JP2004036002A - Method for improving reliability of reactor - Google Patents

Method for improving reliability of reactor Download PDF

Info

Publication number
JP2004036002A
JP2004036002A JP2003271154A JP2003271154A JP2004036002A JP 2004036002 A JP2004036002 A JP 2004036002A JP 2003271154 A JP2003271154 A JP 2003271154A JP 2003271154 A JP2003271154 A JP 2003271154A JP 2004036002 A JP2004036002 A JP 2004036002A
Authority
JP
Japan
Prior art keywords
hydrogen
reactor
plasma
chlorine
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003271154A
Other languages
Japanese (ja)
Inventor
Seong Soo Jang
張 星 守
Dong Goo Choi
崔 東 求
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of JP2004036002A publication Critical patent/JP2004036002A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving reliability of a reactor for stably performing, in particular, etching or vapor deposition by effectively removing chlorine-based residues adsorbed by a reaction tube. <P>SOLUTION: This method comprises a step of preparing a reactor (including an etching apparatus and a vapor deposition apparatus) using chlorine-based gases, and a step of removing residues present in a reaction tube by forming plasma containing at least one of hydrogen and nitrogen in the reactor. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、半導体素子の製造方法に係り、より詳細には、塩素系列の気体を用いる反応装置、特に、エッチング及び/又は蒸着を行う反応装置の信頼性(reliability)改善方法に関するものである。 The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for improving the reliability of a reactor using a chlorine-based gas, and more particularly, to a reactor for performing etching and / or deposition.

 半導体製造工程において、ウェーハを1枚単位で処理する反応装置において、工程の進行につれて、工程中の反応副産物が反応装置の反応管内に残留し、後続処理されるウェーハに悪影響を及ぼす現象が頻繁に生じる。 2. Description of the Related Art In a semiconductor manufacturing process, in a reactor that processes wafers one by one, a phenomenon that a reaction by-product in the process remains in a reaction tube of the reactor as the process progresses and adversely affects a wafer to be subsequently processed is frequently caused. Occurs.

 このような残留物の影響を低減させるために、従来2つの方法がある。第1の方法はシーズニング(seasoning)と呼ばれ、反応管内に予めこのような残留物を飽和させる。第2の方法はイン・シチュ洗浄(in−situ cleaning)と呼ばれ、1枚のウェーハを処理すると、そのつど工程内で反応管内の残留物を除去した後、次のウェーハ処理に進む。 従 来 There are two conventional methods to reduce the effects of such residues. The first method is called seasoning and pre-saturates such residues in the reaction tube. The second method is called in-situ cleaning, and when a single wafer is processed, the process proceeds to the next wafer processing after removing the residue in the reaction tube in each process.

 シーズニングは、装置が一定に維持されて安定であるが、残留物が常に大量に反応管内に存在するので、残留物の大きい粒子等がウェーハの表面に落ちる確率が高くなって歩留まりが低くなるという短所がある。 Seasoning is stable because the apparatus is kept constant, but since there is always a large amount of residue in the reaction tube, the probability that large particles of the residue fall on the surface of the wafer increases, and the yield decreases. There are disadvantages.

 一方、イン・シチュ洗浄によれば、工程時間が長くなるという短所があるが、反応管内が常に清浄に保たれるので、歩留まりに敏感な工程では必須である。 On the other hand, in-situ cleaning has the disadvantage that the process time is long, but is indispensable in processes sensitive to yield because the inside of the reaction tube is always kept clean.

 特に、塩素系列の気体を使用する、プラズマエッチング工程又は蒸着工程では、第1の方法であるシーズニングによれば、塩素を含んだ化合物が大量に反応管の露出内面内に吸着されており、後続ウェーハの処理を行うと、工程の進行につれ、塩素が脱着されて反応に与かりやすく、これは直ちに後続ウェーハのエッチング又は蒸着特性を変化させて工程の不安定化をもたらす。 In particular, in the plasma etching step or the vapor deposition step using a chlorine-based gas, according to the first method, seasoning, a large amount of the chlorine-containing compound is adsorbed on the exposed inner surface of the reaction tube, and As the wafer is processed, as the process proceeds, chlorine is desorbed and readily participates in the reaction, which immediately alters the etching or deposition characteristics of the subsequent wafer, leading to process instability.

 又、第2の方法であるイン・シチュ洗浄過程による場合、従来は、主にCl2、SF6等のエッチング気体を使用して洗浄を行っている。しかし、エッチング気体を用いたイン・シチュ洗浄は、反応装置の部品の寿命を縮めるという短所がある。 In the case of the in-situ cleaning process, which is the second method, the cleaning is conventionally performed mainly by using an etching gas such as Cl2 or SF6. However, in-situ cleaning using an etching gas has a disadvantage in that the life of components of the reactor is shortened.

特開平11−204509号公報JP-A-11-204509 特開平11−145067号公報JP-A-11-145067

 本発明の目的は、前記従来技術の諸般の問題を解決するために、反応管に吸着された塩素系の残留物を効果的に除去することにより、特にエッチング又は蒸着を安定して行うことができる、反応装置の信頼性改善方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned various problems of the prior art by effectively removing chlorine-based residues adsorbed on a reaction tube so that etching or vapor deposition can be performed particularly stably. It is an object of the present invention to provide a method for improving the reliability of a reactor.

 前記の目的を達成するための、本発明の請求項1に係る反応装置の信頼性改善方法は、塩素系列の気体を用いる反応装置を用意するステップと、前記反応装置内に、水素及び窒素の内の少なくとも1つを含むプラズマを形成して反応管内に存在する残留物を除くステップと、を含んでなることを特徴とする。 In order to achieve the above object, a method for improving the reliability of a reactor according to claim 1 of the present invention includes a step of preparing a reactor using a chlorine-based gas, and a step of preparing hydrogen and nitrogen in the reactor. Forming a plasma including at least one of the above to remove residues present in the reaction tube.

 好ましくは、請求項2に係り、前記水素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする。 Preferably, the plasma containing hydrogen contains 5 to 90% of argon.

 好ましくは、請求項3に係り、前記窒素を含むプラズマは、水素を5ないし50%含むことを特徴とする。 Preferably, the plasma containing nitrogen contains 5 to 50% of hydrogen.

 好ましくは、請求項4に係り、前記窒素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする。 Preferably, the plasma containing nitrogen contains 5 to 90% of argon.

 好ましくは、請求項5に係り、前記窒素を含むプラズマは、水素を5ないし50%含み、アルゴンを5ないし90%含むことを特徴とする。 Preferably, the plasma containing nitrogen includes 5 to 50% of hydrogen and 5 to 90% of argon.

 又、前記の目的を達成するための、本発明の請求項6に係る反応装置の信頼性改善方法は、塩素系列の気体を用いて、エッチング又は蒸着を行う反応装置の内のいずれか一つを用意するステップと、前記エッチング装置及び蒸着装置の内のいずれか一つに、水素及び窒素の内の少なくとも一つを含むプラズマを形成して反応管内に存在する残留物を除くステップと、を含んでなることを特徴とする。 In order to achieve the above object, a method for improving the reliability of a reactor according to claim 6 of the present invention is a method of performing etching or vapor deposition using a chlorine-based gas. And forming a plasma including at least one of hydrogen and nitrogen in any one of the etching apparatus and the vapor deposition apparatus to remove a residue present in the reaction tube. It is characterized by comprising.

 好ましくは、請求項7に係り、前記水素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする。 Preferably, the plasma containing hydrogen contains 5 to 90% of argon.

 好ましくは、請求項8に係り、前記窒素を含むプラズマは、水素を5ないし50%含むことを特徴とする。 Preferably, according to claim 8, the plasma containing nitrogen contains 5 to 50% of hydrogen.

 好ましくは、請求項9に係り、前記窒素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする。 Preferably, according to claim 9, the plasma containing nitrogen contains 5 to 90% of argon.

 好ましくは、請求項10に係り、前記窒素を含むプラズマは、水素を5ないし50%含み、アルゴンを5ないし90%含むことを特徴とする。 Preferably, the plasma containing nitrogen contains 5 to 50% of hydrogen and 5 to 90% of argon.

 本発明に係る反応装置の信頼性(即ち、信頼性)改善方法によると、反応管内に対してこのようなプラズマ処理を行なうことにより、反応管内に残留する塩素を除去することができ、残りの金属性物質を安定化することができる。 According to the method for improving the reliability (that is, reliability) of a reactor according to the present invention, by performing such a plasma treatment on the inside of the reaction tube, chlorine remaining in the reaction tube can be removed, and the remaining chlorine can be removed. Metallic substances can be stabilized.

 具体的には、プラズマ中で活性化された水素による塩素除去効果と、活性化された窒素による安定な窒化物形成を通じた表面条件の安定化効果である。 Specifically, it is a chlorine removal effect by hydrogen activated in plasma and a stabilization effect of surface conditions through stable nitride formation by activated nitrogen.

 さらに、本発明の方法により装置の信頼性を維持すると、一枚供給方式の反応装置、特にエッチング又は蒸着装置において、ウェーハ間の特性変動を最小化することができ、装置のPM(preventive maintenance)頻度を減らし、装置の稼動時間を増加が可能になる、という効果がある。 Further, when the reliability of the apparatus is maintained by the method of the present invention, characteristic fluctuation between wafers can be minimized in a single-sheet supply type reaction apparatus, particularly an etching or vapor deposition apparatus, and the PM (preventive maintenance) of the apparatus can be reduced. There is an effect that the frequency can be reduced and the operation time of the device can be increased.

 さらに、従来の、シーズニング(seasoning)や、エッチング気体を用いるイン・シチュ洗浄方法に比べて装置に与えるダメージが殆どない。 Furthermore, there is almost no damage to the apparatus as compared with the conventional seasoning or in-situ cleaning method using an etching gas.

 又さらに、流動性のない水素、アルゴン、窒素等の気体のみを使用するので、安全で、公害汚染物質を排出しない。 Furthermore, since only non-fluid gas such as hydrogen, argon and nitrogen is used, it is safe and does not emit pollutants.

 以下、本発明に係る反応装置の信頼性改善方法を添付の図面を参照しながら詳細に説明する。 Hereinafter, a method for improving the reliability of a reactor according to the present invention will be described in detail with reference to the accompanying drawings.

 図1は、本発明に係る反応装置の信頼性改善方法の具体例として、TiCl4を用いたPECVD方法によるTi薄膜の蒸着装置を取上げ、蒸着特性として蒸着されたTi薄膜の面抵抗を測定し、その、蒸着回数による変動の様子を示すグラフである。 FIG. 1 shows, as a specific example of the method for improving the reliability of a reaction apparatus according to the present invention, an apparatus for depositing a Ti thin film by a PECVD method using TiCl4, and measuring the sheet resistance of the deposited Ti thin film as a deposition characteristic. 6 is a graph showing the state of the change depending on the number of depositions.

 最初の1〜4回目の蒸着は、途中何らのイン・シチュ洗浄を適用しないで、5枚のウェーハを処理した結果であり、このように面抵抗でモニタすると、出来上がりTi薄膜の特性が大きく変動していることが分かる。 次の5〜9回目の蒸着は、本発明によるイン・シチュ洗浄を、N/Hプラズマを使って適用した結果であり、Ti薄膜の面抵抗に代表される蒸着特性は殆ど変動せず、安定する。 The first to fourth depositions are the result of processing five wafers without applying any in-situ cleaning on the way. When monitoring with sheet resistance in this way, the characteristics of the finished Ti thin film greatly fluctuate. You can see that it is doing. The next fifth to ninth depositions are the results of applying the in-situ cleaning according to the present invention using N 2 / H 2 plasma, and the deposition characteristics represented by the sheet resistance of the Ti thin film hardly fluctuate. ,Stabilize.

 本発明に係る反応装置の信頼性改善方法とは、工程で使用した塩素(Cl)を含む気体、例えば、エッチング工程で使用した、Cl2、BCl3等、又、蒸着工程で使用した、TiCl4、TaCl5等を、非エッチング性のプラズマを用いて分解してしまうという、改良されたイン・シチュ洗浄方法である。 The method for improving the reliability of the reactor according to the present invention includes the gas containing chlorine (Cl) used in the process, for example, Cl2, BCl3, etc. used in the etching process, and TiCl4, TaCl5 used in the vapor deposition process. And the like are decomposed using a non-etching plasma, which is an improved in-situ cleaning method.

 すなわち、ある反応装置で、例えば、エッチング又は蒸着などの各工程の終了後、反応管内に残留する塩素を含む化合物等を除去するため、待機状態の反応管に水素ベース又は窒素ベースのプラズマを形成する。 That is, for example, after completion of each step such as etching or vapor deposition, a hydrogen-based or nitrogen-based plasma is formed in a standby reaction tube to remove a compound containing chlorine remaining in the reaction tube after completion of each step such as etching or vapor deposition. I do.

 その際、水素ベースのプラズマは、主に塩素を除去する役割を果たすが、水素プラズマの活性化のため、アルゴン気体を添加することもできる。又、窒素ベースのプラズマは、反応管内に残留する塩素化合物に含まれるAl、Si、Ti、Ta等と反応して窒素により塩素を置換え、安定な窒化物を形成することにより、後続ウェーハに与える悪影響を最小化する。 At this time, the hydrogen-based plasma mainly plays a role of removing chlorine, but an argon gas can be added to activate the hydrogen plasma. In addition, the nitrogen-based plasma reacts with Al, Si, Ti, Ta, etc. contained in the chlorine compound remaining in the reaction tube to replace chlorine with nitrogen and form a stable nitride, which is given to a subsequent wafer. Minimize adverse effects.

 従って、上記の、反応装置の信頼性改善方法は、次のいずれかの手順に従い適用される。 Therefore, the above-described method for improving the reliability of a reactor is applied according to any of the following procedures.

 第1の手順では、塩素系列の気体を使用した反応装置(エッチング又は蒸着装置)内に、水素ベースのプラズマを形成して(適量のアルゴンを含ませる)、イン・シチュ洗浄を行い、その後、次のウェーハの処理(エッチング又は蒸着)に移る。前記水素ベースのプラズマは、アルゴンを5ないし90%含有する。 In the first procedure, a hydrogen-based plasma is formed (containing an appropriate amount of argon) in a reactor (etching or vapor deposition device) using a chlorine-based gas, and in-situ cleaning is performed. Move on to processing (etching or vapor deposition) of the next wafer. The hydrogen-based plasma contains 5 to 90% argon.

 第2の手順では、塩素系列の気体を使用した反応装置(エッチング又は蒸着装置)内に、窒素ベースのプラズマを形成して(適量の水素及びアルゴンを含ませる)、イン・シチュ洗浄を行い、その後、次のウェーハの処理(エッチング又は蒸着)に移る。前記窒素ベースのプラズマは、水素を5ないし50%含有する。 In the second procedure, a nitrogen-based plasma is formed (containing appropriate amounts of hydrogen and argon) in a reactor (etching or vapor deposition apparatus) using chlorine-based gas, and in-situ cleaning is performed. Thereafter, the processing (etching or vapor deposition) of the next wafer is started. The nitrogen-based plasma contains 5 to 50% hydrogen.

 第3の手順では、塩素系列の気体を使用した反応装置(エッチング又は蒸着装置)内に、水素ベースのプラズマを形成し(適量のアルゴンを含ませる)、続けて窒素ベースのプラズマを形成して(適量の水素及びアルゴンを含ませる)、イン・シチュ洗浄を行い、その後、次のウェーハの処理(エッチング又は蒸着)に移る。前記水素ベースのプラズマは、アルゴンを5ないし90%含有し、前記窒素ベースのプラズマは、水素を5ないし50%含み、アルゴンを5ないし90%含有する。 In the third procedure, a hydrogen-based plasma is formed (containing an appropriate amount of argon) in a reactor (etching or vapor deposition apparatus) using a chlorine-based gas, and then a nitrogen-based plasma is formed. (Include appropriate amounts of hydrogen and argon), perform in-situ cleaning, then move on to processing (etching or vapor deposition) of the next wafer. The hydrogen-based plasma contains 5 to 90% argon and the nitrogen-based plasma contains 5 to 50% hydrogen and 5 to 90% argon.

 本発明によるイン・シチュ洗浄方法によれば、反応管内の塩素系残留物(活性化塩素(塩素ラディカル)や塩素化合物の塩素分)は、主に洗浄プラズマの活性化水素により除去され、金属塩化物は、主に洗浄プラズマの活性化窒素により、金属窒化物として安定化する。 According to the in-situ cleaning method of the present invention, chlorine-based residues (activated chlorine (chlorine radical) and chlorine components of chlorine compounds) in the reaction tube are mainly removed by activated hydrogen of the cleaning plasma, and the metal chloride is removed. The object is stabilized as a metal nitride mainly by the activated nitrogen of the cleaning plasma.

 本発明は、上述の特定の好ましい実施の形態に限定されるわけではなく、特許請求の範囲内で、当該発明が属する技術分野において通常の知識を有する者であれば、色々変更実施が可能であろう。 The present invention is not limited to the specific preferred embodiments described above, and various modifications may be made within the scope of the claims by those having ordinary skill in the art to which the present invention pertains. There will be.

本発明に係る反応装置の信頼性改善方法の具体例として、TiCl4を用いたPECVD方法によるTi薄膜の蒸着装置を取上げ、蒸着特性として蒸着されたTi薄膜の面抵抗を測定し、その、蒸着回数による変動の様子を示すグラフである。As a specific example of the method for improving the reliability of the reactor according to the present invention, a deposition apparatus for a Ti thin film by a PECVD method using TiCl4 is taken up, and the sheet resistance of the deposited Ti thin film is measured as a deposition characteristic. 6 is a graph showing the state of fluctuation due to

Claims (10)

 塩素系列の気体を用いる反応装置を用意するステップと、
 前記反応装置内に、水素及び窒素の内の少なくとも1つを含むプラズマを形成して反応管内に存在する残留物を除くステップと、
 を含んでなることを特徴とする反応装置の信頼性改善方法。
Preparing a reactor using a chlorine-based gas;
Forming a plasma including at least one of hydrogen and nitrogen in the reactor to remove residues present in the reaction tube;
A method for improving the reliability of a reactor, comprising:
 前記水素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする請求項1記載の反応装置の信頼性改善方法。 The method according to claim 1, wherein the hydrogen-containing plasma contains 5 to 90% of argon.  前記窒素を含むプラズマは、水素を5ないし50%含むことを特徴とする請求項1記載の反応装置の信頼性改善方法。 4. The method according to claim 1, wherein the plasma containing nitrogen contains 5 to 50% of hydrogen.  前記窒素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする請求項1記載の反応装置の信頼性改善方法。 The method of claim 1, wherein the nitrogen-containing plasma contains 5 to 90% of argon.  前記窒素を含むプラズマは、水素を5ないし50%含み、アルゴンを5ないし90%含むことを特徴とする請求項1記載の反応装置の信頼性改善方法。 The method according to claim 1, wherein the plasma containing nitrogen contains 5 to 50% of hydrogen and 5 to 90% of argon.  塩素系列の気体を用いて、エッチング又は蒸着を行う反応装置の内のいずれか一つを用意するステップと、
 前記エッチング装置及び蒸着装置の内のいずれか一つに、水素及び窒素の内の少なくとも一つを含むプラズマを形成して反応管内に存在する残留物を除くステップと、
 を含んでなることを特徴とする反応装置の信頼性改善方法。
Using a chlorine-based gas, preparing any one of the reactors for etching or vapor deposition,
Forming a plasma including at least one of hydrogen and nitrogen in any one of the etching apparatus and the vapor deposition apparatus to remove residues present in the reaction tube;
A method for improving the reliability of a reactor, comprising:
 前記水素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする請求項6記載の反応装置の信頼性改善方法。 7. The method according to claim 6, wherein the plasma containing hydrogen contains 5 to 90% of argon.  前記窒素を含むプラズマは、水素を5ないし50%含むことを特徴とする請求項6記載の反応装置の信頼性改善方法。 7. The method according to claim 6, wherein the plasma containing nitrogen contains 5 to 50% of hydrogen.  前記窒素を含むプラズマは、アルゴンを5ないし90%含むことを特徴とする請求項6記載の反応装置の信頼性改善方法。 7. The method according to claim 6, wherein the plasma containing nitrogen contains 5 to 90% of argon.  前記窒素を含むプラズマは、水素を5ないし50%含み、アルゴンを5ないし90%含むことを特徴とする請求項6記載の反応装置の信頼性改善方法。 7. The method according to claim 6, wherein the plasma containing nitrogen contains 5 to 50% of hydrogen and 5 to 90% of argon.
JP2003271154A 2002-07-12 2003-07-04 Method for improving reliability of reactor Pending JP2004036002A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020040773A KR20040006481A (en) 2002-07-12 2002-07-12 Method for improving reliablity of etching and depositing device

Publications (1)

Publication Number Publication Date
JP2004036002A true JP2004036002A (en) 2004-02-05

Family

ID=30113157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271154A Pending JP2004036002A (en) 2002-07-12 2003-07-04 Method for improving reliability of reactor

Country Status (4)

Country Link
US (1) US20040007248A1 (en)
JP (1) JP2004036002A (en)
KR (1) KR20040006481A (en)
TW (1) TWI319896B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126898A (en) * 2019-02-01 2020-08-20 東京エレクトロン株式会社 Film forming method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284786B2 (en) * 2014-02-27 2018-02-28 東京エレクトロン株式会社 Cleaning method for plasma processing apparatus
SG10201607880PA (en) 2015-09-25 2017-04-27 Tokyo Electron Ltd METHOD FOR FORMING TiON FILM
JP6775322B2 (en) * 2015-09-25 2020-10-28 東京エレクトロン株式会社 Method of forming a TiON film
KR102516778B1 (en) * 2018-02-08 2023-04-03 주성엔지니어링(주) Apparatus and method for cleaning chamber

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158525A (en) * 1983-02-28 1984-09-08 Mitsubishi Electric Corp Method for forming aluminum alloy film pattern
US5367139A (en) * 1989-10-23 1994-11-22 International Business Machines Corporation Methods and apparatus for contamination control in plasma processing
US5200031A (en) * 1991-08-26 1993-04-06 Applied Materials, Inc. Method for removal of photoresist over metal which also removes or inactivates corrosion-forming materials remaining from one or more previous metal etch steps
US5326723A (en) * 1992-09-09 1994-07-05 Intel Corporation Method for improving stability of tungsten chemical vapor deposition
JP2674488B2 (en) * 1993-12-01 1997-11-12 日本電気株式会社 Dry etching chamber cleaning method
US5532447A (en) * 1993-12-06 1996-07-02 Aluminum Company Of America Method of cleaning an aluminum surface by plasma treatment
JP2803556B2 (en) * 1994-02-03 1998-09-24 日本電気株式会社 Method of forming barrier metal layer
JP3413276B2 (en) * 1994-04-20 2003-06-03 東京エレクトロン株式会社 Thin film formation method
JP3851686B2 (en) * 1996-06-08 2006-11-29 キヤノンアネルバ株式会社 Thin film formation method by plasma CVD
US5843239A (en) * 1997-03-03 1998-12-01 Applied Materials, Inc. Two-step process for cleaning a substrate processing chamber
KR19990055203A (en) * 1997-12-27 1999-07-15 김영환 Metal wiring formation method of semiconductor device
US6635569B1 (en) * 1998-04-20 2003-10-21 Tokyo Electron Limited Method of passivating and stabilizing a Ti-PECVD process chamber and combined Ti-PECVD/TiN-CVD processing method and apparatus
US6368517B1 (en) * 1999-02-17 2002-04-09 Applied Materials, Inc. Method for preventing corrosion of a dielectric material
US6401728B2 (en) * 1999-03-01 2002-06-11 United Microelectronics Corp. Method for cleaning interior of etching chamber
US6524963B1 (en) * 1999-10-20 2003-02-25 Chartered Semiconductor Manufacturing Ltd. Method to improve etching of organic-based, low dielectric constant materials
US6626188B2 (en) * 2001-06-28 2003-09-30 International Business Machines Corporation Method for cleaning and preconditioning a chemical vapor deposition chamber dome
KR20030061878A (en) * 2002-01-12 2003-07-23 삼성전자주식회사 Method of forming metal interconnection in semiconductor device
US6843858B2 (en) * 2002-04-02 2005-01-18 Applied Materials, Inc. Method of cleaning a semiconductor processing chamber
KR100447284B1 (en) * 2002-07-19 2004-09-07 삼성전자주식회사 Method of cleaning chemical vapor deposition chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126898A (en) * 2019-02-01 2020-08-20 東京エレクトロン株式会社 Film forming method
JP7175209B2 (en) 2019-02-01 2022-11-18 東京エレクトロン株式会社 Deposition method

Also Published As

Publication number Publication date
US20040007248A1 (en) 2004-01-15
TW200401352A (en) 2004-01-16
TWI319896B (en) 2010-01-21
KR20040006481A (en) 2004-01-24

Similar Documents

Publication Publication Date Title
JP3421329B2 (en) Cleaning method for thin film forming equipment
JP3730865B2 (en) Method for passivating a CVD chamber
US8974602B2 (en) Method of reducing contamination in CVD chamber
JP6242095B2 (en) Cleaning method, semiconductor device manufacturing method, substrate processing apparatus, and program
TWI416626B (en) A plasma processing method and a plasma processing apparatus
JP2009050854A (en) Process of removing titanium nitride
US20060254613A1 (en) Method and process for reactive gas cleaning of tool parts
JP2008244292A (en) Processing performance stabilizing method of plasma treatment apparatus
JP2007177320A (en) METHOD OF WASHING THIN FILM DEPOSITION UNIT FOR DEPOSITING Al-CONTAINING METAL FILM AND Al-CONTAINING METAL NITRIDE FILM
KR100653217B1 (en) Cleaning method of apparatus for depositing metal containing film
JPH03120368A (en) Cleansing of chemical vacuum deposition apparatus
JP4739709B2 (en) Cleaning method for film forming apparatus
JP4541739B2 (en) Semiconductor device manufacturing method, cleaning method, and semiconductor device manufacturing apparatus
JP2004036002A (en) Method for improving reliability of reactor
JP4865214B2 (en) Film formation method and storage medium
JP2008060171A (en) Method of cleaning semiconductor processing equipment
WO2010008102A1 (en) Cleaning method of apparatus for depositing carbon containing film
KR101198243B1 (en) Cleaning method of apparatus for depositing carbon containing film
JP5214316B2 (en) Cleaning method of plasma film forming apparatus
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
CN110273138B (en) Cleaning method for film forming apparatus, operation method, and film forming apparatus
JP2006173301A (en) Method of cleaning film forming apparatus non-silicon film
JP2008294121A (en) Manufacturing method and manufacturing apparatus of semiconductor device
TWI814075B (en) Substrate processing method
JPH07201847A (en) Formation of thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201