JP2004031450A - レーザ装置並びにその制御装置及び制御方法 - Google Patents

レーザ装置並びにその制御装置及び制御方法 Download PDF

Info

Publication number
JP2004031450A
JP2004031450A JP2002182090A JP2002182090A JP2004031450A JP 2004031450 A JP2004031450 A JP 2004031450A JP 2002182090 A JP2002182090 A JP 2002182090A JP 2002182090 A JP2002182090 A JP 2002182090A JP 2004031450 A JP2004031450 A JP 2004031450A
Authority
JP
Japan
Prior art keywords
signal
amplitude
laser
voltage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002182090A
Other languages
English (en)
Other versions
JP3739341B2 (ja
Inventor
Yasuhiro Hamashima
濱島 康宏
Hiroyuki Imoto
井本 博之
Hiroaki Maki
牧 弘昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Quantum Devices Ltd
Original Assignee
Fujitsu Quantum Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Quantum Devices Ltd filed Critical Fujitsu Quantum Devices Ltd
Priority to JP2002182090A priority Critical patent/JP3739341B2/ja
Priority to US10/464,741 priority patent/US7012938B2/en
Publication of JP2004031450A publication Critical patent/JP2004031450A/ja
Application granted granted Critical
Publication of JP3739341B2 publication Critical patent/JP3739341B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation

Abstract

【課題】簡易な構成でより安定的に動作点を制御できるレーザ装置、その制御装置、レーザ駆動装置を提供する。また、簡易な構成でより安定的に動作点を制御するための制御方法を提供する。
【解決手段】フォトダイオード13でモニタされたレーザダイオード12の出力波形から低周波成分の振幅を取り出し、これと基準電圧Vref1との比較より生成されたコントロール電圧Vip1に基づいてパイロット信号Pilotの振幅を制御することで、両者に相関を持たせる。また、これら両者を所定の割合で重畳させた信号に基づいてレーザドライバ11からの変調信号Ipの振幅を制御することで、変調信号Ipにおける低周波成分とそれ以外との振幅に相関が保たれる。これにより、レーザ特性の変化の要因に応じて的確に対処でき、出力光が安定化される。
【選択図】     図4

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ装置並びにその制御装置及び制御方法に関し、特に変調信号に低周波成分を重畳させるレーザ装置並びにその制御装置及び制御方法に関する。
【0002】
【従来の技術】
従来、冷却手段を持たないレーザ装置では、温度変化に対するレーザ特性の変化を、量子効率特に微分量子効率ηの変化のみと見なしていた。このため、レーザ特性を安定化させるために、従来では、レーザ出力を電流に変換してモニタし、この平均値が一定を保つようにドライバの出力振幅の大きさを制御していた。
【0003】
出力振幅の大きさを一定に制御する技術としては、例えば特開平3−278586号公報が開示するところの光振幅変調装置が存在する。これを以下、従来技術1とする。この光振幅変調装置は、図1に示すように、レーザダイオード(LD)101とフォトダイオード(PD)102と低域透過フィルタ103と低周波増幅器104と位相検波器105と制御部106と直流電源107と合成器108と低周波発振器109とを有して構成される。
【0004】
図1において、合成器108は高周波変調周波に低周波発振器109からの低周波を重畳させる。レーザダイオード101は、高周波変調周はと低周波とが重畳された励振電流により駆動する。フォトダイオード102は、レーザダイオード101からの出力光を電気信号に変換する。低域透過フィルタ103は、レーザダイオード102で得られた電気信号から低周波成分を取り出す。低域増幅器104は得られた低周波成分を増幅する。位相検波器105は増幅された低周波成分と低周波発振器109からの低周波との位相を比較し、レーザ出力特性の勾配を検出する。更に位相検波器105は、検出した勾配を予め設定しておいた値へ補正するための誤差電圧を発生し、これを制御部106へ入力する。制御部106は入力された誤差電圧に基づいて直流電源107を制御する。合成器108は直流電源107から入力された電圧値に基づいてレーザダイオード101へ与える励振電流をの振幅を変化させる。これにより、レーザダイオード101の出力振幅の安定化が図られる。
【0005】
また、その他の技術としては、例えば特開平8−254672号公報が開示するところの光変調装置が存在する。これを以下、従来技術2とする。この光変調装置は、図2に示すように、レーザダイオード(LD)201と光変調器202と光カプラ203と受光素子204とバンドバスフィルタ(BPF)205と可変利得増幅器206と位相検出器207と低周波発振器208と直流アンプ209とドライブアンプ210とを有して構成される。
【0006】
図2において、光変調器202は、低周波発振器208からの正弦波信号がドライブアンプ210において重畳された変調信号に基づいてレーザダイオード201からの出力光の強度を変調する。光カプラ203は光変調器202で変調されたレーザ光を分光し、一部を受光素子204へ入力する。受光素子204は入力されたレーザ光を電気信号に変換する。バンドパスフィルタ205はこの電気信号から正弦波信号の周波数成分を取り出す。取り出された周波数成分は、可変利得増幅器206を介して位相検出器207へ入力される。位相検出器207は低周波発振器208からの増幅された周波数成分と正弦波信号との位相差を基づいて、動作点を安定化させるように制御されたバイアス電圧を発生する。発生されたバイアス電圧は直流アンプ209を介して光変調器202へ入力される。これにより、光変調器202における強度変調が補正され、レーザ出力の動作点が安定的に維持される。
【0007】
このように、上記従来技術1,2では、光主信号(数GHzの高周波)に対して、低周波成分(パイロット信号)を重畳させてηの変化を検出し、温度変化や寿命等による劣化を対処するように構成されている。
【0008】
しかしながら、これら従来技術1,2では、温度変化による量子効率ηの傾きの変化にしか対応できていないという問題がある。即ち、温度変化によるレーザ特性への影響として、上述の量子効率ηの傾きの増加と、レーザ発光の閾値電流の上昇との2つが存在するが、上記従来技術ではその一方にしか対応できない。一般的には後者の方がレーザの出力波形に大きな影響を与えるため、この影響を解消しなければ温度変化や寿命による劣化に起因したレーザ特性の変化に対応することができない。
【0009】
このような問題を解決する従来技術としては、例えば特開平7−226714号公報が開示するところの光送信装置が存在する。これを以下、従来技術3とする。この光送信装置は、図3に示すように、レーザダイオード(LD)301とフォトダイオード(PD)302と電流スイッチ回路304とD−フリップフロップ(D−FF)305とコンデンサC1と増幅回路306と可変抵抗Rv1と誤差増幅回路307とバイアス電流回路308と分周回路309と波形等化回路310と減衰器311と電流電圧変換増幅回路312とクリップ回路313と低周波検波回路314とコンデンサC2と可変抵抗Rv2と誤差増幅回路315とを有して構成される。
【0010】
図3において、D−フリップフロップ305は外部からの入力データ(DATA)をクロック信号(CLOCK)の周期で打ち直した信号を電流スイッチ回路304へ供給する。電流スイッチ回路304はレーザダイオード301へ電流信号を供給する。フォトダイオード302はレーザダイオード301の光出力レベルをモニタする。電流電圧変換増幅回路312はフォトダイオード302の電流信号を電圧信号に変換する。変換された電圧信号は増幅回路306で増幅され、コンデンサC1で平滑化された後、誤差増幅回路307に入力される。また、誤差増幅回路307には可変抵抗Rv1で作り出された第1の基準電圧も入力される。誤差増幅回路307は入力された2つの信号の電位差に基づく信号をバイアス電流回路308へ出力する。
【0011】
また、分周器309は外部から入力されたクロック信号を低い周波数に変換する。波形等化回路310は分周回路309の出力波形を矩形波から正弦波に変換する。減衰回路311はこの正弦波を減衰し、これをバイアス電流回路308に与える。バイアス電流回路308は入力された2つの信号に基づいてレーザダイオード301を駆動するためのバイアス電流を発生し、これをレーザダイオード301に与える。
【0012】
更にまた、電流電圧変換増幅回路312から出力された電圧信号はクリップ回路313に入力され、その一部が取り除かれる。低周波検波回路314はクリップ回路313出力信号から低周波成分を取り出す。取り出された低周波成分はコンデンサC2で平滑化された後、誤差増幅回路315に入力される。また、誤差増幅回路315には可変抵抗Rv2で作り出された第2の基準電圧も入力される。誤差増幅回路315は入力された2つの信号を比較し、その差分を増幅した後、これを電流スイッチ回路304へ与える。従って、電流スイッチ回路304はD−フリップフロップ305から入力された信号と誤差増幅回路315から入力された信号とに基づいて生成された電流信号を供給する。
【0013】
このように図3に示す光振幅変調装置では、レーザダイオード301が、光出力の平均値とクロック信号に基づいて生成された低周波成分とに依存して生成されたバイアス電流と、光出力における一部の低周波成分の平均値とデータ信号とに基づいて生成された電流信号とで駆動されるため、バイアス電流だけでなく、変調電流までも制御することが可能となり、量子効率ηの傾きの増加とレーザ発光の閾値電流の上昇との2つの問題が対処される。
【0014】
【発明が解決しようとする課題】
しかしながら、上記従来技術3では、一定振幅の低周波信号を変調波信号に重畳するよう構成されているため、複雑な演算回路が必要となり、装置が大型化し、高価となる問題が存在する。
【0015】
更に、パイロット信号の振幅が固定である場合は、高温時や寿命による劣化により、レーザI−Pf特性のηが傾くため、ドライバの振幅を増やす増やさないに関係なく、光信号に含まれるパイロット信号の量が徐々に小さくなる。このため、光信号に含まれる一定量のノイズに対してパイロット信号が小さくなると、精度が悪くなりフィードバックの結果、レーザ波形が不安定になるという問題が存在する。
【0016】
本発明は、上記問題に鑑みてなされたものであり、簡易な構成でより安定的に動作点を制御できるレーザ装置を提供することを目的とする。
また、その他の目的としては、簡易な構成でより安定的に動作点を制御するための制御装置及び制御方法を提供することである。
【0017】
【課題を解決するための手段】
上記目的を達成するために、本発明は、レーザを含み、変調信号に基づいて前記レーザを駆動するレーザ装置であって、前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳することで前記レーザの光出力を制御することを特徴としている。これにより、本発明では、簡易な構成でより安定的に動作点を制御できるレーザ装置を提供することが可能となる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いてレーザ特性の変化を補正することが可能となるため、量子効率の傾きηの変化によるレーザ特性の変化と、それ以外に起因したレーザ特性の変化とを区別して、的確に対処することができ、より安定した誤りのない制御が可能となる。
【0018】
上記の構成において、例えば、前記低周波信号の振幅が、前記変調信号の振幅に対して10%以下である。
【0019】
また、別の例として、前記レーザより出力されたレーザ光に含まれる前記低周波信号の振幅に基づいて前記変調信号の振幅をフィードバック制御することで、前記レーザ光の光強度を一定に保つ。
【0020】
また、別の例として、前記レーザより出力されるレーザ光に含まれる前記低周波信号の振幅をモニタし、該振幅に応じた第1の電圧を出力する振幅モニタ手段と、前記第1の電圧と第1の基準電圧との差分に基づいた第2の電圧を出力する電圧出力手段と、前記第2の電圧に依存した振幅を有する低周波なパイロット信号を出力するパイロット信号出力手段と、前記パイロット信号と前記第2の電圧とを所定の比率で加算する加算手段と、前記パイロット信号が加算された前記第2の電圧に基づいて前記変調信号の振幅を制御することで、前記低周波信号が重畳された前記変調信号を出力する変調信号出力手段と、を有する。
【0021】
また、別の例として、前記加算手段が、演算増幅器と、該演算増幅器の入力端に並列に接続された第1の抵抗及び第2の抵抗と、前記演算増幅器の出力端から分岐して前記入力端に接続される配線上に設けられた第3の抵抗と、を含んで構成され、前記パイロット信号及び前記第2の電圧がそれぞれ第1及び第2の抵抗を介して前記入力端に与えられ、前記所定の割合が、前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値との比に基づいて決定される。
【0022】
また、別の例として、前記振幅モニタ手段が、前記レーザ光を電流信号に変換する光電変換手段と、該光電変換手段で得られた前記電流信号を電圧信号に変換する電流電圧変換手段と、前記電圧信号の一部を整流して前記第1の電圧を出力する電圧信号整流手段と、を含んで構成される。
【0023】
また、本発明は、レーザの駆動装置が生成する変調信号の振幅を制御するための制御装置であって、前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳させることを特徴としている。これにより、本発明では、簡易な構成でより安定的に動作点を制御できる制御装置を提供することが可能となる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いて制御信号を生成するため、誤制御することなく、要因に応じて的確に対処することが可能となり、制御対象のデバイスを安定的に動作させることが可能になる。
【0024】
また、上記の構成の制御装置において、例えば、前記低周波信号の振幅が前記変調信号の振幅に対して10%以下となるように制御する。
【0025】
また、上記制御装置において、例えば、前記レーザにより出力されたレーザ光に含まれる前記低周波信号の振幅に基づいて前記変調信号の振幅をフィードバック制御することで、前記レーザの光強度を一定に保つ。
【0026】
また、上記制御装置の更に別の例として、上記レーザ装置と同様の構成とすることができる。
【0027】
また、本発明は、レーザを制御する制御装置であって、変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を取り出す第1の回路(この一例は、後述する検波回路23)と、該検波回路で取り出された前記低周波信号に基づいて前記レーザの特性を示す信号を出力する第2の回路(この一例は後述する比較回路23)とを有することを特徴としている。これにより、変調信号に相関を持った低周波信号を検出することでレーザの特性を簡単かつ容易に検出することができる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いてレーザ特性の変化を検出することが可能となる。こため、量子効率の傾きηの変化によるレーザ特性の変化と、それ以外に起因したレーザ特性の変化とを区別して、的確に対処することができ、より安定した誤りのない制御が可能となる。
【0028】
また、本発明は、変調信号の振幅を制御するための制御方法であって、前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳することを特徴としている。これにより、本発明では、簡易な構成でより安定的に動作点を制御できる制御方法を提供することが可能となる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いて制御信号を生成するため、誤制御することなく、要因に応じて的確に対処することが可能となり、制御対象のデバイスを安定的に動作させることが可能になる。
【0029】
また、上記の構成において、例えば、前記低周波信号の振幅が、前記変調信号の振幅に対して10%以下である。
【0030】
また、上記制御方法において、例えば、前記レーザより出力されたレーザ光に含まれる前記低周波信号の振幅に基づいて前記低周波信号の信号源をフィードバック制御することで、該低周波信号の振幅と前記変調信号の振幅とに相関を持たせる。
【0031】
また、本発明はレーザを制御する方法であって、変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を取り出す第1のステップと、該第1のステップで取り出された前記低周波信号に基づいて前記レーザの特性を示す信号を出力する第2のステップとを有することを特徴としている。これにより、変調信号に相関を持った低周波信号を検出することでレーザの特性を簡単かつ容易に検出することができる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いてレーザ特性の変化を検出することが可能となる。こため、量子効率の傾きηの変化によるレーザ特性の変化と、それ以外に起因したレーザ特性の変化とを区別して、的確に対処することができ、より安定した誤りのない制御が可能となる。
【0032】
【発明の実施の形態】
〔原理〕
本発明を好適に実施した形態について説明するにあたり、本発明の原理について先に述べる。
【0033】
本発明は、簡易な構成でより安定的に動作点を制御できるレーザ装置、レーザ装置における制御装置、レーザ装置におけるレーザ駆動装置、及びそのレーザ装置における制御方法を提供するためのものである。
これを実現するにあたり、本発明では、変調信号に基づいてレーザを駆動するにあたり、前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳する。
【0034】
以下、上記のような構成を有する本発明の好適な実施形態について図面を用いて詳細に説明する。
【0035】
〔一実施形態〕
以下、本発明を好適に実施した一実施形態について、図面を用いて詳細に説明する。
【0036】
図4は、本実施例によるレーザ装置1の構成を示すブロック図である。
図4を参照すると、レーザ装置10は、レーザドライバ11とレーザダイオード(LD)12とフォトダイオード(PD)13と電流電圧変換回路14と変調電流制御系20とバイアス電流制御系30とを有して構成される。
【0037】
図4において、レーザドライバ11は、外部から入力されたデータ信号DATA(但し、クロック信号も含む)に基づいて変調信号Ipを生成して出力する。即ち、レーザドライバ11は、レーザダイオード12を駆動する装置として機能する。また、レーザドライバ11は、自己が出力する変調信号Ipの振幅値をモニタし、これにより得られた振幅値を振幅モニタ電圧Vipmとして変調電流制御系20へ入力するとともに、変調電流制御系20から入力されたコントロール電圧Vip3に基づいて、出力する変調信号Ipの振幅を制御する。尚、この構成においてレーザドライバ11は、集積化されたICチップで構成されるとよい。
【0038】
レーザダイオード12は、半導体レーザ等で構成されたレーザ光源であり、レーザドライバ11から入力された変調信号Ip及びバイアス電流制御系30から入力されたバイアス電流Ibに基づいてレーザ発振する。尚、本実施形態では、このレーザダイオード12にペルチェ素子やファン等の冷却手段が設けられていないものとする。
【0039】
フォトダイオード13は、レーザダイオード12を挟んでファイバ23と反対側に設けられており、レーザダイオード12からの出力光をバックモニタする。また、フォトダイオード13はモニタした電流を電流信号Imとして出力する。電流電圧変換回路14は、フォトダイオード13から出力された電流信号Imを電圧信号Vm1に変換して、変調電流制御系20及びバイアス電流制御系30へそれぞれ出力する。尚、フォトダイオード13は、高周波成分(変調信号)を取り除くローパスフィルタ(LPF)の役割も果たす。即ち、フォトダイオード13では、レーザ光の低周波成分と平均パワーとがモニタされる。但し、フォトダイオード13に高周波成分をモニタできるものを適用した場合、例えば変調電流制御系20にローパスフィルタを設けることで同等の構成とすることができる。また、このように取り出された電圧信号Vm1を増幅する増幅回路等を変調電流制御系20に設けてもよい。
【0040】
変調電流制御系20は、入力された電圧信号Vm1とレーザドライバ11から入力された振幅モニタ電圧Vipmに基づいて、レーザドライバ11から出力される変調信号Ipの振幅を制御するためのコントロール信号Vip3を生成し、これをレーザドライバ11へフィードバックする。即ち、変調電流制御系20は、レーザドライバ11が出力する変調信号Ipの振幅をフィードバック制御する制御装置として機能するものである。これにより、レーザ特性における量子効率の傾きηが変化したことについて対応する。制御装置として機能する変調電流制御系20は例えば、1つのチップ上に形成することができる。
【0041】
バイアス電流制御系30は、入力された電圧信号Vm1に基づいてバイアス電流Ibを生成し、これをレーザダイオード12へ入力する。即ち、バイアス電流制御系30は、レーザダイオード12に入力する変調電流Ipにオフセットを設けるように制御する装置として機能するものである。これにより、レーザ特性における発光の閾値電流が変化したことについて対応する。
【0042】
次に、変調電流制御系20の詳細な構成及び動作について、以下に図面を用いて説明する。変調電流制御系20は、図4に示すように、フィルタ21と増幅回路22と検波回路23と比較回路24と低周波発振器25と加算回路26と比較回路27とを有して構成される。
【0043】
この構成において、フィルタ21は、電流電圧変換回路14から出力された電圧信号Vm1の直流成分DCを除去し、低周波成分を取り出すバンドパスフィルタである。取り出された低周波成分は電圧信号Vm2として出力され、増幅回路22において増幅された後、電圧信号Vm3として検波回路23に入力される。
【0044】
検波回路23は半端整流回路で構成される。従って、検波回路23は入力された電圧信号Vm3から振幅の上半分を取り出し、これを整流することで、電圧信号Vm3の振幅値を示す電圧値Vm4を生成する。尚、以上で説明したフィルタ21から検波回路23までの構成は、変調電流制御系20に入力された電圧信号の振幅をモニタする手段を構成するものである。このモニタ手段は、変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を取り出し、取り出された低周波信号に基づいてレーザ12の特性を示す信号を出力する制御装置である。なお、この入力された電圧信号の振幅をモニタする構成としては、上記構成に限定されず、結果として同様な電圧を得ることができれば如何様にも変形してよい。更に、この構成に光をモニタして電流信号を出力するフォトダイオード及び該フォトダイオードから出力された電流信号を電圧信号に変換する電流電圧変換回路を追加することで、光の振幅をモニタする手段とすることができる。
【0045】
以上のようにして生成された電圧値Vm4は、比較回路24に入力される。また、比較回路24には、変調信号Ipの振幅の基準値を規定するための基準電圧Vref1も入力される。比較回路24は、入力された電圧値Vm4と基準電圧Vref1とを比較し、両者が等しくなるように、コントロール電圧Vip1の電圧値を制御する。即ち、比較回路24は、レーザ光若しくは電圧信号をモニタして得られた振幅と基準値とを比較して、これらの差分に基づいた電圧を出力する手段として機能する。従って、比較回路24は、レーザ出力をモニタして得られた電圧値Vm4が基準電圧Vref1よりも小さい場合、電圧値Vm4を大きくするために、出力するコントロール電圧Vip1の値を上昇する。また、電圧値Vm4が基準電圧Vref1よりも大きい場合、比較回路24は、電圧値Vm4を小さくするために、出力するコントロール電圧Vip1の値を減少する。
【0046】
出力されたコントロール電圧Vip1は、低周波発振器25及び加算回路26に入力される。低周波発振器25は、入力されたコントロール電圧Vip1に基づいた振幅を有する所定周波数の低周波なパイロット信号Pilotを出力する。即ち、低周波発振器25は、入力された電圧に依存した振幅を有するパイロット信号を出力する手段である。このようにコントロール電圧Vip1に基づいてパイロット信号Pilotの振幅を制御することで、コントロール電圧Vip1の電圧値とパイロット信号Pilotの振幅値とに相関が保たれる。これは即ち、コントロール電圧Vip3の電圧値とこれに含まれる低周波成分の振幅値とに相関が保たれることに繋がり、更には、コントロール電圧Vip3で振幅制御される変調信号Ipの振幅値とこの変調信号Ipに含まれる低周波成分の振幅値とに相関が保たれることに繋がる。尚、パイロット信号Pilotの周波数は、主信号である変調信号Ipの周波数に対して1%以下となるように構成するとよい。また、出力されたパイロット信号Pilotは、コントロール電圧Vip1と共に加算回路26に入力される。
【0047】
加算回路26は、パイロット信号Pilotの振幅値がコントロール電圧Vip1の電圧値の所定割合、例えば略1%、好ましくは10%以下となるように、パイロット信号Pilotの振幅を変換した後に、両者を加算するものである。即ち、加算回路26は、入力された信号と電圧とを所定の割合で加算する手段として機能するものである。但し、パイロット信号Pilotの振幅を変換する値は固定であるため、コントロール電圧Vip1の電圧値とパイロット信号Pilotの振幅値との相関は保たれる。図5に加算回路26の詳細な構成を示す。
【0048】
図5を参照すると、加算回路26は、オペレーショナルアンプ(演算増幅器ともいう:以下、OPアンプと称する)26aで構成された反転増幅回路の構成を有する。この構成において、OPアンプ26aの反転入力端6には、抵抗R1を介してコントロール電圧Vip1と、抵抗R2を介してパイロット信号Pilotとが入力される。また、非反転入力端5は設置されている。更に、OPアンプ26aの出力は分岐し、抵抗R3を介して反転入力端子6に帰還する。
【0049】
この構成において、パイロット信号Pilotの電圧値をPilot、コントロール電圧Vip1の電圧値をVip1、抵抗R1,抵抗R2,抵抗R3の抵抗値をそれぞれR1,R2,R3とすると、OPアンプ26aを介した後のパイロット信号Pilotの電圧値Vpは以下の式1で求まり、また、OPアンプ26aを介した後のコントロール電圧Vip2の電圧値Vvは以下の式2で求まる。
【数1】
Figure 2004031450
【数2】
Figure 2004031450
【0050】
従って、VpのVvに対する割合は、以下の式3となる。
【数3】
Figure 2004031450
【0051】
尚、本実施形態では、OPアンプ26aから出力されるパイロット信号(以下、これを低周波信号という)の電圧値Vpが、OPアンプ26aからのコントロール電圧Vip2の電圧値Vvの10%以下となるように構成するとよい。
【0052】
このような加算回路26から出力されたコントロール電圧Vip2は、比較回路27に入力される。また、比較回路27には、レーザドライバ11から出力される変調信号IPの振幅値Vipmも入力される。比較回路27は、入力されたコントロール電圧Vip2と振幅値Vipmとを比較し、両者が等しくなるようにレーザドライバ11を制御するためのコントロール電圧Vip3を出力する。即ち、比較回路27は駆動装置であるレーザドライバ11から出力される変調信号Ipの振幅を低周波信号が重畳された電圧に基づいて制御するための手段として機能する。言い換えれば、比較回路27とレーザドライバ11とは、低周波信号が重畳された電圧に基づいて振幅が制御された変調信号Ipを出力する手段として機能する。従って、比較回路27は、変調信号Ipをモニタして得られた電圧値Vipmが、コントロール電圧Vip2よりも小さい場合、電圧値Vipmを大きくするために、出力するコントロール電圧Vip3の値を上昇する。また、電圧値Vipmが、コントロール電圧Vip2よりも大きい場合、比較回路27は、電圧値Vipmを小さくするために、出力するコントロール電圧Vip3の値を減少する。
【0053】
また、比較回路27からの出力に基づいて変調信号Ipの振幅をフィードバック制御するレーザドライバ11の構成を図6に示す。図6を参照すると、レーザドライバ11は、差動バッファの構成を有し、これに流れる変調電流IpをトランジスタQ11で制御する構成となっている。即ち、変調電流Ipの振幅は、トランジスタQ11のベースに印加されるコントロール電圧Vip3により制御される。また、トランジスタQ11のコレクタ(又はエミッタ)に1Ωの抵抗R11を設けることで、トランジスタQ11のエミッタ・コレクタ間に流れる電流(変調信号Ip)を電圧に変換し、変調信号Ipの振幅値Vipmとして取り出すことができる。この振幅値Vipmは上述のように比較回路27に入力される。
【0054】
以上に示す構成で得られる変調電流制御系20の作用について、以下に図7を用いて詳細に説明する。
【0055】
図7(a)はレーザ特性における量子効率の傾きηが当初の設計状態である場合における出力強度Pと変調電流値Iの量子効率との関係を示すグラフである。この状態から温度や寿命等の要因により量子効率の傾きηが変化した場合を図7(b)に示す。
【0056】
図7(b)に示すように、温度や寿命等の要因により量子効率の傾きηが小さくなると(η→η’)、入力する変調信号Ipの振幅が変化せずとも、レーザダイオード12の発光量が減少する。従って、フォトダイオード13で出力強度Pも小さくなる。また、これに伴い、レーザ光に含まれる低周波成分の振幅も小さくなり、また、その平均パワーも低くなる。
【0057】
本実施形態は、このような問題を解決するために、図7(c)に示すように、量子効率の傾きηが小さくなった分だけ変調信号Ipの振幅を増加させる。また、これに伴い、変調信号Ipに含まれている重畳された低周波信号の振幅も同等の比率で増加される。これにより、量子効率の傾きηが変化したことに対して的確に補正を行うことが可能となり、レーザダイオード12の発光量が維持される。よって、レーザ装置10が安定して動作する。
【0058】
次に、バイアス電流制御系30の詳細な構成及び動作について、以下に図面を用いて説明する。バイアス電流制御系30は、図4に示すように、フィルタ31と比較回路32とを有して構成される。
【0059】
フィルタ31は、電流電圧変換回路14から出力された電圧信号Vm1における低周波成分を除去し、直流成分である平均パワーを取り出すローパスフィルタである。これにより取り出された平均パワーは、電圧信号Vm5として比較回路32に入力される。
【0060】
比較回路32には、電圧信号Vm5と基準電圧Vref2とが入力される。従って、比較回路32は、この電圧信号Vm5と基準電圧Vref2とを比較する。即ち、フィルタ31と比較回路32とは、バイアス電流制御系30に入力された電圧信号の振幅をモニタする手段を構成するものである。更に、この構成に光をモニタして電流信号を出力するフォトダイオード及び該フォトダイオードから出力された電流信号を電圧信号に変換する電流電圧変換回路を追加することで、光の振幅をモニタする手段とすることができる。
【0061】
また、比較回路32は、上記比較した両者の値が等しくなるように、出力するバイアス電流Ibの電流値を制御する。尚、比較回路32の出力段には、上記比較により得られた電圧値を電流値に変換するための電流電圧変換回路が構成されている。即ち、比較回路32は、レーザ光の平均出力と基準値とを比較して、これらの差分に基づいたバイアス電流を出力する手段として機能する。
【0062】
このような構成により、比較回路32は、レーザ出力をモニタして得られた平均パワーが基準電圧Vref2よりも小さい場合、平均パワーを大きくするために、出力するバイアス電流Ibの値を大きくする。尚、基準電圧Vref2の方が小さい場合はその逆の動作をする。
【0063】
以上に示す構成で得られるバイアス電流制御系30の作用について、以下に図8を用いて詳細に説明する。
【0064】
図8(a)はレーザ特性における閾値電流Ithが当初の設計状態である場合における出力強度Pと変調電流値Iの量子効率との関係を示すグラフである。この状態から温度や寿命等の要因により閾値電流Ithが変化した場合を図7(b)に示す。
【0065】
図8(b)に示すように、温度や寿命等の要因により閾値電流Ithが大きくなると(Ith→Ith’)、レーザダイオード12の動作に必要となる電流量にオフセットが加わる。このため、入力する変調信号Ipの振幅が変化せずとも、レーザダイオード12における量子効率の反応線がグラフ右方向(電流→大の方向)にシフトし、発光量が減少する。但し、出力強度Pに含まれる低周波成分は、振幅は変化しないが、平均強度が減少する。
【0066】
本実施形態は、このような問題を解決するために、図8(c)に示すように、閾値電流Ithがシフトした分だけ、レーザダイオード12に入力する変調信号Ipにオフセット(バイアス電流Ib)を設ける。これにより、量子効率の反応線のシフトを解消でき、レーザダイオード12の発光量が維持される。よって、レーザ装置10が安定して動作する。
【0067】
以上、説明したように、本実施形態によるレーザ装置は、低周波信号の振幅と変調信号の振幅とが相関を持つため、量子効率の傾きηの変化した場合や、それ以外の要因によって変調信号の振幅を変化する必要が生じた場合でも、それぞれの要因に応じた的確な振幅の低周波信号を重畳し続けることができる。
【0068】
〔他の実施形態〕
以上、説明した実施形態は本発明の好適な一実施形態にすぎず、本発明はその趣旨を逸脱しない限り種々変形して実施可能である。
【0069】
【発明の効果】
以上説明したように、本発明によれば、簡易な構成でより安定的に動作点を制御できるレーザ装置、その制御装置、レーザ駆動装置を提供することが可能となる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いてレーザ特性の変化を補正することが可能となるため、量子効率の傾きηの変化によるレーザ特性の変化と、それ以外に起因したレーザ特性の変化とを区別して、的確に対処することができ、より安定した誤りのない制御が可能となる。
【0070】
更に、本発明によれば、簡易な構成でより安定的に動作点を制御できる制御方法を提供することが可能となる。即ち、変調信号の振幅に相関した振幅を持つ低周波信号を用いて制御信号を生成するため、簡易な構成で的確に対処することが可能になる。
【図面の簡単な説明】
【図1】従来技術1による光振幅変調装置の構成を示すブロック図である。
【図2】従来技術2による光変調装置の構成を示すブロック図である。
【図3】従来技術3による光送信装置の構成を示すブロック図である。
【図4】本発明の一実施形態によるレーザ装置10の構成を示すブロック図である。
【図5】図4における加算回路26の構成を示す回路図である。
【図6】図4におけるレーザドライバ11の構成を示す回路図である。
【図7】図4に示すレーザ装置10で得られる変調電流制御系20の作用を説明するためのグラフであり、(a)はレーザ特性の変化がない場合の各信号成分の関係を示し、(b)は量子効率の傾きηが小さくなった場合における補正なしでの各信号成分の関係を示し、(c)は量子効率の傾きηが小さくなった場合における補正ありでの各信号成分の関係を示す。
【図8】図4に示すレーザ装置10で得られるバイアス電流制御系30の作用を説明するためのグラフであり、(a)はレーザ特性の変化がない場合の各信号成分の関係を示し、(b)は閾値電流Ithが増加した場合における補正なしでの各信号成分の関係を示し、(c)は閾値電流Ithが増加した場合における補正ありでの各信号成分の関係を示す。
【符号の説明】
10 レーザ装置
11 レーザドライバ
12 レーザダイオード
13 フォトダイオード
14 電流電源変換回路
20 変調電流制御系
21、31 フィルタ
22 増幅回路
23 検波回路
24、27、32 比較回路
25 低周波発振器
26 加算回路
26a オペレーショナルアンプ
30 バイアス電流制御系

Claims (18)

  1. レーザを含み、変調信号に基づいて前記レーザを駆動するレーザ装置であって、
    前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳することで前記レーザの光出力を制御することを特徴とするレーザ装置。
  2. 前記低周波信号の振幅は、前記変調信号の振幅に対して10%以下であることを特徴とする請求項1に記載のレーザ装置。
  3. 前記レーザより出力されたレーザ光に含まれる前記低周波信号の振幅に基づいて前記変調信号の振幅をフィードバック制御することで、前記レーザ光の光強度を一定に保つことを特徴とする請求項1又は2に記載のレーザ装置。
  4. 前記レーザより出力されるレーザ光に含まれる前記低周波信号の振幅をモニタし、該振幅に応じた第1の電圧を出力する振幅モニタ手段と、前記第1の電圧と第1の基準電圧との差分に基づいた第2の電圧を出力する電圧出力手段と、
    前記第2の電圧に依存した振幅を有する低周波なパイロット信号を出力するパイロット信号出力手段と、
    前記パイロット信号と前記第2の電圧とを所定の比率で加算する加算手段と、前記パイロット信号が加算された前記第2の電圧に基づいて前記変調信号の振幅を制御することで、前記低周波信号が重畳された前記変調信号を出力する変調信号出力手段と、
    を有することを特徴とする請求項1から3の何れか1項に記載のレーザ装置。
  5. 前記加算手段は、演算増幅器と、該演算増幅器の入力端に並列に接続された第1の抵抗及び第2の抵抗と、前記演算増幅器の出力端から分岐して前記入力端に接続される配線上に設けられた第3の抵抗と、を含んで構成され、
    前記パイロット信号及び前記第2の電圧はそれぞれ第1及び第2の抵抗を介して前記入力端に与えられ、
    前記所定の割合は、前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値との比に基づいて決定されることを特徴とする請求項4に記載のレーザ装置。
  6. 前記振幅モニタ手段は、前記レーザ光を電流信号に変換する光電変換手段と、該光電変換手段で得られた前記電流信号を電圧信号に変換する電流電圧変換手段と、前記電圧信号の一部を整流して前記第1の電圧を出力する電圧信号整流手段と、を含んで構成されることを特徴とする請求項4又は5に記載のレーザ装置。
  7. レーザの駆動装置が生成する変調信号の振幅を制御するための制御装置であって、
    前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳させることを特徴とする制御装置。
  8. 前記低周波信号の振幅が前記変調信号の振幅に対して10%以下となるように制御することを特徴とする請求項7に記載の制御装置。
  9. 前記レーザにより出力されたレーザ光に含まれる前記低周波信号の振幅に基づいて前記変調信号の振幅をフィードバック制御することで、前記レーザの光強度を一定に保つことを特徴とする請求項7又は8に記載の制御装置。
  10. 低周波なパイロット信号を出力するパイロット信号出力手段と、
    前記レーザより出力されるレーザ光に含まれる前記低周波信号の振幅をモニタし、該振幅に応じた第1の電圧を出力する振幅モニタ手段と、
    前記第1の電圧と第1の基準電圧との差分に基づいた第2の電圧を出力する電圧出力手段と、
    前記第2の電圧に依存した振幅を有する低周波なパイロット信号を出力するパイロット信号出力手段と、
    前記パイロット信号と前記第2の電圧とを所定の比率で加算する加算手段と、を有し、前記パイロット信号が加算された前記第2の電圧に基づいて前記所定の駆動回路から出力される変調信号の振幅を制御することで、該変調信号に前記低周波信号を重畳させることを特徴とする請求項7から9の何れか1項に記載の制御装置。
  11. 前記加算手段は、演算増幅器と、該演算増幅器の入力端に並列に接続された第1の抵抗及び第2の抵抗と、前記演算増幅器の出力端から分岐して前記入力端に接続される配線上に設けられた第3の抵抗と、を含んで構成され、
    前記パイロット信号及び前記第2の電圧はそれぞれ第1及び第2の抵抗を介して前記入力端に与えられ、
    前記所定の割合は、前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値との比に基づいて決定されることを特徴とする請求項10に記載の制御装置。
  12. 前記振幅モニタ手段は、前記レーザ光を電流信号に変換する光電変換手段と、該光電変換手段で得られた前記電流信号を電圧信号に変換する電流電圧変換手段と、前記電圧信号の一部を整流して前記第1の電圧を出力する電圧信号整流手段と、を含んで構成されることを特徴とする請求項10又は11に記載の制御装置。
  13. レーザを制御する制御装置であって、
    変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を取り出す第1の回路と、
    該第1の回路で取り出された前記低周波信号に基づいて前記レーザの特性を示す信号を出力する第2の回路と
    を有することを特徴とする制御装置。
  14. 前記第2の回路は、前記低周波信号の振幅と所定の基準電圧とを比較する比較回路であることを特徴とする請求項13記載の制御装置。
  15. 変調信号の振幅を制御するための制御方法であって、
    前記変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を前記変調信号に重畳することを特徴とする制御方法。
  16. 前記低周波信号の振幅は、前記変調信号の振幅に対して10%以下であることを特徴とする請求項15に記載の制御方法。
  17. 前記レーザより出力されたレーザ光に含まれる前記低周波信号の振幅に基づいて前記変調信号の振幅をフィードバック制御することで、前記レーザの光強度を一定に保つことを特徴とする請求項15又は16に記載の制御方法。
  18. 変調信号の振幅に対して所定の割合で相関する振幅を有する低周波信号を取り出す第1のステップと、
    該第1のステップで取り出された前記低周波信号に基づいて前記レーザの特性を示す信号を出力する第2のステップと
    を有することを特徴とするレーザ制御方法。
JP2002182090A 2002-06-21 2002-06-21 レーザ装置並びにその制御装置及び制御方法 Expired - Fee Related JP3739341B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002182090A JP3739341B2 (ja) 2002-06-21 2002-06-21 レーザ装置並びにその制御装置及び制御方法
US10/464,741 US7012938B2 (en) 2002-06-21 2003-06-19 Laser device, controller and method for controlling the laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182090A JP3739341B2 (ja) 2002-06-21 2002-06-21 レーザ装置並びにその制御装置及び制御方法

Publications (2)

Publication Number Publication Date
JP2004031450A true JP2004031450A (ja) 2004-01-29
JP3739341B2 JP3739341B2 (ja) 2006-01-25

Family

ID=31178745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182090A Expired - Fee Related JP3739341B2 (ja) 2002-06-21 2002-06-21 レーザ装置並びにその制御装置及び制御方法

Country Status (2)

Country Link
US (1) US7012938B2 (ja)
JP (1) JP3739341B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317800A (ja) * 2006-05-24 2007-12-06 Hitachi Cable Ltd レーザ制御装置及びその制御方法
JP2012138643A (ja) * 2012-04-23 2012-07-19 Fujitsu Optical Components Ltd 光源駆動装置および光源駆動方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570862B2 (ja) * 2003-10-27 2010-10-27 株式会社リコー 半導体レーザ駆動回路
EP1601067B1 (de) * 2004-05-29 2007-05-30 TRUMPF Laser GmbH + Co. KG Befestigungsanordnung für ein Pumpmodul
DE102005009317B4 (de) * 2005-02-18 2007-05-31 Atmel Germany Gmbh Verfahren und Vorrichtung zur Bestimmung einer Laserschwelle einer Laserdiode
US7965277B2 (en) * 2006-12-22 2011-06-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical navigation system and method of controlling the light output power of the system
CN101884004B (zh) * 2007-12-04 2012-10-10 株式会社藤仓 外部调制器的控制设备和方法
JP2011138855A (ja) * 2009-12-28 2011-07-14 Fujitsu Optical Components Ltd 光送信モジュール及びその波長制御方法
USD774529S1 (en) 2010-11-04 2016-12-20 Bank Of America Corporation Display screen with graphical user interface for funds transfer
USD774528S1 (en) 2011-02-21 2016-12-20 Bank Of America Corporation Display screen with graphical user interface for funds transfer
USD774526S1 (en) 2011-02-21 2016-12-20 Bank Of America Corporation Display screen with graphical user interface for funds transfer
USD774527S1 (en) 2011-02-21 2016-12-20 Bank Of America Corporation Display screen with graphical user interface for funds transfer
US9300405B2 (en) * 2011-12-02 2016-03-29 Semtech Corporation Closed loop optical modulation amplitude control
US8548336B2 (en) * 2011-12-02 2013-10-01 Semtech Corporation Closed loop optical modulation amplitude control
USD770478S1 (en) 2012-09-07 2016-11-01 Bank Of America Corporation Communication device with graphical user interface
WO2014205840A1 (zh) * 2013-06-29 2014-12-31 华为技术有限公司 一种监控光信号方法、信号监测装置和光网络系统
US9083460B1 (en) * 2013-09-11 2015-07-14 Sandia Corporation Methods and devices for optimizing the operation of a semiconductor optical modulator
CZ307298B6 (cs) * 2014-06-26 2018-05-16 Vysoká Škola Báňská - Technická Univerzita Ostrava Zapojení pro regulaci teploty a proudu laserové diody
US20170104526A1 (en) * 2015-10-07 2017-04-13 Tyco Electronics Corporation Stressed optical transmitter and method of compliance testing an optical receiver

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924470A (en) * 1989-07-25 1990-05-08 Gordon Ries Laser diode control apparatus
JPH03278586A (ja) 1990-03-28 1991-12-10 Nec Corp 光振幅変調装置
JPH07226714A (ja) 1994-02-09 1995-08-22 Mitsubishi Electric Corp 光送信装置
US5394416A (en) * 1994-05-11 1995-02-28 Alcatel Network Systems, Inc. Laser modulation controller using additive and amplitude modulation control tones
JP2677234B2 (ja) 1995-03-17 1997-11-17 日本電気株式会社 光変調装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317800A (ja) * 2006-05-24 2007-12-06 Hitachi Cable Ltd レーザ制御装置及びその制御方法
JP2012138643A (ja) * 2012-04-23 2012-07-19 Fujitsu Optical Components Ltd 光源駆動装置および光源駆動方法

Also Published As

Publication number Publication date
US7012938B2 (en) 2006-03-14
US20040052281A1 (en) 2004-03-18
JP3739341B2 (ja) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3739341B2 (ja) レーザ装置並びにその制御装置及び制御方法
US7265334B2 (en) Laser power control with automatic compensation
US7492797B2 (en) Laser driver circuit
CN104137443B (zh) 闭环光学调制幅度控制
EP0513002A1 (en) LASER CONTROL.
JP5006978B1 (ja) 補償方法、光変調システム、及び光復調システム
JP2004247968A (ja) 光送信器
GB2025121A (en) Improvements in or relating to the stabilisation of injection lasers
JP4471598B2 (ja) 発光素子駆動装置
EP1387506B1 (en) Jitter suppression techniques for laser driver circuits
US7782916B2 (en) Laser diode driver able to precisely control the driving current
US6778570B2 (en) Laser driving apparatus and method
CN110890921B (zh) 反馈控制回路中含有整流器的激光二极管控制电路
JP2005026432A (ja) レーザ駆動回路およびこの回路を利用可能な光ピックアップ回路
US6912085B2 (en) Optical amplifier
JP2008084963A (ja) レーザダイオード駆動回路
JP2008167312A (ja) 光信号受信装置
JPS6190487A (ja) 半導体レ−ザ駆動回路
JP6201352B2 (ja) 原子発振器及びその制御方法
JP2008066321A (ja) レーザダイオード駆動回路
JP2005057216A (ja) レーザダイオード駆動回路及び光送信装置
JP2010093123A (ja) 光送信装置、及び光送信信号の制御方法
JP3366130B2 (ja) 半導体レーザ制御方法及び装置
JP2004294738A (ja) 固体レーザ装置
JP2005223152A (ja) レーザ駆動回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees