环耦合马赫曾德尔结构的电压测量系统及测量方法
CN113031316A (zh) * 2021-03-16 2021-06-25 电子科技大学 一种基于谷光子晶体波导的电光调制器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036902A1 (en) * 2004-09-27 2006-04-06 Hewlett-Packard Development Company, L. P. Mach zehnder photonic crystal sensors and methods
US7660506B2 (en) 2005-05-19 2010-02-09 Ngk Insulators, Ltd. Optical waveguide structures
US7684662B2 (en) * 2007-12-04 2010-03-23 Samsung Electronics Co., Ltd. AD converter using photonic crystal
WO2017107775A1 (zh) * 2015-12-21 2017-06-29 武汉邮电科学研究院 集成电光调制器及通过衬底挖空提高其3dB带宽的方法
CN112924741A (zh) * 2021-01-25 2021-06-08 重庆大学 基于微环耦合马赫曾德尔结构的电压测量系统及测量方法
CN112924741B (zh) * 2021-01-25 2022-03-11 重庆大学 基于微环耦合马赫曾德尔结构的电压测量系统及测量方法
CN113031316A (zh) * 2021-03-16 2021-06-25 电子科技大学 一种基于谷光子晶体波导的电光调制器

Similar Documents

Publication Publication Date Title
Yamada et al. Si photonic wire waveguide devices
CN109541745B (zh) 一种耦合区改进型的微环谐振器及其制作方法
US10921682B1 (en) Integrated optical phase modulator and method of making same
US20110262071A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
JP2007212787A (ja) 光制御素子、光スイッチングユニットおよび光変調器
Su et al. Passive silicon photonics devices
Samanta et al. A 1× 2 polarization-independent power splitter using three-coupled silicon rib waveguides
JP4327064B2 (ja) 光制御素子
JP2721030B2 (ja) 集積光導波体の製造方法
Hu et al. Towards nonlinear photonic wires in lithium niobate
JP2004037587A (ja) 光変調器およびその製造方法
JP2006235379A (ja) 熱光学位相変調器及びその製造方法
Eldada et al. Laser-fabricated low-loss single-mode waveguiding devices in GaAs
WO2021149183A1 (ja) 光デバイス
JP4653391B2 (ja) 光制御素子の製造方法
JP2007328257A (ja) 光導波路、光デバイスおよび光導波路の製造方法
Gao et al. Thermo-optic mode switch based on an asymmetric Mach–Zehnder interferometer
JP5467414B2 (ja) 光機能導波路
JP3343846B2 (ja) 光導波路の製造方法
JP2603924B2 (ja) 導波路型分岐路の製造方法
JPH01201609A (ja) 光デバイス
JP4345490B2 (ja) 光分岐素子
JP2002006278A (ja) 光デバイス
GB2339028A (en) Optical intensity modulator
Shrestha et al. Silicon nitride waveguide router enabling directional power transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829