JP2004029735A - Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method - Google Patents

Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method Download PDF

Info

Publication number
JP2004029735A
JP2004029735A JP2003089970A JP2003089970A JP2004029735A JP 2004029735 A JP2004029735 A JP 2004029735A JP 2003089970 A JP2003089970 A JP 2003089970A JP 2003089970 A JP2003089970 A JP 2003089970A JP 2004029735 A JP2004029735 A JP 2004029735A
Authority
JP
Japan
Prior art keywords
substrate
polishing
flatness
electronic device
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089970A
Other languages
Japanese (ja)
Inventor
Kesahiro Koike
小池 今朝広
Masahito Otsuka
大塚 聖人
Yasutaka Tochihara
栃原 康孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003089970A priority Critical patent/JP2004029735A/en
Publication of JP2004029735A publication Critical patent/JP2004029735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for an electronic device having a high flatness of less than 0.25 μm corresponding to a design rule of an advanced semiconductor integrated circuit, and also to provide a mask blank, a mask, a new polishing apparatus for reliably obtaining the substrate, a polishing method and a production method. <P>SOLUTION: The flatness of the principal surface of the substrate for an electronic device is >0 to 0.25 μm, and preferably the parallelism of the substrate is >0 to 1 μm. In the polishing apparatus having a rotatable polishing surface plate, a polishing pad disposed on the surface plate, a polishing agent supplying means to supply a polishing agent to the surface of the polishing pad, a substrate holding means to hold a substrate on the polishing pad, and a substrate pressing means to press the substrate held by the substrate holding means against the polishing pad to polish the surface of the substrate, the substrate pressing means has a plurality of pressing bodies so that a plurality of divided regions of the surface of the substrate can be arbitrarily and independently pressed, and pressure controlling means for separately controlling pressure are attached to the pressing bodies. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高平坦度、高平行度を有する電子デバイス用基板(例えば、マスクブランク用基板など)、該基板を用いたマスクブランクおよび転写用マスク、並びにこれらの製造方法、研磨装置および研磨方法に関する。
【0002】
【従来の技術】
近年の超LSIデバイスの高密度、高精度化により電子デバイス用基板(例えば、マスクブランク用基板など)に要求される基板表面の微細、微小化傾向は
年々厳しくなる状況にある。
特に、近年においては、基板表面上の欠陥(傷など)、表面粗さ(平滑性)はもとより、基板の形状精度(平坦性)が厳しくなっており、超高平坦性マスクブランク用基板が要求されている。
【0003】
従来のマスクブランク用基板は、例えば、特開平1−40267号公報に開
示されているように、基板表面の表面粗さを低減するための精密研磨方法が提案されている。この精密研磨方法は、複数の基板を同時に研磨する所謂バッチ式の研磨方法であって、酸化セリウムを主材とする研磨材を用いて研磨した後、コロイダルシリカを用いて仕上げ研磨するものであり、両面研磨機による両面研磨方法が記載されている。
しかし、上記両面研磨機による両面研磨方法では研磨砥粒の粒径を小さいものを使用することにより、高平滑性を有する基板は得られるものの、広い研磨定盤面内での定盤精度を維持することは難しく、また基板がキャリヤとともに自転しながら公転して研磨されるので、個々の基板の平坦性を修正することはできなかった。
【0004】
上述の両面研磨機を使用し、定盤精度を高精度にしたり、定盤冷却方法、スラリー供給方法、研磨条件(定盤回転数や、キャリヤの自転数・公転数など)を調整しても、得られる基板主表面のフラットネス(平坦度)(基板側面から3mm除いた基板主表面の平坦度)は、絶対値で0.5μm程度が限界であった。
基板の平坦度が0.5μmに相当する半導体集積回路のデザインルールは、180nmであるとされ、従って、次世代の半導体集積回路のデザインルールである130nm、更には、100nm、70nm、・・・に対応した(ArF、F2、EUV)用マスクの基板として使用される平坦度が0.25μm以下の高平坦度の基板を実現することが困難であった。
また、研磨条件の変化(研磨パッドや研磨砥粒の劣化などの研磨条件の変化)や、バッチ式の研磨方法であるがゆえに、0.5μmから1μmといった平坦度のものであっても高い歩留まりでマスクブランク用基板を製造することは困難であった。ましてや、次世代の半導体集積回路のデザインルールに対応した0.5μm以下、0.25μm以下と言った高平坦度の基板を製造することは容易ではない。
【0005】
また、近年におけるパターンの微細化に伴い、パターン線幅が小さくなるに従って、マスクブランク用基板の周縁部の形状が、ステッパーを用いてフォトマ
スク上のパターンを被転写基板に転写する際のパターン位置精度に影響することから、基板主表面全体(基板側面および面取面を除く基板主表面)の平坦度が良いことが好ましいが、上述の両面研磨機を使用した研磨方法では、1μm程度が限界であった。
また、上述の両面研磨機を使用した研磨方法の他に、特開2002−46059号公報には矩形状基板の研磨装置が提案されている。この研磨装置は、液晶や大画面半導体センサー等の矩形状で大画面のガラス基板上に形成された配線膜や絶縁膜の表面を一定厚みだけ均一に除去して微少な凹凸を平坦化するものであって、基板の裏面側に複数個配設した加圧手段によって基板を研磨シートに対して加圧しながら基板を回転させて基板を片面研磨するものである。この加圧手段は、マイクロメータねじを回転させることにより、ばねの弾性力により基板に対する加圧力を調整するものである。
【0006】
上述の研磨装置は、基板厚みが1.1mmと薄板基板の上に形成された絶縁膜を均一に除去するために提案されたものであって、その目的とするところは絶縁膜の膜厚むらを改善することにある。従って、マスクブランク基板のように、
基板厚みが6.35mm(6インチ基板の場合)と厚い基板に対しては加圧力が弱いため、基板の平坦度を調整することができない。また、上述の研磨装置の加圧手段は、マイクロメータの位置によりばね推力を変える必要があり、デジタル信号としてデータ化しにくいため加圧力制御が難しいという問題点がある。
また、上述の研磨装置では、基板を基板収容孔が空いたキャリヤに保持しているのみであって、基板周縁部の平坦度が悪化するという問題点があった。
【0007】
【発明が解決しようとする課題】
そこで、本発明は前述のような従来技術の問題点を解決するためになされたものであり、本発明の第1の課題は、次世代の半導体集積回路のデザインルールに対応した平坦度が0.25μm以内の高平坦度を有する電子デバイス用基板、マスクブランク、および転写用マスクを提供することである。
また、本発明の第2の課題は、平坦度が0.25μm以内の高平坦度を有する電子デバイス用基板を確実に得るための新規の研磨装置および研磨方法を提供することである。
【0008】
また、本発明の第3の課題は、次世代の半導体集積回路のデザインルールに対応した平坦度が0.25μm以内の高平坦度を有する電子デバイス用基板を高い歩留まりで確実に得るための電子デバイス用基板の製造方法、および、このデバイス用基板を用いて転写用マスクにしたときのパターン位置精度や、パターン露光する際のパターン転写精度が良好なマスクブランクおよび転写用マスクの製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明は、前述の課題を解決するためになされたものであり、次のような手段を用いる。ここにおいて、手段(数字)はそれぞれの請求項に対応している。
(1)電子デバイス用基板であって、該基板主表面の平坦度が0μmを超え0.25μm以下であることを特徴とする電子デバイス用基板。ここに、0μmを超え0.25μm以下とは、0.0<平坦度≦0.25μmを云う。
本発明における平坦度は、基板主表面の表面側に任意に設けた基準面から主表面面内における表面形状の最大高さと最小高さの差(測定面から最小自乗法で算出される仮想絶対平面に対する、測定面の最大値と最小値の差)をいう。
また、平坦度の測定方法は、特に限定されない。触針式の接触式平坦度測定方法や、光の干渉などを利用した非接触式平坦度測定方法などが挙げられる。測定精度、測定領域(広範囲)などの点から非接触式平坦度測定方法が好ましい。
【0010】
また、平坦度の測定領域は、基板側面から3mm除いた基板主表面の領域としても良いし、また、フォトマスクや位相シフトマスクの転写用マスクを露光機のステッパーに支持し、半導体ウエハーにパターン転写を行う際の、基板がステッパーに支持される領域までを含めて測定領域としてもよく、さらには基板の周縁部に形成される品質保証パターンやアラインメントマークなどの補助パターン形成領域までを平坦度の測定領域としても良い。好ましくは、パターン転写の際の転写特性までを考慮した基板主表面全体(基板周縁部(基板側面および面取面)を除く主表面)を平坦度の測定領域とすることが望ましい。
本発明の平坦度は、後述する研磨装置を用いて研磨することにより、基板主表面全体(基板側面および面取面を除く主表面)の平坦度を保証可能とするものである。
【0011】
基板主表面の平坦度は、好ましくは0μmを越え0.2μm以下が望ましく、さらに好ましくは0μmを超え0.15μm以下が望ましい。上述の基板の平坦度は、後述する研磨装置を使った研磨方法を少なくとも基板主表面の片面において実施することにより容易に、かつ確実に基板形状を制御でき作製することができる。基板の平坦度の絶対値が小さくなるに従って、転写用マスクにしたときのパターン位置精度が向上し、転写用マスクを使ってパターン転写したときのパターン転写精度が向上する。基板の平坦度を上述の範囲にすることによってパターン位置精度やパターン転写精度に対して信頼性が良好な電子デバイス用基板が得られる。
また、本発明でいう電子デバイス用基板は、角型(例えば、四角形状(正方形や矩形状))の基板であって、マスクブランク用基板などが含まれる。円形状
の半導体ウエハーと異なり、本発明の電子デバイス用基板は角型であるため、例えば、バッチ式の両面研磨方法によって一度に複数の基板の両主表面を研磨した場合、各基板面内の形状が非対称になったり、また個々の基板同士の平坦度形状が異なることがある。このように、両面研磨方法において基板の平坦度制御が難しい角型の形状をした電子デバイス用基板に対しての適用が効果的である。
【0012】
(2)前記基板の平行度が0μmを超え1μm以下であることを特徴とする(1)に記載の電子デバイス用基板。
本発明における平行度とは、基板の裏面側を基準面とした場合における表面側の主表面面内における最大高さ最小高さの板厚差をいう。尚、平行度の測定領域は、上述の平坦度の測定領域と同様なので省略する。
基板の平行度は、好ましくは0μmを越え0.8μm以下が望ましく、さらに好ましくは0μmを超え0.5μm以下が望ましい。上述の基板の平行度は、上述の基板の平行度は、後述する基板装置を使った研磨方法を基板主表面の両面において実施することにより容易にかつ確実に基板形状を制御でき作製することができる。基板の平行度の値が小さくなるに従って、転写用マスクにしたときのパターン位置精度が向上し、転写用マスクを使ってパターン転写したときのパターン転写精度が向上する。基板の平行度を上述の範囲にすることによってパターン位置精度やパターン転写精度に対して信頼性が良好な電子デバイス用基板が得られる。
【0013】
(3)前記基板は、ガラス基板からなることを特徴とする(1)または(2)に記載の電子デバイス用基板。
ガラス基板の材質は特に限定されない。石英ガラス、無アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、ソーダライムガラスが一般に電子デバイス用基板として用いられている。
(4)(1)乃至(3)の何れか一に記載の電子デバイス用基板の主表面上に、被転写体に対し転写パターンとなる転写パターン用薄膜が形成されていることを特徴とするマスクブランク。
【0014】
本発明でいうマスクブランクには、透過型マスクブランク、反射型マスクブランクの何れも指し、それらの構造は、基板上に被転写体に転写すべく転写パターンとなる転写パターン用薄膜が形成されている。
透過型マスクブランクは、例えば、基板として透光性基板であるガラス基板を使用し、転写パターン用薄膜は、被転写体に転写するときに使用する露光光に対し光学的変化をもたらす薄膜(例えば、遮光機能を有する薄膜)が使用されたフォトマスクブランクである。
ここでいうフォトマスクブランクは広義の意味で用いられるものであって、露光光を遮光する機能を有する遮光性膜のみが形成されたフォトマスクブランクや、露光光に対し位相差変化をもたらす位相シフト機能を有する位相シフト膜が形成された位相シフトマスクブランクを含むものである。尚、露光光に対する遮光機能と、位相差変化をもたらす位相シフト機能を兼ね備えた光半透過膜のハーフトーン膜が形成された位相シフトマスクブランクも本発明のフォトマスクブランクに含まれる。
また、反射型マスクブランクは、例えば、基板として低熱膨張のガラス基板を使用し、転写パターン用薄膜は、基板上に形成される光反射多層膜、転写パターンとなる光吸収体膜が使用されたマスクブランクである。
また、本発明のマスクブランクは、転写パターン用薄膜である遮光性膜および/または位相シフト膜に加え、遮光性膜や位相シフト膜をパターニングするときにマスクとして機能を果たすレジスト膜や、その他の膜(例えば、透明導電膜など)を形成しても構わない。
【0015】
(5)(4)に記載のマスクブランクにおける前記転写パターン用薄膜をパターニングして転写パターンが形成されていることを特徴とする転写用マスク。
(6)回転自在な研磨定盤と、該研磨定盤上に設けられた研磨パッドと、該研磨パッドの表面に研磨剤を供給する研磨剤供給手段と、前記研磨パッド上に基板を保持する基板保持手段と、前記研磨パッドに前記基板保持手段によって保持された基板を加圧することにより基板表面を研磨する基板加圧手段とを有する研磨装置であって、
前記基板保持手段は、前記基板の周辺部分に前記研磨パッドからの過剰な圧力を抑制する機能を有し、
前記基板加圧手段は、基板表面の分割された複数領域に対して、任意に独立して加圧できるように複数の加圧体を有しており、該加圧体には個々に圧力制御可能な圧力制御手段が設けられていることを特徴とする研磨装置。
【0016】
研磨定盤は少なくとも加工圧力に対して変形しない材料と厚みを必要とする。また、研磨定盤の定盤精度は、基板の平坦度に影響を及ぼすため極力高平坦性の高い研磨定盤とすることがよい。
定盤材質としては、ステンレス合金や熱変化の少ないセラミックス材料、低熱膨張鋳鉄などが好ましい。また、定盤精度(平坦度)維持のために定盤冷却機構を設けても良い。
研磨パッドは、基板材料や得ようとする平坦度に応じて適宜選定することができる。研磨パッドは、主に硬質ポリシャと軟質ポリシャとに別れ、硬質ポリシャとしては、ウレタンパッド、ピッチ含浸パッド、硬質樹脂スウエードパッドなどが挙げられる。軟質ポリシャとしては、スウェードパッド、不織布などが挙げられる。
【0017】
使用する研磨剤の種類や粒径は、基板材料や得ようとする平坦度に応じて適宜選定することができる。研磨剤としては、酸化セリウム、酸化ジルコニウム、コロイダルシリカなどが挙げられる。研磨剤の粒径は、数十nmから数μmである。
基板保持手段は、回転したときに基板が外れないような構造であるとともに、基板周辺部分に研磨パッドからの過剰な圧力を抑制する機能を備える。
基板を保持する方法としては、少なくとも基板側面をキズを付けないよう囲むようにしたリテーナーリング(ガイドリング、ドレッシングリテーナ)を用いる方法、基板の裏面を吸引吸着する方法、キャリヤで基板を保持する方法などがある。
この基板保持手段により、基板の外周部の研磨パッドを押さえることにより、基板の周縁部にかかる圧力を均一に保つことができ、結果として基板の周縁部を均一な平坦度とすることができ、基板の周縁部の形状についても保証することできる。
【0018】
基板加圧手段は、加圧体と加圧体を保持する加圧体保持手段とを有する構造とする。
加圧体は、基板主表面に対し均等に複数分割して配置する。分割配置する加圧体の個数は基板の大きさ、平坦度の形状修正精度に応じて適宜調整することができる。基板主表面に対する加圧体の個数が多いほど、厳密な形状制御が可能となるので好ましい。例えば、基板サイズが6インチ×6インチ(1インチ=25.4mm)の場合、加圧体は4(縦横2列)個〜256(縦横16列)個の加圧体を設けることができる。装置の簡略化と形状修正精度の点を考慮すると、36(縦横6列)個〜144(縦横12列)個が好ましい。尚、基板主表面と加圧体が接触する箇所に、基板主表面にキズがつかないように弾性体を設けてもよい。
加圧体保持手段は、加圧体を基板主表面に対し略全面に配置させるために、基板とほぼ同じ大きさであって、複数の加圧体を保持できるように所定の間隔を持って加圧体保持孔が開いている。
圧力制御手段は、エアーシリンダ、油圧シリンダー、サーボモータなどが挙げられる。
【0019】
圧力制御は、連続的に、または段階的に制御可能で、レギュレーターや、付加電流などによって制御することができる。
尚、研磨定盤と基板保持手段は別々の回転駆動装置によって回転制御できるようになっている。
(7)前記基板保持手段は、前記基板の外周端面を囲むリテーナーリングであることを特徴とする(6)に記載の研磨装置。
リテーナーリングの役割は、基板周辺部分に過剰な圧力伝達を抑制して基板の周縁部に働く圧力を均一化すること、および、研磨パッドに均一に砥粒を供給する役割を持つ。基板側面とリテーナーリングの間隔は基板周辺部の形状に応じて適宜調整可能である。リテーナーリングの基板側面と接触する箇所に、弾性体を設けても良い。
【0020】
(8)研磨加工前および/または研磨加工中における基板の形状を測定し、該測定データを記憶し、所望の形状の初期設定データと前記測定データとを対比して加工条件を算出するデータ処理手段と、前記基板が所望の形状となるように、前記基板保持手段および前記基板加圧手段に加圧情報を送る伝達手段とを有することを特徴とする(6)または(7)に記載の研磨装置。
加工条件の算出は、例えば、以下のようにして行われる。まず、基板の形状(平坦度)を測定した測定データと、初期設定データとを対比し、平坦度の差分を算出する。その差分を除去して基板の形状(平坦度)が所望の形状となるように、基板および研磨定盤の回転方向と回転速度を考慮し、測定した面に対し、任意に設定した基準面に対して少なくとも相対的に凸状になっている領域を削除する加工条件を算出する。加工条件の算出は、コンピュータなどのデータ処理手段で行われる。
データ処理手段で得られた加工条件(加工情報)を、Ethernet通信、CPU  COM通信、CPU  USB通信などの伝達手段によって前記基板保持手段、および前記基板加圧手段に送り加工条件の制御を行う。
【0021】
(9)さらに、前記研磨定盤上に、回転自在であって基板主表面を略均一に加圧する加圧プレートと、前記加圧プレートと前記研磨定盤との間に設けられ、前記加圧プレートとは独立して回転自在に基板を保持する保持孔が形成されたキャリヤとを有する基板欠陥除去手段を備えたことを特徴とする(6)乃至(8)の何れか一に記載の研磨装置。
基板欠陥除去手段は、研磨定盤側の基板の主表面は、加圧プレート側の回転駆動する研磨定盤で主表面が研磨され、上記(6)の研磨装置で基板形状(平坦度)が修正された面とは反対側の面についたキズや異物などについては研磨定盤側で研磨され、上記(6)の研磨装置で基板形状(平坦度)が修正された面を維持しながら、キズや異物などの欠陥を除去できる機構になっている。
【0022】
尚、基板欠陥除去を行う際には、基板の両主表面に対し研磨剤を供給する。研磨剤供給手段は、上記(6)の研磨剤供給手段を兼用しても良いし、基板欠陥除去手段専用に研磨剤供給手段を設けても良い。
基板側の加圧プレート面には、研磨パッドが貼りつけられている。研磨パッドは、特に限定されず適宜選定することができるが、基板表面のキズや異物などの欠陥を除去し、基板表面に研磨パッドによるキズをつけないために、軟質または超軟質ポリシャを使用することが好ましい。加圧プレートは、加圧プレートの自重、加工圧力に対して変形しない材料と厚みを必要とする。また、加圧プレートの定盤精度は、基板の平坦度に影響を及ぼすため極力高平坦性定盤とすることがよい。
定盤材質は、ステンレス合金や熱変化の少ないセラミックス材料、低熱膨張鋳鉄などが好ましい。また、加圧プレートの定盤精度(平坦度)維持のために定盤冷却機構を設けても良い。加圧プレートは、基板中心に対して所定量ずらした位置を回転中心として回転する。
【0023】
キャリヤには、基板を保持する保持孔が1乃至複数個設けられているとともに、加圧プレートとは独立して回転できるように回転駆動装置が接続されている。キャリヤは、回転中に変形しない機械的耐久性を有する材料であることを必要とし、好ましい材料としては、ステンレス、塩化ビニール、プラスチック材質などが挙げられる。
加圧プレートおよび/またはキャリヤは、欠陥除去を行っている間、揺動できるように揺動手段を設けても良い。
(10)(6)乃至(8)の何れか一に記載の研磨装置を用いる研磨方法であって、基板を準備し、該基板の形状を測定した後、測定したデータに基づき該基板の形状が所望の形状となるように前記基板の周辺部分に前記研磨パッドからの過剰な圧力を抑制し、かつ、該基板主表面の形状が基板表面において任意に設定した基準面に対して相対的に凸状になっている領域は、他の領域よりも前記圧力制御手段によって前記加圧体の基板に対する圧力を大にし、凸状になっている領域に対向する基板の裏面側より押圧し基板主表面を研磨し、基板の形状を修正することを特徴とする研磨方法。
【0024】
「基板を準備し」とは、研削工程を終えた基板、研削工程で形成された基板主表面のキズを除去し、研削工程で得られた平坦度を維持する目的で行われる粗研磨工程を終えた基板、基板主表面の鏡面化を目的として行われる精密研磨工程を終えた基板など様々な基板を含むものである。研削工程、粗研磨工程、精密研磨工程で行われる研削方法、研磨方法は特に限定されない。片面研削方法や両面研削方法、また、片面研磨方法や両面研磨方法いずれの組合せでも構わない。
本発明の研磨方法は、特に基板主表面の鏡面化を目的として行われる精密研磨工程の後に行うことが好ましい。
これは、精密研磨後に形成された平坦度0.5μm程度の凸部を除去するため、精密研磨工程で使用される微細な砥粒により微少な量を除去した方が有効だからである。
基板の平坦度の測定については、(1)で上述した通りであるので省略する。
本発明の研磨方法の説明は、実施の形態にて詳述する。
【0025】
(11)前記基板の両主表面を研磨することを特徴とする(10)に記載の研磨方法。
基板の両主表面において上記研磨方法を実施することにより、基板の平行度が良好になる。基板両主表面の平坦度および平行度の制御を必要とする用途の基板に有効である。例えば、この研磨方法に適している基板として、後述するマスクブランクス用基板、電子デバイス用基板が挙げられる。
(12)(10)または(11)の研磨方法によって基板の形状を修正した後、(9)に記載の研磨装置を用いて、基板主表面の欠陥を除去することを特徴とする研磨方法。
基板主表面の欠陥を除去するので、基板主表面上に薄膜を形成して電子デバイス(例えば、フォトマスクブランクなど)を作製する場合において、薄膜下に存在する膜下欠陥の発生を防止することができるので、信頼性の高い基板が得られる。
【0026】
(13)マスクブランクの基板として用いられる電子デバイス用基板の製造方法であって、(10)乃至(12)の何れか一に記載の研磨方法によって得られることを特徴とする電子デバイス用基板の製造方法。
(14)前記電子デバイス用基板は、所定面積と所定厚みを有する四角形状の基板であって、前記所定厚み/前記所定面積が、1.0×10−4mm−1以上であることを特徴とする(13)記載の電子デバイス用基板の製造方法。
所定厚み/所定面積が1.0×10−4mm−1以上の基板面積に対して比較的厚みが大きい基板に対して特に有効である。基板面積に対して比較的厚みの小さい1.0×10−4mm−1未満の基板の場合、局所的な形状修正時に基板にそりが発生し、平坦度の制御が難しくなるので好ましくない。
一方、基板面積に対して比較的厚みの大きい1.0×10−4mm−1以上の基板の場合、基板にある程度の厚みがあるため、基板加圧手段による基板に対する圧力が面内方向に分散されながら、基板厚み方向に伝達される。そのため、局所的に圧力が加わった領域からその周辺領域にかけての研磨速度の変化が緩やかになり、相対的に凸状になっている領域とその周辺領域を徐々に研磨することができる。そのため、平坦度の制御性が良い。基板面内方向への圧力分散は、基板中央付近に圧力を加えたときと、基板周辺付近に圧力を加えたときで異なる。
基板形状の測定データ、基板面積に対する基板厚み、基板および研磨定盤の回転方向と回転速度を考慮して、基板加圧手段の基板に対する圧力を制御する。
例えば、基板形状の測定データが凸形状の場合、基板加圧手段による基板に対する圧力が、相対的に凸状になっている局所領域のみに圧力が加わらず、凸状になっている領域を含む基板面内の比較的広い領域に、ある程度分散した圧力が加わるように、基板面積に対する基板厚みを考慮して、加圧条件を設定する。基板面積に対する基板厚みが比較的大きい6025基板(6インチ×6インチ×0.25インチ)の場合、基板面内方向への圧力分散が大きいため、基板の中央部付近に配置されている基板加圧手段のみ基板に対して所定圧力を加え、基板面積に対する基板厚みが比較的小さい5009基板(5インチ×5インチ×0.09インチ)の場合、基板面内方向への圧力分散が小さいため、基板の中央付近に配置されている基板加圧手段の基板に対する荷重(圧力)を比較的大きく、基板外周付近に配置されている基板加圧手段の基板に対する荷重(圧力)を比較的小さくなるように条件を設定する。
尚、基板の厚みが厚すぎると基板加圧手段による局所領域に圧力が加わらなくので、基板の所定厚み/所定面積は、1.0×10−4mm−1以上4.0×10−4mm−1以下が好ましい。4.0×10−4mm−1を超えると、基板加圧手段による基板に対する基板厚み方向の局所的な圧力伝達がしにくくなるので好ましくない。基板の所定厚み/所定面積のさらに好ましい範囲は、1.3×10−4mm−1以上2.8×10−4mm−1とすることがが望ましい。
(15)(13)または(14)の電子デバイス用基板の製造方法によって得られた電子デバイス用基板の主表面上に、転写パターン用薄膜を形成することを特徴とするマスクブランクの製造方法。
転写用マスクにしたときのパターン位置精度や、パターン露光する際のパターン転写精度が良好なマスクブランクが得られる。
【0027】
(16)(15)のマスクブランクにおける前記転写パターン用薄膜をパターニングして転写パターンを形成することを特徴とする転写用マスクの製造方法。
転写用マスクにしたときのパターン位置精度が良好となり、パターン露光する際のパターン転写精度が良好な転写用マスクが得られる。
(17)キャリヤの保持孔に保持された基板を、該基板の上下両面側に研磨パッドを貼った上下定盤に挟持させ、前記上下定盤を基板の被加工面と垂直な軸にそれぞれ回転させ、キャリヤに保持された基板が、研磨パッド間で自転しながら公転する摺動運動することにより、前記基板の両面研磨を行う電子デバイス用基板の製造方法において、
前記両面研磨した後、前記基板の少なくとも一主表面の平坦度を測定し、測定したデータに基づき基板の平坦度が所望の値となるように、前記一主表面において任意に設定した基準面に対して相対的に凸状になっている領域について局所的に形状修正して、基板の平坦度を修正することを特徴とする電子デバイス用基板の製造方法。
【0028】
本発明における平坦度は、基板主表面の表面側に任意に設けた基準面から主表面面内における表面形状の最大高さと最小高さの差(測定面から最小自乗法で算出される仮想絶対平面に対する測定面の最大値と最小値の差)をいう。
また、平坦度の測定方法は、特に限定されない。触針式の接触式平坦度測定方法や、光の干渉などを利用した非接触式平坦度測定方法などが挙げられる。測定精度、測定領域(広範囲)などの点から非接触式平坦度測定方法が好ましい。
また、平坦度の測定領域は、基板側面から3mmを除いた基板主表面の領域としても良いし、また、フォトマスクや位相シフトマスクの転写用マスクを露光機のステッパーに支持し、半導体ウエハーにパターン転写を行う際の、基板がステッパーに支持される領域までを含めて測定領域としてもよく、さらには基板の周縁部に形成される品質保証パターンやアラインメントマークなどの補助パターン形成領域までを平坦度の測定領域としても良い。好ましくは、パターン転写の際の転写特性までを考慮した基板主表面全体(基板周縁部(基板側面及び面取面)を除く主表面)を平坦度の測定領域とすることが望ましい。
【0029】
平坦度の測定は、基板の両主表面で行う方が好ましい。両主表面で測定した平坦度のデータに基づき、それぞれの面において任意に設定した基準面に対して相対的に凸状になっている領域について、局所的に形状修正することによって、基板の平行度(基板の裏面側を基準面とした場合における表面側の主表面面内における最大高さ最小高さの板厚差)が良好になり、転写用マスクにしたときのパターン転写精度が良好になるので好ましい。
また、局所的に形状修正する方法は特に限定されない。本発明における形状修正は1枚ずつ行うことが好ましい。局所的に形状修正する方法としては、機械的に修正する方法、化学的に修正する方法、機械的及び化学的に修正する方法が挙げられる。
機械的に修正する方法としては、研磨砥粒を含むスラリーを基板に供給しながら相対的に凸状になっている領域について研磨パッドや研磨テープを凸状の領域のみに摺動させて形状修正する方法、研磨パッドや研磨テープを凸状の領域について他の領域よりも相対的に圧力を大きくして摺動させて形状修正する方法や、スラリーなどの液体を凸状の領域に吹き付けなどによって形状修正する方法などが挙げられる。
【0030】
また、化学的に修正する方法としては、基板を腐蝕させて除去するエッチング方法が挙げられる。エッチング方法としては、ウェットエッチング、ドライエッチングが挙げられる。特定領域を高精度に修正するにはドライエッチングが好ましい。エッチングに使用するエッチャントとしては、基板がSiOを含むガラスの場合、フッ素を含む酸性の溶液またはガス、またはアルカリ性の溶液が挙げられる。
また、機械的及び化学的に修正する方法としては、基板を腐蝕させながら研磨砥粒で除去するメカノケミカルポリッシングが挙げられる。
両面研磨工程が、研削工程で得られた平坦度を維持し、研削工程で形成された基板のキズの除去を目的とした比較的大きな研磨砥粒を用いて研磨する粗研磨工程と、基板の鏡面化を目的とした比較的小さな研磨砥粒を用いて研磨する精密研磨工程と、を有する複数段階の研磨工程である場合には、局所的に形状修正して基板の平坦度を修正する工程は、基板の鏡面化を目的とした比較的小さな研磨砥粒を用いて研磨する精密研磨工程、特に最終の精密研磨工程の後に行うことが望ましい。精密研磨工程で使用する研磨砥粒は、酸化セリウムやコロイダルシリカが挙げられ、研磨砥粒の平均粒径は、1μm以下(例えば、10nm〜1μm)のものが使用される。
【0031】
また、本発明でいう電子デバイス用基板は、角型(例えば、四角形状(正方形状や矩形状))の基板であって、マスクブランク用基板などが含まれる。円形
状の半導体ウエハーと異なり、本発明の電子デバイス用基板は角型であるため、例えば、バッチ式の両面研磨方法によって一度に複数の基板の両主表面を研磨した場合、各基板面内の形状が非対称になったり、また個々の基板同士の平坦度形状が異なることがある。このように、両面研磨方法において基板の平坦度制御が難しい電子デバイス用基板に対しての適用が効果的である。
(18)前記両面研磨は、研削工程で得られた平坦度を維持し、研削工程で形成された基板のキズの除去を目的とした比較的大きな研磨砥粒を用いて研磨する粗研磨工程と、基板の鏡面化を目的とした比較的小さな研磨砥粒を用いて研磨する精密研磨工程と、を有する複数段階の研磨工程であることを特徴とする請求項17記載の電子デバイス用基板の製造方法。
上述のように、両面研磨を、研削工程で得られた平坦度を維持し、研削工程で形成された基板のキズの除去を目的とした比較的大きな研磨砥粒を用いて研磨する粗研磨工程と、基板の鏡面化を目的とした比較的小さな研磨砥粒を用いて研磨する精密研磨工程と、を有する複数段階の研磨工程とすることにより、電子デバイス用基板に要求される高平滑性、高平坦性の基板を効率良く(生産性良く)作製することができる。
(19)前記両面研磨は、前記基板の表面粗さRaが0.25nm以下、平坦度が1μm以下にすることを特徴とする請求項17または18記載の電子デバイス用基板の製造方法。
上述のように、形状修正を行う前の基板を両面研磨によって基板の表面粗さRaが0.25μm以下、平坦度が1μm以下にすることによって、形状修正の負荷を低減することができるので、生産性が向上することができる。また、上述の形状修正の手段として基板を腐蝕させて除去するエッチング(特に、ドライエッチング)においては、形状修正の時に基板の表面粗さが荒れる傾向にあるので、形状修正の負荷が低減したことにより、形状修正を行う前の基板に対して表面粗さの維持、または荒れを抑えることができる。
(20)前記局所的な形状修正は、前記凸状になっている領域に対して、他の領域よりも基板に対する研磨パッドの圧力が大きくなるように押圧して基板主表面を片面研磨し、基板の平坦度を修正することを特徴とする(17)乃至(19)の何れか一に記載の電子デバイス用基板の製造方法。
【0032】
このように、局所的な形状修正を凸状になっている領域に対して、他の領域よりも基板に対する研磨パッドの圧力が大きくなるように押圧して基板主表面を片面研磨することにより、両面研磨方法によって作製された基板表面の平滑性を維持、または向上しながら、平坦度を向上させることができるので好ましい。
本発明における片面研磨方法としては、図9のような研磨方法が挙げられる。
研磨パッドが貼りつけられ、図示しない回転装置により回転駆動する研磨定盤上に、基板を回転可能な形状調整用加圧プレートにより保持し、基板と研磨パッドの間に研磨砥粒を供給して、研磨パッドに基板が摺動接触することにより片面研磨するものである。形状調整用加圧プレートは、基板周囲にリテーナーリングが配置され、局所的な形状修正を行う主表面とは反対側の裏面に対し複数分割された領域に、任意の圧力で独立して加圧できるように、図示しないレギュレーターによって圧力制御可能なシリンダーが接続された複数の加圧体を設けたもので、凸状になっている領域に対して、他の領域よりも基板に対する研磨パッドの圧力が大きくなるように各加圧体を制御して押圧することにより形状修正するものである。尚、図9中に記載された加圧体のベクトルは、押圧力の大きさを示す。
【0033】
尚、形状修正で用いる研磨砥粒の平均粒径は、好ましくは最終の両面研磨工程で用いられた研磨砥粒の平均粒径と同じまたはそれ以下が好ましい。大きいと平坦度は改善されるが、平滑性(表面粗さ)が粗くなってしまうからである。好ましくは、平均粒径が小さいコロイダルシリカが望ましい。
また、形状修正に用いられる研磨パッドは、基板の平坦度が良好になる材料、硬さを有するものが適宜選択することができる。好ましくは、軟質または超軟質ポリシャのスウェード調ポリウレタンパッドが望ましい。
(21)前記局所的な形状修正は、エッチング作用を利用するものであることを特徴とする(17)乃至(20)の何れか一に記載の電子デバイス用基板の製造方法。
エッチング作用を利用する形態としては、エッチング作用のみを利用する場合と、上述(2)にエッチング作用を利用する場合がある。
前者の場合、上述に挙げたウェットエッチングとドライエッチングがある。
ウェットエッチングの場合、厳密な形状修正を行う場合は、比較的凸状の領域を残しそれ以外はエッチング耐性を有する材料にてマスキングした後、エッチングすることで凸状の領域を局所的に形状修正することができる。
ドライエッチングの場合、エッチングガスを凸状の領域に供給しながら局所的に形状修正するので、マスキングを使用するウェットエッチングと比較して簡素化できさらに高精度の形状修正ができるので好ましい。
【0034】
また、後者の場合、研磨砥粒を含むスラリーの中に基板に対しエッチング作用をもたらす溶媒を含ませることにより、研磨速度の調整などをすることができるので好ましい。
(22)前記基板は、マスクブランク用ガラス基板であることを特徴とする(17)乃至(21)の何れか一に記載の電子デバイス用基板の製造方法。
本発明でいうマスクブランクには、透過型マスクブランク、反射型マスクブランクの何れも指し、それらの構造は、基板上に被転写体に転写すべく転写パターンとなる転写パターン用薄膜が形成されている。
透過型マスクブランクは、例えば、基板として透光性基板であるガラス基板を使用し、転写パターン用薄膜は、被転写体に転写するときに使用する露光光に対し光学的変化をもたらす薄膜(例えば、遮光機能を有する薄膜)が使用されたフォトマスクブランクである。
ここでいうフォトマスクブランクは広義の意味で用いられるものであって、露光光を遮光する機能を有する遮光性膜のみが形成されたフォトマスクブランクや、露光光に対し位相差変化をもたらす位相シフト機能を有する位相シフト膜が形成された位相シフトマスクブランクを含むものである。尚、露光光に対する遮光機能と、位相差変化をもたらす位相シフト機能を兼ね備えた光半透過膜のハーフトーン膜が形成された位相シフトマスクブランクも本発明のマスクブランクに含まれる。
また、反射型マスクブランクは、例えば、基板として低熱膨張のガラス基板を使用し、転写パターン用薄膜は、基板上に形成される光反射多層膜、転写パターンとなる光吸収体膜が使用されたマスクブランクである。
また、本発明のマスクブランクは、転写パターン用薄膜である遮光性膜および/または位相シフト膜に加え、遮光性膜や位相シフト膜をパターニングするときにマスクとして機能を果たすレジスト膜や、その他の膜(例えば、透明導電膜など)を形成しても構わない。
【0035】
また、ガラス基板の材料は特に限定されない。マスクブランクに用いられるガラス基板としては、露光光に対し透過性を有するものであって、合成石英ガラス、無アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、ソーダライムガラスなどが挙げられる。
(23)(17)乃至(22)の何れか一に記載の電子デバイス用基板の製造方法によって得られた電子デバイス用基板の主表面上に少なくとも転写パターン用薄膜を形成することを特徴とするマスクブランクの製造方法。
(24)(17)乃至(23)の何れか一に記載のマスクブランクの製造方法によって得られたマスクブランクの前記転写パターン用薄膜をパターニングして転写用マスクを製造することを特徴とする転写用マスクの製造方法。
【0036】
【発明の実施の形態】
<研磨装置および研磨方法の説明>
図1は本発明における研磨装置の構成を示す概略図であり、図2は本発明における研磨装置の基板形状調整部の構成を示す概略図であり、図3は本発明における研磨装置の基板表面欠陥除去部の構成を示す概略図である。
ここに、基板とは、本発明の研磨装置によって、形状調整、表面欠陥の除去される対象物(被研磨体、基板)を意味する。
図1に示すように、本発明の研磨装置は、研磨パッド2が貼りつけられ、図示しない回転装置により定盤用回転軸10を介して回転駆動する研磨定盤1を共通とし、基板主表面の複数に分割された領域に対し、任意に独立して加圧できるように複数の加圧体23を備えた基板加圧手段(形状調整用加圧プレート)4と、加圧体23の圧力を制御する圧力制御手段26、基板を保持する基板保持手段(リテーナーリング)22とを有し、研磨定盤1の回転と、個々の加圧体23の基板に対する圧力を制御し、基板加圧手段4および基板保持手段22が一体となって回転することにより研磨パッド2側の基板主表面を片面研磨する基板形状調整部6と、研磨パッドが貼りつけられた欠陥除去用加圧プレート7と、基板を保持するキャリア31を有し、研磨定盤1の回転と、キャリアの回転によって基板の両主表面を研磨することによって基板の研磨剤付着、微細なキズ等の欠陥を取り除く基板欠陥除去部9とを備えている。
【0037】
尚、上述の研磨定盤1、形状調整用加圧プレート4、基板保持手段22、欠陥除去用加圧プレート7、キャリヤ31は図示しない独立した回転装置により各々の回転軸を介して回転駆動するようになっている。これらの回転軸および定盤用回転軸は、独立して正逆回転可能になっており、形状調整用加圧プレート4および欠陥除去用加圧プレート7とは、水平方向に揺動可能になっている。
このようにすることにより、柔軟な研磨条件を設定することができる。
また、基板形状調整部6、基板表面欠陥除去部9にはそれぞれ、基板に研磨液(スラリー)が供給できるように研磨剤(スラリー)供給手段3が設けられている。研磨剤供給手段3を1つとし、基板形状調整部6、基板表面欠陥除去部9の研磨液の供給を兼ねても良い。
【0038】
また、本発明の研磨装置は、基板形状調整部6と基板表面欠陥除去部9の研磨定盤を別にした研磨装置であってもよい。また、図4に示すように一つの研磨定盤に対し複数の基板形状調整部6、複数の基板表面欠陥除去部9を設けても良い。
次に、図2、図3を参照しながら基板形状調整部6、基板表面欠陥除去部9の構成、およびこれらを用いた研磨方法を詳細に説明する。
図2は基板形状調整部6の構成を示す拡大概略図である。
基板加圧手段(形状調整用加圧プレート)4は、基板主表面に対し均等に複数分割して配置された加圧体23と、加圧体23を保持する加圧体保持手段24とを有する構造となっている。基板の主表面に対し加圧体23が均等に分割して配置されるように、加圧体保持手段24には複数の(基板が電子デバイス用基板(フォトマスクブランク用基板)の場合、縦6列、横6列の)円筒状の穴が設けられており、その各穴には基板を局所的に加圧する加圧体23と、各加圧体23には接続体25を介して複数段階の圧力調整可能な圧力制御手段26である単動シリンダーが接続されている。このシリンダーに圧縮空気を送り込むことにより、加圧体23を動作させるので、十分なストロークが確保できるうえ、DA変換器および電空変換器を用いることにより制御が容易である。
【0039】
尚、加圧体23および加圧体保持手段24の研磨定盤側の面には、加圧体による基板のキズを防止するために、加圧体、加圧体保持手段と基板との間に弾性体であるバッキングパッド21が介在されている。
また、基板保持手段であるリテーナーリング22は、基板の外周に沿って設けられ、電子レギュレータにより圧力設定された1または複数のシリンダで加圧される。尚、図5に示すように研磨定盤1側のリテーナーリング22の形状として、基板27が当接する内周部分に基板端部(側面、面取面)に対するカケやキズを防止するために、弾性部材51を設けても良い。弾性部材51は、基板の外周に沿って全領域に形成しても良いし、部分的に形成しても良い。
【0040】
リテーナーリング22によって保持された基板27は、基板27の形状が所望の形状となるように個々の加圧体23が圧力制御され、加圧体保持手段24の回転とともに自転し、研磨定盤1の回転により、研磨定盤1に貼着された研磨パッド2とが基板の研磨定盤側の主表面に対し相対摺動運動することにより、研磨定盤側の基板主表面における任意に設定した基準面に対して相対的に凸状になっている領域が、他の領域よりも優先的に除去されるように片面研磨され、形状調整が行なわれる。
尚、上述のリテーナーリング22、加圧体保持手段24を揺動可能な揺動手段に接続し揺動可能としても良い。
尚、バッキングパッド21を設ける代りに、加圧体23における少なくとも基板27と当接する部分が、基板表面にキズを与えない材料としても構わない。
尚、加圧体23の配置、個数は特に限定されない。基板27の大きさや形状、基板形状の形状精度等に応じて適宜変更することができる。
【0041】
図3は基板表面欠陥除去部の構成を示す拡大概略図である。
欠陥除去用加圧プレート7は、図示しない回転装置により回転軸を介して回転駆動するようになっており、研磨定盤側に研磨パッド2が貼りつけられている。
キャリヤ31には偏心した位置に基板保持孔が1個設けられている。
キャリヤ31は欠陥除去用加圧プレート7と独立した回転軸で、図示しない回転装置により回転駆動するようになっている。
基板保持孔に保持された基板27は、キャリヤ31の回転とともに自転し、かつ、研磨定盤と加圧プレートの回転により、研磨定盤に貼着された研磨パッド2と、欠陥除去用加圧プレート7に貼着された研磨パッド2が基板の両主表面に対し相対摺動運動することにより、研磨定盤側の基板の主表面は、欠陥除去用加圧プレート7側の回転駆動する研磨定盤で主表面が研磨され、上記(6)の研磨装置で基板形状(平坦度)が修正された面とは反対側の面についたキズや異物などについては研磨定盤側で研磨され、上記(6)の研磨装置で基板形状(平坦度)が修正された面を維持しながら、キズや異物などの欠陥を除去できる機構になっている。
【0042】
尚、キャリヤ31は、回転駆動に耐え得る機械的耐久性を有する必要があり、材質はステンレス合金、塩化ビニール、プラスチック材質が好ましく、厚みは基板の厚みより小さい範囲で極力厚い方が好ましい。キャリヤは基板が複数配置できるように複数個の基板保持孔を形成しても良い。
尚、研磨定盤1の内部には温度センサーが取り付けられており、研磨定盤の表面温度が一定になるように、制御できるようにしてある。また、基板表面欠陥除去部9の欠陥除去用加圧プレート7にも上述の温度センサーを取り付けても良い。
【0043】
<電子デバイス用基板の製造方法の説明>
以下、本発明の電子デバイス用基板の製造方法について説明する。
本発明の電子デバイス用基板の製造方法は、図6に示すように以下の工程からなる。
基板側面の面取り形状加工と、ラップ盤等によって基板両主表面の研削加工を終えた電子デバイス用基板の両主表面を研磨する研磨工程(S101)と、
研磨工程によって得られた基板の一主表面の平坦度を測定する平坦度測定工程(S102)と、
得られた測定データに基づき基板の平坦度が所望の値となるように、測定した面に局所的に形状調整して基板の平坦度を調整(修正)する形状調整工程(S103)と、
形状調整を終えた基板表面に存在する欠陥を除去する表面欠陥除去工程(S104)と、を有する。
【0044】
尚、研磨工程と形状調整工程の間、形状調整工程と表面欠陥除去工程との間に、適宜次工程に前工程に使用した研磨砥粒が持ちこまれないように、基板に付着した研磨砥粒を除去する洗浄工程を設けても良い。
研磨工程(S101)は、基板の主表面を片面ずつ研磨を行う片面研磨を表面、裏面のそれぞれの面に対して行っても、基板の両主表面を一度に研磨する両面研磨であっても良い。生産性の点から両面研磨が好ましい。両面研磨の代表的なものとしては、図11の両面研磨装置を用いて両面研磨を行う。キャリヤ31の保持孔に保持された基板27を挿入保持して、キャリヤ31の外周歯を両面研磨装置の太陽歯車64と内歯歯車63にかみ合わせて、キャリヤ31を自転および公転させ、研磨砥粒を供給しながら互いに逆回転する上下定盤に貼着した研磨パッド2との間に形成される相対摺動運動により基板の両主表面の両面研磨を行う。
【0045】
研磨工程は、通常、研削工程で形成された基板主表面のキズを除去し、研削工程で得られた平坦度を維持する目的として行われる粗研磨工程と、基板の鏡面化を目的として行われる精密研磨工程と、を有する複数の研磨工程で行われる。
平坦度測定工程(S102)は、上述に記載された平坦度測定方法、測定領域で適宜選定された条件で平坦度を測定し、得られた平坦度のデータは、コンピュータなどの記録媒体に記憶させる。記憶した測定データと予め蓄積された所望の平坦度のデータと対比し、平坦度の差分を算出する。その差分を除去して基板の平坦度が所望の値となるように、加工条件を設定する。
加工条件は、以下の方法によって決定することができる。
加工条件の決定方法をわかり易く説明するために、一主表面の形状(平坦度)が凸状になっている基板の形状調整(修正)を行う場合を例にとり説明する。加工条件の前提として、基板の回転方向と研磨定盤の回転方向を逆または同一回転とする。
【0046】
図7は研磨装置における基板形状調整部6の上面図であり、図8は、図7の基板形状調整部のA−A´線断面図である。
基板27の加工条件を決定するに当たり、平坦度測定器で得られた形状および数値を面積換算し、除去したい場所の圧力、回転数を決定する。
また、上記条件にて所定の除去したい場所まで到達した時点で、加工条件を変更し、更に他段階加工条件設定を行うことで形状を調整していく。
形状調整工程(S103)は、上述の研磨装置における基板形状調整部6で、上述の平坦度測定方法において決定した加工条件に従い、行う。
表面欠陥除去工程(S104)は、上述の研磨装置における基板表面欠陥除去部9で行う。
【0047】
尚、上述の平坦度測定工程は、形状調整工程と同時に行うこともできる。形状調整の加工の進行とともに、基板の平坦度を測定し、測定して得られた平坦度の情報を個々の加圧体の加圧条件にフィードバックすることで達成される。
また、形状調整工程(S103)と表面欠陥除去工程(S104)は、基板の一主表面における形状調整工程(S103−1)を終えた後、他方の主表面における形状調整工程(S103−2)を行い、その後、表面欠陥除去工程(S104)を行っても良いし、基板の一主表面における形状調整工程(S103−1)を終えた後、表面欠陥除去工程(S104−1)を行い、次に、他方の主表面における形状調整工程(S103−2)を終えた後、表面欠陥除去工程(S104−2)を行っても良い。尚、上述の表面欠陥除去工程(S104)は、途中で基板をひっくり返して行っても構わない。
【0048】
<電子デバイス用基板の説明>
本発明の電子デバイス用基板は、例えば、上述の電子デバイス用基板の製造方法によって得られるもので、高い平坦度を有し、さらに高い平行度を有するものである。電子デバイス用基板は、図12に示すように互いに対向して設けられた一組の主表面71と、該主表面と直交する2組の側面72と、前記主表面と側面とによって挟まれた面取面73を有する角型(方形状)の基板であって、基板主表面(好ましくは両主表面)の平坦度(基板側面および面取面を除く基板主表面全体の平坦度を指す。以後示す平坦度の値は基板主表面全体の平坦度とする。)が0μmを超え0.25μm以下の高い平坦度を有する基板である。
【0049】
また、基板主表面の平行度が0μmを超え1μm以下の高い平行度を有する基板である。
基板の両主表面は、精密研磨によって鏡面に仕上げられており、その表面粗さは、平均表面粗さRaで0.3nm以下に仕上げられている。主表面の表面粗さは、欠陥の検出および、成膜後の膜表面の均一性の点から小さい方が好ましく、Raで0.2nm以下、さらに好ましくは、0.15nm以下に鏡面仕上げしていることが好ましい。
また、基板の側面、および面取面もパーティクルの発生防止の点から、ブラシ研磨等によって鏡面に仕上げられている方が好ましく、その表面粗さは、平均表面粗さRaで0.3nm以下さらに好ましくは、0.2nm以下、0.15nm以下とすることが望ましい。
【0050】
<実施例1>
1)粗研磨工程(S101)
合成石英ガラス基板(6インチ×6インチ)の端面を面取加工、および両面ラッピング装置によって研削加工を終えたガラス基板と、上述の両面研磨装置に12枚セットし、以下の研磨条件で粗研磨工程を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:酸化セリウム(平均粒径2〜3μm)+水
研磨パッド:硬質ポリシャ(ウレタンパッド)
粗研磨工程後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
2)精密研磨工程(S101)
上述の両面研磨装置に12枚セットし、以下の研磨条件で精密研磨工程を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:酸化セリウム(平均粒径1μm)+水
研磨パッド:軟質ポリシャ(スウェードタイプ)
精密研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
【0051】
3)超精密研磨工程(S101)
上述の両面研磨装置に12枚セットし、以下の研磨条件で超精密研磨工程を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:コロイダルシリカ(平均粒径100nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
精密研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
4)平坦度測定工程(S102)
得られた12枚のガラス基板の中から1枚を抜き出し一主表面の平坦度を平坦度測定機(トロッペル社製FM200)によって測定したところ、基板形状は凹状を示しており、その平坦度は0.68μmであった。
また、ガラス基板の表面粗さを原子間力顕微鏡によって測定したところ、平均表面粗さRaは0.18nmであった。
同様の平坦度測定を全数12枚両面行い、その測定データをコンピュータに保存した。
尚、得られたガラス基板の厚さは、約0.25インチ(約6.35mm)であった。(基板面積/基板厚さ:約2.73×10−4mm−1
【0052】
5)形状調整工程(S103)
次に、コンピュータに保存した平坦度の測定データと、得ようとする平坦度0.25μmとを対比し、平坦度の差分をコンピュータにより算出し、基板および研磨定盤の回転方向、回転速度を考慮し加工条件を求めた。尚、形状修正工程は、上述の図1の研磨装置における基板形状調整部6(加圧体23は、基板主表面に対し等分配置された縦横6列、合計36個とした。)で行った。
具体的な研磨条件は、図14および下記に示すように、形状調整前の基板が凹形状なので、基板のコーナー部および周縁部の圧力が高くなっている。
リテーナーリングの圧力:  7.5 g/cm2
研磨液:コロイダルシリカ(平均粒径80nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
研磨時間: 20 分
基板回転数: 6rpm
研磨定盤回転数:12rpm
形状調整工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
得られたガラス基板の平坦度を上述と同様の測定機にて行ったところ、平坦度は0.23μm(凹形状)であった。
また、表面粗さを測定したところ、精密研磨工程後の表面粗さはRa=0.18nmであった。
【0053】
尚、形状調整を行っていない裏面、および他の11枚のガラス基板に対しても上述の形状調整工程を実施し、ガラス基板を製造した。
その結果、12枚全てのガラス基板の平坦度が絶対値で0.25μm以内に入っており、高い平坦度を有するガラス基板が得られた。
また、12枚全てのガラス基板の平行度を平行度測定機(ZYGO干渉計)によって測定したところ、0.8μm以下であった。
6)表面欠陥除去工程(S104)
次に、基板の表面に存在するキズや、上述の形状調整工程(S103)における加圧体と接触した部分における加圧体接触跡等を除去するために、図1の研磨装置の基板表面欠陥除去部9で両面研磨を行った。具体的な研磨条件は以下の通りである。
研磨液:コロイダルシリカ(平均粒径80nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
加工荷重:30g/cm2
研磨時間:10分
基板回転数:5 rpm
表面欠陥除去工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
ガラス基板表面を目視検査を実施したところ、基板表面にはキズや、形状修正工程における加圧体接触跡は確認されず、表面欠陥のない主表面であった。
【0054】
<比較例1>
上述の実施例1において4)平坦度測定工程、5)形状調整工程、6)表面欠陥除去工程を行わなかった他は、実施例1と同様にしてガラス基板を作製した。3)の超精密研磨工程を終えたガラス基板全数12枚の平坦度を測定したところ、0.5μm〜1.5μm(凸形状)で、平行度は1.2〜 3.4μmであった。
<実施例2>
上述の実施例1において、5インチ×5インチ(127mm×127mm)の大きさのガラス基板とし、超精密研磨工程を終えたときのガラス基板の厚さを約0.09インチ(約2.23mm)とした(基板面積/基板厚さ:約1.42×10−4mm−1)以外は、実施例1と同様にしてガラス基板を作製した。その結果、12枚全てのガラス基板の平坦度が絶対値で0.25μm以内に入っており、高い平坦度を有するガラス基板が得られた。また、ガラス基板表面を目視検査を実施したところ、基板表面にはキズや、形状修正工程における加圧体接触跡は確認されず、表面欠陥のない主表面であった。
<フォトマスクブランクおよびフォトマスクを作製しての評価>
実施例1、2および比較例で得られたガラス基板の一主表面上に、窒化クロム膜/炭化クロム膜/酸化窒化クロム膜をスパッタリング法により積層(合計膜厚900オングストローム)したフォトマスクブランク、およびガラス基板の一主表面上に窒化されたモリブデンシリサイド膜をスパッタリング法により形成(膜厚800オングストローム)した位相シフトマスクブランクを作製した。
さらに、上記膜上にレジスト膜をスピンコート法により形成し、所望のパターンを有するマスクを介して露光・現像することによって所望のパターンを有するフォトマスクおよび位相シフトマスクを作製した。
【0055】
得られたフォトマスクおよび位相シフトマスクのパターン位置精度を基準パターンデータと対比したところ実施例1、2のガラス基板を用いて得られたフォトマスクおよび位相シフトマスクのパターン精度は良好であったが、比較例のガラス基板を用いて得られたフォトマスクおよび位相シフトマスクのパターン精度は、基準パターンデータと対比しばらついており悪い結果となった。
以下、本発明(17)乃至(24)の電子デバイス用基板の製造方法について説明する。
本発明の電子デバイス用基板の製造方法は、図10に示すように主に以下の工程からなる。
【0056】
基板側面の面取り形状加工と、ラップ盤等によって基板両主表面の研削加工を終えた電子デバイス用基板の両主表面を比較的大きな研磨砥粒を用いた両面研磨方法による粗研磨工程(S201)と、
比較的小さな研磨砥粒を用いた両面研磨方法によって基板の両主表面を精密研磨する精密研磨工程(S202)と、
精密研磨工程によって得られた基板の一主表面の平坦度を測定する平坦度測定工程(S203)と、
得られた測定データに基づき基板の平坦度が所望の値となるように、測定した面に、任意に設定した基準面に対して相対的に凸状になっている領域について局所的に形状修正して基板の平坦度を修正する形状修正工程(S204)と、
基板に付着した研磨砥粒やパーティクルなどを除去する最終洗浄工程(S205)と、を有する。
【0057】
尚、形状修正工程(S204)を基板の両主表面に行う場合や、再度平坦度の修正を行う場合は、上記平坦度測定工程(S203)と形状修正工程(S204)、最終洗浄工程(S205)が行われる。
また、粗研磨工程と精密研磨工程の間、精密研磨工程と形状修正工程の間に、適宜次工程に前工程に使用した研磨砥粒が持ちこまれないように、基板に付着した研磨砥粒を除去する通常の洗浄工程を設けてもよい。
また、基板の端面を研磨する端面研磨工程を最終洗浄工程の前の何れかに行っても構わない。
両面研磨の代表的なものとしては、図11の両面研磨装置を用い、粗研磨工程、精密研磨工程を行う。
キャリヤ31の保持孔に保持された角型の基板27を挿入保持して、キャリヤ31の外周歯を両面研磨装置の太陽歯車64と内歯歯車63にかみ合わせて、キャリヤ31を自転及び公転させ、研磨砥粒を供給しながら互いに逆回転する上下定盤に貼着した研磨パッド2との間に形成される相対摺動運動により基板27の両主表面の両面研磨を行う。
【0058】
粗研磨工程は、研削工程で形成された基板主表面のキズを除去し、研削工程で得られた平坦度を維持する目的として行われるもので、研磨砥粒の平均粒径が約1〜3μmの比較的大きな研磨砥粒を用いて研磨する工程である。研磨砥粒の材質は、基板の材料に応じて適宜選択される。
粗研磨工程で使用する研磨パッドは、平坦度の維持の点から、硬質ポリシャを使用することが好ましい。
精密研磨工程は、キズ等の表面欠陥がなく、基板の鏡面化を目的として行われるもので、研磨砥粒の平均粒径が約1μm以下(例えば、10nm〜1μm)の比較的小さな研磨砥粒を用いて研磨する工程である。研磨砥粒の材質は、上述と同様に基板の材料に応じて適宜選択される。平均粒径が小さく平滑な基板表面が得られる点からコロイダルシリカが好ましい。
精密研磨工程で使用する研磨パッドは、鏡面化の点から、軟質または超軟質ポリシャを使用することが好ましい。
【0059】
平坦度測定工程によって得られた平坦度のデータは、コンピュータなどの記録媒体に記憶させる。記憶した測定データと予め蓄積された所望の平坦度データと対比し、平坦度の差分を算出する。その差分を除去して基板の平坦度が所望の値となるように、測定した面に対し、任意に設定した基準面に対して相対的に凸状になっている領域に対応する加工条件を設定し、その加工条件に従い局所的に形状修正を行う。
所望の値とは、具体的には平坦度が0μmを超え1μm以下(0.0<平坦度≦1μm)の範囲とすることが好ましい。さらに好ましくは、0μmを超え0.5μm以下(0.0<平坦度≦0.5μm)、さらに好ましくは0μmを超え0.25μm以下(平坦度<0.0<平坦度≦0.25μm)が望ましい。基板の平坦度の絶対値が小さくなるに従って、フォトマスクにしたときのパターン位置精度が向上し、フォトマスクを使ってパターン転写したときのパターン転写精度が向上する。所望の値は、これらの要求されるパターン位置精度、パターン転写精度に応じて決めることができる。尚、本発明の形状修正工程を設けることにより、所望の平坦度をほぼ全て得ることができる。
また、平行度としては0μmを超え2μm以下とすることが好ましい。さらに好ましくは、0μmを超え1μm以下、さらに好ましくは0μmを越え0.5μm以下が望ましい。
最終洗浄工程は、薬液(酸やアルカリ)洗浄、洗剤、純水や超純水による洗浄や、水素水などの機能水などのウェット洗浄や、UV(紫外線)照射やオゾン処理などのドライ洗浄の中から、除去する対象物に応じて1または複数選択して行われる。
【0060】
<実施例3>
1)粗研磨工程(S201)
合成石英ガラス基板(6インチ×6インチ)の端面を面取加工、及び両面ラッピング装置によって研削加工を終えたガラス基板を、上述の両面研磨装置に12枚セットし、以下の研磨条件で粗研磨工程を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:酸化セリウム(平均粒径2〜3μm)+水
研磨パッド:硬質ポリシャ(ウレタンパッド)
粗研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
2)精密研磨工程(S202)
上述の両面研磨装置に12枚セットし、以下の研磨条件で精密研磨工程を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:酸化セリウム(平均粒径1μm)+水
研磨パッド:軟質ポリシャ(スウェードタイプ)
精密研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
【0061】
3)平坦度測定工程(S203)
得られた12枚のガラス基板の中から1枚を抜き出し一主表面の平坦度を平坦度測定機(トロッペル社製FM200)によって測定したところ、基板形状は凸状を示しており、その平坦度は0.97μmであった。
また、ガラス基板の表面粗さを原子間力顕微鏡によって測定したところ、平均表面粗さRaは0.25nmであった。
同様の平坦度測定を全数12枚両面行い、その測定データをコンピュータに保存した。
4)形状修正工程(S204)
次に、コンピュータに保存した平坦度の測定データと、得ようとする平坦度0.56μm(凹形状)とを対比し、平坦度の差分をコンピュータにより算出し、加工条件を求めた。尚、本実施例における形状修正工程は、図9の枚葉式片面研磨方法により行う。図9における加圧体23は、6インチ×6インチの基板に対し、6×6=36分割に当分配置した加圧体を用いた。加圧体は、圧力伝達できるシリンダーを取り付け、更に電磁弁を独立して使用することにより、圧力を電子レギュレーターにより設定できる構成とした。
具体的な研磨条件を図13および以下に示すように、修正前の基板形状が凸型なので、基板の中心部への圧力が高くなっている。
リテーナーリングの圧力:7.5g/cm2
研磨液:コロイダルシリカ(平均粒径100nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
研磨時間:   60 分
【0062】
5)最終洗浄工程(S205)
形状修正工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
得られたガラス基板の平坦度を上述と同様の測定機にて行ったところ、平坦度は0.49μm(凹形状)であった。
また、表面粗さを測定したところ、精密研磨工程後の表面粗さはRa=0.23nmであった。
尚、形状修正を行っていない裏面、及び他の11枚のガラス基板に対しても上述の(4)形状修正工程、(5)最終洗浄工程を実施し、ガラス基板を製造した。その結果、12枚全てのガラス基板の平坦度が絶対値で0.5μm以内に入っており、高い平坦度を有するガラス基板が得られた。
また、12枚全てのガラス基板の平行度を平行度測定機(ZYGO干渉計)によって測定したところ、0.8μm以下であった。
【0063】
<実施例4>
上述の実施例3において2)精密研磨工程の後、以下の条件で超精密研磨工程を実施した。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:コロイダルシリカ(平均粒径100nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
精密研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
得られた12枚のガラス基板の中から1枚を抜き出し一主表面の平坦度を平坦度測定機(トロッペル社製FM200)によって測定したところ、基板形状は凹状を示しており、その平坦度は0.68μm(凹形状)であった。
また、ガラス基板の表面粗さを原子間力顕微鏡によって測定したところ、平均表面粗さRaは0.18nmであった。
同様の平坦度測定を全数12枚両面行い、その測定データをコンピュータに保存した。
【0064】
次に、コンピュータに保存した平坦度の測定データと、得ようとする平坦度0.25μm(凹形状)とを対比し、平坦度の差分をコンピュータにより算出し、加工条件を求めた。尚、上述と同様に形状修正工程は、図9の枚葉式片面研磨方法により行った。
具体的な研磨条件は、図14および下記に示すように、形状調整前の基板が凹形状なので、基板のコーナー部および周縁部の圧力が高くなっている。
リテーナーリングの圧力: 7.5 g/cm2
研磨液:コロイダルシリカ(平均粒径100nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
研磨時間:   20 分
形状修正工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
得られたガラス基板の平坦度を上述と同様の測定機にて行ったところ、平坦度は0.23μm(凹形状)であった。
【0065】
また、表面粗さを測定したところ、精密研磨工程後の表面粗さはRa=0.18nmであった。
尚、形状修正を行っていない裏面、及び他の11枚のガラス基板に対しても上述の形状修正工程、最終洗浄工程を実施し、ガラス基板を製造した。その結果、12枚全てのガラス基板の平坦度が絶対値で0.25μm以内に入っており、高い平坦度を有するガラス基板が得られた。
また、12枚全てのガラス基板の平行度を平行度測定機(ZYGO干渉計)によって測定したところ、0.8μm以下であった。
【0066】
<比較例2>
上述の実施例3において3)平坦度測定工程、4)形状修正工程、5)最終洗浄工程を行わない両面研磨方法による精密研磨工程を終えたガラス基板全数12枚の平坦度を測定したところ、1.0μm(凹形状)〜1.5μm(凸形状)と形状はばらばらで平坦度のばらつきも大きい。
<実施例5>
上述の実施例3において、4)形状修正工程において使用する研磨液として、水酸化ナトリウム(NaOH)を添加し、pHが11.2の研磨液にした以外は実施例3と同様にしてガラス基板を作製した。
形状修正工程において使用する研磨液として、水酸化ナトリウムを添加して、エッチング作用を持たせたことにより、研磨時間を10%から20%短縮することができ、生産性が向上した。尚、得られたガラス基板の表面粗さ、平坦度、平行度ともに同程度のガラス基板であり良好であった。
<フォトマスクブランク及びフォトマスクを作製しての評価>
実施例3〜5及び比較例2で得られたガラス基板の一主表面上に、窒化クロム膜/炭化クロム膜/酸化窒化クロム膜をスパッタリング法により積層(合計膜厚900オングストローム)したフォトマスクブランク、及びガラス基板の一主表面上に窒化されたモリブデンシリサイド膜をスパッタリング法により形成(膜厚800オングストローム)した位相シフトマスクブランクを作製した。
さらに、上記膜上にレジスト膜をスピンコート法により形成し、所望のパターンを有するマスクを介して露光・現像することによって所望のパターンを有するフォトマスク及び位相シフトマスクを作製した。
得られたフォトマスク及び位相シフトマスクのパターン位置精度を基準パターンデータと対比したところ実施例2,3のガラス基板を用いて得られたフォトマスク及び位相シフトマスクのパターン位置精度は良好であったが、比較例のガラス基板を用いて得られたフォトマスク及び位相シフトマスクのパターン精度は、基準パターンデータと対比しばらついており悪い結果となった。
<参考例>
上述の実施例3における1)粗研磨工程を行わなかったこと以外は実施例3と同様にして電子デバイス用基板を作製した。
4)形状修正工程を行う前のガラス基板の表面粗さRaおよび平坦度を測定したところ、平均表面粗さRaは0.27nmと実施例3とほぼ同じであったが、基板形状は凸状を示しており、その平坦度は2μmを超えていた。
その結果、4)形状修正工程よって実施例3とほぼ同じ平坦度にするために、形状修正工程における研磨時間が、およそ2倍となり、生産性が大きく低下した。
従って、両面研磨工程を、研削工程で得られた平坦度を維持し、研削工程で形成された基板のキズの除去を目的とした比較的大きな研磨砥粒を用いて研磨する粗研磨工程と、基板の鏡面化を目的とした比較的小さな研磨砥粒を用いて研磨する精密研磨工程の複数段階行うことにより、高平滑性、高平坦性の電子デバイス用基板を生産性よく得ることができることが判る。
【0067】
【発明の効果】
本発明によれば、第1に、次世代の半導体集積回路のデザインルールに対応した平坦度が0.25μm以内の高平坦度を有する電子デバイス用基板、フォトマスクブランク、およびフォトマスクを提供することができる。
第2に、平坦度が0.25μm以内の高平坦度を有する基板を確実に得るための新規の研磨装置および研磨方法を提供することができる。
第3に、次世代の半導体集積回路のデザインルールに対応した平坦度が0.25μm以内の高平坦度を有する電子デバイス用基板を高い歩留まりで確実に得るための電子デバイス用基板の製造方法、および、この電子デバイス用基板を用いてフォトマスクにしたときのパターン位置精度やパターン露光する際のパターン転写精度が良好なフォトマスクブランクおよびフォトマスクの製造方法を提供することができるなど、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】本発明における研磨装置の構成を示す概略図である。
【図2】本発明における研磨装置の基板形状調整部の構成を示す概略図である。
【図3】本発明における研磨装置の基板表面欠陥除去部の構成を示す概略図である。
【図4】本発明における研磨装置の好ましい実施形態を示す概略図である。
【図5】本発明に用いる研磨定盤側のリテーナーリングの形状を示す図である。
【図6】本発明における電子デバイス用基板の製造工程を示す図である。
【図7】本発明の研磨装置における基板形状調整部の上面図である。
【図8】図7の基板形状調整部のA−A´線断面図である。
【図9】本発明における研磨装置の基板形状修正部の構成を示す概略図である。
【図10】本発明における電子デバイス用基板の製造工程の好ましい実施形態を示す図である。
【図11】従来の枚葉式片面研磨装置を示す概要図である。
【図12】本発明の研磨対象である基板を示す図である。
【図13】本発明の実施例における研磨条件を示す図である。
【図14】本発明の実施例における研磨条件を示す図である。
【符号の説明】
1:研磨定盤、2:研磨パッド、3:スラリー供給手段、4:形状調整用加圧プレート、5:回転軸、6:基板形状調整部、7:欠陥除去用加圧プレート、8:回転軸、9:基板表面欠陥除去部、10:定盤用回転軸、21:弾性体(バッキングパッド)、22:リテーナーリング(基板保持手段)、23:加圧体、24:加圧体保持手段、25:接続体、26:圧力制御手段、27:基板、31:キャリヤ、51:弾性部材、61:下定盤、62:上定盤、63:内歯歯車、64:太陽歯車、71:主表面、72:側面、73:面取面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate for an electronic device (for example, a substrate for a mask blank) having a high degree of flatness and high parallelism, a mask blank and a transfer mask using the substrate, a method of manufacturing these, a polishing apparatus and a polishing method. About.
[0002]
[Prior art]
Due to the recent increase in density and precision of VLSI devices, the tendency of the substrate surface to become finer and smaller, which is required for electronic device substrates (for example, mask blank substrates), is increasing.
The situation is getting more severe year after year.
In particular, in recent years, not only defects (scratch etc.) and surface roughness (smoothness) on the substrate surface, but also substrate shape accuracy (flatness) have become severe, and an ultra-high flatness mask blank substrate is required. Have been.
[0003]
A conventional mask blank substrate is disclosed in, for example, Japanese Patent Application Laid-Open No.
As shown, a precision polishing method for reducing the surface roughness of the substrate surface has been proposed. This precision polishing method is a so-called batch type polishing method in which a plurality of substrates are simultaneously polished, and is polished using an abrasive mainly composed of cerium oxide, and then finish-polished using colloidal silica. Describes a double-side polishing method using a double-side polishing machine.
However, in the double-side polishing method using the double-side polishing machine, a substrate having high smoothness can be obtained by using a particle having a small abrasive grain size, but the platen accuracy in a wide polishing platen surface is maintained. This is difficult and the flatness of each substrate cannot be corrected because the substrate revolves and polishes while rotating with the carrier.
[0004]
Using the above-mentioned double-sided polishing machine, the surface plate precision can be increased, or the surface plate cooling method, slurry supply method, and polishing conditions (such as the number of rotations of the surface plate and the number of revolutions and revolutions of the carrier) can be adjusted. The resulting flatness (flatness) of the main surface of the substrate (flatness of the main surface of the substrate excluding 3 mm from the side surface of the substrate) was limited to about 0.5 μm in absolute value.
The design rule for a semiconductor integrated circuit having a substrate flatness of 0.5 μm is considered to be 180 nm. Therefore, the design rule for a next-generation semiconductor integrated circuit is 130 nm, further 100 nm, 70 nm,. It has been difficult to realize a high flatness substrate having a flatness of 0.25 μm or less, which is used as a substrate for an (ArF, F2, EUV) mask corresponding to the above.
In addition, a change in polishing conditions (change in polishing conditions such as deterioration of a polishing pad or abrasive grains) or a batch-type polishing method results in a high yield even with a flatness of 0.5 μm to 1 μm. It was difficult to manufacture a mask blank substrate by the method described above. Further, it is not easy to manufacture a substrate having a high flatness of 0.5 μm or less and 0.25 μm or less corresponding to the design rule of a next-generation semiconductor integrated circuit.
[0005]
In addition, as the pattern line width becomes smaller with the recent pattern miniaturization, the shape of the peripheral portion of the mask blank substrate is changed by photo stepper using a stepper.
The flatness of the entire substrate main surface (substrate main surface excluding the side surface and chamfered surface) is preferably good, since this affects the pattern position accuracy when the pattern on the mask is transferred to the substrate to be transferred. In the polishing method using the double-side polishing machine, the limit is about 1 μm.
In addition to the polishing method using the double-side polishing machine described above, Japanese Patent Application Laid-Open No. 2002-46059 proposes a polishing apparatus for a rectangular substrate. This polishing device removes the surface of the wiring film or insulating film formed on a rectangular glass substrate with a large screen, such as a liquid crystal or a semiconductor sensor with a large screen, by a uniform thickness to flatten minute irregularities. In this method, the substrate is rotated on one side by rotating the substrate while pressing the substrate against the polishing sheet by a plurality of pressing means disposed on the back side of the substrate. This pressurizing means adjusts the pressing force on the substrate by the elastic force of the spring by rotating the micrometer screw.
[0006]
The above-mentioned polishing apparatus is proposed to uniformly remove an insulating film formed on a thin substrate having a substrate thickness of 1.1 mm. Is to improve. Therefore, like a mask blank substrate,
The flatness of the substrate cannot be adjusted because the pressing force is weak for a substrate having a large thickness of 6.35 mm (in the case of a 6-inch substrate). Further, the pressing means of the above-mentioned polishing apparatus needs to change the spring thrust according to the position of the micrometer, and it is difficult to convert the thrust into data as a digital signal.
Further, in the above-described polishing apparatus, there is a problem that the flatness of the peripheral portion of the substrate is deteriorated only by holding the substrate in the carrier having the substrate receiving hole.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention has been made to solve the problems of the prior art as described above, and a first problem of the present invention is that flatness corresponding to the design rule of a next-generation semiconductor integrated circuit is zero. An object of the present invention is to provide an electronic device substrate, a mask blank, and a transfer mask having a high flatness within 0.25 μm.
A second object of the present invention is to provide a novel polishing apparatus and a novel polishing method for reliably obtaining an electronic device substrate having a high flatness of 0.25 μm or less.
[0008]
Further, a third object of the present invention is to provide an electronic device for reliably obtaining an electronic device substrate having a high flatness of 0.25 μm or less corresponding to the design rule of a next-generation semiconductor integrated circuit at a high yield. Provided are a method for manufacturing a substrate for a device, and a method for manufacturing a mask blank and a transfer mask having good pattern position accuracy when a transfer mask is used using the device substrate and pattern transfer accuracy when pattern exposure is performed. It is to be.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problem, and uses the following means. Here, the means (numbers) correspond to the respective claims.
(1) A substrate for an electronic device, wherein the flatness of the main surface of the substrate is more than 0 μm and 0.25 μm or less. Here, “beyond 0 μm and 0.25 μm or less” means that 0.0 <flatness ≦ 0.25 μm.
The flatness in the present invention is defined as the difference between the maximum height and the minimum height of the surface shape in the main surface from a reference surface arbitrarily provided on the surface side of the substrate main surface (virtual absolute calculated from the measurement surface by the least square method). Difference between the maximum value and the minimum value of the measurement surface with respect to the plane).
The method for measuring flatness is not particularly limited. A contact type flatness measuring method of a stylus type and a non-contact type flatness measuring method using light interference or the like are exemplified. A non-contact type flatness measurement method is preferable in terms of measurement accuracy, measurement area (wide range), and the like.
[0010]
The flatness measurement area may be the area of the main surface of the substrate except for 3 mm from the side surface of the substrate, or a transfer mask such as a photomask or a phase shift mask may be supported on a stepper of an exposure machine to form a pattern on a semiconductor wafer. When performing the transfer, the measurement area may include the area where the substrate is supported by the stepper, and the flatness area may be used up to the auxiliary pattern formation area such as the quality assurance pattern or alignment mark formed on the periphery of the substrate. May be used as the measurement area. Preferably, the entire substrate main surface (main surface excluding the peripheral portion of the substrate (substrate side surface and chamfered surface)) in consideration of the transfer characteristics at the time of pattern transfer is a flatness measurement region.
The flatness of the present invention can ensure the flatness of the entire substrate main surface (the main surface excluding the substrate side surface and the chamfered surface) by polishing using a polishing apparatus described later.
[0011]
The flatness of the main surface of the substrate is preferably more than 0 μm and 0.2 μm or less, and more preferably more than 0 μm and 0.15 μm or less. The flatness of the substrate described above can be easily and reliably controlled by performing a polishing method using a polishing apparatus described later on at least one surface of the main surface of the substrate. As the absolute value of the flatness of the substrate becomes smaller, the pattern position accuracy when a transfer mask is used is improved, and the pattern transfer accuracy when a pattern is transferred using the transfer mask is improved. By setting the flatness of the substrate within the above range, a substrate for an electronic device having good reliability in pattern position accuracy and pattern transfer accuracy can be obtained.
The electronic device substrate according to the present invention is a square (for example, a square (square or rectangular)) substrate, and includes a mask blank substrate and the like. Circular shape
Unlike the semiconductor wafer, since the electronic device substrate of the present invention is square, for example, when both main surfaces of a plurality of substrates are polished at once by a batch-type double-side polishing method, the shape in each substrate surface is reduced. The substrates may be asymmetric or the flatness shapes of the individual substrates may be different. As described above, it is effective to apply the present invention to an electronic device substrate having a square shape in which it is difficult to control the flatness of the substrate in the double-side polishing method.
[0012]
(2) The electronic device substrate according to (1), wherein the parallelism of the substrate is more than 0 μm and 1 μm or less.
The parallelism in the present invention refers to a difference in plate thickness between the maximum height and the minimum height in the main surface on the front side when the back side of the substrate is used as a reference plane. The measurement area of the parallelism is the same as the above-described measurement area of the flatness, and thus the description is omitted.
The parallelism of the substrate is preferably more than 0 μm and 0.8 μm or less, more preferably more than 0 μm and 0.5 μm or less. The parallelism of the above-described substrate can be easily and reliably controlled by performing a polishing method using a substrate device described below on both surfaces of the main surface of the substrate. it can. As the value of the parallelism of the substrate becomes smaller, the pattern position accuracy when a transfer mask is used is improved, and the pattern transfer accuracy when a pattern is transferred using the transfer mask is improved. By setting the parallelism of the substrate within the above range, a substrate for an electronic device having good reliability in pattern position accuracy and pattern transfer accuracy can be obtained.
[0013]
(3) The substrate for an electronic device according to (1) or (2), wherein the substrate is a glass substrate.
The material of the glass substrate is not particularly limited. Quartz glass, non-alkali glass, borosilicate glass, aluminosilicate glass, and soda lime glass are generally used as substrates for electronic devices.
(4) On the main surface of the electronic device substrate according to any one of (1) to (3), a transfer pattern thin film serving as a transfer pattern with respect to an object to be transferred is formed. Mask blank.
[0014]
The mask blank referred to in the present invention refers to both a transmission mask blank and a reflection mask blank, and their structure is such that a transfer pattern thin film serving as a transfer pattern is formed on a substrate to be transferred to a transfer target. I have.
The transmission mask blank uses, for example, a glass substrate that is a light-transmitting substrate as a substrate, and the thin film for a transfer pattern is a thin film (for example, a thin film that causes an optical change to exposure light used when transferring to a transfer target). , A thin film having a light shielding function).
The photomask blank used here is used in a broad sense, and includes a photomask blank in which only a light-shielding film having a function of blocking exposure light or a phase shift that causes a phase difference change in exposure light. It includes a phase shift mask blank on which a phase shift film having a function is formed. Note that a photomask blank of the present invention also includes a phase shift mask blank on which a halftone film of a light semi-transmissive film having both a light blocking function for exposure light and a phase shift function for causing a phase difference change is formed.
In addition, the reflective mask blank used, for example, a low thermal expansion glass substrate as the substrate, and the transfer pattern thin film used was a light reflecting multilayer film formed on the substrate and a light absorber film serving as a transfer pattern. It is a mask blank.
In addition, the mask blank of the present invention includes, in addition to a light-shielding film and / or a phase shift film that is a thin film for a transfer pattern, a resist film that functions as a mask when patterning the light-shielding film and the phase shift film, and other mask films. A film (for example, a transparent conductive film) may be formed.
[0015]
(5) A transfer mask, wherein the transfer pattern is formed by patterning the transfer pattern thin film in the mask blank according to (4).
(6) A rotatable polishing table, a polishing pad provided on the polishing table, a polishing agent supply means for supplying a polishing agent to the surface of the polishing pad, and holding a substrate on the polishing pad. Substrate holding means, a polishing apparatus having a substrate pressing means for polishing the substrate surface by pressing the substrate held by the substrate holding means on the polishing pad,
The substrate holding means has a function of suppressing excessive pressure from the polishing pad in a peripheral portion of the substrate,
The substrate pressurizing means has a plurality of pressurizing members so as to be capable of arbitrarily and independently pressurizing a plurality of divided regions on the substrate surface, and the pressurizing members individually perform pressure control. A polishing apparatus, characterized in that possible polishing means are provided.
[0016]
The polishing platen needs at least a material and a thickness which are not deformed by the processing pressure. In addition, since the polishing platen precision of the polishing platen affects the flatness of the substrate, it is preferable to use a polishing platen having as high a flatness as possible.
As the surface plate material, a stainless steel alloy, a ceramic material having little thermal change, a low thermal expansion cast iron, or the like is preferable. Further, a platen cooling mechanism may be provided to maintain the platen accuracy (flatness).
The polishing pad can be appropriately selected according to the substrate material and the flatness to be obtained. The polishing pad is mainly divided into a hard polisher and a soft polisher, and examples of the hard polisher include a urethane pad, a pitch impregnated pad, and a hard resin suede pad. Examples of the soft polisher include a suede pad and a nonwoven fabric.
[0017]
The type and particle size of the abrasive used can be appropriately selected depending on the substrate material and the flatness to be obtained. Examples of the abrasive include cerium oxide, zirconium oxide, and colloidal silica. The particle size of the abrasive is several tens nm to several μm.
The substrate holding means has a structure such that the substrate does not come off when rotated, and has a function of suppressing excessive pressure from the polishing pad on the periphery of the substrate.
As a method of holding the substrate, a method of using a retainer ring (guide ring, dressing retainer) that surrounds at least the side surface of the substrate without scratching, a method of sucking and suctioning the back surface of the substrate, a method of holding the substrate with a carrier and so on.
By this substrate holding means, by pressing the polishing pad on the outer peripheral portion of the substrate, the pressure applied to the peripheral portion of the substrate can be kept uniform, and as a result, the peripheral portion of the substrate can be made uniform flatness, The shape of the peripheral portion of the substrate can also be guaranteed.
[0018]
The substrate pressing means has a structure including a pressing body and a pressing body holding means for holding the pressing body.
The pressurizing member is equally divided into a plurality of parts and arranged on the main surface of the substrate. The number of pressurizing members to be divided and arranged can be appropriately adjusted according to the size of the substrate and the accuracy of shape correction of flatness. It is preferable that the number of pressurizing members with respect to the main surface of the substrate is large, since strict control of the shape becomes possible. For example, when the substrate size is 6 inches × 6 inches (1 inch = 25.4 mm), 4 (2 rows and columns) to 256 (16 rows and columns) pressure members can be provided. Considering the simplification of the apparatus and the shape correction accuracy, 36 (vertical and horizontal 6 columns) to 144 (vertical and horizontal 12 columns) are preferable. Note that an elastic body may be provided at a position where the main surface of the substrate comes into contact with the pressing body so as not to scratch the main surface of the substrate.
The pressurized body holding means is substantially the same size as the substrate in order to dispose the pressurized body over substantially the entire surface of the substrate, and has a predetermined interval so as to hold a plurality of pressurized bodies. The pressure body holding hole is open.
The pressure control means includes an air cylinder, a hydraulic cylinder, a servomotor, and the like.
[0019]
The pressure control can be controlled continuously or stepwise, and can be controlled by a regulator, an additional current, or the like.
The rotation of the polishing table and the substrate holding means can be controlled by separate rotation driving devices.
(7) The polishing apparatus according to (6), wherein the substrate holding means is a retainer ring surrounding an outer peripheral end surface of the substrate.
The role of the retainer ring is to suppress excessive pressure transmission to the peripheral portion of the substrate to make the pressure applied to the peripheral portion of the substrate uniform, and to supply abrasive grains uniformly to the polishing pad. The distance between the side surface of the substrate and the retainer ring can be appropriately adjusted according to the shape of the peripheral portion of the substrate. An elastic body may be provided at a position where the retainer ring contacts the side surface of the substrate.
[0020]
(8) Data processing for measuring the shape of the substrate before and / or during the polishing, storing the measured data, and comparing the initial setting data of the desired shape with the measured data to calculate the processing conditions. (6) or (7), comprising: means for transmitting pressure information to the substrate holding means and the substrate pressing means so that the substrate has a desired shape. Polishing equipment.
The calculation of the processing conditions is performed, for example, as follows. First, measurement data obtained by measuring the shape (flatness) of the substrate is compared with the initial setting data to calculate a difference in flatness. In consideration of the rotation direction and rotation speed of the substrate and the polishing platen, the measured surface is set to an arbitrarily set reference surface so that the difference (the flatness) of the substrate becomes a desired shape by removing the difference. On the other hand, a processing condition for deleting at least a relatively convex region is calculated. The calculation of the processing conditions is performed by data processing means such as a computer.
The processing conditions (processing information) obtained by the data processing means are transmitted to the substrate holding means and the substrate pressing means by a transmission means such as Ethernet communication, CPU COM communication, CPU USB communication, etc., and the processing conditions are controlled.
[0021]
(9) Further, a pressure plate, which is rotatable and presses the substrate main surface substantially uniformly, is provided on the polishing platen, and the pressure plate is provided between the pressure plate and the polishing platen. Polishing according to any one of (6) to (8), further comprising a substrate defect removing means having a carrier having a holding hole for holding the substrate rotatably independently of the plate. apparatus.
In the substrate defect removing means, the main surface of the substrate on the side of the polishing platen is polished by a polishing platen which is driven to rotate on the side of the pressing plate, and the substrate shape (flatness) is adjusted by the polishing apparatus of (6) above. Scratches and foreign substances on the surface opposite to the corrected surface are polished on the polishing platen side, and while maintaining the surface whose substrate shape (flatness) has been corrected by the polishing apparatus of (6) above, The mechanism can remove defects such as scratches and foreign matter.
[0022]
When removing the substrate defects, an abrasive is supplied to both main surfaces of the substrate. The abrasive supply means may also serve as the abrasive supply means of (6), or may be provided exclusively for the substrate defect removal means.
A polishing pad is attached to the pressure plate surface on the substrate side. The polishing pad is not particularly limited and can be appropriately selected, but a soft or ultra-soft polisher is used to remove defects such as scratches and foreign substances on the substrate surface and not to scratch the substrate surface with the polishing pad. Is preferred. The pressure plate requires a material and a thickness that do not deform under the weight of the pressure plate and the processing pressure. Further, since the accuracy of the platen of the pressure plate affects the flatness of the substrate, it is preferable to use a platen having a high flatness as much as possible.
The surface plate material is preferably a stainless alloy, a ceramic material with little thermal change, low thermal expansion cast iron, or the like. A platen cooling mechanism may be provided to maintain the platen accuracy (flatness) of the pressure plate. The pressure plate rotates around a position shifted by a predetermined amount with respect to the center of the substrate.
[0023]
The carrier is provided with one or more holding holes for holding the substrate, and a rotation drive device is connected so as to be able to rotate independently of the pressure plate. The carrier needs to be a material having mechanical durability that does not deform during rotation, and preferable materials include stainless steel, vinyl chloride, and plastic materials.
The pressure plate and / or the carrier may be provided with rocking means so as to be rockable during defect removal.
(10) A polishing method using the polishing apparatus according to any one of (6) to (8), wherein a substrate is prepared, the shape of the substrate is measured, and the shape of the substrate is measured based on the measured data. Suppresses excessive pressure from the polishing pad on the peripheral portion of the substrate so as to have a desired shape, and the shape of the main surface of the substrate is relatively set with respect to a reference surface arbitrarily set on the substrate surface. In the region having a convex shape, the pressure of the pressing body against the substrate is increased by the pressure control means as compared with other regions, and the substrate is pressed from the rear surface side of the substrate facing the region having the convex shape. A polishing method comprising polishing a surface and correcting a shape of a substrate.
[0024]
`` Preparing the substrate '' means a substrate after the grinding process, a rough polishing process performed for the purpose of removing scratches on the main surface of the substrate formed in the grinding process and maintaining the flatness obtained in the grinding process. The substrate includes various substrates such as a finished substrate and a substrate that has been subjected to a precision polishing process performed for mirror finishing of the main surface of the substrate. The grinding method and the polishing method performed in the grinding step, the rough polishing step, and the precision polishing step are not particularly limited. A single-side grinding method or a double-side grinding method, or a combination of any of a single-side polishing method and a double-side polishing method may be used.
The polishing method of the present invention is preferably performed after a precision polishing step performed for the purpose of mirror polishing the main surface of the substrate.
This is because it is more effective to remove a minute amount by fine abrasive grains used in the precision polishing process in order to remove a convex portion having a flatness of about 0.5 μm formed after the precision polishing.
The measurement of the flatness of the substrate is the same as that described in (1) above, and a description thereof will be omitted.
The description of the polishing method of the present invention will be described in detail in the embodiments.
[0025]
(11) The polishing method according to (10), wherein both main surfaces of the substrate are polished.
By performing the polishing method on both main surfaces of the substrate, the parallelism of the substrate is improved. This is effective for a substrate for an application requiring control of flatness and parallelism of both main surfaces of the substrate. For example, as a substrate suitable for this polishing method, a substrate for a mask blank and a substrate for an electronic device, which will be described later, can be mentioned.
(12) A polishing method characterized in that after the shape of the substrate is corrected by the polishing method according to (10) or (11), defects on the main surface of the substrate are removed using the polishing apparatus according to (9).
Since defects on the main surface of the substrate are removed, in the case where a thin film is formed on the main surface of the substrate to produce an electronic device (for example, a photomask blank), it is necessary to prevent the occurrence of sub-film defects existing below the thin film. Therefore, a highly reliable substrate can be obtained.
[0026]
(13) A method of manufacturing an electronic device substrate used as a mask blank substrate, wherein the method is obtained by the polishing method according to any one of (10) to (12). Production method.
(14) The electronic device substrate is a rectangular substrate having a predetermined area and a predetermined thickness, and the predetermined thickness / the predetermined area is 1.0 × 10 -4 mm -1 (13) The method for manufacturing a substrate for an electronic device according to (13).
Predetermined thickness / predetermined area is 1.0 × 10 -4 mm -1 This is particularly effective for a substrate having a relatively large thickness with respect to the above substrate area. 1.0 × 10 with relatively small thickness relative to substrate area -4 mm -1 If the substrate is smaller than the above, the substrate is warped at the time of local shape correction, and it becomes difficult to control the flatness, which is not preferable.
On the other hand, 1.0 × 10 -4 mm -1 In the case of the above substrate, since the substrate has a certain thickness, the pressure on the substrate by the substrate pressing means is transmitted in the substrate thickness direction while being dispersed in the in-plane direction. Therefore, the change in the polishing rate from the region where the pressure is locally applied to the peripheral region becomes gentle, and the relatively convex region and the peripheral region can be gradually polished. Therefore, the controllability of the flatness is good. The pressure distribution in the in-plane direction of the substrate differs between when pressure is applied near the center of the substrate and when pressure is applied near the periphery of the substrate.
The pressure of the substrate pressing means on the substrate is controlled in consideration of the measurement data of the substrate shape, the substrate thickness with respect to the substrate area, the rotation direction and the rotation speed of the substrate and the polishing platen.
For example, when the measurement data of the substrate shape is a convex shape, the pressure on the substrate by the substrate pressing unit does not apply pressure only to a relatively convex local region, and includes a convex region. The pressurizing condition is set in consideration of the substrate thickness with respect to the substrate area so that a relatively dispersed pressure is applied to a relatively large area in the substrate surface. In the case of a 6025 substrate (6 inches × 6 inches × 0.25 inches) having a relatively large substrate thickness with respect to the substrate area, pressure dispersion in the in-plane direction of the substrate is large. In the case of a 5009 substrate (5 inches × 5 inches × 0.09 inches) having a relatively small substrate thickness with respect to the substrate area only by applying a predetermined pressure to the substrate only by the pressure means, the pressure dispersion in the substrate plane direction is small. The load (pressure) on the substrate of the substrate pressing means disposed near the center of the substrate is relatively large, and the load (pressure) on the substrate of the substrate pressing means disposed near the outer periphery of the substrate is relatively small. Set conditions to.
If the thickness of the substrate is too large, no pressure is applied to the local area by the substrate pressing means, so that the predetermined thickness / predetermined area of the substrate is 1.0 × 10 -4 mm -1 4.0 × 10 or more -4 mm -1 The following is preferred. 4.0 × 10 -4 mm -1 Exceeding the range is not preferable because local pressure transmission to the substrate in the substrate thickness direction by the substrate pressing means becomes difficult. A more preferable range of the predetermined thickness / predetermined area of the substrate is 1.3 × 10 -4 mm -1 Above 2.8 × 10 -4 mm -1 It is desirable that
(15) A method for producing a mask blank, comprising forming a thin film for a transfer pattern on a main surface of an electronic device substrate obtained by the method for producing an electronic device substrate according to (13) or (14).
A mask blank with good pattern position accuracy when used as a transfer mask and pattern transfer accuracy when performing pattern exposure is obtained.
[0027]
(16) A method for manufacturing a transfer mask, wherein the transfer pattern is formed by patterning the transfer pattern thin film in the mask blank according to (15).
The pattern position accuracy when used as a transfer mask is good, and a transfer mask with good pattern transfer accuracy during pattern exposure can be obtained.
(17) The substrate held in the holding hole of the carrier is sandwiched between upper and lower platens having polishing pads attached to the upper and lower surfaces of the substrate, and the upper and lower platens are respectively rotated about axes perpendicular to the surface to be processed of the substrate. The substrate held by the carrier is reciprocatingly sliding while rotating between the polishing pads, thereby performing a double-side polishing of the substrate, a method for manufacturing a substrate for an electronic device,
After the two-side polishing, measure the flatness of at least one main surface of the substrate, so that the flatness of the substrate is a desired value based on the measured data, to the reference surface arbitrarily set in the one main surface A method of manufacturing a substrate for an electronic device, wherein the shape of a region which is relatively convex is locally corrected to correct the flatness of the substrate.
[0028]
The flatness in the present invention is defined as the difference between the maximum height and the minimum height of the surface shape in the main surface from a reference surface arbitrarily provided on the surface side of the substrate main surface (virtual absolute calculated from the measurement surface by the least square method). (The difference between the maximum value and the minimum value of the measurement surface with respect to the plane).
The method for measuring flatness is not particularly limited. A contact type flatness measuring method of a stylus type and a non-contact type flatness measuring method using light interference or the like are exemplified. A non-contact type flatness measurement method is preferable in terms of measurement accuracy, measurement area (wide range), and the like.
The flatness measurement area may be the area of the main surface of the substrate except for 3 mm from the side surface of the substrate, or a transfer mask such as a photomask or a phase shift mask may be supported on a stepper of an exposure machine, and may be applied to a semiconductor wafer. When performing pattern transfer, the measurement area may include the area where the substrate is supported by the stepper, and even the auxiliary pattern formation area such as the quality assurance pattern and alignment mark formed on the periphery of the substrate may be flat. The degree measurement area may be used. Preferably, the entire substrate main surface (main surface excluding the peripheral portion of the substrate (substrate side surface and chamfered surface)) considering the transfer characteristics at the time of pattern transfer is desirably the flatness measurement region.
[0029]
It is preferable to measure the flatness on both main surfaces of the substrate. Based on the flatness data measured on both main surfaces, by locally correcting the shape of each surface relative to the arbitrarily set reference surface, the parallelism of the substrate is improved. (The difference between the maximum height and the minimum height in the main surface on the front side when the back side of the substrate is used as the reference plane), and the pattern transfer accuracy when used as a transfer mask is improved. Is preferred.
The method for locally correcting the shape is not particularly limited. The shape correction in the present invention is preferably performed one by one. Examples of the method of locally correcting the shape include a method of mechanically correcting, a method of chemically correcting, and a method of mechanically and chemically correcting.
As a method of mechanical correction, a slurry containing abrasive grains is supplied to a substrate, and a polishing pad or a polishing tape is slid only in the convex area in a relatively convex area to correct the shape. A method of correcting the shape by sliding the polishing pad or polishing tape on the convex area by increasing the pressure relative to the other area, or spraying a liquid such as slurry on the convex area. There is a method of correcting the shape.
[0030]
In addition, as a method of chemically correcting, there is an etching method of removing a substrate by etching. Examples of the etching method include wet etching and dry etching. Dry etching is preferable for correcting a specific region with high accuracy. As an etchant used for etching, the substrate is SiO 2 2 In the case of a glass containing, an acidic solution or gas containing fluorine, or an alkaline solution may be used.
In addition, as a method of mechanically and chemically correcting, there is a mechanochemical polishing in which a substrate is corroded and removed with abrasive grains.
A double-side polishing step is to maintain the flatness obtained in the grinding step, and a coarse polishing step of polishing using relatively large polishing abrasive grains for the purpose of removing scratches on the substrate formed in the grinding step, A precision polishing step of polishing using relatively small polishing abrasive grains for the purpose of mirror finishing, and a step of correcting the flatness of the substrate by locally correcting the shape in the case of a multi-step polishing step having Is preferably performed after a precision polishing step for polishing using relatively small polishing abrasive grains for mirror-finishing the substrate, particularly after the final precision polishing step. Cerium oxide and colloidal silica are used as the abrasive grains used in the precision polishing step, and those having an average grain diameter of 1 μm or less (for example, 10 nm to 1 μm) are used.
[0031]
The electronic device substrate according to the present invention is a square (for example, a square (square or rectangular)) substrate, and includes a mask blank substrate and the like. Round
Unlike a semiconductor wafer in a shape, the substrate for an electronic device of the present invention is square, and for example, when both main surfaces of a plurality of substrates are polished at once by a batch-type double-side polishing method, the shape in each substrate surface is reduced. May be asymmetric, or the flatness shapes of the individual substrates may be different. As described above, application to an electronic device substrate in which it is difficult to control the flatness of the substrate in the double-side polishing method is effective.
(18) The double-side polishing includes a rough polishing step of maintaining flatness obtained in the grinding step and polishing using relatively large polishing abrasive grains for the purpose of removing scratches on the substrate formed in the grinding step. 18. The manufacturing of a substrate for an electronic device according to claim 17, wherein the polishing is a multi-stage polishing process comprising: a precision polishing process of polishing using relatively small polishing abrasive grains for mirror polishing the substrate. Method.
As described above, the double-side polishing is a rough polishing step in which the flatness obtained in the grinding step is maintained, and the polishing is performed using relatively large abrasive grains for the purpose of removing scratches on the substrate formed in the grinding step. And a precision polishing process of polishing using relatively small polishing abrasive grains for the purpose of mirror polishing the substrate, and a multi-stage polishing process having a high smoothness required for an electronic device substrate, A highly flat substrate can be manufactured efficiently (with good productivity).
(19) The method for manufacturing a substrate for an electronic device according to (17) or (18), wherein in the double-side polishing, the substrate has a surface roughness Ra of 0.25 nm or less and a flatness of 1 μm or less.
As described above, the load of the shape correction can be reduced by setting the surface roughness Ra of the substrate to 0.25 μm or less and the flatness to 1 μm or less by double-side polishing the substrate before performing the shape correction. Productivity can be improved. Further, in the etching (particularly, dry etching) in which the substrate is corroded and removed as a means for correcting the shape, since the surface roughness of the substrate tends to be roughened at the time of shape correction, the load of the shape correction has been reduced. Accordingly, it is possible to maintain the surface roughness of the substrate before performing the shape correction or suppress the roughness.
(20) The local shape correction is performed such that the main surface of the substrate is polished on one side by pressing the convex region so that the pressure of the polishing pad against the substrate is larger than that of the other region; The method for manufacturing an electronic device substrate according to any one of (17) to (19), wherein the flatness of the substrate is corrected.
[0032]
Thus, by pressing the polishing pad against the substrate so that the local shape correction has a convex shape on the substrate more than other regions, and polishing the substrate main surface on one side, It is preferable because the flatness can be improved while maintaining or improving the smoothness of the surface of the substrate manufactured by the double-side polishing method.
As the one-side polishing method in the present invention, a polishing method as shown in FIG. 9 is exemplified.
A polishing pad is stuck, and the substrate is held by a rotatable shape adjusting pressure plate on a polishing platen that is rotationally driven by a rotating device (not shown), and polishing abrasive grains are supplied between the substrate and the polishing pad. One side polishing is performed by the sliding contact of the substrate with the polishing pad. The shape adjustment pressure plate has a retainer ring placed around the substrate, and independently presses the area divided into multiple areas on the back side opposite to the main surface for local shape correction with an arbitrary pressure A plurality of pressure bodies connected to cylinders that can be pressure-controlled by a regulator (not shown) are provided so that the pressure of the polishing pad against the substrate can be higher in the convex area than in the other areas. The shape is corrected by controlling and pressing each pressurizing body so as to increase. It should be noted that the vector of the pressing body described in FIG. 9 indicates the magnitude of the pressing force.
[0033]
The average grain size of the abrasive grains used for shape correction is preferably equal to or less than the average grain size of the abrasive grains used in the final double-side polishing step. If it is large, the flatness is improved, but the smoothness (surface roughness) becomes coarse. Preferably, colloidal silica having a small average particle size is desirable.
As the polishing pad used for shape correction, a material having a good flatness of the substrate and a material having hardness can be appropriately selected. Preferably, a suede-like polyurethane pad of soft or ultra-soft polisher is desirable.
(21) The method for manufacturing an electronic device substrate according to any one of (17) to (20), wherein the local shape correction utilizes an etching action.
As a form using the etching action, there are a case where only the etching action is used and a case where the etching action is used in the above (2).
In the former case, there are the above-mentioned wet etching and dry etching.
In the case of wet etching, when performing strict shape correction, leave a relatively convex area, mask the other area with a material having etching resistance, and then locally etch the convex area by etching. can do.
In the case of dry etching, since the shape is locally corrected while supplying an etching gas to the convex region, the shape can be simplified compared to wet etching using masking, and the shape can be corrected with high accuracy, which is preferable.
[0034]
In the latter case, it is preferable that the polishing rate can be adjusted by including a solvent that causes the substrate to have an etching action in the slurry containing the abrasive grains.
(22) The method of manufacturing an electronic device substrate according to any one of (17) to (21), wherein the substrate is a mask blank glass substrate.
The mask blank referred to in the present invention refers to both a transmission mask blank and a reflection mask blank, and their structure is such that a transfer pattern thin film serving as a transfer pattern is formed on a substrate to be transferred to a transfer target. I have.
The transmission mask blank uses, for example, a glass substrate that is a light-transmitting substrate as a substrate, and the thin film for a transfer pattern is a thin film (for example, a thin film that causes an optical change to exposure light used when transferring to a transfer target). , A thin film having a light shielding function).
The photomask blank used here is used in a broad sense, and includes a photomask blank in which only a light-shielding film having a function of blocking exposure light or a phase shift that causes a phase difference change in exposure light. It includes a phase shift mask blank on which a phase shift film having a function is formed. Note that a mask blank of the present invention includes a phase shift mask blank on which a halftone film of a light semi-transmissive film having both a light blocking function for exposure light and a phase shift function for causing a phase difference change is formed.
In addition, the reflective mask blank used, for example, a low thermal expansion glass substrate as the substrate, and the transfer pattern thin film used was a light reflecting multilayer film formed on the substrate and a light absorber film serving as a transfer pattern. It is a mask blank.
In addition, the mask blank of the present invention includes, in addition to a light-shielding film and / or a phase shift film that is a thin film for a transfer pattern, a resist film that functions as a mask when patterning the light-shielding film and the phase shift film, and other mask films. A film (for example, a transparent conductive film) may be formed.
[0035]
Further, the material of the glass substrate is not particularly limited. The glass substrate used for the mask blank has transparency to exposure light, and examples thereof include synthetic quartz glass, alkali-free glass, borosilicate glass, aluminosilicate glass, and soda lime glass.
(23) A thin film for a transfer pattern is formed at least on a main surface of an electronic device substrate obtained by the method for manufacturing an electronic device substrate according to any one of (17) to (22). Manufacturing method of mask blank.
(24) A transfer characterized in that a transfer mask is manufactured by patterning the transfer pattern thin film of the mask blank obtained by the method for manufacturing a mask blank according to any one of (17) to (23). Manufacturing method for masks.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
<Description of polishing apparatus and polishing method>
FIG. 1 is a schematic view showing a configuration of a polishing apparatus according to the present invention, FIG. 2 is a schematic view showing a configuration of a substrate shape adjusting section of the polishing apparatus according to the present invention, and FIG. 3 is a substrate surface of the polishing apparatus according to the present invention. FIG. 3 is a schematic diagram illustrating a configuration of a defect removing unit.
Here, the substrate means an object (substrate to be polished, substrate) whose shape is to be adjusted and surface defects are removed by the polishing apparatus of the present invention.
As shown in FIG. 1, the polishing apparatus of the present invention has a common polishing surface plate 1 to which a polishing pad 2 is attached and which is rotationally driven by a rotation device (not shown) via a rotation shaft 10 for the surface surface. Substrate pressurizing means (shape adjusting pressurizing plate) 4 having a plurality of pressurizing members 23 so as to arbitrarily and independently pressurize the plurality of divided regions; And a substrate holding means (retainer ring) 22 for holding the substrate, and controlling the rotation of the polishing platen 1 and the pressure of the individual pressing bodies 23 on the substrate to control the pressure of the substrate. A substrate shape adjusting unit 6 for polishing the main surface of the substrate on the polishing pad 2 side on one side by rotating the unit 4 and the substrate holding unit 22 together; a pressing plate 7 for defect removal to which the polishing pad is attached; And a carrier 31 for holding the substrate. Comprises a rotation of the polishing platen 1, the abrasive attachment of substrate by polishing the both main surfaces of the substrate by the rotation of the carrier, and a substrate defect removal unit 9 to remove defects such as fine scratches.
[0037]
The polishing platen 1, the shape adjusting pressure plate 4, the substrate holding means 22, the defect removing pressure plate 7, and the carrier 31 are rotationally driven via respective rotating shafts by independent rotating devices (not shown). It has become. These rotating shafts and the rotating shaft for the surface plate can be independently rotated forward and backward independently, and can be swung in the horizontal direction with the pressing plate 4 for shape adjustment and the pressing plate 7 for defect removal. ing.
By doing so, flexible polishing conditions can be set.
The substrate shape adjusting unit 6 and the substrate surface defect removing unit 9 are each provided with an abrasive (slurry) supply unit 3 so that a polishing liquid (slurry) can be supplied to the substrate. A single abrasive supply means 3 may be used to supply the polishing liquid to the substrate shape adjusting section 6 and the substrate surface defect removing section 9.
[0038]
Further, the polishing apparatus of the present invention may be a polishing apparatus in which the polishing platen of the substrate shape adjusting section 6 and the polishing surface plate of the substrate surface defect removing section 9 are separated. Further, as shown in FIG. 4, a plurality of substrate shape adjusting units 6 and a plurality of substrate surface defect removing units 9 may be provided for one polishing platen.
Next, the configurations of the substrate shape adjusting unit 6 and the substrate surface defect removing unit 9 and a polishing method using them will be described in detail with reference to FIGS.
FIG. 2 is an enlarged schematic diagram illustrating the configuration of the substrate shape adjusting unit 6.
The substrate pressing means (shape adjusting pressing plate) 4 includes a pressing body 23 equally divided and arranged on the main surface of the substrate and a pressing body holding means 24 for holding the pressing body 23. Structure. The pressing body holding means 24 includes a plurality of (when the substrate is an electronic device substrate (photomask blank substrate), a vertical A cylindrical hole (six rows and six rows) is provided. Each of the holes has a plurality of pressurizing members 23 for locally pressing the substrate, and each pressurizing member 23 has a plurality of connecting members 25 connected thereto. A single-acting cylinder, which is a pressure control means 26 capable of stepwise pressure adjustment, is connected. Since the pressurizing member 23 is operated by sending compressed air into the cylinder, a sufficient stroke can be secured, and control is easy by using a DA converter and an electropneumatic converter.
[0039]
The surface of the pressing body 23 and the pressing body holding means 24 on the polishing platen side is provided between the pressing body and the pressing body holding means and the substrate in order to prevent the substrate from being scratched by the pressing body. The backing pad 21 which is an elastic body is interposed.
The retainer ring 22, which is a substrate holding means, is provided along the outer periphery of the substrate, and is pressurized by one or a plurality of cylinders whose pressure is set by an electronic regulator. As shown in FIG. 5, the shape of the retainer ring 22 on the side of the polishing platen 1 is to prevent chips and scratches on the substrate end (side surface, chamfered surface) at the inner peripheral portion where the substrate 27 abuts. An elastic member 51 may be provided. The elastic member 51 may be formed in the entire region along the outer periphery of the substrate, or may be formed partially.
[0040]
The substrate 27 held by the retainer ring 22 is pressure-controlled by the individual pressurizing members 23 so that the shape of the substrate 27 becomes a desired shape, and rotates with the rotation of the pressurizing member holding means 24. Is rotated relative to the main surface of the polishing platen side of the substrate by the relative rotation of the polishing pad 2 attached to the polishing platen 1 to the main surface of the substrate on the polishing platen side. One-side polishing is performed and shape adjustment is performed so that a region that is relatively convex with respect to the reference surface is removed with priority over other regions.
The retainer ring 22 and the pressurizing body holding means 24 may be connected to a swingable swinging means so as to be swingable.
Instead of providing the backing pad 21, at least a portion of the pressure body 23 that contacts the substrate 27 may be made of a material that does not scratch the substrate surface.
The arrangement and the number of the pressing bodies 23 are not particularly limited. It can be appropriately changed according to the size and shape of the substrate 27, the shape accuracy of the substrate shape, and the like.
[0041]
FIG. 3 is an enlarged schematic view showing the configuration of the substrate surface defect removing unit.
The defect removing pressure plate 7 is driven to rotate via a rotating shaft by a rotating device (not shown), and the polishing pad 2 is attached to the polishing platen side.
The carrier 31 has one substrate holding hole at an eccentric position.
The carrier 31 is a rotating shaft independent of the defect removing pressure plate 7 and is driven to rotate by a rotating device (not shown).
The substrate 27 held in the substrate holding hole is rotated by the rotation of the carrier 31, and is rotated by the rotation of the polishing platen and the pressurizing plate. The polishing pad 2 adhered to the plate 7 slides relative to both main surfaces of the substrate, so that the main surface of the substrate on the polishing platen side is polished by the rotational driving of the pressure plate 7 for removing defects. The main surface is polished by the surface plate, and scratches and foreign substances on the surface opposite to the surface whose substrate shape (flatness) has been corrected by the polishing device of the above (6) are polished by the polishing surface side, A mechanism that can remove defects such as scratches and foreign matters while maintaining the surface whose substrate shape (flatness) has been corrected by the polishing apparatus of (6) above.
[0042]
The carrier 31 needs to have mechanical durability enough to withstand rotational driving, and is preferably made of a stainless alloy, vinyl chloride, or plastic material, and the thickness is preferably as large as possible within a range smaller than the thickness of the substrate. The carrier may have a plurality of substrate holding holes so that a plurality of substrates can be arranged.
In addition, a temperature sensor is attached inside the polishing table 1, so that the surface temperature of the polishing table can be controlled to be constant. Further, the above-mentioned temperature sensor may be attached to the defect removing pressure plate 7 of the substrate surface defect removing section 9.
[0043]
<Description of manufacturing method of electronic device substrate>
Hereinafter, a method for manufacturing an electronic device substrate of the present invention will be described.
The method for manufacturing an electronic device substrate according to the present invention includes the following steps as shown in FIG.
A polishing step (S101) for polishing both main surfaces of the electronic device substrate after chamfering the side surfaces of the substrate and grinding both main surfaces of the substrate with a lapping machine or the like;
A flatness measuring step (S102) for measuring the flatness of one main surface of the substrate obtained by the polishing step;
A shape adjustment step (S103) of locally adjusting the shape on the measured surface to adjust (correct) the flatness of the substrate so that the flatness of the substrate becomes a desired value based on the obtained measurement data;
A surface defect removing step (S104) for removing defects present on the substrate surface after the shape adjustment.
[0044]
In addition, between the polishing step and the shape adjusting step, and between the shape adjusting step and the surface defect removing step, the polishing abrasive particles adhered to the substrate are appropriately removed so that the polishing abrasive grains used in the previous step are not carried over to the next step. May be provided.
The polishing step (S101) may be single-side polishing in which the main surface of the substrate is polished one by one on the front surface and back surface, or may be double-side polishing in which both main surfaces of the substrate are polished at once. good. From the viewpoint of productivity, double-side polishing is preferred. As a typical example of double-side polishing, double-side polishing is performed using the double-side polishing apparatus shown in FIG. The substrate 27 held in the holding hole of the carrier 31 is inserted and held, and the outer teeth of the carrier 31 are meshed with the sun gear 64 and the internal gear 63 of the double-side polishing device to rotate and revolve the carrier 31 to obtain abrasive grains. The two main surfaces of the substrate are polished on both sides by a relative sliding movement formed between the polishing pad 2 and the polishing pad 2 attached to the upper and lower platen rotating in the opposite direction while supplying.
[0045]
The polishing step is usually performed for the purpose of removing scratches on the main surface of the substrate formed in the grinding step and maintaining the flatness obtained in the grinding step, and for the purpose of mirror polishing the substrate. And a precision polishing step.
In the flatness measuring step (S102), the flatness is measured under the conditions described above and the conditions appropriately selected in the measurement area, and the obtained flatness data is stored in a recording medium such as a computer. Let it. The stored measurement data is compared with the data of the desired flatness stored in advance to calculate a flatness difference. The processing conditions are set so that the difference is removed and the flatness of the substrate becomes a desired value.
The processing conditions can be determined by the following method.
In order to easily explain the method of determining the processing conditions, a case in which the shape adjustment (correction) of a substrate having a convex shape (flatness) on one main surface will be described as an example. As a precondition for the processing conditions, the rotation direction of the substrate and the rotation direction of the polishing platen are reversed or the same.
[0046]
7 is a top view of the substrate shape adjustment unit 6 in the polishing apparatus, and FIG. 8 is a cross-sectional view of the substrate shape adjustment unit of FIG.
In determining the processing conditions of the substrate 27, the shape and the numerical value obtained by the flatness measuring device are converted into an area, and the pressure and the number of rotations of the place to be removed are determined.
Further, at the time when a predetermined place to be removed is reached under the above conditions, the processing conditions are changed, and the shape is adjusted by setting the processing conditions at another stage.
The shape adjusting step (S103) is performed by the substrate shape adjusting unit 6 in the polishing apparatus according to the processing conditions determined in the flatness measuring method.
The surface defect removing step (S104) is performed by the substrate surface defect removing unit 9 in the above-described polishing apparatus.
[0047]
The above-described flatness measurement step can be performed simultaneously with the shape adjustment step. This is achieved by measuring the flatness of the substrate as the processing of the shape adjustment progresses and feeding back information of the flatness obtained by the measurement to the pressing conditions of the individual pressing members.
In the shape adjusting step (S103) and the surface defect removing step (S104), after the shape adjusting step (S103-1) on one main surface of the substrate is completed, the shape adjusting step (S103-2) on the other main surface is completed. After that, the surface defect removing step (S104-1) may be performed, or after the shape adjusting step (S103-1) on one main surface of the substrate is completed, the surface defect removing step (S104-1) is performed. Next, after finishing the shape adjustment step (S103-2) on the other main surface, a surface defect removal step (S104-2) may be performed. The above-described surface defect removing step (S104) may be performed by turning the substrate upside down.
[0048]
<Description of electronic device substrate>
The electronic device substrate of the present invention is obtained by, for example, the above-described method of manufacturing an electronic device substrate, has high flatness, and further has high parallelism. As shown in FIG. 12, the electronic device substrate is sandwiched between a pair of main surfaces 71 provided to face each other, two sets of side surfaces 72 orthogonal to the main surface, and the main surfaces and the side surfaces. It is a square (square) substrate having a chamfered surface 73, and refers to the flatness of the substrate main surface (preferably both main surfaces) (the flatness of the entire substrate main surface excluding the substrate side surface and the chamfered surface). The flatness value shown hereinafter is the flatness of the entire main surface of the substrate.) The substrate has a high flatness of more than 0 μm and 0.25 μm or less.
[0049]
The substrate has a high degree of parallelism of more than 0 μm and not more than 1 μm on the main surface of the substrate.
Both main surfaces of the substrate are mirror-finished by precision polishing, and the surface roughness is finished to an average surface roughness Ra of 0.3 nm or less. The surface roughness of the main surface is preferably small from the viewpoint of defect detection and uniformity of the film surface after film formation, and is preferably mirror-finished to an Ra of 0.2 nm or less, more preferably 0.15 nm or less. Is preferred.
In addition, from the viewpoint of preventing generation of particles, it is preferable that the side surface of the substrate and the chamfered surface are also mirror-finished by brush polishing or the like, and the surface roughness is 0.3 nm or less in average surface roughness Ra. Preferably, the thickness is 0.2 nm or less and 0.15 nm or less.
[0050]
<Example 1>
1) Rough polishing step (S101)
The end face of the synthetic quartz glass substrate (6 inches x 6 inches) is chamfered, and the glass substrate that has been ground by a double-sided lapping device and 12 pieces are set in the double-sided polishing device described above, and rough polishing is performed under the following polishing conditions. The process was performed. The processing load and the polishing time were appropriately adjusted.
Polishing liquid: cerium oxide (average particle size 2-3 μm) + water
Polishing pad: Hard polisher (urethane pad)
After the rough polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) to remove the polishing abrasive particles attached to the glass substrate, and the glass substrate was cleaned.
2) Precision polishing process (S101)
Twelve wafers were set in the double-side polishing apparatus described above, and a precision polishing process was performed under the following polishing conditions. The processing load and the polishing time were appropriately adjusted.
Polishing liquid: cerium oxide (average particle size 1 μm) + water
Polishing pad: Soft polisher (Suede type)
After the completion of the precision polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) to remove the abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
[0051]
3) Ultra-precision polishing process (S101)
Twelve wafers were set in the double-side polishing apparatus described above, and an ultra-precision polishing step was performed under the following polishing conditions. The processing load and the polishing time were appropriately adjusted.
Polishing liquid: colloidal silica (average particle size 100 nm) + water
Polishing pad: Super soft polisher (Suede type)
After the completion of the precision polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) to remove the abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
4) Flatness measurement step (S102)
One of the obtained 12 glass substrates was taken out, and the flatness of one main surface was measured by a flatness measuring device (FM200 manufactured by Tropel). The substrate shape was concave, and the flatness was It was 0.68 μm.
When the surface roughness of the glass substrate was measured by an atomic force microscope, the average surface roughness Ra was 0.18 nm.
The same flatness measurement was performed on both sides of a total of 12 sheets, and the measurement data was stored in a computer.
In addition, the thickness of the obtained glass substrate was about 0.25 inch (about 6.35 mm). (Substrate area / substrate thickness: about 2.73 × 10 -4 mm -1 )
[0052]
5) Shape adjustment step (S103)
Next, the flatness measurement data stored in the computer is compared with the flatness to be obtained of 0.25 μm, the flatness difference is calculated by the computer, and the rotation direction and rotation speed of the substrate and the polishing platen are determined. The processing conditions were determined in consideration of the above. Note that the shape correcting step is performed by the substrate shape adjusting unit 6 (the number of the pressing members 23 is six in six rows and columns, which are equally spaced from the main surface of the substrate) in the polishing apparatus of FIG. Was.
Specifically, as shown in FIG. 14 and below, since the substrate before the shape adjustment is concave, the pressure at the corners and the peripheral edge of the substrate is high.
Retainer ring pressure: 7.5 g / cm2
Polishing liquid: colloidal silica (average particle size 80 nm) + water
Polishing pad: Super soft polisher (Suede type)
Polishing time: 20 minutes
Substrate rotation speed: 6 rpm
Polishing platen rotation speed: 12 rpm
After completion of the shape adjustment step, the glass substrate was immersed in a cleaning tank (ultrasonic application) to perform cleaning, in order to remove abrasive grains attached to the glass substrate.
When the flatness of the obtained glass substrate was measured with the same measuring instrument as described above, the flatness was 0.23 μm (concave shape).
Further, when the surface roughness was measured, the surface roughness after the precision polishing step was Ra = 0.18 nm.
[0053]
In addition, the above-mentioned shape adjustment process was performed also on the back surface on which the shape adjustment was not performed and the other 11 glass substrates, thereby manufacturing glass substrates.
As a result, the flatness of all 12 glass substrates was within 0.25 μm in absolute value, and a glass substrate having high flatness was obtained.
When the parallelism of all 12 glass substrates was measured by a parallelism measuring device (ZYGO interferometer), it was 0.8 μm or less.
6) Surface defect removal step (S104)
Next, in order to remove flaws present on the surface of the substrate and traces of contact with the pressurized body in the portion in contact with the pressurized body in the above-described shape adjustment step (S103), the substrate surface defect of the polishing apparatus of FIG. The removal unit 9 polished both surfaces. Specific polishing conditions are as follows.
Polishing liquid: colloidal silica (average particle size 80 nm) + water
Polishing pad: Super soft polisher (Suede type)
Processing load: 30g / cm2
Polishing time: 10 minutes
Substrate rotation speed: 5 rpm
After the surface defect removing step was completed, the glass substrate was immersed in a cleaning bath (ultrasonic application) to remove abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
When a visual inspection was performed on the glass substrate surface, no flaw was found on the substrate surface, and no trace of contact with the pressurized body in the shape correcting step was confirmed, and the main surface had no surface defects.
[0054]
<Comparative Example 1>
A glass substrate was manufactured in the same manner as in Example 1 except that 4) flatness measuring step, 5) shape adjusting step, and 6) surface defect removing step were not performed. When the flatness of all 12 glass substrates after the ultra-precision polishing step 3) was measured, the flatness was 0.5 μm to 1.5 μm (convex shape), and the parallelism was 1.2 to 3.4 μm.
<Example 2>
In the first embodiment, a glass substrate having a size of 5 inches × 5 inches (127 mm × 127 mm) was used, and the thickness of the glass substrate after the ultra-precision polishing step was reduced to about 0.09 inch (about 2.23 mm). (Substrate area / substrate thickness: about 1.42 × 10 -4 mm -1 A glass substrate was produced in the same manner as in Example 1 except for ()). As a result, the flatness of all 12 glass substrates was within 0.25 μm in absolute value, and a glass substrate having high flatness was obtained. Further, when a visual inspection was performed on the surface of the glass substrate, no flaw was found on the surface of the substrate, and no trace of contact with the pressurized body in the shape correcting step was confirmed, and the main surface had no surface defects.
<Evaluation of making photomask blank and photomask>
A photomask blank in which a chromium nitride film / a chromium carbide film / a chromium oxynitride film was laminated by sputtering (total film thickness of 900 Å) on one main surface of the glass substrates obtained in Examples 1 and 2 and Comparative Example; In addition, a phase shift mask blank in which a nitrided molybdenum silicide film was formed on one main surface of a glass substrate by a sputtering method (800 angstrom thick).
Further, a resist film was formed on the film by a spin coating method, and exposed and developed through a mask having a desired pattern, thereby producing a photomask and a phase shift mask having a desired pattern.
[0055]
When the pattern position accuracy of the obtained photomask and phase shift mask was compared with the reference pattern data, the pattern accuracy of the photomask and phase shift mask obtained using the glass substrates of Examples 1 and 2 was good. On the other hand, the pattern accuracy of the photomask and the phase shift mask obtained by using the glass substrate of the comparative example varied in comparison with the reference pattern data, resulting in a poor result.
Hereinafter, the method for manufacturing an electronic device substrate of the present invention (17) to (24) will be described.
The method for manufacturing a substrate for an electronic device of the present invention mainly includes the following steps as shown in FIG.
[0056]
A rough polishing process by a double-side polishing method using relatively large abrasive grains on both main surfaces of the electronic device substrate after chamfering the side surfaces of the substrate and grinding both main surfaces of the substrate with a lapping machine or the like (S201). When,
A precision polishing step (S202) of precisely polishing both main surfaces of the substrate by a double-side polishing method using relatively small abrasive grains;
A flatness measuring step (S203) for measuring the flatness of one main surface of the substrate obtained by the precision polishing step;
Based on the obtained measurement data, locally correct the shape of the area that is relatively convex to the arbitrarily set reference plane so that the flatness of the substrate becomes the desired value based on the obtained measurement data. Shape correcting step (S204) of correcting the flatness of the substrate by performing
And a final cleaning step (S205) of removing abrasive grains, particles, and the like attached to the substrate.
[0057]
When the shape correcting step (S204) is performed on both main surfaces of the substrate or when the flatness is corrected again, the flatness measuring step (S203), the shape correcting step (S204), and the final cleaning step (S205). ) Is performed.
In addition, between the rough polishing step and the precision polishing step, and between the precision polishing step and the shape correction step, the polishing abrasive grains adhered to the substrate are appropriately removed so that the polishing abrasive grains used in the previous step are not carried over to the next step. A normal cleaning step for removal may be provided.
Further, the end face polishing step for polishing the end face of the substrate may be performed before the final cleaning step.
As a typical example of the double-side polishing, a rough polishing step and a precision polishing step are performed using the double-side polishing apparatus shown in FIG.
The rectangular substrate 27 held in the holding hole of the carrier 31 is inserted and held, and the outer teeth of the carrier 31 are engaged with the sun gear 64 and the internal gear 63 of the double-side polishing device, and the carrier 31 rotates and revolves, Both main surfaces of the substrate 27 are polished on both sides by a relative sliding motion formed between the polishing pad 2 and the polishing pad 2 attached to the upper and lower platens rotating in the opposite directions while supplying the abrasive grains.
[0058]
The rough polishing step is performed for the purpose of removing scratches on the main surface of the substrate formed in the grinding step and maintaining the flatness obtained in the grinding step, and the average grain size of the abrasive grains is about 1 to 3 μm. This is a step of polishing using relatively large abrasive grains. The material of the abrasive grains is appropriately selected according to the material of the substrate.
It is preferable to use a hard polisher for the polishing pad used in the rough polishing step from the viewpoint of maintaining flatness.
The precision polishing step is performed for the purpose of mirror polishing of the substrate without surface defects such as scratches, and relatively small abrasive grains having an average grain diameter of about 1 μm or less (for example, 10 nm to 1 μm). This is a step of polishing using. The material of the abrasive grains is appropriately selected according to the material of the substrate as described above. Colloidal silica is preferred from the viewpoint that a smooth substrate surface with a small average particle size can be obtained.
As the polishing pad used in the precision polishing step, it is preferable to use a soft or ultra-soft polisher from the viewpoint of mirror finishing.
[0059]
The data of the flatness obtained in the flatness measuring step is stored in a recording medium such as a computer. The stored measurement data is compared with desired flatness data stored in advance to calculate a difference in flatness. The processing conditions corresponding to the region that is relatively convex with respect to the arbitrarily set reference surface are set on the measured surface so that the difference is removed and the flatness of the substrate becomes a desired value. It is set and the shape is corrected locally according to the processing conditions.
Specifically, the desired value is preferably such that the flatness is more than 0 μm and 1 μm or less (0.0 <flatness ≦ 1 μm). More preferably, it is more than 0 μm and 0.5 μm or less (0.0 <flatness ≦ 0.5 μm), more preferably more than 0 μm and 0.25 μm or less (flatness <0.0 <flatness ≦ 0.25 μm). desirable. As the absolute value of the flatness of the substrate becomes smaller, the pattern position accuracy when a photomask is used is improved, and the pattern transfer accuracy when a pattern is transferred using a photomask is improved. The desired value can be determined according to the required pattern position accuracy and pattern transfer accuracy. By providing the shape correcting step of the present invention, almost all desired flatness can be obtained.
The parallelism is preferably more than 0 μm and 2 μm or less. More preferably, it is more than 0 μm and 1 μm or less, more preferably more than 0 μm and 0.5 μm or less.
The final cleaning process includes cleaning with chemicals (acids and alkalis), cleaning with detergents, pure water and ultrapure water, wet cleaning with functional water such as hydrogen water, and dry cleaning with UV (ultraviolet) irradiation and ozone treatment. From among them, one or more are selected according to the object to be removed.
[0060]
<Example 3>
1) Rough polishing step (S201)
Twelve glass substrates that have been chamfered on the end surface of a synthetic quartz glass substrate (6 inches x 6 inches) and ground by a double-sided lapping device are set in the double-sided polishing device described above, and are roughly polished under the following polishing conditions. The process was performed. The processing load and the polishing time were appropriately adjusted.
Polishing liquid: cerium oxide (average particle size 2-3 μm) + water
Polishing pad: Hard polisher (urethane pad)
After completion of the rough polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) for cleaning to remove abrasive grains attached to the glass substrate.
2) Precision polishing process (S202)
Twelve wafers were set in the double-side polishing apparatus described above, and a precision polishing process was performed under the following polishing conditions. The processing load and the polishing time were appropriately adjusted.
Polishing liquid: cerium oxide (average particle size 1 μm) + water
Polishing pad: Soft polisher (Suede type)
After the completion of the precision polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) to remove the abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
[0061]
3) Flatness measurement step (S203)
One of the obtained twelve glass substrates was taken out, and the flatness of one main surface was measured by a flatness measuring device (FM200 manufactured by Troppel). As a result, the substrate shape showed a convex shape. Was 0.97 μm.
When the surface roughness of the glass substrate was measured by an atomic force microscope, the average surface roughness Ra was 0.25 nm.
The same flatness measurement was performed on both sides of a total of 12 sheets, and the measurement data was stored in a computer.
4) Shape correction step (S204)
Next, the flatness measurement data stored in the computer was compared with the flatness to be obtained of 0.56 μm (concave shape), and the difference in flatness was calculated by the computer to obtain the processing conditions. The shape correcting step in this embodiment is performed by the single-wafer single-side polishing method shown in FIG. As the pressurizing body 23 in FIG. 9, a pressurizing body is used which is arranged for 6 × 6 = 36 divisions for a 6-inch × 6-inch substrate. The pressurizing body was configured so that the pressure could be set by an electronic regulator by attaching a cylinder capable of transmitting pressure and using an electromagnetic valve independently.
As shown in FIG. 13 and the specific polishing conditions below, since the substrate shape before correction is convex, the pressure on the center of the substrate is high.
Retainer ring pressure: 7.5 g / cm2
Polishing liquid: colloidal silica (average particle size 100 nm) + water
Polishing pad: Super soft polisher (Suede type)
Polishing time: 60 minutes
[0062]
5) Final cleaning step (S205)
After completion of the shape correction step, the glass substrate was immersed in a cleaning bath (ultrasonic application) to remove the abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
When the flatness of the obtained glass substrate was measured with the same measuring instrument as described above, the flatness was 0.49 μm (concave shape).
Further, when the surface roughness was measured, the surface roughness after the precision polishing step was Ra = 0.23 nm.
In addition, the above-mentioned (4) shape correction step and (5) final cleaning step were performed on the back surface on which the shape correction was not performed and the other 11 glass substrates to produce glass substrates. As a result, the flatness of all 12 glass substrates was within 0.5 μm in absolute value, and a glass substrate having high flatness was obtained.
When the parallelism of all 12 glass substrates was measured by a parallelism measuring device (ZYGO interferometer), it was 0.8 μm or less.
[0063]
<Example 4>
In Example 3 above, after the 2) precision polishing step, an ultra-precision polishing step was performed under the following conditions. The processing load and the polishing time were appropriately adjusted.
Polishing liquid: colloidal silica (average particle size 100 nm) + water
Polishing pad: Super soft polisher (Suede type)
After the completion of the precision polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) to remove the abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
One of the obtained twelve glass substrates was extracted, and the flatness of one main surface was measured by a flatness measuring device (FM200 manufactured by Troppel). The substrate shape was concave, and the flatness was It was 0.68 μm (concave shape).
When the surface roughness of the glass substrate was measured by an atomic force microscope, the average surface roughness Ra was 0.18 nm.
The same flatness measurement was performed on both sides of a total of 12 sheets, and the measurement data was stored in a computer.
[0064]
Next, the flatness measurement data stored in the computer was compared with the flatness to be obtained of 0.25 μm (concave shape), and the difference in flatness was calculated by the computer to determine the processing conditions. Note that, similarly to the above, the shape correcting step was performed by the single-wafer single-side polishing method shown in FIG.
Specifically, as shown in FIG. 14 and below, since the substrate before the shape adjustment is concave, the pressure at the corners and the peripheral edge of the substrate is high.
Retainer ring pressure: 7.5 g / cm2
Polishing liquid: colloidal silica (average particle size 100 nm) + water
Polishing pad: Super soft polisher (Suede type)
Polishing time: 20 minutes
After completion of the shape correction step, the glass substrate was immersed in a cleaning bath (ultrasonic application) to remove the abrasive grains attached to the glass substrate, and the glass substrate was cleaned.
When the flatness of the obtained glass substrate was measured with the same measuring instrument as described above, the flatness was 0.23 μm (concave shape).
[0065]
Further, when the surface roughness was measured, the surface roughness after the precision polishing step was Ra = 0.18 nm.
In addition, the above-mentioned shape correction process and the final cleaning process were performed also on the back surface on which the shape correction was not performed and the other 11 glass substrates, thereby manufacturing glass substrates. As a result, the flatness of all 12 glass substrates was within 0.25 μm in absolute value, and a glass substrate having high flatness was obtained.
When the parallelism of all 12 glass substrates was measured by a parallelism measuring device (ZYGO interferometer), it was 0.8 μm or less.
[0066]
<Comparative Example 2>
In Example 3 described above, 3) flatness measuring step, 4) shape correcting step, 5) flatness of all 12 glass substrates after the precision polishing step by the double-side polishing method without performing the final cleaning step were measured. The shape varies from 1.0 μm (concave shape) to 1.5 μm (convex shape) and the flatness varies greatly.
<Example 5>
In Example 3 described above, 4) A glass substrate was prepared in the same manner as in Example 3 except that sodium hydroxide (NaOH) was added as a polishing liquid to be used in the shape correcting step, and the polishing liquid was adjusted to pH 11.2. Was prepared.
By adding sodium hydroxide as a polishing liquid to be used in the shape correcting step to impart an etching effect, the polishing time can be reduced by 10% to 20%, and the productivity has been improved. In addition, the surface roughness, flatness, and parallelism of the obtained glass substrate were all comparable glass substrates, and were good.
<Evaluation of making photomask blank and photomask>
A photomask blank in which a chromium nitride film / a chromium carbide film / a chromium oxynitride film was laminated by sputtering (total thickness of 900 Å) on one main surface of the glass substrate obtained in Examples 3 to 5 and Comparative Example 2. And a phase shift mask blank in which a nitrided molybdenum silicide film was formed on one main surface of a glass substrate by a sputtering method (film thickness: 800 Å).
Further, a resist film was formed on the film by a spin coating method, and exposed and developed through a mask having a desired pattern, thereby producing a photomask and a phase shift mask having a desired pattern.
When the pattern position accuracy of the obtained photomask and phase shift mask was compared with the reference pattern data, the pattern position accuracy of the photomask and phase shift mask obtained using the glass substrates of Examples 2 and 3 was good. However, the pattern accuracy of the photomask and the phase shift mask obtained using the glass substrate of the comparative example was inconsistent with the reference pattern data, resulting in poor results.
<Reference example>
An electronic device substrate was manufactured in the same manner as in Example 3 except that the 1) rough polishing step in Example 3 was not performed.
4) When the surface roughness Ra and flatness of the glass substrate before performing the shape correcting step were measured, the average surface roughness Ra was 0.27 nm, which was almost the same as that of Example 3, but the substrate shape was convex. And its flatness exceeded 2 μm.
As a result, 4) the polishing time in the shape correction process was approximately doubled in order to make the flatness almost the same as that of the third embodiment by the shape correction process, and the productivity was greatly reduced.
Accordingly, the double-side polishing step, a rough polishing step of maintaining the flatness obtained in the grinding step, and polishing using relatively large abrasive grains for the purpose of removing scratches on the substrate formed in the grinding step, By performing a plurality of stages of the precision polishing process of polishing using relatively small polishing abrasive grains for the purpose of mirror polishing the substrate, it is possible to obtain a highly smooth, highly flat electronic device substrate with high productivity. I understand.
[0067]
【The invention's effect】
According to the present invention, first, there is provided an electronic device substrate, a photomask blank, and a photomask having a high flatness of 0.25 μm or less corresponding to a design rule of a next-generation semiconductor integrated circuit. be able to.
Secondly, it is possible to provide a novel polishing apparatus and a novel polishing method for reliably obtaining a substrate having a high flatness of 0.25 μm or less.
Third, a method for manufacturing an electronic device substrate for reliably obtaining an electronic device substrate having a high flatness within 0.25 μm corresponding to the design rule of a next-generation semiconductor integrated circuit at a high yield, In addition, it is possible to provide a method for manufacturing a photomask blank and a photomask having a good pattern position accuracy when a photomask is formed by using the electronic device substrate and a good pattern transfer accuracy when pattern exposure is performed. It has a useful and significant effect.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of a polishing apparatus according to the present invention.
FIG. 2 is a schematic diagram illustrating a configuration of a substrate shape adjusting unit of the polishing apparatus according to the present invention.
FIG. 3 is a schematic view showing a configuration of a substrate surface defect removing unit of the polishing apparatus according to the present invention.
FIG. 4 is a schematic view showing a preferred embodiment of a polishing apparatus according to the present invention.
FIG. 5 is a view showing a shape of a retainer ring on a polishing platen side used in the present invention.
FIG. 6 is a view showing a manufacturing process of an electronic device substrate according to the present invention.
FIG. 7 is a top view of a substrate shape adjusting unit in the polishing apparatus of the present invention.
8 is a cross-sectional view taken along line AA ′ of the substrate shape adjusting unit in FIG. 7;
FIG. 9 is a schematic diagram illustrating a configuration of a substrate shape correcting unit of the polishing apparatus according to the present invention.
FIG. 10 is a diagram showing a preferred embodiment of a manufacturing process of an electronic device substrate according to the present invention.
FIG. 11 is a schematic view showing a conventional single-wafer polishing apparatus.
FIG. 12 is a view showing a substrate to be polished according to the present invention.
FIG. 13 is a diagram showing polishing conditions in the example of the present invention.
FIG. 14 is a diagram showing polishing conditions in the example of the present invention.
[Explanation of symbols]
1: polishing platen, 2: polishing pad, 3: slurry supply means, 4: pressure plate for shape adjustment, 5: rotating shaft, 6: substrate shape adjustment unit, 7: pressure plate for defect removal, 8: rotation Shaft, 9: substrate surface defect removing unit, 10: rotary shaft for platen, 21: elastic body (backing pad), 22: retainer ring (substrate holding means), 23: pressurized body, 24: pressurized body holding means , 25: connection body, 26: pressure control means, 27: substrate, 31: carrier, 51: elastic member, 61: lower surface plate, 62: upper surface plate, 63: internal gear, 64: sun gear, 71: main Front, 72: side, 73: chamfer

Claims (24)

電子デバイス用基板であって、該基板主表面の平坦度が0μmを超え0.25μm以下であることを特徴とする電子デバイス用基板。An electronic device substrate, wherein the flatness of the main surface of the substrate is more than 0 μm and 0.25 μm or less. 前記基板の平行度が0μmを超え1μm以下であることを特徴とする請求項1に記載の電子デバイス用基板。2. The electronic device substrate according to claim 1, wherein the parallelism of the substrate is more than 0 μm and 1 μm or less. 前記基板は、ガラス基板からなることを特徴とする請求項1または請求項2に記載の電子デバイス用基板。The electronic device substrate according to claim 1, wherein the substrate is a glass substrate. 請求項1乃至請求項3の何れか一に記載の電子デバイス用基板の主表面上に、被転写体に対し転写パターンとなる転写パターン用薄膜が形成されていることを特徴とするマスクブランク。4. A mask blank comprising a transfer pattern thin film serving as a transfer pattern on a transfer target body on a main surface of the electronic device substrate according to claim 1. 請求項4に記載のマスクブランクにおける前記転写パターン用薄膜をパターニングして転写パターンが形成されていることを特徴とする転写用マスク。A transfer mask, wherein a transfer pattern is formed by patterning the transfer pattern thin film in the mask blank according to claim 4. 回転自在な研磨定盤と、該研磨定盤上に設けられた研磨パッドと、該研磨パッドの表面に研磨剤を供給する研磨剤供給手段と、前記研磨パッド上に基板を保持する基板保持手段と、前記研磨パッドに前記基板保持手段によって保持された基板を加圧することにより基板表面を研磨する基板加圧手段とを有する研磨装置であって、
前記基板保持手段は、前記基板の周辺部分に前記研磨パッドからの過剰な圧力を抑制する機能を有し、
前記基板加圧手段は、基板表面の分割された複数領域に対して、任意に独立して加圧できるように複数の加圧体を有しており、該加圧体には個々に圧力制御可能な圧力制御手段が設けられていることを特徴とする研磨装置。
A rotatable polishing surface plate, a polishing pad provided on the polishing surface plate, an abrasive supply device for supplying an abrasive to the surface of the polishing pad, and a substrate holding device for holding a substrate on the polishing pad And a substrate pressing means for polishing the substrate surface by pressing the substrate held by the substrate holding means on the polishing pad, a polishing apparatus,
The substrate holding means has a function of suppressing excessive pressure from the polishing pad in a peripheral portion of the substrate,
The substrate pressurizing means has a plurality of pressurizing members so as to be capable of arbitrarily and independently pressurizing a plurality of divided regions on the substrate surface, and the pressurizing members individually perform pressure control. A polishing apparatus, characterized in that possible polishing means are provided.
前記基板保持手段は、前記基板の外周端面を囲むリテーナーリングであることを特徴とする請求項6に記載の研磨装置。The polishing apparatus according to claim 6, wherein the substrate holding means is a retainer ring surrounding an outer peripheral end surface of the substrate. 研磨加工前および/または研磨加工中における基板の形状を測定し、該測定データを記憶し、所望の形状の初期設定データと前記測定データとを対比して加工条件を算出するデータ処理手段と、前記基板が所望の形状となるように、前記基板保持手段および前記基板加圧手段に加圧情報を送る伝達手段とを有することを特徴とする請求項6または請求項7に記載の研磨装置。A data processing means for measuring the shape of the substrate before and / or during the polishing process, storing the measured data, and comparing the initial setting data of the desired shape with the measurement data to calculate the processing conditions; The polishing apparatus according to claim 6, further comprising a transmission unit that sends pressure information to the substrate holding unit and the substrate pressing unit so that the substrate has a desired shape. さらに、前記研磨定盤上に、回転自在であって基板主表面を略均一に加圧する加圧プレートと、前記加圧プレートと前記研磨定盤との間に設けられ、前記加圧プレートとは独立して回転自在に基板を保持する保持孔が形成されたキャリヤとを有する基板欠陥除去手段を備えたことを特徴とする請求項6乃至請求項8の何れか一に記載の研磨装置。Further, on the polishing platen, a pressure plate that is rotatable and presses the substrate main surface substantially uniformly, and is provided between the pressure plate and the polishing platen, and the pressure plate is The polishing apparatus according to any one of claims 6 to 8, further comprising a substrate defect removing means having a carrier having a holding hole for independently and rotatably holding the substrate. 請求項6乃至請求項8の何れか一に記載の研磨装置を用いる研磨方法であって、基板を準備し、該基板の形状を測定した後、測定したデータに基づき該基板の形状が所望の形状となるように前記基板の周辺部分に前記研磨パッドからの過剰な圧力を抑制し、かつ、該基板主表面の形状が基板表面において任意に設定した基準面に対して相対的に凸状になっている領域は、他の領域よりも前記圧力制御手段によって前記加圧体の基板に対する圧力を大にし、凸状になっている領域に対向する基板の裏面側より押圧し基板主表面を研磨し、基板の形状を修正することを特徴とする研磨方法。A polishing method using the polishing apparatus according to any one of claims 6 to 8, wherein a substrate is prepared, and after measuring the shape of the substrate, the shape of the substrate is determined based on the measured data. Suppress excessive pressure from the polishing pad on the peripheral portion of the substrate so as to have a shape, and the shape of the main surface of the substrate is made to be convex relative to an arbitrarily set reference surface on the substrate surface. In the region, the pressure of the pressure body against the substrate is increased by the pressure control means as compared with the other regions, and the substrate is pressed from the rear surface side of the substrate facing the convex region to polish the main surface of the substrate. And correcting the shape of the substrate. 前記基板の両主表面を研磨することを特徴とする請求項10に記載の研磨方法。The polishing method according to claim 10, wherein both main surfaces of the substrate are polished. 請求項10または請求項11の研磨方法によって基板の形状を修正した後、請求項9に記載の研磨装置を用いて、基板主表面の欠陥を除去することを特徴とする研磨方法。A polishing method comprising: correcting a shape of a substrate by the polishing method according to claim 10 or 11; and removing defects on a main surface of the substrate using the polishing apparatus according to claim 9. マスクブランクの基板として用いられる電子デバイス用基板の製造方法であって、請求項10乃至請求項12の何れか一に記載の研磨方法によって得られることを特徴とする電子デバイス用基板の製造方法。A method for manufacturing an electronic device substrate used as a mask blank substrate, wherein the method is obtained by the polishing method according to any one of claims 10 to 12. 前記電子デバイス用基板は、所定面積と所定厚みを有する四角形状の基板であって、前記所定厚み/前記所定面積が、1.0×10−4mm−1以上であることを特徴とする請求項13に記載の電子デバイス用基板の製造方法。The electronic device substrate is a rectangular substrate having a predetermined area and a predetermined thickness, and the predetermined thickness / the predetermined area is equal to or greater than 1.0 × 10 −4 mm −1. Item 14. A method for manufacturing an electronic device substrate according to item 13. 請求項13または請求項14に記載の電子デバイス用基板の製造方法によって得られた電子デバイス用基板の主表面上に、被転写体に対し転写パターンとなる転写パターン用薄膜を形成することを特徴とするマスクブランクの製造方法。A thin film for a transfer pattern which is to be a transfer pattern with respect to an object to be transferred is formed on the main surface of the electronic device substrate obtained by the method for manufacturing an electronic device substrate according to claim 13 or 14. Manufacturing method of a mask blank. 請求項15に記載のマスクブランクにおける前記転写パターン用薄膜をパターニングして転写パターンを形成することを特徴とする転写用マスクの製造方法。A method of manufacturing a transfer mask, comprising: forming a transfer pattern by patterning the transfer pattern thin film in the mask blank according to claim 15. キャリヤの保持孔に保持された基板を、該基板の上下両面側に研磨パッドを貼った上下定盤に挟持させ、前記上下定盤を基板の被加工面と垂直な軸にそれぞれ回転させ、キャリヤに保持された基板が、研磨パッド間で自転しながら公転する摺動運動することにより、前記基板の両面研磨を行う電子デバイス用基板の製造方法において、
前記両面研磨した後、前記基板の少なくとも一主表面の平坦度を測定し、測定したデータに基づき基板の平坦度が所望の値となるように、前記一主表面において任意に設定した基準面に対して相対的に凸状になっている領域について局所的に形状修正して、基板の平坦度を修正することを特徴とする電子デバイス用基板の製造方法。
The substrate held in the holding hole of the carrier is sandwiched between upper and lower stools having polishing pads attached to the upper and lower surfaces of the substrate, and the upper and lower stools are respectively rotated on axes perpendicular to the surface to be processed of the substrate. In the method for manufacturing a substrate for an electronic device that performs double-side polishing of the substrate, the substrate held by the sliding motion of revolving while rotating between the polishing pads.
After the two-side polishing, measure the flatness of at least one main surface of the substrate, so that the flatness of the substrate is a desired value based on the measured data, to the reference surface arbitrarily set in the one main surface A method of manufacturing a substrate for an electronic device, wherein the shape of a region which is relatively convex is locally corrected to correct the flatness of the substrate.
前記両面研磨は、研削工程で得られた平坦度を維持し、研削工程で形成された基板のキズの除去を目的とした比較的大きな研磨砥粒を用いて研磨する粗研磨工程と、基板の鏡面化を目的とした比較的小さな研磨砥粒を用いて研磨する精密研磨工程とを有する複数段階の研磨工程であることを特徴とする請求項17に記載の電子デバイス用基板の製造方法。The double-side polishing is to maintain the flatness obtained in the grinding step, a rough polishing step of polishing using relatively large abrasive grains for the purpose of removing scratches on the substrate formed in the grinding step, 18. The method for manufacturing a substrate for an electronic device according to claim 17, comprising a plurality of polishing steps including a precision polishing step for polishing using relatively small polishing abrasive grains for mirror finishing. 前記両面研磨は、前記基板の表面粗さRaが0.25nm以下、平坦度が1μm以下にすることを特徴とする請求項17または請求項18に記載の電子デバイス用基板の製造方法。19. The method for manufacturing a substrate for an electronic device according to claim 17, wherein in the double-side polishing, the substrate has a surface roughness Ra of 0.25 nm or less and a flatness of 1 μm or less. 前記局所的な形状修正は、前記凸状になっている領域に対して、他の領域よりも基板に対する研磨パッドの圧力が大きくなるように押圧して基板主表面を片面研磨し、基板の平坦度を修正することを特徴とする請求項17乃至請求項19の何れか一に記載の電子デバイス用基板の製造方法。The local shape correction is performed such that the convex region is pressed so that the pressure of the polishing pad against the substrate is larger than other regions, and the main surface of the substrate is polished on one side, and the substrate is flattened. 20. The method of manufacturing an electronic device substrate according to claim 17, wherein the degree is corrected. 前記局所的な形状修正は、エッチング作用を利用するものであることを特徴とする請求項17乃至請求項20の何れか一に記載の電子デバイス用基板の製造方法。21. The method of manufacturing an electronic device substrate according to claim 17, wherein the local shape correction uses an etching action. 前記基板は、マスクブランク用ガラス基板であることを特徴とする請求項17乃至請求項21の何れか一に記載の電子デバイス用基板の製造方法。22. The method for manufacturing an electronic device substrate according to claim 17, wherein the substrate is a mask blank glass substrate. 請求項17乃至請求項22の何れか一に記載の電子デバイス用基板の製造方法によって得られた電子デバイス用基板の主表面上に少なくとも被転写体に対し転写パターンとなる転写パターン用薄膜を形成することを特徴とするマスクブランクの製造方法。23. A transfer pattern thin film which becomes a transfer pattern with respect to at least an object to be transferred is formed on a main surface of an electronic device substrate obtained by the method for manufacturing an electronic device substrate according to claim 17. A method of manufacturing a mask blank. 請求項17乃至請求項23の何れか一に記載のマスクブランクの製造方法によって得られたマスクブランクの前記転写パターン用薄膜をパターニングして転写マスクを製造することを特徴とする転写用マスクの製造方法。A method for manufacturing a transfer mask, comprising: manufacturing a transfer mask by patterning the transfer pattern thin film of a mask blank obtained by the method for manufacturing a mask blank according to any one of claims 17 to 23. Method.
JP2003089970A 2002-03-29 2003-03-28 Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method Pending JP2004029735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089970A JP2004029735A (en) 2002-03-29 2003-03-28 Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002093491 2002-03-29
JP2003089970A JP2004029735A (en) 2002-03-29 2003-03-28 Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005178200A Division JP2005301304A (en) 2002-03-29 2005-06-17 Substrate for mask blank, mask blank, and mask for transfer
JP2005178183A Division JP2006011434A (en) 2002-03-29 2005-06-17 Manufacturing method for mask blank substrate, mask blank and transfer mask

Publications (1)

Publication Number Publication Date
JP2004029735A true JP2004029735A (en) 2004-01-29

Family

ID=31189926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089970A Pending JP2004029735A (en) 2002-03-29 2003-03-28 Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method

Country Status (1)

Country Link
JP (1) JP2004029735A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083961A1 (en) * 2003-03-20 2004-09-30 Hoya Corporation Substrate for reticle and method of manufacturing the substrate, and mask blank and method of manufacturing the mask blank
JP2005275388A (en) * 2004-02-25 2005-10-06 Hoya Corp Glass substrate for mask blank, its manufacturing method, method for manufacturing mask blank, and method for manufacturing exposure mask
JP2005316448A (en) * 2004-03-30 2005-11-10 Hoya Corp Glass substrate for mask blank, mask blank, method for producing glass substrate for mask blank, and polishing device
JP2006021259A (en) * 2004-07-06 2006-01-26 Fuji Electric Device Technology Co Ltd Polishing method of magnetic disk base board and magnetic disk medium
JP2006126816A (en) * 2004-09-29 2006-05-18 Hoya Corp Mask blank substrate, mask blank, exposure mask, method for manufacturing semiconductor device and method for manufacturing mask blank substrate
JP2006176341A (en) * 2004-12-20 2006-07-06 Hoya Corp Methods for production of glass substrate for mask blanks, mask blanks, exposure mask and semiconductor device
JP2006251781A (en) * 2005-02-09 2006-09-21 Asahi Glass Co Ltd Mask blank
JP2007054944A (en) * 2005-07-25 2007-03-08 Hoya Corp Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask
JP2008030172A (en) * 2006-07-31 2008-02-14 Nagase Integrex Co Ltd Grinding machine and grinding method
JP2008264917A (en) * 2007-04-19 2008-11-06 Fujikoshi Mach Corp Workpiece single face polishing device and single side polishing method
KR20100087649A (en) 2009-01-27 2010-08-05 신에쓰 가가꾸 고교 가부시끼가이샤 Method of processing synthetic quartz glass substrate for semiconductor
WO2010092937A1 (en) * 2009-02-13 2010-08-19 Hoya株式会社 Substrate for mask blank use, mask blank, and photo mask
JP2010218643A (en) * 2009-03-18 2010-09-30 Hoya Corp Method for manufacturing glass substrate, glass substrate and magnetic recording medium
EP2339399A2 (en) 2009-12-11 2011-06-29 Shin-Etsu Chemical Co., Ltd. Photomask-forming glass substrate and making method
JP2011207757A (en) * 2011-04-25 2011-10-20 Hoya Corp Method for producing glass substrate for mask blank, method for producing mask blank, method for producing reflection type mask blank, method for producing exposure mask, method for producing reflection type mask, and method for producing semiconductor device
JP2011245787A (en) * 2010-05-28 2011-12-08 Hoya Corp Method for manufacturing mask blank substrate, method for manufacturing imprint mold mask blank, and method for manufacturing imprint mold
JP2011248373A (en) * 2004-09-29 2011-12-08 Hoya Corp Mask blank substrate, mask blank, exposure mask, method for manufacturing semiconductor device and method for manufacturing mask blank substrate
JP2012042499A (en) * 2010-08-12 2012-03-01 Hoya Corp Method for manufacturing mask blank substrate, mask blank, and transfer mask
JP2012150865A (en) * 2011-01-19 2012-08-09 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and its manufacturing method
JP2013016217A (en) * 2011-06-30 2013-01-24 Konica Minolta Advanced Layers Inc Glass substrate for hdd, manufacturing method of glass substrate for hdd, and magnetic recording media for hdd
JP2013031909A (en) * 2011-08-03 2013-02-14 Seiko Instruments Inc Method for polishing glass substrate, method for manufacturing package, piezoelectric vibrator, oscillator, electronic apparatus and radio-controlled timepiece
US8518613B2 (en) 2010-03-16 2013-08-27 Asahi Glass Company, Limited Optical member base material for EUV lithography, and method for producing same
WO2014025047A1 (en) * 2012-08-09 2014-02-13 株式会社ニコン Method for manufacturing optical element and exposure method using optical element
KR101522295B1 (en) * 2008-10-01 2015-05-21 호야 가부시키가이샤 Method of manufacturing substrate set for maskblank, method of manufacturing maskblank set, method of manufacturing photomask set, and method of manufacturing semiconductor device
KR101548035B1 (en) 2008-12-17 2015-08-27 아사히 가라스 가부시키가이샤 Low expansion glass substrate for reflection type mask and method for processing same
JP2016145927A (en) * 2015-02-09 2016-08-12 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing substrate having multilayer film, method for manufacturing mask blank, and method for manufacturing transfer mask
JP2017111371A (en) * 2015-12-18 2017-06-22 Hoya株式会社 Manufacturing method of substrate for mask blank, manufacturing method of mask blank and manufacturing method of mask for exposure
JP2017529681A (en) * 2014-06-24 2017-10-05 ケーエルエー−テンカー コーポレイション Patterned wafer shape measurement for semiconductor process control
KR20180022583A (en) * 2016-08-23 2018-03-06 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing substrate
CN108573889A (en) * 2017-03-09 2018-09-25 株式会社迪思科 The fluctuating detection method and grinding attachment of chip
CN108873599A (en) * 2017-05-08 2018-11-23 信越化学工业株式会社 Large-size synthetic quartz glass substrate, evaluation method and manufacturing method
WO2020196555A1 (en) * 2019-03-28 2020-10-01 Hoya株式会社 Substrate for mask blank, substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083961A1 (en) * 2003-03-20 2004-09-30 Hoya Corporation Substrate for reticle and method of manufacturing the substrate, and mask blank and method of manufacturing the mask blank
JPWO2004083961A1 (en) * 2003-03-20 2006-06-22 Hoya株式会社 Reticle substrate and manufacturing method thereof, mask blank and manufacturing method thereof
US7579120B2 (en) 2003-03-20 2009-08-25 Hoya Corporation Substrate for reticle and method of manufacturing the substrate, and mask blank and method of manufacturing the mask blank
JP2005275388A (en) * 2004-02-25 2005-10-06 Hoya Corp Glass substrate for mask blank, its manufacturing method, method for manufacturing mask blank, and method for manufacturing exposure mask
JP2005316448A (en) * 2004-03-30 2005-11-10 Hoya Corp Glass substrate for mask blank, mask blank, method for producing glass substrate for mask blank, and polishing device
JP2006021259A (en) * 2004-07-06 2006-01-26 Fuji Electric Device Technology Co Ltd Polishing method of magnetic disk base board and magnetic disk medium
JP2006126816A (en) * 2004-09-29 2006-05-18 Hoya Corp Mask blank substrate, mask blank, exposure mask, method for manufacturing semiconductor device and method for manufacturing mask blank substrate
JP2011248373A (en) * 2004-09-29 2011-12-08 Hoya Corp Mask blank substrate, mask blank, exposure mask, method for manufacturing semiconductor device and method for manufacturing mask blank substrate
JP2006176341A (en) * 2004-12-20 2006-07-06 Hoya Corp Methods for production of glass substrate for mask blanks, mask blanks, exposure mask and semiconductor device
JP2006251781A (en) * 2005-02-09 2006-09-21 Asahi Glass Co Ltd Mask blank
JP2007054944A (en) * 2005-07-25 2007-03-08 Hoya Corp Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask
JP2008030172A (en) * 2006-07-31 2008-02-14 Nagase Integrex Co Ltd Grinding machine and grinding method
JP2008264917A (en) * 2007-04-19 2008-11-06 Fujikoshi Mach Corp Workpiece single face polishing device and single side polishing method
KR101522295B1 (en) * 2008-10-01 2015-05-21 호야 가부시키가이샤 Method of manufacturing substrate set for maskblank, method of manufacturing maskblank set, method of manufacturing photomask set, and method of manufacturing semiconductor device
KR101548035B1 (en) 2008-12-17 2015-08-27 아사히 가라스 가부시키가이샤 Low expansion glass substrate for reflection type mask and method for processing same
US8360824B2 (en) 2009-01-27 2013-01-29 Shin-Etsu Chemical Co., Ltd. Method of processing synthetic quartz glass substrate for semiconductor
KR20100087649A (en) 2009-01-27 2010-08-05 신에쓰 가가꾸 고교 가부시끼가이샤 Method of processing synthetic quartz glass substrate for semiconductor
WO2010092937A1 (en) * 2009-02-13 2010-08-19 Hoya株式会社 Substrate for mask blank use, mask blank, and photo mask
CN102317860A (en) * 2009-02-13 2012-01-11 Hoya株式会社 Substrate for mask blank use, mask blank, and photo mask
JP4839411B2 (en) * 2009-02-13 2011-12-21 Hoya株式会社 Mask blank substrate, mask blank and photomask
JP2010218643A (en) * 2009-03-18 2010-09-30 Hoya Corp Method for manufacturing glass substrate, glass substrate and magnetic recording medium
US9316902B2 (en) 2009-12-11 2016-04-19 Shin-Etsu Chemical Co., Ltd. Photomask-forming glass substrate and making method
US8551346B2 (en) 2009-12-11 2013-10-08 Shin-Etsu Chemcial Co., Ltd. Photomask-forming glass substrate and making method
EP2339399A2 (en) 2009-12-11 2011-06-29 Shin-Etsu Chemical Co., Ltd. Photomask-forming glass substrate and making method
US8518613B2 (en) 2010-03-16 2013-08-27 Asahi Glass Company, Limited Optical member base material for EUV lithography, and method for producing same
JP2011245787A (en) * 2010-05-28 2011-12-08 Hoya Corp Method for manufacturing mask blank substrate, method for manufacturing imprint mold mask blank, and method for manufacturing imprint mold
JP2012042499A (en) * 2010-08-12 2012-03-01 Hoya Corp Method for manufacturing mask blank substrate, mask blank, and transfer mask
CN102372424A (en) * 2010-08-12 2012-03-14 Hoya株式会社 Substrate for masking base, masking base and method for manufacturing transferring mask
JP2012150865A (en) * 2011-01-19 2012-08-09 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and its manufacturing method
JP2011207757A (en) * 2011-04-25 2011-10-20 Hoya Corp Method for producing glass substrate for mask blank, method for producing mask blank, method for producing reflection type mask blank, method for producing exposure mask, method for producing reflection type mask, and method for producing semiconductor device
JP2013016217A (en) * 2011-06-30 2013-01-24 Konica Minolta Advanced Layers Inc Glass substrate for hdd, manufacturing method of glass substrate for hdd, and magnetic recording media for hdd
JP2013031909A (en) * 2011-08-03 2013-02-14 Seiko Instruments Inc Method for polishing glass substrate, method for manufacturing package, piezoelectric vibrator, oscillator, electronic apparatus and radio-controlled timepiece
WO2014025047A1 (en) * 2012-08-09 2014-02-13 株式会社ニコン Method for manufacturing optical element and exposure method using optical element
TWI612375B (en) * 2012-08-09 2018-01-21 Nikon Corp Optical element manufacturing method, and exposure method using the same
JP2014034497A (en) * 2012-08-09 2014-02-24 Nikon Corp Method for manufacturing optical element
JP2017529681A (en) * 2014-06-24 2017-10-05 ケーエルエー−テンカー コーポレイション Patterned wafer shape measurement for semiconductor process control
JP2016145927A (en) * 2015-02-09 2016-08-12 Hoya株式会社 Method for manufacturing mask blank substrate, method for manufacturing substrate having multilayer film, method for manufacturing mask blank, and method for manufacturing transfer mask
JP2017111371A (en) * 2015-12-18 2017-06-22 Hoya株式会社 Manufacturing method of substrate for mask blank, manufacturing method of mask blank and manufacturing method of mask for exposure
KR102448830B1 (en) 2016-08-23 2022-09-29 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing substrate
KR20180022583A (en) * 2016-08-23 2018-03-06 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing substrate
CN108573889A (en) * 2017-03-09 2018-09-25 株式会社迪思科 The fluctuating detection method and grinding attachment of chip
CN108573889B (en) * 2017-03-09 2024-02-02 株式会社迪思科 Method for detecting undulation of wafer and grinding device
JP2018188332A (en) * 2017-05-08 2018-11-29 信越化学工業株式会社 Large-sized synthetic quartz glass substrate, evaluation method and production method thereof
TWI760491B (en) * 2017-05-08 2022-04-11 日商信越化學工業股份有限公司 Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method
KR20220066028A (en) * 2017-05-08 2022-05-23 신에쓰 가가꾸 고교 가부시끼가이샤 Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method
CN108873599A (en) * 2017-05-08 2018-11-23 信越化学工业株式会社 Large-size synthetic quartz glass substrate, evaluation method and manufacturing method
KR102472858B1 (en) 2017-05-08 2022-12-02 신에쓰 가가꾸 고교 가부시끼가이샤 Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method
CN108873599B (en) * 2017-05-08 2024-03-12 信越化学工业株式会社 Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method
WO2020196555A1 (en) * 2019-03-28 2020-10-01 Hoya株式会社 Substrate for mask blank, substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP2004029735A (en) Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method
KR100773187B1 (en) Method of determining a flatness of an electronic device substrate, method of producing the substrate, method of producing a mask blank, method of producing a transfer mask, polishing method, electronic device substrate, mask blank, transfer mask, and polishing apparatus
JP2006011434A (en) Manufacturing method for mask blank substrate, mask blank and transfer mask
TWI568699B (en) Synthetic quartz glass substrate and making method
KR101048910B1 (en) Reticle substrate and its manufacturing method, mask blank and its manufacturing method
KR20150097484A (en) Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
WO2015145887A1 (en) Substrate for mask blanks, mask blank, transfer mask, and production method for these
US9400421B2 (en) Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and methods of manufacturing the same
JP2003048148A (en) Square substrate grinding method
JP2005301304A (en) Substrate for mask blank, mask blank, and mask for transfer
JP2005066781A (en) Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask
JP6727879B2 (en) Mask blank substrate manufacturing method, multilayer film-coated substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2004054285A (en) Glass substrate for mask blanks, method for manufacturing glass substrate for mask blanks, mask blanks, method for manufacturing mask blanks, transfer mask, and method for manufacturing same
JP2006146250A (en) Glass substrate for mask blank and transfer mask
JP2004029736A (en) Method for determining flatness of substrate for electronic device, production method and method for producing mask blank and mask for transfer
JP2004302280A (en) Method of manufacturing substrate for mask blank, method of manufacturing mask blank and method of manufacturing transfer mask
JP6618843B2 (en) Photomask substrate recycling method, photomask substrate manufacturing method, photomask blank manufacturing method, photomask manufacturing method, and pattern transfer method
JP5335864B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
JP6803186B2 (en) Manufacturing method of mask blank substrate, substrate with multilayer reflective film, mask blank, transfer mask and semiconductor device
JP4435500B2 (en) Substrate double-side polishing method, double-side polishing guide ring and substrate double-side polishing apparatus
KR101270659B1 (en) Substrate for Blank Mask, Blank Mask and Manufacturing Method Thereof
JP3329594B2 (en) Method of manufacturing sapphire substrate for photomask
JP5671305B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
JP6297321B2 (en) Manufacturing method of substrate with functional film, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, and manufacturing method of transfer mask
JP4283061B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of mask blanks, and manufacturing method of transfer mask

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060320

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208