JP2005066781A - Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask - Google Patents
Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask Download PDFInfo
- Publication number
- JP2005066781A JP2005066781A JP2003301615A JP2003301615A JP2005066781A JP 2005066781 A JP2005066781 A JP 2005066781A JP 2003301615 A JP2003301615 A JP 2003301615A JP 2003301615 A JP2003301615 A JP 2003301615A JP 2005066781 A JP2005066781 A JP 2005066781A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- polishing
- electronic device
- polishing pad
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本発明は、基板表面に微小な表面欠陥のない電子デバイス用ガラス基板、該基板を用いたマスクブランクスの製造方法、及び転写マスクの製造方法に関する。 The present invention relates to a glass substrate for electronic devices having no minute surface defects on the substrate surface, a method for producing mask blanks using the substrate, and a method for producing a transfer mask.
近年における超LSIデバイスの高密度化、高精度化により、マスクブランクス用ガラス基板などの電子デバイス用ガラス基板の平坦度や表面欠陥に対する要求は年々厳しくなる状況にある。ここで、従来のマスクブランクス用ガラス基板の表面粗さを低減するための精密研磨方法としては、例えば、下記特許文献1(特開昭64−40267号公報)に記載されているものがある。この精密研磨方法は、酸化セリウムを主材とする研磨材を用いて研磨した後、コロイダルシリカを用いて仕上げ研磨するものである。
上記公報によれば、使用する研磨パッドとしては、基布としての不織布にポリウレタン樹脂を含浸、発泡させたもの等を使用することができるとされ、実施例ではスウェードタイプの研磨パッドを使った例が記載されている。
また、スウェードタイプの研磨パッドとしては、下記特許文献2(特開2002−59356号公報)にあるように、半導体ウエハーを鏡面研磨する際、微小傷や潜傷の発生を抑えるために、ナップ層の厚さを520μm,570μmとした研磨パッドが開示されている。
According to the above publication, as the polishing pad to be used, a nonwoven fabric as a base fabric impregnated with polyurethane resin and foamed can be used, and in the examples, an example using a suede type polishing pad is used. Is described.
In addition, as a suede type polishing pad, as disclosed in the following Patent Document 2 (Japanese Patent Laid-Open No. 2002-59356), a nap layer is used to suppress the occurrence of minute scratches and latent scratches when mirror polishing a semiconductor wafer. A polishing pad having a thickness of 520 μm and 570 μm is disclosed.
本発明者の検討によると、上述の先行技術文献で記載されている技術を使用したとしても、近年要求されている表面欠陥に対する高いレベルの条件を満たさないことがわかった。すなわち、先行技術に挙げた研磨方法によって得られたガラス基板表面には、高さが2nm〜7nm程度、大きさは数十nm〜2000nm程度の凸状の突起や、深さが数nm〜200nm程度、大きさは数十nm〜500nm程度の凹状の欠陥が形成されていることが判明した。これは、従来の目視検査では確認できない小さい高さの凸状の突起や凹状の欠陥で、上記近年要請されるようになった高いレベルの表面欠陥フリーの要請を確認するために開発された欠陥検査装置によって始めて確認することができたものである。
例えば、この凸状の突起上に薄膜を形成し、マスクブランクス、及び転写マスクを作製した場合、凸状の突起の大きさが拡大化されるため、次世代の基板として要求される0.3μm以上の欠陥が無いこと、更には0.1μm以上の欠陥が無いこと、また更には0.05μm以上の欠陥が無いことを満足したとしても、この基板を用いて作製されるマスクブランクス、及び転写マスクの欠陥検査を行った場合、問題となることがある。
According to the study of the present inventor, it has been found that even if the technique described in the above-mentioned prior art document is used, it does not satisfy a high level condition for a surface defect that has been required in recent years. That is, on the surface of the glass substrate obtained by the polishing method listed in the prior art, a convex protrusion having a height of about 2 nm to 7 nm and a size of about several tens of nm to 2000 nm, and a depth of several nm to 200 nm. It was found that a concave defect having a size of about several tens of nm to 500 nm was formed. This is a small-sized convex protrusion or concave defect that cannot be confirmed by conventional visual inspection, and was developed to confirm the above-mentioned demand for surface defect-free high level that has recently been required. It was confirmed for the first time by the inspection device.
For example, when a thin film is formed on this convex protrusion and a mask blank and a transfer mask are produced, the size of the convex protrusion is enlarged, so that 0.3 μm required as a next-generation substrate is required. Even if it is satisfied that there is no defect of the above, further that there is no defect of 0.1 μm or more, and that there is no defect of 0.05 μm or more, and mask blanks produced using this substrate, and transfer When a defect inspection of a mask is performed, there may be a problem.
また、この高さ数nm程度の凸状の突起が形成されたガラス基板を使って位相シフトマスクブランクス、及び位相シフトマスクを作製した場合、露光光の波長が短波長になるに従って、凸状の突起による位相差変化が大きくなり(凸状突起の高さが5nmの場合、露光光がArFエキシマレーザー(露光波長:193nm)では、位相角変化は4.6度、F2エキシマレーザー(露光波長:157nm)では、位相角変化は5.7度となる)、無視できない程度になり問題となる。
また、この数nm程度の凸状の突起が形成されたガラス基板を使って反射型マスクブランクス、及び反射型マスクを作製した場合、マスク面のパターン近傍に凸状突起が存在すると、反射光にはその凸状突起に起因した位相の変化が起こる。この位相の変化は転写されるパターンの位置精度やコントラストを悪化させる原因となる。特に波長が0.2〜100nm程度の極端紫外(Extreme Ultra Violet、EUV)光のような短波長の光を露光光として用いる場合、マスク面上の微細な凹凸に対して位相の変化が非常に敏感となるため、転写像への影響が大きくなる。例えば凸状突起の高さが5nmの場合、露光波長が13.5nmで位相の変化は20度を超え、その結果、CD誤差不良となり、無視できない問題となる。
また、凹状の欠陥も同様に、位相シフトマスクや反射型マスクにおける位相欠陥やパターン不良の原因となる。
In addition, when a phase shift mask blank and a phase shift mask are produced using a glass substrate on which convex protrusions having a height of about several nanometers are formed, as the wavelength of the exposure light becomes shorter, the convex shape The change in phase difference due to the projection becomes large (when the height of the convex projection is 5 nm, when the exposure light is ArF excimer laser (exposure wavelength: 193 nm), the phase angle change is 4.6 degrees, and the F2 excimer laser (exposure wavelength: exposure wavelength: At 157 nm), the phase angle change is 5.7 degrees), which is a problem that cannot be ignored.
In addition, when a reflective mask blank and a reflective mask are produced using a glass substrate on which convex projections of about several nm are formed, if convex projections exist in the vicinity of the mask surface pattern, Changes in phase due to the convex protrusions. This change in phase causes the positional accuracy and contrast of the transferred pattern to deteriorate. In particular, when short-wavelength light such as extreme ultraviolet (Extreme Ultra Violet, EUV) light having a wavelength of about 0.2 to 100 nm is used as exposure light, the phase change is very large with respect to fine irregularities on the mask surface. Since it becomes sensitive, the influence on the transferred image is increased. For example, when the height of the convex protrusion is 5 nm, the exposure wavelength is 13.5 nm and the phase change exceeds 20 degrees. As a result, the CD error is poor and cannot be ignored.
Similarly, a concave defect causes a phase defect or a pattern defect in a phase shift mask or a reflective mask.
本発明は、上述の問題点に鑑みてなされたものであり、ガラス基板表面に微小な凸状、凹状の表面欠陥が発生しないか又は発生率の低い電子デバイス用ガラス基板、及びマスクブランクスの製造方法を提供することを第一の目的とする。
また、本発明は、ガラス基板表面に微小な凸状、凹状の表面欠陥が起因する位相欠陥やパターン欠陥のない転写マスクの製造方法を提供することを第二の目的とする。
The present invention has been made in view of the above-mentioned problems, and manufacturing of glass blanks for electronic devices and mask blanks, in which minute convex or concave surface defects do not occur on the glass substrate surface or the incidence is low. The primary purpose is to provide a method.
A second object of the present invention is to provide a method for producing a transfer mask free from phase defects and pattern defects caused by minute convex and concave surface defects on the glass substrate surface.
本発明者は、従来の研磨砥粒を含む研磨液と研磨パッドを使用して研磨すると、何故凸状や凹状の表面欠陥が形成されるかを検討した。そして、数多くの実験と考察を積み重ねた結果、凸状の表面欠陥は、精密研磨終了直前の基板に対する加工条件(研磨速度)が、凹状の表面欠陥は、精密研磨におけるガラス基板に対する加工圧力がそれぞれ表面欠陥の発生に大きく起因していることが判明した。
本発明者は、上述の課題を解決するため、得られた知見に基づき更に鋭意検討した結果、以下の構成を有する発明を完成するに至った。
The present inventor has examined why convex or concave surface defects are formed when polishing is performed using a polishing liquid and a polishing pad containing conventional polishing abrasive grains. As a result of many experiments and considerations, convex surface defects have a processing condition (polishing rate) on the substrate immediately before the completion of precision polishing, and concave surface defects have a processing pressure on the glass substrate in precision polishing. It was found that this was largely due to the occurrence of surface defects.
In order to solve the above-described problems, the present inventor has conducted further studies based on the obtained knowledge, and as a result, has completed the invention having the following configuration.
(構成1)研磨パッドを貼着した研磨定盤に電子デバイス用ガラス基板を押付け、研磨砥粒を含有した研磨液を供給しながら前記研磨定盤と前記ガラス基板とを相対的に移動させて、前記基板の表面を精密研磨する工程を有する電子デバイス用ガラス基板の製造方法であって、前記研磨パッドは、表面に微細な開口を有するナップ層を有し、前記ナップ層の厚さが700μm以上であることを特徴とする電子デバイス用ガラス基板の製造方法。
(構成2)研磨パッドを貼着した研磨定盤に電子デバイス用ガラス基板を押付け、研磨砥粒を含有した研磨液を供給しながら前記研磨定盤と前記ガラス基板とを相対的に移動させて、前記基板の表面を精密研磨する工程を有する電子デバイス用ガラス基板の製造方法であって、前記研磨パッドは、表面に微細な開口を有するナップ層を有し、前記研磨パッドの硬度(Asker−C)が65以下であることを特徴とする電子デバイス用ガラス基板の製造方法。
(Configuration 1) A glass substrate for an electronic device is pressed against a polishing surface plate to which a polishing pad is adhered, and the polishing surface plate and the glass substrate are relatively moved while supplying a polishing liquid containing polishing abrasive grains. A method of manufacturing a glass substrate for an electronic device comprising a step of precisely polishing the surface of the substrate, wherein the polishing pad has a nap layer having a fine opening on the surface, and the thickness of the nap layer is 700 μm. It is the above, The manufacturing method of the glass substrate for electronic devices characterized by the above-mentioned.
(Structure 2) The glass substrate for electronic devices is pressed on the polishing surface plate to which the polishing pad is adhered, and the polishing surface plate and the glass substrate are relatively moved while supplying the polishing liquid containing the abrasive grains. A method for producing a glass substrate for an electronic device, comprising the step of precisely polishing the surface of the substrate, wherein the polishing pad has a nap layer having a fine opening on the surface, and the hardness of the polishing pad (Asker− C) is 65 or less, The manufacturing method of the glass substrate for electronic devices characterized by the above-mentioned.
(構成3)前記研磨パッドのナップ層表面の開口径が10〜70μmであることを特徴とする構成1又は2に記載の電子デバイス用ガラス基板の製造方法。
(構成4)前記研磨パッドは、微小な凸状の表面欠陥及び/又は微小な凹状の表面欠陥が発生しないように、前記ナップ層に含まれるカーボン含有量を調整することを特徴とする構成1乃至3の何れかに記載の電子デバイス用ガラス基板の製造方法。
(構成5)前記基板は、マスクブランクス用ガラス基板であることを特徴とする構成1乃至4の何れかに記載の電子デバイス用ガラス基板の製造方法。
(Structure 3) The method for producing a glass substrate for an electronic device according to
(Structure 4)
(Structure 5) The method for producing a glass substrate for an electronic device according to any one of
(構成6)構成1乃至5の何れかに記載の電子デバイス用ガラス基板の製造方法によって得られた電子デバイス用ガラス基板の主表面上に、露光光に対し光学的変化をもたらす薄膜を形成することを特徴とするマスクブランクスの製造方法。
(構成7)構成6に記載のマスクブランクスの製造方法によって得られたマスクブランクスにおける前記薄膜をパターニングして前記ガラス基板の主表面上に薄膜パターンを形成することを特徴とする転写マスクの製造方法。
(Structure 6) On the main surface of the glass substrate for electronic devices obtained by the method for manufacturing a glass substrate for electronic devices according to any one of
(Structure 7) A method for producing a transfer mask, wherein the thin film in the mask blank obtained by the method for producing a mask blank described in
本発明によれば、ガラス基板表面の精密研磨に用いる研磨パッドのナップ層の厚さを700μm以上とすることにより、精密研磨終了直前の基板に対する研磨速度を遅くでき、また精密研磨における加工圧力を小さくできるので、ガラス基板表面の微小な凸状、凹状の表面欠陥の発生を抑えることができる。
また、本発明によれば、ガラス基板表面の精密研磨に用いる研磨パッドの硬度(Asker−C)を65以下とすることにより、精密研磨終了直前の基板に対する研磨速度を遅くでき、また精密研磨における加工圧力を小さくできるので、ガラス基板表面の微小な凸状、凹状の表面欠陥の発生を抑えることができる。
また、上記ナップ層表面の開口径を10〜70μmとすることにより、精密研磨時における研磨砥粒が研磨パッド表面に均一に流動し、さらにガラス基板への加工圧力の均一性が向上するので、ガラス基板表面の微小な凸状、凹状の表面欠陥の発生の抑制に効果がある。
また、上記研磨パッドは、微小な凸状の表面欠陥及び/又は微小な凹状の表面欠陥が発生しないように、前記ナップ層に含まれるカーボン含有量を調整することにより、上記ナップ層の厚さ(700μm以上)と、上記研磨パッドの硬度(65(Asker−C)以下)の両条件を満足させることが出来、ガラス基板の微小な凸状、凹状の表面欠陥の発生の抑制効果が絶大である。
According to the present invention, by setting the thickness of the nap layer of the polishing pad used for precision polishing of the glass substrate surface to 700 μm or more, the polishing rate for the substrate immediately before the completion of precision polishing can be reduced, and the processing pressure in precision polishing can be reduced. Since the size can be reduced, the occurrence of minute convex and concave surface defects on the surface of the glass substrate can be suppressed.
Further, according to the present invention, by setting the hardness (Asker-C) of the polishing pad used for precision polishing of the glass substrate surface to 65 or less, the polishing rate for the substrate immediately before the completion of precision polishing can be reduced, and in precision polishing. Since the processing pressure can be reduced, the occurrence of minute convex and concave surface defects on the glass substrate surface can be suppressed.
In addition, by setting the opening diameter of the nap layer surface to 10 to 70 μm, the abrasive grains at the time of precision polishing flow uniformly on the polishing pad surface, and further improve the uniformity of the processing pressure on the glass substrate. It is effective in suppressing the occurrence of minute convex and concave surface defects on the glass substrate surface.
In addition, the polishing pad has a thickness of the nap layer by adjusting a carbon content contained in the nap layer so as not to generate a minute convex surface defect and / or a minute concave surface defect. (700 μm or more) and the hardness of the polishing pad (65 (Asker-C) or less) can be satisfied, and the effect of suppressing the occurrence of minute convex and concave surface defects on the glass substrate is tremendous. is there.
また、本発明は、マスクブランクス用ガラス基板の製造に好適であり、中でも位相シフトマスクブランクス用ガラス基板、或いは反射型マスクブランクス用ガラス基板の製造に好適であり、微小な凸状、凹状の表面欠陥により発生する位相差変化を抑えることができ、また微小な表面欠陥により、その上に形成する多層反射膜表面での位相欠陥等を抑えることができる。
また、本発明のマスクブランクスの製造方法によれば、本発明によって製造した電子デバイス用ガラス基板の主表面上に、露光光に対し光学的変化をもたらす薄膜を形成することにより、ガラス基板上に形成された微小な凸状、凹状の表面欠陥によるマスクブランクスの欠陥(膜下欠陥)を防止することができる。
また、本発明の転写マスクの製造方法によれば、本発明によって得られたマスクブランクスにおける薄膜をパターニングして電子デバイス用ガラス基板の主表面上に薄膜パターンを形成することにより、基板表面に微小な凸状、凹状の表面欠陥が起因する薄膜パターンのパターン欠陥のない転写マスクが得られる。
Further, the present invention is suitable for manufacturing a mask blank glass substrate, and particularly suitable for manufacturing a phase shift mask blank glass substrate or a reflective mask blank glass substrate. A change in phase difference caused by a defect can be suppressed, and a phase defect on the surface of the multilayer reflective film formed thereon can be suppressed by a minute surface defect.
Moreover, according to the manufacturing method of the mask blank of this invention, on the glass substrate by forming the thin film which brings an optical change with respect to exposure light on the main surface of the glass substrate for electronic devices manufactured by this invention. Mask blank defects (subfilm defects) due to the formed fine convex and concave surface defects can be prevented.
Moreover, according to the manufacturing method of the transfer mask of the present invention, the thin film in the mask blank obtained by the present invention is patterned to form a thin film pattern on the main surface of the glass substrate for electronic devices, thereby forming a microscopic surface on the substrate surface. As a result, a transfer mask free from pattern defects of a thin film pattern caused by uneven surface and concave surface defects can be obtained.
以下、本発明を実施するための最良の実施形態にかかる電子デバイス用ガラス基板の製造方法、マスクブランクスの製造方法、及び転写マスクの製造方法を詳細に説明する。
尚、以下の説明において、微小な凸状の表面欠陥とは、主成分がSiとOとを含む凸状の突起をいい、その高さは2nm〜7nm程度で、その大きさは数十nm〜2000nm程度のものをいう。また、微小な凹状の表面欠陥とは、その深さが数nm〜200nm程度で、その大きさは数十nm〜500nm程度のものをいう。
本発明の実施の形態にかかる電子デバイス用ガラス基板の製造方法は、構成1にあるように、精密研磨工程で使用する研磨パッドのナップ層の厚さを700μm以上とすることを特徴とする。また、構成2にあるように、精密研磨工程で使用する研磨パッドの硬度(Asker−C)を65以下とすることを特徴とする。
本発明者の検討によると、凸状の表面欠陥は、精密研磨終了直前の基板に対する加工条件(研磨速度)が、凹状の表面欠陥は、精密研磨におけるガラス基板に対する加工圧力がそれぞれ表面欠陥の発生に大きく起因していることが判明した。
Hereinafter, the manufacturing method of the glass substrate for electronic devices, the manufacturing method of mask blanks, and the manufacturing method of a transfer mask concerning the best embodiment for implementing this invention are demonstrated in detail.
In the following description, a minute convex surface defect refers to a convex protrusion whose main component includes Si and O, the height is about 2 nm to 7 nm, and the size is several tens of nm. It is about ˜2000 nm. A minute concave surface defect has a depth of about several nm to 200 nm and a size of about several tens of nm to 500 nm.
The manufacturing method of the glass substrate for electronic devices according to the embodiment of the present invention is characterized in that the thickness of the nap layer of the polishing pad used in the precision polishing step is set to 700 μm or more, as in
According to the inventor's investigation, convex surface defects are caused by processing conditions (polishing rate) on the substrate immediately before the completion of precision polishing, and concave surface defects are caused by processing pressure on the glass substrate in precision polishing. It turned out to be largely attributed to.
本発明者の考察によれば、凸状の表面欠陥が形成されるメカニズムとしては、以下のことが考えられる。
精密研磨加工中、研磨液に含まれる研磨砥粒は、砥粒単体か凝集体を形成し、ガラス基板表面を転がって研磨加工を行っているが、精密研磨終了(研磨定盤とガラス基板との相対的な移動の停止)直前において研磨砥粒の凝集体がガラス基板の表面に残留した場合、その残留物によってその部分のみの研磨が阻止され、結果として微小な凸状の表面欠陥となる。精密研磨終了直前における研磨速度が大きければ、凸状の表面欠陥の高さが大きくなる。したがって、精密研磨終了直前における研磨速度が小さい(遅い)方が、凸状の表面欠陥の発生を抑制することが出来る。研磨速度は一般に加工圧力が一定の場合、研磨パッドのナップ層の厚さが厚くなる(長さが長くなるとも言える)にしたがって、またナップ層の硬度が小さくなるにしたがって遅くなる。
According to the inventor's consideration, the following may be considered as a mechanism for forming convex surface defects.
During the precision polishing process, the polishing abrasive grains contained in the polishing liquid form a single abrasive body or agglomerates and roll on the surface of the glass substrate to perform the polishing process. When the aggregate of abrasive grains remains on the surface of the glass substrate immediately before the relative movement of the substrate is stopped, the residue prevents the polishing of only that portion, resulting in a minute convex surface defect. . If the polishing rate immediately before the end of precision polishing is high, the height of the convex surface defects increases. Therefore, the occurrence of convex surface defects can be suppressed when the polishing rate immediately before the end of precision polishing is low (slow). In general, when the processing pressure is constant, the polishing rate decreases as the thickness of the nap layer of the polishing pad increases (it can be said that the length increases) and as the hardness of the nap layer decreases.
また、凹状の表面欠陥が形成されるメカニズムとしては、以下のように考えられる。
研磨液に含まれる研磨砥粒凝集体の形成、又は研磨パッドやキャリア等が研磨装置のギア部との接触による脱落物、研磨装置付着物による研磨砥粒凝集体脱落物等が精密研磨加工中に混入し、微小な凹状の表面欠陥となると考えられる。したがって、精密研磨における基板に対する加工圧力が小さい方が、凹状の表面欠陥の発生を抑制することが出来る。基板に対する加工圧力は一般に研磨体からの荷重が一定の場合、研磨パッドのナップ層の厚さが厚くなる(長さが長くなるとも言える)にしたがって、またナップ層の硬度が小さくなるにしたがって小さくなる。
Further, the mechanism for forming the concave surface defects is considered as follows.
Precise polishing of aggregates of abrasive grains contained in the polishing liquid, falling off of the polishing pad or carrier coming into contact with the gear of the polishing apparatus, and falling off of abrasive abrasive grains due to deposits on the polishing apparatus It is thought that it becomes a minute concave surface defect. Therefore, generation of concave surface defects can be suppressed when the processing pressure on the substrate in precision polishing is smaller. In general, when the load from the polishing body is constant, the processing pressure on the substrate decreases as the thickness of the nap layer of the polishing pad increases (it can be said that the length increases) and as the hardness of the nap layer decreases. Become.
上述の点を考慮して、電子デバイス用ガラス基板として使用する場合に、位相欠陥となる凸状の表面欠陥や、位相欠陥やパターン欠陥となる凹状の表面欠陥の発生を防止するために、研磨パッドのナップ層の厚さを700μm以上、及び/又は、研磨パッドの硬度(Asker−C)を65以下とする。
研磨パッドのナップ層の厚さは、特に700μm〜1000μmの範囲内であることが好ましい。ナップ層の厚さが1000μmを超えると、研磨速度が低下し加工時間が長くなること、ガラス基板の外周部において研磨パッドの沈み込みが大きくなり、ガラス基板の端部が縁ダレが大きくなり端部形状が悪化するので好ましくない。
また、研磨パッドのナップ層の硬度(Asker−C)は60以下が好ましく、特に40〜60の範囲内であることが好ましい。研磨パッドの硬度が40未満の場合、そのような硬度の研磨パッドを製作すること自体が困難であること、研磨速度が低下し加工時間が長くなること、ガラス基板の外周部において研磨パッドの沈み込みが大きくなり、ガラス基板の端部形状が悪化するので好ましくない。なお、本発明において研磨パッドの硬度(Asker−C)とは、SRIS0101(日本ゴム協会標準規格)において定義され、研磨パッド(1枚)を試料とし、その研磨パッドをAsker−C硬度計(荷重1kg)で測定した値である。
In consideration of the above points, when used as a glass substrate for electronic devices, in order to prevent the occurrence of convex surface defects that become phase defects and concave surface defects that become phase defects or pattern defects, The thickness of the nap layer of the pad is 700 μm or more and / or the hardness (Asker-C) of the polishing pad is 65 or less.
The thickness of the nap layer of the polishing pad is particularly preferably in the range of 700 μm to 1000 μm. When the thickness of the nap layer exceeds 1000 μm, the polishing rate decreases and the processing time increases, the sinking of the polishing pad increases at the outer peripheral portion of the glass substrate, and the edge of the glass substrate increases and the edge sag increases. Since the shape of the part deteriorates, it is not preferable.
Further, the hardness (Asker-C) of the nap layer of the polishing pad is preferably 60 or less, particularly preferably in the range of 40-60. When the hardness of the polishing pad is less than 40, it is difficult to manufacture a polishing pad of such hardness itself, the polishing speed is reduced and the processing time is increased, and the polishing pad sinks in the outer peripheral portion of the glass substrate. This is not preferable because the shape of the edge of the glass substrate deteriorates. In the present invention, the hardness of the polishing pad (Asker-C) is defined in SRIS0101 (Japan Rubber Association Standard), and a polishing pad (one piece) is used as a sample, and the polishing pad is an Asker-C hardness meter (load). 1 kg).
基材と、表面に微細な開口を有するナップ層とを有する研磨パッドは、一般にウレタン樹脂組成物を用いた湿式凝固法によって製造される。この湿式凝固法とは、ウレタン樹脂組成物を調整した後、このウレタン樹脂組成物を基材に塗布し、次いで、水、ジメチルホルムアミドに、界面活性剤等の分散安定剤、湿式凝固助剤を添加した混合溶液中にて湿式凝固処理を行い、基材上に発泡層を生成させ、その後乾燥し、最表面をバフして得られる。
上述の所定のナップ層厚さを有する研磨パッド、及び/又は、所定の硬度を有する研磨パッドは、ウレタン樹脂組成物、添加剤、湿式凝固処理条件等を調整することで得ることが出来る。
また、上記ナップ層表面の開口径は、精密研磨時における研磨砥粒が研磨パッド表面に均一に流動し、さらに、ガラス基板への加工圧力の均一性向上の点から小さい方が好ましい。従って、構成3にあるように、ナップ層表面の開口径は、10〜70μmであることが望ましい。開口径が70μmを超えると、研磨速度が上昇し、特に微小な凸状の表面欠陥の発生原因となる精密研磨終了直前の加工圧力制御が難しくなり、10μm未満であると、目詰まりの現象となり研磨速度が著しく低下することとなるのでいずれにしても好ましくない。好ましいナップ層表面の開口径は10〜50μmが望ましい。なお、ナップ層表面の開口径は、前述の研磨パッドの製造過程におけるバフの加工条件等によって調整することが出来る。
A polishing pad having a substrate and a nap layer having a fine opening on the surface is generally produced by a wet coagulation method using a urethane resin composition. In this wet coagulation method, after preparing a urethane resin composition, this urethane resin composition is applied to a substrate, and then a dispersion stabilizer such as a surfactant and a wet coagulation aid are added to water and dimethylformamide. A wet coagulation treatment is performed in the added mixed solution to form a foamed layer on the base material, followed by drying and buffing the outermost surface.
The polishing pad having the predetermined nap layer thickness and / or the polishing pad having the predetermined hardness can be obtained by adjusting the urethane resin composition, additives, wet coagulation treatment conditions, and the like.
Further, the opening diameter on the surface of the nap layer is preferably smaller from the viewpoint of uniformly flowing abrasive grains on the surface of the polishing pad during precision polishing and further improving the uniformity of processing pressure on the glass substrate. Therefore, as in the
また、前述の表面欠陥において、特に凸状の表面欠陥の発生を防止するためには、精密研磨における基板に対する加工圧力をたとえば複数段階に分けて行い、精密研磨終了(研磨定盤とガラス基板との相対的な移動の停止)直前の基板に対する加工圧力を100g/cm2以下とすることが好ましい。また、精密研磨終了直前の基板に対する加工圧力を低荷重化することで、ガラス基板の外周部における研磨パッドの沈み込みによる縁ダレが少なくなり、平坦度が良好になるという利点もある。本発明の実施の形態において好ましくは、50g/cm2以下、特に好ましくは25g/cm2以下、更に好ましくは10g/cm2以下である。
なお、上記加工圧力における研磨時間は、90秒以上であることが好ましく、特に好ましくは120秒以上、さらには180秒以上であることが好ましい。但し、生産性を考慮して360秒以下であることが望ましい。
Further, in order to prevent the occurrence of convex surface defects in the surface defects described above, the processing pressure on the substrate in precision polishing is divided into, for example, a plurality of stages, and precision polishing is completed (polishing surface plate and glass substrate). It is preferable that the processing pressure on the substrate immediately before is 100 g / cm 2 or less. Further, by reducing the processing pressure on the substrate immediately before the end of precision polishing, there is an advantage that edge sagging due to sinking of the polishing pad in the outer peripheral portion of the glass substrate is reduced and flatness is improved. In the embodiment of the present invention, it is preferably 50 g / cm 2 or less, particularly preferably 25 g / cm 2 or less, and further preferably 10 g / cm 2 or less.
The polishing time at the above processing pressure is preferably 90 seconds or more, particularly preferably 120 seconds or more, and further preferably 180 seconds or more. However, in consideration of productivity, it is desirable that it is 360 seconds or less.
また、本発明における研磨砥粒は、ガラス基板の良好な平滑性、平坦性が得られる点からコロイダルシリカが好ましい。ただし、コロイダルシリカ砥粒を含む研磨液は通常、安定性の点からNaOHやKOH等の無機アルカリや、アミン等の有機アルカリを添加してアルカリ性の研磨液としている。従って、アルカリを添加していない研磨液に比べ研磨液の粘性が高くなるので、コロイダルシリカの凝集体が精密研磨加工中にガラス基板のある箇所に付着する確率が高くなり、凸状の表面欠陥の発生率も高くなる恐れがある。よって、このような観点から凸状の表面欠陥の発生を抑制するためには、粘性の低い研磨液を使用することが好ましい。コロイダルシリカ砥粒を含む粘性の低い研磨液とする方法としては、たとえばアルカリを含まない中性域で使用することができるコロイダルシリカとすることが好ましい。中性域のコロイダルシリカは、蒸留精製が可能な有機珪素化合物を加水分解することで得られ、中性域でしかもNaやK等のアルカリ金属の少ない高純度なコロイダルシリカを得ることが可能である。
尚、以上の実施の形態においては、ガラス基板の材料は特に限定されない。ガラス基板の材料としては、例えば、合成石英ガラス、ホウケイ酸ガラス、アルミノシリケートガラス、アルミノボロシリケートガラス、ソーダライムガラス、無アルカリガラス、結晶化ガラスなどが挙げられる。
また、以上の実施の形態における精密研磨は、両面研磨、片面研磨のどちらでも構わない。
Moreover, the abrasive grains in the present invention are preferably colloidal silica from the viewpoint of obtaining good smoothness and flatness of the glass substrate. However, the polishing liquid containing colloidal silica abrasive grains is usually made into an alkaline polishing liquid by adding an inorganic alkali such as NaOH or KOH or an organic alkali such as amine from the viewpoint of stability. Therefore, the viscosity of the polishing liquid is higher than that of the polishing liquid to which no alkali is added, so the probability that colloidal silica agglomerates will adhere to certain locations on the glass substrate during precision polishing is increased, resulting in convex surface defects. There is a risk that the occurrence rate will increase. Therefore, in order to suppress the occurrence of convex surface defects from such a viewpoint, it is preferable to use a polishing liquid having a low viscosity. As a method for producing a low-viscosity polishing liquid containing colloidal silica abrasive grains, for example, colloidal silica that can be used in a neutral region not containing alkali is preferable. Colloidal silica in the neutral range is obtained by hydrolyzing an organosilicon compound that can be purified by distillation, and it is possible to obtain high-purity colloidal silica in the neutral range and with few alkali metals such as Na and K. is there.
In the above embodiment, the material of the glass substrate is not particularly limited. Examples of the material of the glass substrate include synthetic quartz glass, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali-free glass, and crystallized glass.
Further, the precision polishing in the above embodiments may be either double-side polishing or single-side polishing.
また、構成5にあるように、電子デバイス用ガラス基板はたとえばマスクブランクス用ガラス基板とする。この場合、マスクブランクスとしては、フォトマスクブランクス、位相シフトマスクブランクス、反射型マスクブランクスなどが挙げられ、用途としてはLSI(半導体集積回路)用マスクブランクス、LCD(液晶表示板)用マスクブランクスなどが挙げられる。
また、構成5にかかる基板は、位相シフトマスクブランクス用ガラス基板か、反射型マスクブランクス用ガラス基板の何れかとすると好適である。上述の通り、本発明の実施の形態にかかる電子デバイス用ガラス基板の製造方法は、微小な凸状、凹状の表面欠陥により発生する位相差変化を抑えることができること、微小な凸状、凹状の表面欠陥により、その上に形成する多層反射膜表面での位相欠陥等を抑えることができることから位相シフトマスクブランクス用ガラス基板、反射型マスクブランクス用ガラス基板に特に効果がある。
Further, as in
Further, the substrate according to
また、構成6にあるように、構成1乃至5にかかる電子デバイス用ガラス基板の製造方法によって製造した電子デバイス用ガラス基板の主表面上に、露光光に対し光学的変化をもたらす薄膜を形成することを特徴とするマスクブランクスの製造方法により、ガラス基板上に形成された微小な凸状、凹状の表面欠陥によるマスクブランクスの欠陥(膜下欠陥)を防止することができる。
ここで、露光光に対し光学的変化をもたらす薄膜とは、露光光の位相を変化させる位相シフト膜(多層の場合を含む)、露光光を遮断する遮光膜(多層の場合を含む)、あるいは位相シフト膜と遮光膜とを積層した膜や、位相シフト機能と遮光機能を有するハーフトーン膜(多層の場合を含む)、露光光を反射する反射膜、露光光を吸収する吸収体膜などを指す。従って、本発明でいうマスクブランクスは広義の意味で用い、遮光膜のみが形成されたフォトマスクブランクスのほか、位相シフト膜やハーフトーン膜などが形成された位相シフトマスクブランクス、更には反射膜と吸収体膜などが形成された反射型マスクブランクスが含まれる。
尚、本発明でいうマスクブランクスは、上述の薄膜以外に、薄膜上にレジスト膜等を形成しても構わない。
Further, as in
Here, the thin film that optically changes the exposure light means a phase shift film (including a multilayer) that changes the phase of the exposure light, a light shielding film (including a multilayer) that blocks the exposure light, or A film in which a phase shift film and a light shielding film are laminated, a halftone film having a phase shift function and a light shielding function (including a case of multilayers), a reflective film that reflects exposure light, an absorber film that absorbs exposure light, etc. Point to. Therefore, the mask blank referred to in the present invention is used in a broad sense, in addition to a photomask blank in which only a light-shielding film is formed, a phase shift mask blank in which a phase shift film, a halftone film, etc. are formed, and a reflection film. A reflective mask blank on which an absorber film or the like is formed is included.
In the mask blank referred to in the present invention, a resist film or the like may be formed on the thin film in addition to the above-described thin film.
また、構成7にあるように、構成6にかかるマスクブランクスの製造方法によって得られたマスクブランクスにおける前記薄膜をパターニングして電子デバイス用ガラス基板の主表面上に薄膜パターンを形成することを特徴とする転写マスクの製造方法により、基板表面に微小な凸状、凹状の表面欠陥が起因する薄膜パターンのパターン欠陥や位相欠陥のない転写マスクが得られる。薄膜パターンの形成は、レジスト膜付きマスクブランクスを準備し、フォトリソ工程によりレジストパターンを形成し、このレジストパターンをマスクとして薄膜をエッチングすることにより薄膜パターンを形成することができる。
Further, as in
以下、実施例に基づいて本発明をより具体的に説明する。以下の例では、電子デバイス用ガラス基板として位相シフトマスクブランクス用ガラス基板、EUV反射型マスクブランクス用ガラス基板(以下、単にガラス基板と称する)を例に説明する。
まず、以下の実施例において精密研磨で使用する遊星歯車方式の両面研磨装置について図1を用いて説明する。
遊星歯車方式の両面研磨装置は、太陽歯車2と、その外方に同心円状に配置される内歯歯車3と、太陽歯車2及び内歯歯車3に噛み合い、太陽歯車2や内歯歯車3の回転に応じて公転及び自転するキャリア4と、このキャリア4に保持された被研磨加工物1を研磨パッド7が貼着された挟持可能な上定盤5及び下定盤6と、上定盤5と下定盤6との間に研磨液を供給する研磨液供給部(図示せず)とを備えている。
精密研磨加工時には、キャリア4に保持された被研磨加工物1を上定盤5及び下定盤6とで挟持するとともに、上下定盤5,6の研磨パッド7と被研磨加工物1との間に研磨液を供給しながら、太陽歯車2や内歯歯車3の回転に応じて、キャリア4が公転及び自転しながら、被研磨加工物1の上下両面が精密研磨加工される。
Hereinafter, based on an Example, this invention is demonstrated more concretely. In the following examples, a glass substrate for phase shift mask blanks and a glass substrate for EUV reflective mask blanks (hereinafter simply referred to as glass substrates) will be described as examples of glass substrates for electronic devices.
First, a planetary gear type double-side polishing apparatus used for precision polishing in the following embodiments will be described with reference to FIG.
The planetary gear type double-side polishing apparatus is engaged with the
At the time of precision polishing, the
本実施例は、実施の形態にかかる電子デバイス用ガラス基板の製造方法の具体例である。
合成石英ガラス基板(152mm×152mm)の端面を面取加工、及び研削加工、更に酸化セリウム砥粒を含む研磨液で粗研磨処理を終えたガラス基板を上述の両面研磨装置のキャリアにセットし、以下の研磨条件で精密研磨を行った。
研磨パッド:スウェードタイプ(ウレタン樹脂組成物を用いた湿式凝固法により製造されたもの、ナップ層の厚さ:760μm、研磨パッドの硬度(Asker−C):56、ナップ層表面の開口径:10〜50μm)
研磨液:コロイダルシリカ砥粒(平均粒径100nm)を含むアルカリ水溶液
加工圧力:50〜100g/cm2
加工時間:60min
なお、精密研磨の開始時においては加工圧力を100g/cm2とし、これを段階的に下げていき、終了前の300秒間は50g/cm2とした。
精密研磨終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を、希フッ酸水溶液を含む洗浄液が入った洗浄槽に浸漬(超音波印加)し、洗浄を行った。
上述の精密研磨を複数バッチ行い、精密研磨を施したガラス基板(位相シフトマスクブランクス用ガラス基板)を100枚作製した。
This example is a specific example of the method for manufacturing the glass substrate for electronic devices according to the embodiment.
A synthetic quartz glass substrate (152 mm × 152 mm) end face is chamfered and ground, and further, the glass substrate that has been subjected to rough polishing with a polishing liquid containing cerium oxide abrasive grains is set on the carrier of the above-described double-side polishing apparatus, Precision polishing was performed under the following polishing conditions.
Polishing pad: Suede type (manufactured by wet coagulation method using urethane resin composition, nap layer thickness: 760 μm, polishing pad hardness (Asker-C): 56, nap layer surface opening diameter: 10 ~ 50μm)
Polishing liquid: Alkaline aqueous solution containing colloidal silica abrasive grains (average particle diameter 100 nm) Processing pressure: 50 to 100 g / cm 2
Processing time: 60 min
At the start of precision polishing, the processing pressure was set to 100 g / cm 2, and this was reduced stepwise, and was set to 50 g / cm 2 for 300 seconds before the end.
After the precision polishing was completed, in order to remove the abrasive grains adhering to the glass substrate, the glass substrate was immersed in a cleaning tank containing a cleaning solution containing a dilute hydrofluoric acid solution (applied with ultrasonic waves) for cleaning.
A plurality of batches of the above-described precision polishing were performed to prepare 100 glass substrates (glass substrates for phase shift mask blanks) subjected to the precision polishing.
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中1枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は1%であった。
The surface roughness of the main surface of the obtained glass substrate was as good as 0.15 nm or less in terms of root mean square roughness (RMS).
Further, the main surface of the obtained glass substrate is formed with a minute convex surface defect having a height of about several nm (about 2 nm to 7 nm) and a depth of about 10 using a defect inspection apparatus using a laser interference confocal optical system. When a minute concave surface defect of ˜50 nm was examined, it was confirmed on one glass substrate out of 100. That is, the incidence of minute surface defects was 1%.
上述の実施例1において、精密研磨で使用する研磨液を、中性(pH:7〜7.6)のコロイダルシリカ(平均粒径30〜200nm)を含む水溶液にした以外は、実施例1と同様にしてガラス基板(位相シフトマスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中の何れのガラス基板からも確認されなかった。つまり、微小な表面欠陥の発生率は0%であった。
In Example 1 described above, Example 1 and Example 1 were used except that the polishing liquid used for precision polishing was an aqueous solution containing neutral (pH: 7 to 7.6) colloidal silica (average particle size 30 to 200 nm). Similarly, 100 glass substrates (glass substrates for phase shift mask blanks) were produced.
The surface roughness of the main surface of the obtained glass substrate was as good as 0.15 nm or less in terms of root mean square roughness (RMS).
Further, the main surface of the obtained glass substrate is formed with a minute convex surface defect having a height of about several nm (about 2 nm to 7 nm) and a depth of about 10 using a defect inspection apparatus using a laser interference confocal optical system. When a minute concave surface defect of ˜50 nm was examined, it was not confirmed from any of the 100 glass substrates. That is, the incidence of minute surface defects was 0%.
上述の実施例1において、研磨パッドのウレタン樹脂組成物を変更し、ナップ層の厚さを700μm、研磨パッドの硬度(Asker−C)を60、ナップ層表面の開口径を10〜50μmの研磨パッドを使用したこと以外は、実施例1と同様にしてガラス基板(位相シフトマスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中5枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は5%であった。
In Example 1 described above, the urethane resin composition of the polishing pad was changed, and the nap layer thickness was 700 μm, the polishing pad hardness (Asker-C) was 60, and the nap layer surface opening diameter was 10 to 50 μm. 100 glass substrates (glass substrates for phase shift mask blanks) were produced in the same manner as in Example 1 except that the pads were used.
The surface roughness of the main surface of the obtained glass substrate was as good as 0.15 nm or less in terms of root mean square roughness (RMS).
Further, the main surface of the obtained glass substrate is formed with a minute convex surface defect having a height of about several nm (about 2 nm to 7 nm) and a depth of about 10 using a defect inspection apparatus using a laser interference confocal optical system. As a result of examining minute concave surface defects of ˜50 nm, it was confirmed on 5 out of 100 glass substrates. That is, the incidence of minute surface defects was 5%.
上述の実施例1において、研磨パッドのウレタン樹脂組成物を変更し、ナップ層の厚さを680μm、研磨パッドの硬度(Asker−C)を58、ナップ層表面の開口径を10〜50μmの研磨パッドを使用したこと以外は、実施例1と同様にしてガラス基板(位相シフトマスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中3枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は3%であった。実施例1と比較し、凸状の表面欠陥の発生が若干増えた。
In Example 1 described above, the urethane resin composition of the polishing pad was changed, and the nap layer thickness was 680 μm, the polishing pad hardness (Asker-C) was 58, and the nap layer surface opening diameter was 10 to 50 μm. 100 glass substrates (glass substrates for phase shift mask blanks) were produced in the same manner as in Example 1 except that the pads were used.
The surface roughness of the main surface of the obtained glass substrate was as good as 0.15 nm or less in terms of root mean square roughness (RMS).
Further, the main surface of the obtained glass substrate is formed with a minute convex surface defect having a height of about several nm (about 2 nm to 7 nm) and a depth of about 10 using a defect inspection apparatus using a laser interference confocal optical system. When a minute concave surface defect of ˜50 nm was examined, it was confirmed on 3 out of 100 glass substrates. That is, the incidence of minute surface defects was 3%. Compared with Example 1, the occurrence of convex surface defects was slightly increased.
上述の実施例1において、研磨パッドのウレタン樹脂組成物を変更し、ナップ層の厚さを560μm、研磨パッドの硬度(Asker−C)を62、ナップ層表面の開口径を30〜60μmの研磨パッドを使用したこと以外は、実施例1と同様にしてガラス基板(位相シフトマスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中8枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は8%であった。実施例1と比較し、凸状の表面欠陥の発生が若干増えた。
In Example 1 described above, the urethane resin composition of the polishing pad was changed, the nap layer thickness was 560 μm, the polishing pad hardness (Asker-C) was 62, and the nap layer surface opening diameter was 30 to 60 μm. 100 glass substrates (glass substrates for phase shift mask blanks) were produced in the same manner as in Example 1 except that the pads were used.
The surface roughness of the main surface of the obtained glass substrate was as good as 0.15 nm or less in terms of root mean square roughness (RMS).
Further, the main surface of the obtained glass substrate is formed with a minute convex surface defect having a height of about several nm (about 2 nm to 7 nm) and a depth of about 10 using a defect inspection apparatus using a laser interference confocal optical system. As a result of examining minute concave surface defects of ˜50 nm, it was confirmed on 8 out of 100 glass substrates. That is, the incidence of minute surface defects was 8%. Compared with Example 1, the occurrence of convex surface defects was slightly increased.
(比較例1)
上述の実施例1において、研磨パッドのウレタン樹脂組成物を変更し、ナップ層の厚さを560μm、研磨パッドの硬度(Asker−C)を67、ナップ層表面の開口径を30〜100μmの研磨パッドを使用したこと以外は、実施例1と同様にしてガラス基板(位相シフトマスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であったが、レーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中17枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は17%と非常に高かった。
(Comparative Example 1)
In Example 1 described above, the urethane resin composition of the polishing pad was changed, and the nap layer thickness was 560 μm, the polishing pad hardness (Asker-C) was 67, and the nap layer surface opening diameter was 30 to 100 μm. 100 glass substrates (glass substrates for phase shift mask blanks) were produced in the same manner as in Example 1 except that the pads were used.
The surface roughness of the main surface of the obtained glass substrate was all good in terms of root mean square roughness (RMS) of 0.15 nm or less, but it was high using a defect inspection apparatus using a laser interference confocal optical system. When a minute convex surface defect having a thickness of about several nm (about 2 nm to 7 nm) and a minute concave surface defect having a depth of about 10 to 50 nm were examined, it was confirmed on 17 out of 100 glass substrates. . That is, the incidence of minute surface defects was as high as 17%.
上述の実施例1において、ガラス基板の材料をSiO2−TiO2系低熱膨張ガラス基板(152mm×152mm)に変えた以外は、実施例1と同様にしてガラス基板(EUV反射型マスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中3枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は3%であった。
A glass substrate (glass for EUV reflective mask blanks) was prepared in the same manner as in Example 1 except that the material of the glass substrate in Example 1 was changed to a SiO 2 —TiO 2 -based low thermal expansion glass substrate (152 mm × 152 mm). Substrate) 100 sheets were produced.
The surface roughness of the main surface of the obtained glass substrate was as good as 0.15 nm or less in terms of root mean square roughness (RMS).
Further, the main surface of the obtained glass substrate is formed with a minute convex surface defect having a height of about several nm (about 2 nm to 7 nm) and a depth of about 10 using a defect inspection apparatus using a laser interference confocal optical system. When a minute concave surface defect of ˜50 nm was examined, it was confirmed on 3 out of 100 glass substrates. That is, the incidence of minute surface defects was 3%.
(比較例2)
上述の実施例6において、前述の比較例1と同じ、ナップ層の厚さを560μm、研磨パッドの硬度(Asker−C)を67、ナップ層表面の開口径を30〜100μmの研磨パッドを使用したこと以外は、実施例1と同様にしてガラス基板(EUV反射型マスクブランクス用ガラス基板)100枚を作製した。
この得られたガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下と良好であったが、レーザー干渉コンフォーカル光学系による欠陥検査装置を用いて高さ数nm程度(約2nm〜7nm)の微小な凸状の表面欠陥、及び深さ約10〜50nmの微小な凹状の表面欠陥を調べたところ、100枚中22枚のガラス基板で確認された。つまり、微小な表面欠陥の発生率は22%と非常に高かった。
尚、上述の実施例1〜6及び比較例1、2で確認された微小な凸状の表面欠陥をEPMA(ElectronProbe(X-ray) Micro Analyzer)で成分分析を行ったところ、主成分がSi、Oを含むものであることが確認された。
(Comparative Example 2)
In Example 6 described above, the same polishing pad as in Comparative Example 1 described above was used, with a nap layer thickness of 560 μm, a polishing pad hardness (Asker-C) of 67, and a nap layer surface opening diameter of 30 to 100 μm. Except for this, 100 glass substrates (glass substrates for EUV reflective mask blanks) were produced in the same manner as in Example 1.
The surface roughness of the main surface of the obtained glass substrate was all good in terms of root mean square roughness (RMS) of 0.15 nm or less, but it was high using a defect inspection apparatus using a laser interference confocal optical system. When a minute convex surface defect having a thickness of about several nm (about 2 nm to 7 nm) and a minute concave surface defect having a depth of about 10 to 50 nm were examined, it was confirmed on 22 out of 100 glass substrates. . In other words, the incidence of minute surface defects was very high at 22%.
In addition, when component analysis was performed on the minute convex surface defects confirmed in Examples 1 to 6 and Comparative Examples 1 and 2 using EPMA (ElectronProbe (X-ray) Micro Analyzer), the main component was Si. , O was confirmed.
上述の実施例1〜5にかかる電子デバイス用ガラス基板の製造方法によって製造した微小な凸状、凹状の表面欠陥のない位相シフトマスクブランクス用ガラス基板の一主表面上に、モリブデンシリサイド窒化膜からなるハーフトーン膜をスパッタリング法により形成した後、レジスト膜を形成して位相シフトマスクブランクスを作製した。
さらに、レジスト膜を所定の描画、現像によりパターニングしてレジストパターンとした後、このレジストパターンをマスクとしてモリブデンシリサイド窒化膜をドライエッチングによりエッチング除去、レジストパターンを除去して位相シフトマスクを作製した。
(比較例3)
上述の比較例1の製造方法によって製造した微小な凸状、凹状の表面欠陥のある位相シフトマスクブランクス用ガラス基板の一主表面上に実施例5と同様にして成膜を行い、位相シフトマスクブランクスを作製し、さらにこのマスクブランクスから位相シフトマスクを作製した。
From a molybdenum silicide nitride film on one main surface of a glass substrate for phase shift mask blanks having no fine convex and concave surface defects produced by the method for producing a glass substrate for electronic devices according to Examples 1 to 5 described above. A halftone film to be formed was formed by a sputtering method, and then a resist film was formed to produce a phase shift mask blank.
Further, the resist film was patterned by predetermined drawing and development to form a resist pattern, and then using this resist pattern as a mask, the molybdenum silicide nitride film was etched away by dry etching, and the resist pattern was removed to prepare a phase shift mask.
(Comparative Example 3)
A phase shift mask was formed in the same manner as in Example 5 on one main surface of a glass substrate for phase shift mask blanks having fine convex and concave surface defects manufactured by the manufacturing method of Comparative Example 1 described above. Blanks were produced, and a phase shift mask was produced from the mask blanks.
また、上述の実施例6にかかる電子デバイス用ガラス基板の製造方法によって製造した微小な凸状、凹状の表面欠陥のないEUV反射型マスクブランクス用ガラス基板の一主表面上に、Mo膜とSi膜の交互積層膜を40周期にわたり形成して多層反射膜を形成し、さらに、多層反射膜上にTaBN膜からなる吸収体膜を形成し、レジスト膜を形成してEUV反射型マスクブランクスを作製した。
さらに、レジスト膜を所定の描画、現像によりパターニングしてレジストパターンとした後、このレジストパターンをマスクにしてTaBN膜をドライエッチングによりエッチング除去、レジストパターンを除去してEUV反射型マスクを作製した。
(比較例4)
上述の比較例2の製造方法によって製造した微小な凸状、凹状の表面欠陥のあるEUV反射型マスクブランクス用ガラス基板の一主表面上に実施例6と同様にして成膜を行い、EUV反射型マスクブランクスを作製し、さらにこのマスクブランクスからEUV反射型マスクを作製した。
In addition, a Mo film and Si are formed on one main surface of a glass substrate for EUV reflective mask blanks having no fine convex or concave surface defects manufactured by the method for manufacturing a glass substrate for electronic devices according to Example 6 described above. A multilayer reflective film is formed by forming alternating laminated films over 40 cycles, an absorber film made of a TaBN film is formed on the multilayer reflective film, and a resist film is formed to produce an EUV reflective mask blank. did.
Further, the resist film was patterned by predetermined drawing and development to form a resist pattern. Then, using this resist pattern as a mask, the TaBN film was etched away by dry etching, and the resist pattern was removed to produce an EUV reflective mask.
(Comparative Example 4)
Film formation was performed in the same manner as in Example 6 on one main surface of a glass substrate for EUV reflective mask blanks having minute convex and concave surface defects manufactured by the manufacturing method of Comparative Example 2 described above, and EUV reflection was performed. A mold mask blank was produced, and an EUV reflective mask was produced from the mask blank.
(評価結果)
こうして作製した位相シフトマスクブランクス、位相シフトマスク、EUV反射型マスクブランクス、EUV反射型マスクの欠陥検査を行ったところ、実施例1〜6にかかる電子デバイス用ガラス基板を用いて製造した位相シフトマスクブランクス、及び位相シフトマスク、並びにEUV反射型マスクブランクス、及びEUV反射型マスクには凸状、凹状の表面欠陥は認められなかった。これに対し、微小な凸状、凹状の表面欠陥が確認された比較例1、2にかかる電子デバイス用ガラス基板を用いて製造した位相シフトマスクブランクス、及び位相シフトマスク、並びにEUV反射型マスクブランクス、及び反射型マスクには、ガラス基板表面、ハーフトーン膜パターンの境界、多層反射膜表面、吸収体膜パターンの境界に凸状、凹状の表面欠陥が確認された。これらの表面欠陥は、マスクを用いてパターン転写を行った際の転写像のパターン精度等にも影響を及ぼす。
(Evaluation results)
When the defect inspection of the phase shift mask blanks, phase shift masks, EUV reflective mask blanks, and EUV reflective masks thus manufactured was performed, the phase shift mask manufactured using the glass substrate for electronic devices according to Examples 1-6. Convex and concave surface defects were not observed in the blanks, the phase shift mask, and the EUV reflective mask blanks and the EUV reflective mask. In contrast, phase shift mask blanks, phase shift masks, and EUV reflective mask blanks manufactured using the glass substrates for electronic devices according to Comparative Examples 1 and 2 in which minute convex and concave surface defects were confirmed. In the reflective mask, convex and concave surface defects were confirmed on the glass substrate surface, the boundary of the halftone film pattern, the surface of the multilayer reflective film, and the boundary of the absorber film pattern. These surface defects also affect the pattern accuracy of the transferred image when pattern transfer is performed using a mask.
1 被研磨加工物
2 太陽歯車
3 内歯歯車
4 キャリア
5 上定盤
6 下定盤
7 研磨パッド
1
Claims (7)
前記研磨パッドは、表面に微細な開口を有するナップ層を有し、前記ナップ層の厚さが700μm以上であることを特徴とする電子デバイス用ガラス基板の製造方法。 A glass substrate for an electronic device is pressed against a polishing platen to which a polishing pad is attached, and the polishing platen and the glass substrate are moved relatively while supplying a polishing liquid containing polishing abrasive grains. A method for producing a glass substrate for an electronic device having a step of precisely polishing a surface,
The method for producing a glass substrate for an electronic device, wherein the polishing pad has a nap layer having a fine opening on a surface, and the thickness of the nap layer is 700 μm or more.
前記研磨パッドは、表面に微細な開口を有するナップ層を有し、前記研磨パッドの硬度(Asker−C)が65以下であることを特徴とする電子デバイス用ガラス基板の製造方法。 A glass substrate for an electronic device is pressed against a polishing platen to which a polishing pad is attached, and the polishing platen and the glass substrate are moved relatively while supplying a polishing liquid containing polishing abrasive grains. A method for producing a glass substrate for an electronic device having a step of precisely polishing a surface,
The method for producing a glass substrate for an electronic device, wherein the polishing pad has a nap layer having a fine opening on the surface, and the hardness (Asker-C) of the polishing pad is 65 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003301615A JP2005066781A (en) | 2003-08-26 | 2003-08-26 | Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003301615A JP2005066781A (en) | 2003-08-26 | 2003-08-26 | Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005066781A true JP2005066781A (en) | 2005-03-17 |
Family
ID=34406183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003301615A Pending JP2005066781A (en) | 2003-08-26 | 2003-08-26 | Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005066781A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035413A (en) * | 2004-06-22 | 2006-02-09 | Asahi Glass Co Ltd | Polishing method of glass substrate and glass substrate |
JP2007054944A (en) * | 2005-07-25 | 2007-03-08 | Hoya Corp | Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask |
JP2009012164A (en) * | 2007-06-05 | 2009-01-22 | Asahi Glass Co Ltd | Method for polishing glass substrate |
US7630068B2 (en) | 2006-02-16 | 2009-12-08 | Renesas Technology Corporation | Method and system of defect inspection for mask blank and method of manufacturing semiconductor device using the same |
JP2010221370A (en) * | 2009-03-25 | 2010-10-07 | Hoya Corp | Method of manufacturing substrate for mask blank, method of manufacturing mask blank, and method of manufacturing mask |
US7927186B2 (en) | 2008-01-30 | 2011-04-19 | Asahi Glass Company, Limited | Method for producing glass substrate for magnetic disk |
JP2011240482A (en) * | 2005-07-25 | 2011-12-01 | Hoya Corp | Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask |
US8092280B2 (en) | 2008-12-02 | 2012-01-10 | Asahi Glass Company, Limited | Glass substrate for magnetic disk and method for producing the same |
JP2013235042A (en) * | 2012-05-07 | 2013-11-21 | Hoya Corp | Method for producing substrate for mask blank, method for producing mask blank, and method for producing mask for transfer |
JP2013235041A (en) * | 2012-05-07 | 2013-11-21 | Hoya Corp | Method for producing substrate for mask blank, method for producing mask blank, and method for producing mask for transfer |
WO2014171352A1 (en) * | 2013-04-17 | 2014-10-23 | 富士フイルム株式会社 | Resist removing liquid, resist removal method using same and method for producing photomask |
CN110262181A (en) * | 2013-03-12 | 2019-09-20 | 应用材料公司 | The extreme ultraviolet photolithographic blank of planarization and its manufacture and lithography system |
-
2003
- 2003-08-26 JP JP2003301615A patent/JP2005066781A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035413A (en) * | 2004-06-22 | 2006-02-09 | Asahi Glass Co Ltd | Polishing method of glass substrate and glass substrate |
JP2007054944A (en) * | 2005-07-25 | 2007-03-08 | Hoya Corp | Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask |
JP2011240482A (en) * | 2005-07-25 | 2011-12-01 | Hoya Corp | Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask |
US7630068B2 (en) | 2006-02-16 | 2009-12-08 | Renesas Technology Corporation | Method and system of defect inspection for mask blank and method of manufacturing semiconductor device using the same |
JP2009012164A (en) * | 2007-06-05 | 2009-01-22 | Asahi Glass Co Ltd | Method for polishing glass substrate |
US7927186B2 (en) | 2008-01-30 | 2011-04-19 | Asahi Glass Company, Limited | Method for producing glass substrate for magnetic disk |
US8092280B2 (en) | 2008-12-02 | 2012-01-10 | Asahi Glass Company, Limited | Glass substrate for magnetic disk and method for producing the same |
JP2010221370A (en) * | 2009-03-25 | 2010-10-07 | Hoya Corp | Method of manufacturing substrate for mask blank, method of manufacturing mask blank, and method of manufacturing mask |
JP2013235042A (en) * | 2012-05-07 | 2013-11-21 | Hoya Corp | Method for producing substrate for mask blank, method for producing mask blank, and method for producing mask for transfer |
JP2013235041A (en) * | 2012-05-07 | 2013-11-21 | Hoya Corp | Method for producing substrate for mask blank, method for producing mask blank, and method for producing mask for transfer |
CN110262181A (en) * | 2013-03-12 | 2019-09-20 | 应用材料公司 | The extreme ultraviolet photolithographic blank of planarization and its manufacture and lithography system |
WO2014171352A1 (en) * | 2013-04-17 | 2014-10-23 | 富士フイルム株式会社 | Resist removing liquid, resist removal method using same and method for producing photomask |
JP2014212171A (en) * | 2013-04-17 | 2014-11-13 | 富士フイルム株式会社 | Resist removing liquid, method for removing resist using the same, and method of manufacturing photomask |
US9588428B2 (en) | 2013-04-17 | 2017-03-07 | Fujifilm Corporation | Resist removing liquid, resist removal method using same and method for producing photomask |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7732101B2 (en) | Method of producing a glass substrate for a mask blank by polishing with an alkaline polishing liquid that contains colloidal silica abrasive grains | |
JP4858154B2 (en) | A method for polishing a glass substrate for mask blanks. | |
JP3966840B2 (en) | Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask | |
JP5332249B2 (en) | Glass substrate polishing method | |
JP5090633B2 (en) | Glass substrate polishing method | |
JP4761901B2 (en) | Mask blank substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask manufacturing method, and semiconductor device manufacturing method | |
US20070066066A1 (en) | Polishing method for glass substrate, and glass substrate | |
JP6216835B2 (en) | Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and methods of manufacturing the same | |
JP4792146B2 (en) | Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method | |
JP2006011434A (en) | Manufacturing method for mask blank substrate, mask blank and transfer mask | |
JP2005066781A (en) | Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask | |
JP4526547B2 (en) | Mask blank glass substrate manufacturing method, mask blank manufacturing method, EUV reflective mask blank manufacturing method, transfer mask manufacturing method, EUV reflective mask manufacturing method, and semiconductor device manufacturing method | |
JP2004054285A (en) | Glass substrate for mask blanks, method for manufacturing glass substrate for mask blanks, mask blanks, method for manufacturing mask blanks, transfer mask, and method for manufacturing same | |
JP2006146250A (en) | Glass substrate for mask blank and transfer mask | |
JP4283061B2 (en) | Manufacturing method of glass substrate for electronic device, manufacturing method of mask blanks, and manufacturing method of transfer mask | |
JP2015136773A (en) | Method for polishing glass substrate | |
JP2005301304A (en) | Substrate for mask blank, mask blank, and mask for transfer | |
JP2008116571A (en) | Method of manufacturing substrate for mask blank and method of manufacturing mask blank, and method of manufacturing transfer mask | |
JP4688084B2 (en) | Manufacturing method of glass substrate for electronic device, manufacturing method of mask blanks, and manufacturing method of transfer mask | |
JP5362771B2 (en) | Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method | |
JP5687939B2 (en) | Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method | |
JP4437501B2 (en) | Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask | |
JP5488211B2 (en) | Method of manufacturing substrate, substrate, method of manufacturing laminate, and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080819 |