JP2004036088A - Foundation pile - Google Patents

Foundation pile Download PDF

Info

Publication number
JP2004036088A
JP2004036088A JP2002190713A JP2002190713A JP2004036088A JP 2004036088 A JP2004036088 A JP 2004036088A JP 2002190713 A JP2002190713 A JP 2002190713A JP 2002190713 A JP2002190713 A JP 2002190713A JP 2004036088 A JP2004036088 A JP 2004036088A
Authority
JP
Japan
Prior art keywords
pile
general
high toughness
foundation
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002190713A
Other languages
Japanese (ja)
Other versions
JP3910496B2 (en
Inventor
Hiromasa Tanaka
田中 宏征
Yoichi Kobayashi
小林 洋一
Seiichi Koyama
小山 清一
Hiroshi Kida
喜田 浩
Koji Fukuda
福田 浩司
Takashi Takura
田蔵 隆
Akira Otsuki
大槻 明
Takashi Aoki
青木 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Nippon Steel Corp
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Sumitomo Metal Industries Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Sumitomo Metal Industries Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2002190713A priority Critical patent/JP3910496B2/en
Publication of JP2004036088A publication Critical patent/JP2004036088A/en
Application granted granted Critical
Publication of JP3910496B2 publication Critical patent/JP3910496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foundation pile followable to large deformation, and holding the support function of a structure in an earthquake and after the earthquake without fracture even to the large bending moment, shearing force and a turning angle thereby caused in a pile body generated in a stratum boundary and the vicinity of a pile head. <P>SOLUTION: This foundation pile is formed by connecting existing piles. Maximum bending yield strength is equal to or less than an existing pile general part under working axial force. A highly tough member 2 having curvature at maximum bending yield strength generating time larger than the existing pile general part is arranged in an underground part or a pile head part. For example, when using a steel pipe pile as the foundation pile 1, a steel pipe having an outer diameter smaller than the general part 1a of the foundation pile 1 is installed in the underground part or the pile head part of the foundation pile 1 as the highly tough member 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本願発明は、地震時に、特に軟弱地盤や液状化の可能性のある地盤、側方流動の可能性のある地盤等が存在する過酷な条件下においても、杭体としての支持性能を失うことなく、構造物の安定性を保持できる耐震性に優れた基礎杭に関するものである。
【0002】
【従来技術および発明が解決しようとする課題】
一般に、地震時には上部構造物から伝達される水平力や回転力によって、杭頭部付近に曲げモーメントやせん断力などの大きな断面力が発生する。
【0003】
また、近年の研究によれば、上部構造物から伝達される力だけでなく、軟弱地盤や液状化地盤では地震中の地盤変位が大きくなるために杭体がその影響を受け、杭頭部付近や地中の層境界部(地盤の物性が変化する)付近においても杭体に大きな断面力が発生して破壊に至り、支持性能を喪失する可能性があることが報告されている。
【0004】
さらに、平成7年の兵庫県南部地震では、液状化地盤の側方流動によって非常に大きな地盤の変位が発生し、杭に破損が生じた例が数多く報告されている。
【0005】
杭頭付近で発生する断面力に対しては、RC杭では鋼管巻き補強などによって、鋼管杭に対しては杭頭付近の鋼管を厚肉化することで、耐力を高めることが一般に行われてきた。
【0006】
しかし、近年の設計地震力の増大等によって補強が大がかりになったり、それにともなって杭頭とフーチングの接合部や地中梁も大がかりになり、建築コストが増大する等の課題が生じている。
【0007】
そのような課題に対し、近年、杭頭とフーチングとの接合をピン結合や半剛接合構造とすることで、杭頭付近や地中梁に生じる断面力を低減し、それらの構造を軽減する方法が開発あるいは実用化されてきており、それらの内容は「杭基礎の耐震設計法に関するシンポジウム論文集・報告書」(土木学会 地震工学委員会 杭基礎耐震設計研究小委員会 pp.389−394 図4.1.2.4・4.2.1.3)に記載されている。
【0008】
これらの構造は、メカニカルな装置を利用した構造のため機構・構造が複雑で、テフロン(登録商標)やゴムなど特殊な材料を使用しているものもあり、高価であったり、耐久性や確実な作動に不安が残るものもある。
【0009】
また、いずれも圧縮力に対しては充分な耐荷力を有しているものの、引き抜き方向の力に対しては耐荷力が小さく、地震時に杭に作用する引き抜き力に対して不安が残る。さらには、杭施工後に、別途、これらの装置を杭頭部に固着する必要がある等の課題がある。
【0010】
また、軟弱地盤や液状化地盤の変形によって、主に地中の層境界部付近で生じる杭の破壊に対しても、例えば特開平2−183009号公報や特開平9−310344号公報に以下のような構造が開示されている。
【0011】
これらは、杭の中間部や地層境界部に弾性部材や緩衝材を介在させることにより地盤の変位によって生じる水平力を吸収しようとする構造であり、介在物にゴムなどを用い、実質的なヒンジ部として機能させようとするものである。
【0012】
しかし、ヒンジ構造を介在させると、杭体そのものは不安定構造になり、杭が水平方向に変位し,回転を生じた時の鉛直支持性能が問題になる。つまり、構造物を支持するという杭本来の機能が損なわれる可能性がある。また、ゴム材などでは引き抜きに対する耐荷力も小さく、地震時に杭に作用する引き抜き力によって破損を生じる可能性がある。
【0013】
さらに、既製杭では施工時に杭への負荷を避ける工夫が必要になったり、中空部が閉塞するか断面積が大幅に縮小する可能性が高いため、地中への杭の設置が困難になり、一般的な施工方法が適用し難くなる。
【0014】
また、特開平11−81341号公報には、杭外周面に発泡樹脂板などで構成された緩衝層を設け、地盤の変位を発砲樹脂板で吸収しようとする構造が記載されているものである。
【0015】
しかし、この構造では、大きな地盤変位に対応するためには緩衝層の厚さをかなり大きくする必要があったり、緩衝層を設置した状態で杭を施工する必要があるため、既製杭では施工が容易でない。また、緩衝層は施工中や常時の土圧では変形せず、地震時にはじめて変形が生じるように設定しておく必要があり、これを制御するのは容易でない。
【0016】
さらに、特開2001−172961号公報には、ジョイント接続部を用いてその上下の杭の相対変位が可能なようにした構造が記載されているが、既製杭に対して本構造を用いると中空部を閉塞させてしまうため一般的な施工法の適用が難しくなる。また、この構造はメカニカルな装置を用いるものなので、機構・構造が複雑になる等の課題がある。
【0017】
本願発明は、以上の課題を解決するためになされたもので、メカニカルで機構の複雑な装置を用いず、杭軸方向の圧縮力だけでなく引き抜き力に対しても必要な耐荷力を有し、かつプレボーリング、中掘り、回転圧入、打撃など一般的な方法で施工が可能で、さらに大変形に追随可能で、地層境界や杭頭の近傍で杭体に生じる大きな曲げモーメントやせん断力やそれによる回転角に対しても破壊に至ることなく、地震中および地震後の構造物の支持機能を保持できる基礎杭を提供することを目的とするものである。
【0018】
【課題を解決するための手段】
請求項1記載の基礎杭は、既製杭をつなぎ合わせて形成される基礎杭において、作用軸力下での最大曲げ耐力が前記既製杭の一般部と同等またはそれ以下で、かつ最大曲げ耐力発生時の曲率が前記既製杭の一般部よりも大きい高靱性部が地中部分および/または杭頭部分に設けられてなることを特徴とするものである。
【0019】
一般に、地中に液状化層や軟弱層が存在する場合の深度方向の杭の曲げモーメント分布の概念図は図1の通りである。つまり、液状化層や軟弱層などの層境界部や杭頭部の固定端付近で大きな曲げモーメントが発生する。
【0020】
液状化層や軟弱層などの層境界部で発生する曲げモーメントは、液状化層や軟弱地盤層内で地盤の変位が急増し、地層境界部において地盤変位が急激に変化するために生じるものであり、また杭頭部の固定端付近で発生する曲げモーメントは、構造物から伝達される水平力や回転力、さらに大きな地盤変位によって生じる杭の水平変位や回転に対して、杭頭部がフーチングに剛結され、回転拘束されているために生じるものである。
【0021】
これらの杭の曲げモーメントが大きくなる箇所、あるいは、その付近に図2に示すような強度耐力特性をもつ所定長さの高靱性部を設ける。図2に示す高靱性部の性質の要点は、曲げモーメント−曲率関係において、最大耐力が杭の一般部と同等もしくはそれ以下で、最大耐力発生時の曲率が一般部よりも大きい点にある。
【0022】
すなわち、耐力を杭の一般部に比べて大きくすることなく、変形性能が杭の一般部よりも優れた高靱性部を設けることである。また、望ましくは、降伏耐力も杭の一般部と同等もしくはそれ以下であるのがよく、さらに最大耐力後の耐力低下が緩やかであるほど好ましい。以上の様な高靱性部を杭の曲げモーメントが大きくなる箇所、あるいはその付近に設けることで、杭に発生する最大曲げモーメントを制御することが可能になる。
【0023】
図2の高靱性部およびその周辺部では、図2に図示する高靱性部の最大曲げ耐力以上の曲げモーメントが発生することはなくなり、杭の一般部の曲げモーメントが限界値以下に抑制されることになる。その際、図2の高靱性部では変形が進行し、曲率が大きくなることにより杭の変形、回転を吸収することができる。
【0024】
図2の高靱性部は杭の一般部よりも変形性能が大きく、発生する杭の変形、回転を吸収できる変形性能を有し、かつ大きな耐力低下を生じず、鉛直力に対して充分な支持性能を有するように設計する。
【0025】
請求項2記載の基礎杭は、請求項1記載の基礎杭において、高靱性部が、基礎杭の深度方向に地層構成または地盤の物性が変化する地層境界部および/または杭頭部分に設けられてなることを特徴とするものである。
【0026】
地中に液状化層や軟弱層が存在する場合、深度方向の杭の曲げモーメントは、図1で説明したように液状化層や軟弱層などの地層境界部や杭頭部の固定端付近で特に大きいことから、この部分に高靱性部を設けることで杭に発生する最大曲げモーメントを効果的に制御することができる。
【0027】
請求項3記載の基礎杭は、請求項1記載の基礎杭において、高靱性部が、軟弱地盤、液状化地盤などのほぼ全域および/または杭頭部分に設けられてなることを特徴とするものである。
【0028】
上述したように、地中に液状化層や軟弱層が存在する場合、深度方向の杭の曲げモーメントは、液状化層や軟弱地盤層内で地盤の変位が急増し、地層境界部において地盤変位が急激に変化するために生じ、また杭頭部の固定端付近で発生する曲げモーメントは、構造物から伝達される水平力や回転力、さらに大きな地盤変位によって生じる杭の水平変位、回転に対して、杭頭部がフーチングに剛結され、回転拘束されているために生じるものであるため、地層境界部および/または杭頭部分を含め、軟弱地盤および液状化地盤などのほぼ全域に高靱性部を設けることで杭に発生する最大曲げモーメントを効果的に制御することができる。
【0029】
請求項4記載の基礎杭は、請求項1〜3のいずれかに記載の基礎杭において、既製杭の一般部および高靱性部が鋼製の基礎杭であって、前記高靱性部の下記式(1)で表されるRt が、前記既製杭の一般部のRt よりも小さいことを特徴とするを特徴とするものである。
【0030】
本願発明において、最大曲げ耐力が杭の一般部と同等またはそれ以下で、最大曲げ耐力発生時の回転角や曲率が一般部よりも大きい高靱性部の具体的な構成例として、次に示すものがある。
【0031】
杭の一般部を鋼管杭で構成し、これと外径が同程度で、降伏点の低い材質の鋼によって形成した鋼管を高靱性部材として地中部または杭頭部の曲げモーメントが大きくなる箇所に設ける。
【0032】
一般に鋼管杭として用いられる材質、径厚比の鋼管では、図1に示すような曲げモーメント−曲率関係の最大曲げモーメントやその時の曲率の大きさは鋼管の局部座屈によって決定される場合が多く、通常、最大曲げモーメントは鋼管の全塑性モーメント程度またはそれ以下であるのが一般的である。
【0033】
このような場合、最大曲げモーメントやその発生時の曲率に関する靱性率(降伏曲げモーメントやその時の曲率に対する比)は、以下の無次元パラメータRt との相関が強く、Rt が小さいほど靱性率が高く変形性能に優れる(降伏後、局部座屈が生じにくい)ことが知られている。
【0034】
【数2】

Figure 2004036088
【0035】
したがって、降伏応力の小さい材質の鋼管を高靱性部材として用いると靱性率が向上するので、適度な降伏点の鋼管を適用することにより、高靱性部の変形性能を向上させることが可能となる。
【0036】
また一般に、降伏点の低い鋼材では引張強度も相対的に小さくなり、最大耐力を杭一般部と同等またはそれ以下とするのは容易と考えられるが、必要に応じて肉厚tを調整することも可能である。
【0037】
本願発明において、曲げモーメントが大きくなる箇所に高靱性部材として設置する鋼管の板厚を大きくすることによっても上記靱性率が向上するので、鋼管の局部座屈が生じにくくなる。
【0038】
ただし、この場合、同材質の鋼管では最大曲げモーメントの絶対値も大きくなるため、最大耐力を杭の一般部と同等以下に設定するために降伏応力や引張強度の小さい材質からなる鋼管を適用し、最大耐力(曲げモーメント)は、杭一般部と同等以下になるように設定する。なお、降伏応力の小さい鋼材は最大耐力も相対的に小さいのが一般的と考えられる。
【0039】
また、厚肉化と降伏応力の2つの効果により、曲率の靱性率が大きく改善され、杭としての変形性能の大幅な改善が可能である。降伏点の低い鋼材からなる鋼管を高靱性部として用いた場合には、杭の支持性能に関する軸力に対する降伏耐力が杭の一般部よりも低下することが考えられるが、厚肉化することでそれを補うことができる。すなわち、鉛直力と曲げの2つの力に対してバランスの良い構造とすることができる。
【0040】
さらに、本願発明においては、曲げモーメントが大きくなる箇所に高靱性部材として設置する鋼管の板厚を杭一般部の板厚と同等以上とし、径を杭一般部より小さくすることによっても上記靱性率を向上させることができる。
【0041】
この場合、高靱性部材の板厚を杭一般部より大きくすることで、小径化と厚肉化の2つの効果により、曲率の靱性率が大きく向上し、杭としての変形性能を大幅に改善することができる。
【0042】
また、杭一般部と板厚が同じで、径のみを小さくした場合には、高靱性部材において杭の支持性能にかかわる鉛直耐力が低下することが考えられるが、厚肉化することでそれを補うことが可能になり、鉛直力と曲げの2つの力に対してバランスの良い構造とすることができる。
【0043】
なお、この場合、高靱性部材の材質は杭一般部と同等でよいし、必要に応じて降伏点の低いものを適用して、さらなる変形性能の改善を図ることもできる。
【0044】
請求項5記載の基礎杭は、請求項1〜3のいずれかに記載の基礎杭において、既製杭の一般部が既成コンクリート杭で、高靱性部が前記既製杭の一般部よりも外径の小さい鋼管杭であることを特徴とするものである。
【0045】
本願発明の場合、基礎杭に発生する最大曲げモーメントを制御することが可能なだけでなく、既成コンクリート杭の端部に鋼管を接続することにより高靱性部を簡単に形成することができる。
【0046】
また、既製杭の一般部の肉厚が大きいため、既製杭の一般部としての既成コンクリート杭の端部に高靱性部としての鋼管を端板を利用してきわめて簡単に取り付けことができる。
【0047】
請求項6記載の基礎杭は、請求項1〜5のいずれかに記載の基礎杭において、高靱性部が、杭一般部よりも降伏点の低い材料(例えば、極軟鋼)より製造された鋼管であることを特徴とするものである。
【0048】
本願発明においては、最大耐力(曲げモーメント)は杭の一般部と同等以下で、かつそのときの曲率が大きくて変形性能に優れた高靱性部として鋼管を用いる場合には、降伏点の低い極軟鋼を用いた鋼管を適用すると、高靱性部の性能の設計の自由度が大きくなり、肉厚や径の設定が容易になる。
【0049】
また、軸力に対する安定性の観点、PC杭と鋼管杭の弾性係数や曲げ耐力の違い等も考慮すると、極軟鋼を適用することが有効である。
【0050】
【発明の実施の形態】
請求項1記載の基礎杭の一例として、図3のAに示す曲げモーメント−曲率関係を有する杭の一般部と、曲げモーメントが大きくなる箇所付近に設置する図3の部材Bに示す曲げモーメント−曲率関係を有する高靱性部材を考え、有限要素法による応答解析によって地震時に基礎杭に生じる曲げモーメントの分布を計算した結果を図4、図5に示す。
【0051】
なお、図4、図5のハッチ部(深度2mから10m)は地震時に液状化を生じる層で、深度2mの位置で杭頭部がフーチング3に連結されている。
【0052】
図4は、図3のAに示す特性を有する杭のみで基礎杭を構成した場合の結果であり、杭頭部および液状化層とその下層との境界部で杭の曲げモーメントが極限値に至り、地震時に杭が破壊することを示している。
【0053】
図5は、液状化層下端付近の1m長さを図3のBの特性を有する高靱性部材とし、杭頭付近も含め他は図3のAに示す杭一般部で構成された基礎杭の場合の結果である。
【0054】
図3のBの特性を有する高靱性部材を用いた液状化層の下端付近では、図4に比べて最大曲げモーメントが小さくなり、いずれの箇所も曲げモーメントが極限値以下になっており、当該箇所での杭の破壊が防止されている。
【0055】
なお,図3のBの高靱性部材の曲げモーメントの極限値がAより小さいことから、それを示す図中の直線がその設置個所で凹状になっている。また、杭頭部には図3のBの特性を有する部材を用いておらず、図4と同様に曲げモーメントは極限値に至る結果になっている。ここでは図示していないが、杭頭部にも図3のBの特性を有する高靱性部材よりなる鋼管を適用することで、液状化層下端付近と同様の効果が期待できる。
【0056】
請求項3記載の基礎杭の一例として、有限要素法による構造解析によって、2種類の鋼管の曲げモーメント−曲率関係を求めた結果を図6に示す。
【0057】
図6中のAの特性を有する部材は、外径φ=1000m、肉厚t=12mmで降伏応力σy=3200Kgf/cm2 、引張強度σt=4900Kgf/cm2 の鋼材よりなる鋼管であり、また図6中のBの特性は、φ=1000mm、t=20mmで、σy=1200Kgf/cm2 、σt=2500Kgf/cm2 の鋼材よりなる鋼管の曲げモーメント−曲率関係である。
【0058】
ただし、これらは軸力がゼロの場合の結果で,最大曲げモーメント発生までの関係を示したものである。
【0059】
図6に示すように、Bでは最大曲げモーメントがAより少し小さく,最大曲げモーメント発生時の曲率が4倍程度大きくなっている。
【0060】
以上より、杭一般部にAの鋼管を、対策を必要とする箇所にBの鋼管を適用すれば、杭に発生する曲げモーメントを制御でき、Bの鋼管の優れた変形性能で杭の変形を吸収することが可能になる。
【0061】
地震時のBの鋼管で生じる曲率が、図示の範囲に収まっていれば、耐力低下を起こすことなく、杭としての安定性が保持できる。ここでは、図示していないが軸力が作用している条件でも、定性的に上記同様の結果が得られ、杭として考えられる変形の範囲では、上記同様にBの鋼管で変形を吸収できれば鉛直支持性能も保持できることも確認している。
【0062】
請求項4および5記載の基礎杭の一例として、杭一般部が鋼管杭である場合の構造の例を図7に示す。図に示すように、杭1の一般部1aから小径部1bへ向かって外径を漸減させることにより、軸力や曲げモーメントの分布を滑らかにでき、安定した構造とすることができる。この場合、小径部1aに高靱性部材として鋼管部材2が取り付けられ、その径、肉厚は、施工上問題のない範囲で、前述の所定の性能が得られるように設定すればよい。
【0063】
また、杭1の一般部1aがPC杭である場合の構造の例を図8に示す。PC杭では一般に肉厚が大きいことから、端板を利用して外径がPC杭の内径と概略等しい鋼管部材2をつなぎ合わせた場合を示している。鋼管部材2の肉厚は所定の曲げ性能と軸力に対する性能が得られるように設定すればよい。また、内径がPC杭1の一般部1aと大略同じであるため、施工に与える影響も小さい。
【0064】
図9は、地中部での地盤変位による杭1の曲げモーメントが問題になる場合を想定した部材の配置で,液状化層または軟弱層とその下部の層との境界付近に鋼管部材2を配置したものである。
【0065】
これにより、図1の概念図に示した層境界部で発生する地震時の曲げモーメントを制御できるとともに、鋼管部材2により杭1の曲げ変形を吸収することにより、杭1の一般部1a、ひいては基礎杭としての安定性を保持させることができる。
【0066】
この場合の部材は図のように層境界をまたぐように配置してもよいし、一般に曲げモーメントが下部の層内でピーク値を示すことが多いことを考慮すると、層境界からそれより下方に向かって所要の長さ配置してもよい。また、層境界付近の液状化層内に設置してもよいが、いずれにせよ、杭1の一般部1aに生じる最大曲げモーメントが杭体の最大曲げ耐力に至らないように制御できる箇所に設置すればよい。
【0067】
鋼管部材2の長さは,同様に杭1の一般部1aに生じる最大曲げモーメントが杭体の最大曲げ耐力に至らないように制御できるよう設定すればよく、地層境界部が確実に把握されている場合には、一般には、0.5D(D:杭径)〜2.0D程度あれば所要の変位吸収能力を発揮できる場合が多い。
【0068】
また、地層構成の調査結果は点での調査結果であり、誤差を含んでいる可能性もあること等を考慮すると、不確実性や局所的な変化も考慮した余裕代を見込んだ長さとしておくことも考えられる。
【0069】
図10は、地中部での地盤変位による杭の曲げモーメントが問題になる場合を想定した鋼管部材2の配置で、液状化層または軟弱層の下側だけでなく,上側の層境界にも鋼管部材2を配置したものである。
【0070】
これは、上部の層が比較的健全である場合などでは、上側の層境界においても地盤変位が急激に変化し,大きな作用土圧や杭の回転角が生じる可能性がある場合を想定したものである。
【0071】
図11は、図10に加えて、杭頭部で発生する曲げモーメントによる杭体の破壊が懸念される場合の鋼管部材2の配置を示したものである。杭頭部にも鋼管部材2を設置することで、上述の地中部での曲げモーメントに対するものと同様の効果が期待できる。
【0072】
図12は、液状化層や軟弱層が地表面あるいはその付近まで存在する場合に対する鋼管部材2の配置で、この場合には、構造物から伝達される水平力や回転力だけでなく、地盤変位によっても杭頭の曲げモーメントが増長されるため、液状化層や軟弱層の下側の層境界だけでなく、杭頭部にも鋼管部材2を配置している。これにより上下の2点で杭体の変位、回転を吸収できるため、杭体が地盤の大変形にも追随しやすく、かつ鋼管部材2は変形吸収後も軸力に対して安定的であるように設計されているため杭の支持性能も保持できる。
【0073】
図13は、地盤中の液状化層または軟弱層の該当部全体に高靱性部材として鋼管部材2を設けたので、軟弱層や液状化層上下の地層境界における地盤変位の急激な変化に起因する杭の曲げモーメントを確実に吸収することができる。
【0074】
また、軟弱層や液状化層が比較的薄い場合には、上下二箇所の地層境界部に分けて鋼管部材を配置するよりも加工が容易になり、コスト的にも有利になることも考えられる。
【0075】
この場合の鋼管部材2の長さは、同様に杭一般部1aに生じる最大曲げモーメントが杭体の最大曲げ耐力に至らないように制御できるよう設定できればよく、少なくとも概略軟弱層あるいは液状化層を含むようにすることが望ましい。
【0076】
また、地層構成の調査結果が点での調査を含むことを考えると、軟弱層厚あるいは液状化層厚に不確実性や局所的な変化も考慮した余裕代を見込んだ長さとしておくことも考えられる。図14は、軟弱層や液状化層が地表面あるいはその付近まで存在する場合に、軟弱層や液状化層の下端付近から杭頭部まで高靱性部材として鋼管部材2を配置した場合を示している。
【0077】
これは、地表付近まで軟弱層や液状化層が位置している場合には杭頭部をはじめとして当該層内全体にわたって杭のせん断力が厳しい条件となることが予想され、これに確実に対処することを意図したものである。
【0078】
また、図示していないが、軟弱層や液状化層が比較的薄い場合など、杭頭部まで高靱性部材を配置した方が加工工数の低減によりコスト的に有利になる事が考えられる場合にも図14に図示するような配置とすることができる。
【0079】
【発明の効果】
請求項1記載の基礎杭は、特に既製杭をつなぎ合わせて形成される基礎杭において、作用軸力下での最大曲げ耐力が前記既製杭の一般部と同等またはそれ以下で、かつ最大曲げ耐力発生時の曲率が前記既製杭の一般部よりも大きい高靱性部が地中部分および/または杭頭部分に設けられていることで、基礎杭の地中部分および杭頭部分に発生する最大曲げモーメントをきわめて効果的に制御することができる。
【0080】
請求項2記載の基礎杭は、請求項1記載の基礎杭において、高靱性部が基礎杭の深度方向に地層構成または地盤の物性が変化する地層境界部および/または杭頭部分に設けられていることで、特に地層構成または地盤の物性の変化する地層境界部および杭頭部分において基礎杭に発生する最大曲げモーメントをきわめて効果的に制御することができる。
【0081】
請求項3記載の基礎杭は、請求項1記載の基礎杭において、高靱性部が軟弱地盤、液状化地盤などのほぼ全域および/または杭頭部分に設けられていることで、特に軟弱地盤や液状化地盤などにおける地盤変位の急激な変化に起因する杭の曲げモーメントを確実に吸収することができる。また、軟弱層や液状化層が比較的薄い場合に、高靱性部を上下二箇所に分けて配置するよりも加工が容易になり、コスト的にも有利になることも考えられる。
【0082】
請求項4記載の基礎杭は、請求項1〜3のいずれかに記載の基礎杭において、既製杭の一般部および高靱性部が鋼製の基礎杭であって、前記高靱性部の式(1)で表されるRt が、杭一般部のRt よりも小さく形成されていることで、高靱性部の断面設計を数式により明快に行うことができるとともに、基礎杭に発生する最大曲げモーメントを効率的に制御することができる。
【0083】
請求項5記載の基礎杭は、請求項1〜4のいずれかに記載の基礎杭において、既製杭の一般部が既成コンクリート杭で、高靱性部が一般部よりも外径の小さい鋼管杭で形成されていることで、基礎杭に発生する最大曲げモーメントを制御することが可能なだけでなく、既成コンクリート杭の端部に鋼管を接続することにより高靱性部を簡単に形成することができ、また基礎杭の靱性率を著しく向上させることができる。
【0084】
また請求項6記載の基礎杭は、請求項1〜5のいずれかに記載の基礎杭において、高靱性部が特に杭一般部よりも降伏点の低い材料より製造された鋼管で形成されていることで、所要の変形性能を有し、かつ軸力に対しても安定的な高靱性部の設計を容易に行うことができる。
【図面の簡単な説明】
【図1】杭の曲げモーメントの深度分布の概念図である。
【図2】曲げモーメント−軸力関係を示す図である。
【図3】応答解析に用いた部材の曲げモーメント−曲率関係を示す図である。
【図4】杭の曲げモーメントの解析結果を示す図である。
【図5】杭の曲げモーメントの解析結果を示す図である。
【図6】杭の曲げモーメント−曲率関係を示す図である。
【図7】鋼管杭の一例を示す断面図である。
【図8】PC杭の一例を示す断面図である。
【図9】高靱性部材の配置例を示す断面図である。
【図10】高靱性部材の配置例を示す断面図である。
【図11】高靱性部材の配置例を示す断面図である。
【図12】高靱性部材の配置例を示す断面図である。
【図13】高靱性部材の配置例を示す断面図である。
【図14】高靱性部材の配置例を示す断面図である。
【符号の説明】
1 杭
1a 杭の一般部
1b 杭の小径部
2 鋼管部材(高靱性部材)[0001]
BACKGROUND OF THE INVENTION The present invention relates to a pile body that can be used as a pile even under severe conditions such as soft ground, liquefiable ground, or lateral flowable ground during an earthquake. The present invention relates to a foundation pile excellent in earthquake resistance that can maintain the stability of a structure without losing the support performance of the pile.
[0002]
Problems to be solved by the prior art and the invention
Generally, during an earthquake, a large sectional force such as a bending moment or a shear force is generated near a pile head due to a horizontal force or a rotational force transmitted from an upper structure.
[0003]
In addition, according to recent research, not only the force transmitted from the upper structure but also the soft ground and liquefied ground, the displacement of the pile during the earthquake increases, which affects the pile body. It is also reported that large section forces may be generated in piles near the boundary of the ground (where the physical properties of the ground change), leading to breakage and loss of support performance.
[0004]
Furthermore, in the 1995 Hyogoken-Nanbu Earthquake, there have been reported many cases in which very large ground displacement occurred due to lateral flow of liquefied ground and piles were damaged.
[0005]
For the cross-sectional force generated near the pile head, it has been common practice to increase the strength by increasing the thickness of the steel pipe near the pile head for RC piles by reinforcing the steel pipe around the pile, and for steel pipe piles. Was.
[0006]
However, in recent years, the design seismic force has increased, the reinforcement has become large, the joint between the pile head and the footing and the underground beam have also become large, and problems such as an increase in construction cost have arisen.
[0007]
To solve such problems, in recent years, the connection between the pile head and the footing has been made a pin connection or semi-rigid connection structure, thereby reducing the cross-sectional force generated near the pile head and the underground beam, and mitigating those structures. The methods have been developed or put into practical use, and their contents are described in “Symposium on Seismic Design of Pile Foundations, Reports” (Public Seismic Engineering Committee, Pile Foundation Seismic Design Subcommittee, pp. 389-394). It is described in Fig. 4.1.2.4 ・ 4.2.1.3).
[0008]
These structures use mechanical devices, so their mechanisms and structures are complicated. Some of them use special materials such as Teflon (registered trademark) or rubber, so they are expensive, durable and reliable. Some operations remain uneasy.
[0009]
In addition, although all have sufficient load-bearing capacity against compressive force, they have low load-bearing force against force in the pulling-out direction, and there remains uneasiness about the pulling-out force acting on the pile during an earthquake. Further, there is a problem that it is necessary to separately fix these devices to the pile head after pile construction.
[0010]
Also, for the destruction of piles mainly generated near the underground layer boundary due to deformation of soft ground or liquefied ground, for example, JP-A-2-183909 and JP-A-9-310344 disclose the following. Such a structure is disclosed.
[0011]
These are structures that attempt to absorb the horizontal force generated by the displacement of the ground by interposing an elastic member or cushioning material at the middle of the pile or at the boundary of the stratum. It is intended to function as a unit.
[0012]
However, when the hinge structure is interposed, the pile body itself becomes an unstable structure, and the vertical support performance when the pile is displaced in the horizontal direction and causes rotation becomes a problem. That is, the original function of the pile, which supports the structure, may be impaired. Further, rubber materials and the like have a small load-bearing capacity against pulling out, and there is a possibility that breakage may occur due to pulling out force acting on the pile during an earthquake.
[0013]
Furthermore, in the case of ready-made piles, it is necessary to take measures to avoid loads on the piles during construction, and it is highly likely that the hollow part will be closed or the cross-sectional area will be significantly reduced, making it difficult to install the piles underground. , It becomes difficult to apply a general construction method.
[0014]
Japanese Patent Application Laid-Open No. H11-81341 describes a structure in which a buffer layer made of a foamed resin plate or the like is provided on the outer peripheral surface of a pile, and the displacement of the ground is absorbed by the foamed resin plate. .
[0015]
However, with this structure, it is necessary to increase the thickness of the buffer layer considerably in order to cope with large ground displacement, or to construct the pile with the buffer layer installed. Not easy. In addition, it is necessary to set the buffer layer so as not to be deformed during construction or at normal earth pressure and to be deformed only during an earthquake, and it is not easy to control this.
[0016]
Furthermore, Japanese Patent Application Laid-Open No. 2001-172961 describes a structure in which joints can be used to allow relative displacement of upper and lower piles. Since the part is closed, it becomes difficult to apply a general construction method. Further, since this structure uses a mechanical device, there is a problem that the mechanism and structure are complicated.
[0017]
The present invention has been made in order to solve the above problems, and does not use a mechanical and complicated mechanism device, and has a necessary load-bearing force not only for a compressive force in a pile axial direction but also for a pull-out force. It can be constructed by general methods such as pre-boring, digging, rotary press-fitting, and hitting, and can follow large deformations.It also has large bending moment and shear force generated in piles near stratum boundaries and near pile heads. It is an object of the present invention to provide a foundation pile capable of retaining a function of supporting a structure during and after an earthquake without causing destruction even at a rotation angle caused thereby.
[0018]
[Means for Solving the Problems]
The foundation pile according to claim 1, wherein in the foundation pile formed by connecting ready-made piles, the maximum bending strength under an acting axial force is equal to or less than that of the general part of the ready-made pile, and the maximum bending strength is generated. A high toughness portion having a greater curvature than the general portion of the ready-made pile is provided in the underground portion and / or the pile head portion.
[0019]
In general, a conceptual diagram of the bending moment distribution of a pile in the depth direction when a liquefied layer or a soft layer exists in the ground is shown in FIG. That is, a large bending moment is generated near a layer boundary such as a liquefied layer or a soft layer or near a fixed end of a pile head.
[0020]
The bending moment generated at the layer boundary such as the liquefied layer and the soft layer is generated because the ground displacement rapidly increases in the liquefied layer and the soft ground layer, and the ground displacement rapidly changes at the boundary layer. In addition, the bending moment generated near the fixed end of the pile head causes the pile head to footing against horizontal and rotational forces transmitted from the structure and horizontal displacement and rotation of the pile caused by large ground displacement. This is caused by being rigidly connected to and rotating.
[0021]
A high-toughness portion having a predetermined length having strength and strength characteristics as shown in FIG. 2 is provided at or near the place where the bending moment of these piles becomes large. The essential point of the properties of the high toughness portion shown in FIG. 2 is that, in the bending moment-curvature relationship, the maximum proof stress is equal to or less than that of the general portion of the pile, and the curvature when the maximum proof stress occurs is larger than that of the general portion.
[0022]
That is, it is to provide a high toughness portion having a deformability higher than that of the general portion of the pile without increasing the proof stress as compared with the general portion of the pile. Desirably, the yield strength is also equal to or less than that of the general portion of the pile, and it is more preferable that the decrease in the strength after the maximum strength is gentle. By providing the high toughness portion as described above at or near the location where the bending moment of the pile becomes large, it is possible to control the maximum bending moment generated in the pile.
[0023]
In the high toughness portion of FIG. 2 and its peripheral portion, a bending moment greater than the maximum bending strength of the high toughness portion illustrated in FIG. 2 is not generated, and the bending moment of the general portion of the pile is suppressed to a limit value or less. Will be. At this time, the deformation progresses in the high toughness portion of FIG. 2 and the curvature becomes large, so that the deformation and rotation of the pile can be absorbed.
[0024]
The high-toughness part of Fig. 2 has higher deformation performance than the general part of the pile, has the deformation performance that can absorb the deformation and rotation of the generated pile, does not cause a large decrease in proof stress, and has sufficient support for vertical force Design to have performance.
[0025]
According to a second aspect of the present invention, in the foundation pile according to the first aspect, the high toughness portion is provided at a stratum boundary portion and / or a pile head where the stratum configuration or the physical properties of the ground change in the depth direction of the foundation pile. It is characterized by becoming.
[0026]
When there is a liquefied layer or a soft layer in the ground, the bending moment of the pile in the depth direction is near the boundary of the layer such as the liquefied layer or the soft layer and near the fixed end of the pile head as described in FIG. Since it is particularly large, by providing a high toughness portion in this portion, the maximum bending moment generated in the pile can be effectively controlled.
[0027]
The foundation pile according to claim 3 is characterized in that, in the foundation pile according to claim 1, the high toughness portion is provided in substantially the entire area of soft ground, liquefied ground, and / or the pile head. It is.
[0028]
As described above, when there is a liquefied layer or a soft layer in the ground, the bending moment of the pile in the depth direction causes a sudden increase in the displacement of the ground in the liquefied layer or the soft ground layer, and a ground displacement at the boundary of the stratum. And the bending moment generated near the fixed end of the pile head is affected by the horizontal force and rotational force transmitted from the structure, and the horizontal displacement and rotation of the pile caused by the large ground displacement. Since the pile head is rigidly connected to the footing and is constrained to rotate, high toughness is achieved over almost the entire soft ground and liquefied ground including the stratum boundary and / or the pile head. By providing the portion, the maximum bending moment generated in the pile can be effectively controlled.
[0029]
The foundation pile according to claim 4 is the foundation pile according to any one of claims 1 to 3, wherein the general part and the high toughness part of the ready-made pile are steel foundation piles, and the following formula of the high toughness part is used. R represented by (1) t Is the R of the general part of the ready-made pile t It is characterized in that it is smaller than.
[0030]
In the present invention, the maximum bending strength is equal to or less than that of the general part of the pile, and the rotation angle and the curvature at the time of the maximum bending strength generation are as follows. There is.
[0031]
The general part of the pile is composed of a steel pipe pile, and a steel pipe formed of steel with the same outer diameter and low yield point as a high toughness member is used as a high toughness member in the underground part or a place where the bending moment of the pile head is large. Provide.
[0032]
In the case of a steel pipe generally used as a steel pipe pile and having a diameter-to-thickness ratio, the maximum bending moment in the bending moment-curvature relationship as shown in FIG. 1 and the magnitude of the curvature at that time are often determined by local buckling of the steel pipe. Generally, the maximum bending moment is generally about the total plastic moment of the steel pipe or less.
[0033]
In such a case, the toughness ratio (ratio to the yield bending moment and the curvature at that time) with respect to the maximum bending moment and the curvature at the time of occurrence is determined by the following dimensionless parameter R t Strongly correlated with R t It is known that the smaller the value, the higher the toughness ratio and the better the deformation performance (local buckling hardly occurs after yielding).
[0034]
(Equation 2)
Figure 2004036088
[0035]
Therefore, when a steel pipe made of a material having a low yield stress is used as a high toughness member, the toughness ratio is improved. By using a steel pipe having an appropriate yield point, the deformation performance of the high toughness portion can be improved.
[0036]
In general, it is considered that the tensile strength of steel with a low yield point is relatively small, and it is easy to make the maximum proof strength equal to or less than that of general piles. However, it is necessary to adjust the wall thickness t as necessary. Is also possible.
[0037]
In the invention of the present application, the toughness ratio is also improved by increasing the thickness of a steel pipe installed as a high toughness member at a location where the bending moment increases, so that local buckling of the steel pipe is less likely to occur.
[0038]
However, in this case, since the absolute value of the maximum bending moment is also large for steel pipes of the same material, steel pipes made of a material with low yield stress and tensile strength are used to set the maximum proof stress equal to or less than that of general parts of piles. The maximum strength (bending moment) is set to be equal to or less than that of the general pile. It is generally considered that a steel material having a small yield stress has a relatively small maximum proof stress.
[0039]
Further, due to the two effects of thickening and yield stress, the toughness of the curvature is greatly improved, and the deformation performance as a pile can be greatly improved. When a steel pipe made of a steel material with a low yield point is used as the high toughness part, the yield strength against the axial force related to the pile supporting performance may be lower than that of the general part of the pile, but by increasing the wall thickness We can make up for it. That is, it is possible to achieve a structure that is well balanced with respect to the two forces of vertical force and bending.
[0040]
Further, in the present invention, the thickness of the steel pipe to be installed as a high toughness member at a place where the bending moment becomes large is equal to or more than the thickness of the pile general portion, and the diameter is made smaller than that of the pile general portion. Can be improved.
[0041]
In this case, by making the plate thickness of the high toughness member larger than that of the general portion of the pile, the toughness ratio of the curvature is greatly improved by two effects of a smaller diameter and a thicker wall, and the deformation performance as the pile is greatly improved. be able to.
[0042]
In addition, if the thickness is the same as that of the general pile, and only the diameter is reduced, the vertical proof stress related to the pile's support performance in high-toughness members may decrease. This makes it possible to provide a structure that is well balanced with respect to the vertical force and the bending force.
[0043]
In this case, the material of the high toughness member may be the same as that of the general pile portion, and if necessary, a material having a low yield point may be applied to further improve the deformation performance.
[0044]
The foundation pile according to claim 5 is the foundation pile according to any one of claims 1 to 3, wherein the general portion of the ready-made pile is a precast concrete pile, and the high toughness portion has an outer diameter larger than that of the general portion of the ready-made pile. It is a small steel pipe pile.
[0045]
In the case of the present invention, not only the maximum bending moment generated in the foundation pile can be controlled, but also a high toughness portion can be easily formed by connecting a steel pipe to the end of the existing concrete pile.
[0046]
In addition, since the thickness of the general portion of the ready-made pile is large, a steel pipe as a high toughness portion can be extremely easily attached to the end of the ready-made concrete pile as the general portion of the ready-made pile using the end plate.
[0047]
The foundation pile according to claim 6 is the foundation pile according to any one of claims 1 to 5, wherein the high toughness portion is made of a steel pipe made of a material having a lower yield point than a general pile portion (for example, extremely mild steel). It is characterized by being.
[0048]
In the present invention, the maximum yield strength (bending moment) is equal to or less than that of a general portion of a pile, and when a steel pipe is used as a high toughness portion having a large curvature and excellent deformation performance at that time, an extreme low yield point is required. When a steel pipe using mild steel is applied, the degree of freedom in designing the performance of the high toughness portion is increased, and the setting of the wall thickness and diameter becomes easy.
[0049]
Also, in consideration of the stability against the axial force, the difference in the elastic modulus and the bending strength between the PC pile and the steel pipe pile, it is effective to use extremely mild steel.
[0050]
BEST MODE FOR CARRYING OUT THE INVENTION
As an example of the foundation pile according to claim 1, a general part of a pile having a bending moment-curvature relationship shown in FIG. 3A and a bending moment shown in a member B of FIG. Considering a high toughness member having a curvature relationship, FIGS. 4 and 5 show the results of calculating the distribution of bending moment generated in a foundation pile during an earthquake by response analysis using the finite element method.
[0051]
The hatch portions (depths 2 m to 10 m) in FIGS. 4 and 5 are layers that liquefy during an earthquake. The pile head is connected to the footing 3 at a depth of 2 m.
[0052]
FIG. 4 shows the result when the foundation pile is composed of only the pile having the characteristic shown in FIG. 3A, and the bending moment of the pile at the boundary between the pile head and the liquefied layer and the lower layer is at an extreme value. This indicates that the pile will be destroyed during an earthquake.
[0053]
5 shows a 1 m length near the lower end of the liquefied layer as a high toughness member having the characteristics shown in FIG. 3B, and the rest of the foundation pile including the vicinity of the pile head shown in FIG. The result of the case.
[0054]
In the vicinity of the lower end of the liquefied layer using the high toughness member having the characteristic of B in FIG. 3, the maximum bending moment is smaller than that in FIG. 4, and the bending moment is lower than the limit value at any point. Pile destruction at points is prevented.
[0055]
In addition, since the limit value of the bending moment of the high toughness member of FIG. 3B is smaller than A, the straight line in the figure showing the limit is concave at the installation position. In addition, a member having the characteristic shown in FIG. 3B is not used for the pile head, and the bending moment reaches the ultimate value as in FIG. Although not shown here, the same effect as in the vicinity of the lower end of the liquefied layer can be expected by applying a steel pipe made of a high toughness member having the characteristics shown in FIG. 3B to the pile head.
[0056]
As an example of the foundation pile according to the third aspect, FIG. 6 shows a result obtained by calculating a bending moment-curvature relationship of two types of steel pipes by a structural analysis by a finite element method.
[0057]
The member having the characteristic of A in FIG. 6 has an outer diameter φ of 1000 m, a wall thickness t of 12 mm, and a yield stress σy of 3,200 kgf / cm. 2 , Tensile strength σt = 4900 Kgf / cm 2 The characteristic of B in FIG. 6 is that φ = 1000 mm, t = 20 mm, and σy = 1200 kgf / cm 2 , Σt = 2500 Kgf / cm 2 Is a bending moment-curvature relationship of a steel pipe made of the above steel material.
[0058]
However, these are the results when the axial force is zero, and show the relationship up to the generation of the maximum bending moment.
[0059]
As shown in FIG. 6, in B, the maximum bending moment is slightly smaller than A, and the curvature when the maximum bending moment occurs is about four times larger.
[0060]
From the above, if the steel pipe of A is applied to the general part of the pile and the steel pipe of B is applied to the place where countermeasures are required, the bending moment generated in the pile can be controlled and the deformation of the pile can be controlled by the excellent deformation performance of the steel pipe of B It becomes possible to absorb.
[0061]
If the curvature generated in the steel pipe B at the time of the earthquake falls within the range shown in the figure, the stability as a pile can be maintained without a decrease in proof stress. Here, although not shown, the same result as described above is qualitatively obtained even under the condition where an axial force is acting. In the range of deformation considered as a pile, if the deformation can be absorbed by the steel pipe of B in the same manner as above, the vertical It has been confirmed that support performance can be maintained.
[0062]
As an example of the foundation pile according to the fourth and fifth aspects, FIG. 7 shows an example of a structure in a case where the pile general portion is a steel pipe pile. As shown in the figure, by gradually reducing the outer diameter from the general portion 1a of the pile 1 toward the small-diameter portion 1b, the distribution of the axial force and the bending moment can be made smooth, and a stable structure can be obtained. In this case, the steel pipe member 2 is attached to the small diameter portion 1a as a high toughness member, and its diameter and thickness may be set so as to obtain the above-mentioned predetermined performance within a range in which there is no problem in construction.
[0063]
FIG. 8 shows an example of a structure when the general portion 1a of the pile 1 is a PC pile. Since the PC pile generally has a large wall thickness, a case is shown in which steel pipe members 2 whose outer diameters are approximately equal to the inner diameter of the PC pile are connected using an end plate. The thickness of the steel pipe member 2 may be set so as to obtain predetermined bending performance and performance with respect to axial force. Further, since the inner diameter is substantially the same as that of the general portion 1a of the PC pile 1, the influence on the construction is small.
[0064]
FIG. 9 shows the arrangement of members assuming that the bending moment of the pile 1 due to ground displacement in the underground becomes a problem. The steel pipe member 2 is arranged near the boundary between the liquefied layer or the soft layer and the lower layer. It was done.
[0065]
Thereby, the bending moment at the time of the earthquake which occurs at the layer boundary shown in the conceptual diagram of FIG. 1 can be controlled, and the bending deformation of the pile 1 is absorbed by the steel pipe member 2, so that the general portion 1 a of the pile 1, and eventually The stability as a foundation pile can be maintained.
[0066]
In this case, the members may be arranged so as to straddle the layer boundary as shown in the figure, and in consideration of the fact that the bending moment generally shows a peak value in the lower layer, the member may be disposed below the layer boundary. It may be arranged for a required length toward it. In addition, it may be installed in the liquefied layer near the layer boundary, but in any case, installed in a place where the maximum bending moment generated in the general portion 1a of the pile 1 can be controlled so as not to reach the maximum bending strength of the pile body. do it.
[0067]
The length of the steel pipe member 2 may be set so that the maximum bending moment generated in the general portion 1a of the pile 1 can be controlled so as not to reach the maximum bending strength of the pile body. In general, the required displacement absorbing ability can be exhibited in many cases if it is about 0.5D (D: pile diameter) to about 2.0D.
[0068]
In addition, the survey results of the geological formation are survey results in points, and considering that there may be errors, etc., the length is set to allow for allowances that take into account uncertainties and local changes. It is also possible to put it.
[0069]
FIG. 10 shows an arrangement of steel pipe members 2 assuming a case where a bending moment of a pile due to ground displacement in the underground becomes a problem. The member 2 is arranged.
[0070]
This is based on the assumption that, when the upper layer is relatively healthy, the ground displacement may change rapidly even at the upper layer boundary, causing a large working earth pressure and pile rotation angle. It is.
[0071]
FIG. 11 shows an arrangement of the steel pipe member 2 in a case where the pile body is likely to be broken by a bending moment generated at the pile head in addition to FIG. By installing the steel pipe member 2 also at the pile head, the same effect as that for the bending moment in the underground described above can be expected.
[0072]
FIG. 12 shows the arrangement of the steel pipe member 2 when the liquefied layer and the soft layer exist at or near the ground surface. In this case, not only the horizontal force and the rotational force transmitted from the structure but also the ground displacement Accordingly, the bending moment of the pile head is also increased, so that the steel pipe member 2 is arranged not only at the lower layer boundary of the liquefied layer and the soft layer, but also at the pile head. Since the displacement and rotation of the pile body can be absorbed by the upper and lower two points, the pile body can easily follow large deformation of the ground, and the steel pipe member 2 is stable against the axial force even after the deformation is absorbed. Designed to maintain the support performance of the pile.
[0073]
In FIG. 13, since the steel pipe member 2 is provided as a high toughness member over the entire corresponding portion of the liquefied layer or the soft layer in the ground, a sudden change in the ground displacement occurs at the boundary between the soft layer and the liquefied layer. The bending moment of the pile can be reliably absorbed.
[0074]
Further, when the soft layer and the liquefied layer are relatively thin, the processing becomes easier than disposing the steel pipe member in two upper and lower stratum boundaries, which may be advantageous in terms of cost. .
[0075]
The length of the steel pipe member 2 in this case may be set so that the maximum bending moment generated in the pile general portion 1a can be controlled so as not to reach the maximum bending strength of the pile body. It is desirable to include it.
[0076]
Considering that the survey results of the geological formation include point surveys, the length of the soft layer or liquefied layer should be set to a length that allows for allowances that take into account uncertainties and local changes. Conceivable. FIG. 14 shows a case where the steel pipe member 2 is arranged as a high toughness member from the vicinity of the lower end of the soft layer or the liquefied layer to the pile head when the soft layer or the liquefied layer is present at or near the ground surface. I have.
[0077]
This is because when a soft layer or a liquefied layer is located near the surface of the ground, it is expected that the shear force of the pile will be severe throughout the entire layer, including the pile head, and this will be taken into account. It is intended to do so.
[0078]
Although not shown, when it is considered that arranging a high-toughness member up to the pile head may be advantageous in terms of cost due to reduction in the number of processing steps, such as when the soft layer or the liquefied layer is relatively thin. Can also be arranged as shown in FIG.
[0079]
【The invention's effect】
The foundation pile according to claim 1, particularly in a foundation pile formed by connecting ready-made piles, the maximum bending strength under an acting axial force is equal to or less than that of a general part of the ready-made pile, and the maximum bending strength. Since a high toughness portion having a curvature at the time of occurrence greater than the general portion of the ready-made pile is provided in the underground portion and / or the pile head portion, the maximum bending generated in the underground portion and the pile head portion of the foundation pile is provided. The moment can be controlled very effectively.
[0080]
According to a second aspect of the present invention, in the foundation pile according to the first aspect, the high-toughness portion is provided at a stratum boundary and / or a pile head where the stratum configuration or the physical properties of the ground change in the depth direction of the foundation pile. By doing so, it is possible to very effectively control the maximum bending moment generated in the foundation pile particularly at the stratum boundary and the pile head where the stratum composition or the physical properties of the ground change.
[0081]
The foundation pile according to claim 3 is the foundation pile according to claim 1, in which the high toughness portion is provided in substantially the entire area of the soft ground, the liquefied ground, and / or the pile head portion. The bending moment of the pile caused by the sudden change of the ground displacement in the liquefied ground can be surely absorbed. Further, when the soft layer or the liquefied layer is relatively thin, it is considered that the processing becomes easier than the case where the high toughness portion is divided into two upper and lower portions, which is advantageous in cost.
[0082]
The foundation pile according to claim 4 is the foundation pile according to any one of claims 1 to 3, wherein the general portion and the high toughness portion of the ready-made pile are steel foundation piles, and the formula of the high toughness portion ( R represented by 1) t But, R of pile general part t By being formed smaller than that, the cross-sectional design of the high toughness portion can be clearly defined by a mathematical expression, and the maximum bending moment generated in the foundation pile can be efficiently controlled.
[0083]
The foundation pile according to claim 5 is the foundation pile according to any one of claims 1 to 4, wherein the general part of the ready-made pile is a precast concrete pile, and the high toughness part is a steel pipe pile having a smaller outer diameter than the general part. By being formed, not only can the maximum bending moment generated in the foundation pile be controlled, but also a high-toughness part can be easily formed by connecting a steel pipe to the end of the existing concrete pile. In addition, the toughness of the foundation pile can be significantly improved.
[0084]
According to a sixth aspect of the present invention, in the foundation pile according to any one of the first to fifth aspects, the high toughness part is formed of a steel pipe made of a material having a lower yield point than the general pile part. This makes it possible to easily design a high toughness portion having required deformation performance and stable against axial force.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a depth distribution of a bending moment of a pile.
FIG. 2 is a diagram showing a relationship between bending moment and axial force.
FIG. 3 is a diagram showing a bending moment-curvature relationship of a member used for response analysis.
FIG. 4 is a diagram showing an analysis result of a bending moment of a pile.
FIG. 5 is a diagram showing an analysis result of a bending moment of a pile.
FIG. 6 is a diagram showing a relationship between a bending moment and a curvature of a pile.
FIG. 7 is a sectional view showing an example of a steel pipe pile.
FIG. 8 is a sectional view showing an example of a PC pile.
FIG. 9 is a cross-sectional view illustrating an arrangement example of a high toughness member.
FIG. 10 is a cross-sectional view showing an example of arrangement of a high toughness member.
FIG. 11 is a cross-sectional view showing an example of arrangement of a high toughness member.
FIG. 12 is a cross-sectional view showing an arrangement example of a high toughness member.
FIG. 13 is a cross-sectional view showing an arrangement example of a high toughness member.
FIG. 14 is a cross-sectional view showing an arrangement example of a high toughness member.
[Explanation of symbols]
1 pile
1a General part of pile
1b Small diameter part of pile
2 Steel pipe members (high toughness members)

Claims (6)

既製杭をつなぎ合わせて形成される基礎杭において、作用軸力下での最大曲げ耐力が前記既製杭の一般部と同等またはそれ以下で、かつ最大曲げ耐力発生時の曲率が前記既製杭の一般部よりも大きい高靱性部が地中部分および/または杭頭部分に設けられてなることを特徴とする基礎杭。In a foundation pile formed by connecting ready-made piles, the maximum bending strength under an acting axial force is equal to or less than that of the general part of the ready-made pile, and the curvature at the time when the maximum bending strength occurs is a general value of the general shape of the ready-made pile. A foundation pile, wherein a high toughness portion larger than a portion is provided in an underground portion and / or a pile head portion. 高靱性部が、基礎杭の深度方向に地層構成または地盤の物性が変化する地層境界部分および/または杭頭部分に設けられてなることを特徴とする請求項1記載の基礎杭。The foundation pile according to claim 1, wherein the high toughness portion is provided at a stratum boundary portion and / or a pile head portion where the stratum configuration or the physical properties of the ground change in the depth direction of the foundation pile. 高靱性部が、軟弱地盤、液状化地盤などのほぼ全域および/または杭頭部分に設けられてなることを特徴とする請求項1記載の基礎杭。The foundation pile according to claim 1, wherein the high toughness portion is provided in substantially the entire area of the soft ground, liquefied ground, and / or the pile head. 既製杭の一般部および高靱性部が鋼製の基礎杭であって、前記高靱性部の下記式(1)で表されるRt が、前記既製杭の一般部のRt よりも小さいことを特徴とする請求項1〜3のいずれかに記載の基礎杭。
Figure 2004036088
General portion and a high toughness of the prefabricated pile is a steel foundation piles, R t represented by the following formula (1) of the high toughness portion is smaller than the R t of the general portion of the prefabricated pile The foundation pile according to any one of claims 1 to 3, characterized in that:
Figure 2004036088
既製杭の一般部が既成コンクリート杭で、高靱性部が前記既製杭の一般部よりも外径の小さな鋼管杭であることを特徴とする請求項1〜3のいずれかに記載の基礎杭。The foundation pile according to any one of claims 1 to 3, wherein the general part of the ready-made pile is a precast concrete pile, and the high toughness part is a steel pipe pile having an outer diameter smaller than that of the general part of the ready-made pile. 高靱性部が、杭一般部よりも降伏点の低い材料より製造された鋼管であることを特徴とする請求項1〜5のいずれかに記載の基礎杭。The foundation pile according to any one of claims 1 to 5, wherein the high toughness portion is a steel pipe manufactured from a material having a lower yield point than a general pile portion.
JP2002190713A 2002-06-28 2002-06-28 Foundation pile Expired - Fee Related JP3910496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190713A JP3910496B2 (en) 2002-06-28 2002-06-28 Foundation pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190713A JP3910496B2 (en) 2002-06-28 2002-06-28 Foundation pile

Publications (2)

Publication Number Publication Date
JP2004036088A true JP2004036088A (en) 2004-02-05
JP3910496B2 JP3910496B2 (en) 2007-04-25

Family

ID=31700564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190713A Expired - Fee Related JP3910496B2 (en) 2002-06-28 2002-06-28 Foundation pile

Country Status (1)

Country Link
JP (1) JP3910496B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242498A (en) * 2010-06-28 2010-10-28 Sumitomo Metal Ind Ltd Foundation pile structure
JP2012144951A (en) * 2011-01-14 2012-08-02 Jfe Steel Corp Steel pipe pile type landing pier
US8582643B2 (en) 2007-07-30 2013-11-12 Broadcom Corporation Integrated circuit with conversion capability for portable medial player
JP2015155645A (en) * 2015-04-23 2015-08-27 Jfeスチール株式会社 Steel pipe pile type pier and steel pipe pile
KR102268685B1 (en) * 2020-09-01 2021-06-22 윤철희 Vibration control pile
CN113221207A (en) * 2021-04-02 2021-08-06 中铁第四勘察设计院集团有限公司 Method and device for determining stability of rigid pile composite foundation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8582643B2 (en) 2007-07-30 2013-11-12 Broadcom Corporation Integrated circuit with conversion capability for portable medial player
JP2010242498A (en) * 2010-06-28 2010-10-28 Sumitomo Metal Ind Ltd Foundation pile structure
JP2012144951A (en) * 2011-01-14 2012-08-02 Jfe Steel Corp Steel pipe pile type landing pier
JP2015155645A (en) * 2015-04-23 2015-08-27 Jfeスチール株式会社 Steel pipe pile type pier and steel pipe pile
KR102268685B1 (en) * 2020-09-01 2021-06-22 윤철희 Vibration control pile
CN113221207A (en) * 2021-04-02 2021-08-06 中铁第四勘察设计院集团有限公司 Method and device for determining stability of rigid pile composite foundation
CN113221207B (en) * 2021-04-02 2022-05-13 中铁第四勘察设计院集团有限公司 Method and device for determining stability of rigid pile composite foundation

Also Published As

Publication number Publication date
JP3910496B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP4010383B2 (en) Pile method
JP4281010B2 (en) Tunnel structure
JP3165450B2 (en) Arrangement method of reinforcement and foundation body in foundation formation of ground reinforcement type
Yehia Abd Elaziz et al. Axial behaviour of hollow core micropiles under monotonic and cyclic loadings
Abdel-Rahman et al. Numerical modeling of the combined axial and lateral loading of vertical piles
JP2004036088A (en) Foundation pile
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP2003232033A (en) Foundation pile structure
JP3659099B2 (en) Joint structure of footing and steel pipe pile
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
CN111560972A (en) PHC tubular pile and bearing platform mortise-tenon type semi-rigid joint
JP4017766B2 (en) Hollow cylindrical body and its construction method
JP2009046881A (en) Pile head structure of double tube type
JP2004285698A (en) Deformed precast pile
JP2016223208A (en) Pile foundation structure
JP2020147920A (en) Slope collapse preventing reinforcement body and slope collapse preventing reinforcement method using the same
JP3690495B2 (en) Building construction method and building
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP5463043B2 (en) Method for reinforcing concrete structures
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP2001020558A (en) Base isolation structure of building
JP2861937B2 (en) Screw-in type steel pipe pile
JP3031245B2 (en) Screw-in type steel pipe pile
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile
KR102091816B1 (en) Construction method of group piles foundation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3910496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees