JP5090633B2 - Glass substrate polishing method - Google Patents

Glass substrate polishing method Download PDF

Info

Publication number
JP5090633B2
JP5090633B2 JP2005166040A JP2005166040A JP5090633B2 JP 5090633 B2 JP5090633 B2 JP 5090633B2 JP 2005166040 A JP2005166040 A JP 2005166040A JP 2005166040 A JP2005166040 A JP 2005166040A JP 5090633 B2 JP5090633 B2 JP 5090633B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
polished
colloidal silica
polishing slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005166040A
Other languages
Japanese (ja)
Other versions
JP2006035413A (en
Inventor
均 三代
正文 伊藤
宏 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005166040A priority Critical patent/JP5090633B2/en
Publication of JP2006035413A publication Critical patent/JP2006035413A/en
Application granted granted Critical
Publication of JP5090633B2 publication Critical patent/JP5090633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガラス基板の研磨方法に関し、特に半導体製造工程のEUV(Extreme Ultra Violet)リソグラフィに使用される反射型マスク用等のガラス基板の研磨方法に関するものである。 The present invention relates to a polishing how the glass substrate, those about the particular method of polishing a glass substrate such as a reflection type mask used for EUV (Extreme Ultra Violet) lithography of the semiconductor manufacturing process.

従来から、リソグラフィ技術においては、ウェハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化、高速化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウェハ面上に結像させることが求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)から更に進んでArFエキシマレーザ(波長193nm)が用いられ始めている。また、回路の線幅が100nm以下となる次世代の集積回路に対応するため、露光光源としてF2レーザ(波長157nm)を用いることが有力視されているが、これも線幅が70nm世代までしか対応し得ないとみられている。   Conventionally, in lithography technology, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used. As integrated circuits become highly integrated, faster, and more functional, miniaturization of integrated circuits advances, and the exposure apparatus is required to image a high-resolution circuit pattern on the wafer surface with a deep focal depth. The wavelength of the exposure light source is being shortened. As an exposure light source, an ArF excimer laser (wavelength 193 nm) has started to be used further from the conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm), and KrF excimer laser (wavelength 248 nm). In order to cope with next-generation integrated circuits in which the circuit line width is 100 nm or less, it is considered promising to use an F2 laser (wavelength 157 nm) as an exposure light source. It seems that it cannot respond.

さらに、このような技術動向にあって、次の世代の露光光源としてEUV光(極端紫外光)を使用したリソグラフィ技術が、45nm以降の複数の世代にわたって適用可能と見られ注目されている。EUV光とは軟X線領域または真空紫外域の波長帯の光を指し、具体的には波長が0.2〜100nm程度の光のことである。現時点では、リソグラフィ光源として13.5nmの使用が検討されている。このEUVリソグラフィ(以下、「EUVL」と略する)の露光原理は、投影光学系を用いてマスクパターンを転写する点では、従来のリソグラフィと同じであるが、EUV光のエネルギー領域では光を透過する材料がないために屈折光学系は用いることができず、反射光学系を用いることとなる。(特許文献1参照)   Furthermore, in such a technical trend, a lithography technique using EUV light (extreme ultraviolet light) as an exposure light source for the next generation is considered to be applicable over a plurality of generations of 45 nm and after, and has attracted attention. EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. At present, the use of 13.5 nm as a lithography light source is being studied. The exposure principle of this EUV lithography (hereinafter abbreviated as “EUVL”) is the same as that of conventional lithography in that the mask pattern is transferred using a projection optical system, but light is transmitted in the EUV light energy region. Since there is no material to be used, the refractive optical system cannot be used, and a reflective optical system is used. (See Patent Document 1)

EUVLに用いられるマスクは、(1)基板 (2)基板上に形成された反射多層膜 (3)反射多層膜上に形成された吸収体層、から基本的に構成される。反射多層膜としては、露光光の波長に対して屈折率の異なる複数の材料がnmオーダーで周期的に積層された構造のものが用いられ、代表的な材料としてMoとSiが知られている。また。吸収体層にはTaやCrが検討されている。基板としては、EUV光照射の下においても歪みが生じないよう低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラスや結晶化ガラスが検討されている。基板はこれらガラスや結晶化ガラスの素材を、高精度に研磨、洗浄することによって製造される。   A mask used for EUVL basically includes (1) a substrate, (2) a reflective multilayer film formed on the substrate, and (3) an absorber layer formed on the reflective multilayer film. As the reflective multilayer film, one having a structure in which a plurality of materials having different refractive indexes with respect to the wavelength of exposure light are periodically stacked in the order of nm is used, and Mo and Si are known as representative materials. . Also. Ta and Cr have been studied for the absorber layer. As the substrate, a material having a low thermal expansion coefficient is required so that distortion does not occur even under EUV light irradiation, and glass and crystallized glass having a low thermal expansion coefficient are being studied. The substrate is manufactured by polishing and cleaning these glass and crystallized glass materials with high accuracy.

一般に、磁気記録媒体用基板や半導体用基板などを平滑度の高い表面に研磨する方法は知られている。例えば、特許文献2には、メモリーハードディスクの仕上げ研磨や半導体素子用基板などの研磨について、研磨後の被研磨物の表面粗さが小さく、かつ微小突起や研磨傷等の表面欠陥を低減する研磨方法として、水、研磨材、酸化合物を含有してなり、pHが酸性かつ研磨材の濃度が10重量%未満である研磨液組成物を用いて被研磨基板を研磨することが記載されている。そして、前記研磨材として酸化アルミニウム、シリカ、酸化セリウム、酸化ジルコニウムなどが、またpHを酸性にするための酸として硝酸、硫酸、塩酸や有機酸などがそれぞれ例示されている。   In general, a method for polishing a magnetic recording medium substrate, a semiconductor substrate, or the like to a highly smooth surface is known. For example, Patent Document 2 discloses polishing for polishing a hard disk of a memory hard disk or polishing a substrate for a semiconductor element that reduces the surface roughness of a polished object after polishing and reduces surface defects such as fine protrusions and polishing scratches. As a method, it describes that a substrate to be polished is polished using a polishing composition containing water, an abrasive and an acid compound, having an acidic pH and an abrasive concentration of less than 10% by weight. . Examples of the abrasive include aluminum oxide, silica, cerium oxide, and zirconium oxide, and examples of acids for making the pH acidic include nitric acid, sulfuric acid, hydrochloric acid, and organic acids.

また、特許文献3には、磁気ディスク用基板材の表面を例えば硝酸アルミニウムに硝酸を添加してpHを調整した腐食剤で軟化させた後、例えばコロイド・シリカなどの軟質コロイド粒子を使用して、軟化した層を除去する方法が記載されている。
特表2003−505891号公報 特開2003−211351号公報 特開平7−240025号公報
Further, in Patent Document 3, the surface of a magnetic disk substrate material is softened with a corrosive whose pH is adjusted by adding nitric acid to aluminum nitrate, for example, and then soft colloidal particles such as colloidal silica are used. A method for removing the softened layer is described.
Japanese translation of PCT publication No. 2003-505891 JP 2003-211351 A JP-A-7-240025

しかしながら、特許文献2の研磨方法では、研磨材としてシリカ粒子を使用する場合に、研磨速度を向上させるためにその粒子径を1〜600nmの広範囲にしており、特に好ましい範囲を20〜200nmとしている。そして、微小突起を減少させる観点および経済性の観点から、シリカ粒子の濃度は10重量%未満とし、さらに最も好ましくは7重量%以下としている。つまり、特許文献2ではシリカ粒子の濃度を上げると微小突起が増加するために前記のように濃度を低くし、その代わりにシリカ粒子の粒子径を1〜600nmにして、所望の研磨速度を得ているものと考えられる。その結果、この研磨材で研磨された磁気ディスク用基板の表面平滑性は、微小突起が減少してはいるものの、表面粗さ(Ra)が制約され、実施例の(Ra)は0.2〜0.3nmとなっている。つまり、特許文献2の研磨方法では、表面粗さ(Ra)が0.2〜0.3nm程度の研磨しか得られないのである。   However, in the polishing method of Patent Document 2, when silica particles are used as an abrasive, the particle diameter is in a wide range of 1 to 600 nm in order to improve the polishing rate, and a particularly preferable range is 20 to 200 nm. . From the viewpoint of reducing the fine protrusions and the economical aspect, the concentration of the silica particles is less than 10% by weight, and most preferably 7% by weight or less. In other words, in Patent Document 2, when the concentration of silica particles is increased, microprojections increase, so the concentration is lowered as described above. Instead, the particle diameter of silica particles is set to 1 to 600 nm to obtain a desired polishing rate. It is thought that. As a result, the surface smoothness of the magnetic disk substrate polished with this abrasive is limited in surface roughness (Ra), although microprojections are reduced, and (Ra) in the example is 0.2. It is ˜0.3 nm. In other words, the polishing method of Patent Document 2 can only provide polishing with a surface roughness (Ra) of about 0.2 to 0.3 nm.

このように表面粗さ(Ra)が0.2〜0.3nmの表面平滑性では、EUVLに使用される反射型マスク用のガラス基板、とりわけ45nm以降の世代の半導体製造用露光装置の光学系に用いられる反射型マスクのように極めて高い表面精度と平滑性が要求されるガラス基板として使用することは困難である。   Thus, with surface smoothness having a surface roughness (Ra) of 0.2 to 0.3 nm, a glass substrate for a reflective mask used for EUVL, in particular, an optical system of an exposure apparatus for producing semiconductors of 45 nm or later generations. It is difficult to use it as a glass substrate that requires extremely high surface accuracy and smoothness, such as the reflective mask used in the above.

また、特許文献3の研磨方法によって得られるディスク基板の平均表面粗さは、実施例に示される最良のものでも0.158nmであり、このような表面粗さでは45nm以降の世代の半導体製造用露光装置の光学系に用いられる反射型マスクとしては、同様に不充分である。   Further, the average surface roughness of the disk substrate obtained by the polishing method of Patent Document 3 is 0.158 nm even at the best shown in the examples. Similarly, it is insufficient as a reflective mask used in the optical system of the exposure apparatus.

本発明は、上記課題を鑑みてなされたものであり、EUVLに使用される反射型マスク用のガラス基板のように極めて高い表面平滑性および表面精度が要求されるガラス基板を研磨する方法と、表面粗さが従来に比べて小さいガラス基板とを提供することを目的とする。   The present invention has been made in view of the above problems, and a method of polishing a glass substrate that requires extremely high surface smoothness and surface accuracy, such as a glass substrate for a reflective mask used in EUVL, and An object of the present invention is to provide a glass substrate having a smaller surface roughness than conventional ones.

本発明者等は、上記課題を解決するために、45nm以降の世代の半導体製造用露光装置の光学系に用いることが可能な反射型マスク用ガラス基板の研磨について鋭意検討した結果、粒子径が従来より小さいコロイダルシリカと水とを含有する研磨スラリーのpHを酸性に調整して研磨することにより、表面粗さが小さい表面に研磨できることを見出し、本発明を完成したものである。   In order to solve the above-mentioned problems, the present inventors have intensively studied polishing of a glass substrate for a reflective mask that can be used in an optical system of an exposure apparatus for semiconductor production of generations of 45 nm and subsequent generations. The inventors have found that the surface of the polishing slurry containing smaller colloidal silica and water can be polished to a surface having a small surface roughness by adjusting the pH to be acidic, thereby completing the present invention.

すなわち、本発明は、ガラス基板を高い表面精度で研磨できる次の研磨方法を提供する。
(1)EUV光を使用する半導体製造用露光装置の光学系に用いる反射型マスク用のSiOを主成分とするガラス基板を、研磨スラリーを用いて研磨するガラス基板の研磨方法であって、前記研磨スラリーは、コロイダルシリカと水と酸とを含み、前記コロイダルシリカは、平均一次粒子径が5nm以上20nm未満であり、かつ前記研磨スラリー中の前記コロイダルシリカの含有量は10〜30質量%であり、さらに前記研磨スラリーのpHは1〜3の範囲となるように調整されており、当該研磨スラリーを用いて前記ガラス基板の表面を、原子間力顕微鏡で測定した表面粗さRmsが0.10nm以下になるように研磨することを特徴とするガラス基板の研磨方法。
(2)幅が60nm以上の凹状欠点を142mm×142mmの範囲内で3個以下にする上記(1)のガラス基板の研磨方法。
(3)前記研磨スラリーで研磨した後のガラス基板を、硫酸と過酸化水素水の熱溶液で洗浄し、さらに中性界面活性剤溶液で洗浄する上記(1)または(2)に記載のガラス基板の研磨方法。
(4)ガラス基板の表面をあらかじめ予備研磨し、その後に前記研磨スラリーで仕上げ研磨する上記(1)〜(3)のいずれかに記載のガラス基板の研磨方法。



That is, the present invention provides the following polishing how that can polish a glass substrate with a high surface precision.
(1) A glass substrate polishing method for polishing a glass substrate mainly composed of SiO 2 for a reflective mask used in an optical system of an exposure apparatus for semiconductor manufacturing using EUV light, using a polishing slurry, The polishing slurry contains colloidal silica, water, and acid. The colloidal silica has an average primary particle diameter of 5 nm or more and less than 20 nm, and the content of the colloidal silica in the polishing slurry is 10 to 30% by mass. Further, the pH of the polishing slurry is adjusted to be in the range of 1 to 3, and the surface roughness Rms measured with an atomic force microscope on the surface of the glass substrate using the polishing slurry is 0. Polishing method of glass substrate, wherein polishing is performed to 10 nm or less.
(2) The method for polishing a glass substrate according to (1), wherein the number of concave defects having a width of 60 nm or more is 3 or less within a range of 142 mm × 142 mm.
(3) The glass according to (1) or (2), wherein the glass substrate after being polished with the polishing slurry is washed with a hot solution of sulfuric acid and hydrogen peroxide solution and further washed with a neutral surfactant solution. A method for polishing a substrate.
(4) The method for polishing a glass substrate according to any one of the above (1) to (3), wherein the surface of the glass substrate is preliminarily polished and then finish-polished with the polishing slurry.



本発明よれば、ガラス基板を表面粗さが極めて小さく、平滑で表面精度が高い表面に研磨できるので、45nm以降の世代の半導体製造用露光装置の光学系に求められている反射型マスク等にも対応できる、平滑性に優れた高精度のガラス基板を得ることができる。   According to the present invention, a glass substrate can be polished to a surface with extremely small surface roughness, smoothness and high surface accuracy, so that it can be used as a reflective mask or the like required for an optical system of a semiconductor manufacturing exposure apparatus of 45 nm or later generation It is possible to obtain a highly accurate glass substrate excellent in smoothness.

また、研磨スラリーに含有されるコロイダルシリカの濃度を高くすることが可能になるので、所望の研磨速度でガラス基板を効率よく研磨できる。   Further, since the concentration of colloidal silica contained in the polishing slurry can be increased, the glass substrate can be efficiently polished at a desired polishing rate.

本発明においてガラス基板用の被研磨ガラスは、集積回路の高集積化と高精細化に対応可能なEUVL用反射型マスクとして使用できるガラス基板を得るために、熱膨張係数が小さくかつそのばらつきの小さいガラスが用いられる。具体的には20℃における熱膨張係数が0±30ppb/℃の低膨張ガラスが好適しており、特に20℃における熱膨張係数が0±10ppb/℃の超低膨張ガラスが好ましい。前記反射型マスクがこのような小さい熱膨張係数のガラスで形成されていれば、半導体製造工程における温度変化に充分に対応して高精細の回路パターンを良好に転写できる。   In the present invention, the glass to be polished for a glass substrate has a small coefficient of thermal expansion and a variation of the variation in order to obtain a glass substrate that can be used as a reflective mask for EUVL that can cope with high integration and high definition of integrated circuits. Small glass is used. Specifically, low-expansion glass having a thermal expansion coefficient of 0 ± 30 ppb / ° C. at 20 ° C. is preferable, and ultra-low expansion glass having a thermal expansion coefficient of 0 ± 10 ppb / ° C. at 20 ° C. is particularly preferable. If the reflective mask is formed of glass having such a small coefficient of thermal expansion, a high-definition circuit pattern can be satisfactorily transferred in response to temperature changes in the semiconductor manufacturing process.

上記低膨張ガラスおよび超低膨張ガラスとしては、SiOを主成分とする石英ガラスが使用できる。具体的には例えばSiOを主成分としTiOを含有する合成石英ガラス、ULE(登録商標:コーニングコード7972)、ZERODUR(独ショット社登録商標)などの低膨張ガラスまたは低膨張結晶ガラスを挙げることができる。ガラス基板は通常四角形状の板状体で研磨されるが、形状はこれに限定されない。 As the low-expansion glass and the ultra-low expansion glass, quartz glass mainly composed of SiO 2 can be used. Specific examples include low-expansion glass or low-expansion crystal glass such as synthetic quartz glass containing SiO 2 as a main component and TiO 2 , ULE (registered trademark: Corning Code 7972), ZERO DUR (registered trademark of German Shot). be able to. The glass substrate is usually polished with a rectangular plate-like body, but the shape is not limited thereto.

本発明の研磨方法は、コロイダルシリカと水とを含み、pHを1〜4の範囲となるように調整された研磨スラリーを用いて実施できる。すなわち、本発明は、研磨材としてのコロイダルシリカ(シリカ粒子)と、pHを調整する酸と、スラリー化する水とを含有する研磨スラリーによってガラス基板を研磨する。ここで、コロイダルシリカの平均一次粒子径は、50nm以下であり、好ましくは20nm未満、より好ましくは15nm未満である。また、コロイダルシリカの平均一次粒子径の下限は限定されないが、研磨効率を向上させる観点から5nm以上が好ましく、より好ましくは10nm以上である。コロイダルシリカの平均一次粒子径が50nm超であると、ガラス基板を所望の表面粗さに研磨することが困難となり、45nm以降の世代の半導体製造用露光装置の光学系部品等に適合するガラス基板が得られなくなるおそれがある。また、コロイダルシリカとしては、粒子径をきめ細かく管理する観点から、一次粒子が凝集してできる二次粒子をできるだけ含有していないことが望ましい。二次粒子を含む場合でも、その平均粒子径は70nm以下であるのが好ましい。なお、本発明におけるコロイダルシリカの粒子径は、SEM(走査電子顕微鏡)を用いて15〜105×10倍の画像を計測することによって得られたものである。 The polishing method of the present invention can be carried out using a polishing slurry containing colloidal silica and water and adjusted to have a pH in the range of 1 to 4. That is, the present invention polishes a glass substrate with a polishing slurry containing colloidal silica (silica particles) as an abrasive, an acid for adjusting pH, and water to be slurried. Here, the average primary particle diameter of colloidal silica is 50 nm or less, preferably less than 20 nm, more preferably less than 15 nm. Further, the lower limit of the average primary particle diameter of the colloidal silica is not limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of improving the polishing efficiency. When the average primary particle diameter of colloidal silica is more than 50 nm, it becomes difficult to polish the glass substrate to a desired surface roughness, and the glass substrate is suitable for optical system parts of exposure apparatuses for semiconductor manufacturing of generations of 45 nm and later. May not be obtained. Moreover, as colloidal silica, it is desirable to contain as little secondary particles as possible by agglomerating primary particles from the viewpoint of finely managing the particle diameter. Even when secondary particles are included, the average particle size is preferably 70 nm or less. The particle size of the colloidal silica in the present invention, is obtained by measuring the fifteen to one hundred and five × 10 3 times of the image using the SEM (scanning electron microscope).

また、コロイダルシリカの含有量は、研磨スラリー中において10〜30質量%である。好ましく18〜25質量%であり、18〜22質量%であることが特に好ましい。コロイダルシリカの含有量が10質量%未満では、研磨効率が低下するために研磨時間が長くなり好ましくない。特に本発明では、前記したように平均一次粒子径の細かい粒子のコロイダルシリカを研磨剤として使用するため、コロイダルシリカの含有量が10質量%未満では、研磨効率が悪くなり経済的な研磨が得られなくなることがある。一方、コロイダルシリカの含有量が30質量%を超えると、コロイダルシリカの使用量が増加するため経済性の面や洗浄性の面などの点で好ましくない。 Moreover, content of colloidal silica is 10-30 mass% in polishing slurry . Preferably it is 18-25 mass% , and it is especially preferable that it is 18-22 mass%. When the colloidal silica content is less than 10% by mass, the polishing efficiency is lowered, and therefore, the polishing time becomes long. In particular, in the present invention, since colloidal silica having a fine average primary particle diameter is used as an abrasive as described above, if the colloidal silica content is less than 10% by mass, the polishing efficiency is deteriorated and economical polishing is obtained. It may not be possible. On the other hand, if the content of colloidal silica exceeds 30% by mass, the amount of colloidal silica used is increased, which is not preferable from the viewpoints of economy and detergency.

本発明において研磨スラリーは、前記したようにpHが1〜4、好ましくは1〜3、より好ましくは1.8〜2.5に、酸によって調整される。本発明における研磨スラリーのpH調整の目的は、従来において実施されている酸性研磨と実質的に同じであり、研磨スラリーをこのように酸性にすることにより、ガラス基板の表面を化学的および機械的に研磨することが可能となる。すなわち、酸性の研磨スラリーで機械的研磨すると、ガラス表面の凸部が研磨スラリーの酸によって軟化されるため、凸部を機械的研磨で容易に除去できる。これにより、研磨効率が向上すると共に、研磨で取り除かれたガラス粉またはガラス屑が軟化されているので、該ガラス屑等による新たな傷の発生も防止できる。したがって、ガラス基板を平滑性よく効率的に研磨する方法として、研磨スラリーのpHを酸性に調整する方法は有効である。pHが1未満であると、研磨機の腐食は問題とならないレベルであるが、研磨スラリーの取り扱い性が悪くなる。また、pHが4より大きくなると、ガラスに対する前記の化学的研磨効果が低下するので好ましくない。


In the present invention, the polishing slurry is adjusted with acid to have a pH of 1 to 4, preferably 1 to 3, more preferably 1.8 to 2.5 as described above. The purpose of adjusting the pH of the polishing slurry in the present invention is substantially the same as that in the conventional acidic polishing. By making the polishing slurry acidic in this way, the surface of the glass substrate is chemically and mechanically polished. It becomes possible to polish it. That is, when mechanical polishing is performed with an acidic polishing slurry, the convex portions on the glass surface are softened by the acid of the polishing slurry, so that the convex portions can be easily removed by mechanical polishing. As a result, the polishing efficiency is improved, and the glass powder or glass dust removed by polishing is softened, so that it is possible to prevent the generation of new scratches due to the glass dust or the like. Therefore, a method for adjusting the pH of the polishing slurry to be acidic is effective as a method for efficiently polishing the glass substrate with good smoothness . When the pH is less than 1, corrosion of the polishing machine is at a level that does not cause a problem, but handling of the polishing slurry is deteriorated. On the other hand, if the pH is higher than 4, the chemical polishing effect on the glass is lowered, which is not preferable.


本発明において、研磨スラリーの上記pH調整は、無機酸または有機酸から選択された酸を単独または組み合わせて使用することにより行うことができる。便宜的には、酸性研磨の研磨スラリーのpH調整剤として知られている無機酸または有機酸の多くを適宜選択して用いることができる。例えば、無機酸として、硝酸、硫酸、塩酸、過塩素酸、リン酸などが挙げられるが、中でも硝酸が取り扱いやすさの点で好ましい。フッ酸などのガラスに対して浸蝕性の大きい酸は、傷を顕在させるので用いることはできない。また、有機酸としては、シュウ酸、クエン酸などを例示できる。   In the present invention, the pH adjustment of the polishing slurry can be performed by using an acid selected from an inorganic acid or an organic acid alone or in combination. For convenience, many inorganic acids or organic acids known as pH adjusters for acidic polishing polishing slurries can be appropriately selected and used. For example, as the inorganic acid, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid and the like can be mentioned. Among them, nitric acid is preferable in terms of ease of handling. Acids that are highly erodible to glass such as hydrofluoric acid cannot be used because they cause scratches. Examples of the organic acid include oxalic acid and citric acid.

本発明において、コロイダルシリカの濃度調整またはスラリー化のために用いられる水は、異物を取り除いた純水または超純水が好ましく使用できる。すなわち、取り除く異物(微粒子)は材質や形状に係わりなく、レーザー光等を用いた光散乱方式で計測した、最大径が0.1μm以上の微粒子数が実質的に1ケ/ml以下の純水または超純水が好ましい。水に0.1μm以上の異物が1ケ/mlより多く混入していると、該異物が研磨中に一種の研磨材として作用してガラスの研磨表面に引っ掻き傷やピットなどの表面欠点を生ぜしめるため、平滑性に優れた高品位の研磨面が得られにくくなる。なお、水中の異物は、例えば、メンブレンフィルターによる濾過や限外濾過により除去できるが、除去方法はこれに限定されない。   In the present invention, pure water or ultrapure water from which foreign substances have been removed can be preferably used as the water used for adjusting the concentration or slurrying of colloidal silica. In other words, the foreign matter (fine particles) to be removed is pure water having a maximum diameter of 0.1 μm or more, which is measured by a light scattering method using a laser beam or the like, regardless of the material or shape, and is substantially 1 / ml or less. Or ultrapure water is preferable. If more than 0.1 µm of foreign matter is mixed in water, the foreign matter acts as a kind of abrasive during polishing and causes surface defects such as scratches and pits on the polished surface of the glass. Therefore, it becomes difficult to obtain a high-quality polished surface with excellent smoothness. In addition, although the foreign material in water can be removed by filtration with a membrane filter or ultrafiltration, for example, the removal method is not limited to this.

本発明においてガラス基板の研磨は、コロイダルシリカの平均一次粒径と濃度およびpHが調整された研磨スラリーを研磨装置に供給して行うことができる。この研磨装置は図示しないが、例えば、不織布または研磨布等の研磨具を取り付けた研磨盤でガラス基板を両側から所定の荷重で挟み、該研磨具に前記研磨スラリーを供給しながら研磨盤をガラス基板に対して相対回転させることによって研磨できる。この場合、研磨スラリーの供給量、研磨荷重および研磨盤の回転速度等は、研磨速度や研磨精度などを考慮して適宜決める。   In the present invention, the polishing of the glass substrate can be performed by supplying a polishing slurry having an average primary particle size, concentration and pH of colloidal silica adjusted to a polishing apparatus. Although this polishing apparatus is not shown, for example, the glass substrate is sandwiched with a predetermined load from both sides by a polishing machine to which a polishing tool such as a nonwoven fabric or a polishing cloth is attached, and the polishing disk is glassed while supplying the polishing slurry to the polishing tool. Polishing is possible by rotating the substrate relative to the substrate. In this case, the supply amount of the polishing slurry, the polishing load, the rotation speed of the polishing disk, etc. are appropriately determined in consideration of the polishing speed and the polishing accuracy.

本発明の研磨方法は、ガラス基板を複数の研磨工程で研磨するときの最後に行う仕上げ研磨として特に適している。このためガラス基板は、本発明の方法で研磨する前にあらかじめ所定の厚さに研磨加工すると共に、その表面粗さが一定以下になるように予備研磨しておくのが好ましい。この予備研磨は、1乃至複数の研磨工程により行うことができる。
その研磨方法は限定されないが、例えば複数の両面ラップ研磨機を連接し、研磨材や研磨条件を変えながら該研磨機で順次研磨することにより、ガラス基板を所定の厚さと表面粗さに予備研磨できる。この予備研磨の表面粗さ(Rms)としては、例えば3nm以下が好ましく、より好ましくは1.0nm以下、更に好ましくは0.5nm以下である。
The polishing method of the present invention is particularly suitable as final polishing performed at the end when a glass substrate is polished in a plurality of polishing steps. For this reason, the glass substrate is preferably polished in advance to a predetermined thickness before being polished by the method of the present invention, and preliminarily polished so that the surface roughness thereof is below a certain level. This preliminary polishing can be performed by one or more polishing steps.
Although the polishing method is not limited, for example, a plurality of double-sided lapping machines are connected, and the glass substrate is preliminarily polished to a predetermined thickness and surface roughness by sequentially polishing with the polishing machine while changing the polishing material and polishing conditions. it can. The surface roughness (Rms) of this preliminary polishing is preferably, for example, 3 nm or less, more preferably 1.0 nm or less, and still more preferably 0.5 nm or less.

さらに、本発明の研磨方法で最終研磨されたガラス基板は洗浄される。この洗浄により、研磨されたガラス基板の表面に付着している研磨剤、研磨ガラス屑やその他の異物などを取り除いて清浄にし、さらにガラス基板の表面を中性化することができる。したがって、この洗浄は、研磨に付帯する工程として重要である。この洗浄が不充分であると、後続の検査に不都合が生じるばかりでなく、ガラス基板としての必要品質が得られなくなる。
好ましい洗浄方法の一つとして、例えば最初に硫酸と過酸化水素水の熱溶液で洗浄したあと、水ですすぎ洗浄し、次いで中性界面活性剤溶液で洗浄する方法を挙げることができる。しかし、洗浄方法はこれに限定されないで、その他の方法でもよい。
Furthermore, the glass substrate finally polished by the polishing method of the present invention is cleaned. By this cleaning, it is possible to remove and clean the polishing agent, polishing glass debris and other foreign matters adhering to the surface of the polished glass substrate, and further neutralize the surface of the glass substrate. Therefore, this cleaning is important as a process incidental to polishing. Insufficient cleaning not only causes inconvenience in subsequent inspection, but also prevents the required quality as a glass substrate from being obtained.
One preferred washing method is, for example, a method of first washing with a hot solution of sulfuric acid and hydrogen peroxide, then rinsing with water, and then washing with a neutral surfactant solution. However, the cleaning method is not limited to this, and other methods may be used.

本発明の研磨方法で研磨されたガラス基板は、原子間力顕微鏡(以下、AFMとする)で測定した表面粗さRmsが0.15nm以下であり、より好ましくは0.10nm以下である。本発明は、前記したように平均一次粒子径が50nm以下のコロイダルシリカを含有し、pHが1〜4の範囲になるように調整された研磨スラリーを用いて、ガラス基板を研磨することにより、Rmsが0.15nm以下の高精細な平滑面を得ることができる。ここで、AFMとしては、セイコーインスツルメンツ社製SPI3800Nを使用している。Rmsが0.15nmより大きい表面粗さでは、高集積化と高精細化が一層強く求められる45nm以降の世代の半導体製造用露光装置の光学系部品、例えばEUVL用の反射型マスクやミラーなどのガラス基板として供し得なくなる。   The glass substrate polished by the polishing method of the present invention has a surface roughness Rms measured by an atomic force microscope (hereinafter referred to as AFM) of 0.15 nm or less, more preferably 0.10 nm or less. By polishing the glass substrate using the polishing slurry containing colloidal silica having an average primary particle diameter of 50 nm or less as described above and adjusted to have a pH in the range of 1 to 4, A high-definition smooth surface with an Rms of 0.15 nm or less can be obtained. Here, as AFM, SPI3800N made by Seiko Instruments Inc. is used. When the surface roughness is greater than 0.15 nm, the optical system components of a 45 nm or higher generation semiconductor manufacturing exposure apparatus, for example, EUVL reflective masks and mirrors, for which higher integration and higher definition are more strongly demanded. It cannot be used as a glass substrate.

図1は研磨スラリーで最終研磨したあと洗浄したガラス基板の表面を例えば表面検査機M1350(レーザーテック社製)で観察したときの一部を平面図で概略的に例示したものであり、図2は図1のA−A部における表面粗さの一例を示す説明図である。図1および図2に示すように、研磨洗浄後のガラス基板3の表面には、一般に表面粗さRmsと別に凹状欠点1や凸状欠点2が存在する。凹状欠点1は、研磨材の粒度の影響や偏りなどにより発生すると考えられ、粒度が大きいほど形状が拡大し、かつ発生個数が増加する傾向が認められる。したがって、研磨材(コロイダルシリカ)の粒径を小さくすることは、かかる凹状欠点の縮小化や減少化の面でも有効である。この凹状欠点1は、ガラス基板3のガラスに形成されているため、洗浄しても取り除くことができない恒久的な問題欠点となる。   FIG. 1 schematically illustrates a part of the surface of a glass substrate that has been finally polished with a polishing slurry and observed with, for example, a surface inspection machine M1350 (manufactured by Lasertec) in a plan view. It is explanatory drawing which shows an example of the surface roughness in the AA part of FIG. As shown in FIGS. 1 and 2, the surface of the glass substrate 3 after polishing and cleaning generally has a concave defect 1 and a convex defect 2 in addition to the surface roughness Rms. The concave defect 1 is considered to be generated due to the influence or bias of the particle size of the abrasive, and it is recognized that the larger the particle size, the larger the shape and the greater the number of generated particles. Therefore, reducing the particle size of the abrasive (colloidal silica) is also effective in reducing or reducing the concave defects. Since this concave defect 1 is formed in the glass of the glass substrate 3, it becomes a permanent problem defect that cannot be removed even by washing.

また、凸状欠点2は洗浄後に残存する研磨材や水に含まれる不純物(異物)などである。前記凹状欠点1と違って、この凸状欠点は洗浄方法を変えたり、異物を充分に除去した洗浄水を使用して洗浄することにより減らすことができる。   Further, the convex defect 2 is an abrasive remaining after cleaning, impurities (foreign matter) contained in water, or the like. Unlike the concave defect 1, this convex defect can be reduced by changing the cleaning method or by using cleaning water from which foreign substances are sufficiently removed.

本発明の好ましい実施態様におけるガラス基板では、幅60nm以上の凹状欠点1が、142mm×142mmの範囲内で3個以下、好ましくは1個以下になっている。また、幅60nm以上の凸状欠点2は、実質的に存在しないようにするのが好ましい。ここでいう凹状欠点1の幅は、図1および図2に示すように凹状欠点1の最大径wを指している。
凸状欠点2の幅もこれと同じである。幅wが60nm以上の凹状欠点1が、142mm×142mmの範囲内に3個より多く存在すると、研磨表面の平坦性が悪くなるばかりでなく、該表面に反射多層膜を形成したとき、膜上の凹凸欠点となるので好ましくない。
In the glass substrate in a preferred embodiment of the present invention, the number of concave defects 1 having a width of 60 nm or more is 3 or less, preferably 1 or less within a range of 142 mm × 142 mm. Moreover, it is preferable that the convex defect 2 having a width of 60 nm or more does not substantially exist. The width of the concave defect 1 here refers to the maximum diameter w of the concave defect 1 as shown in FIGS.
The width of the convex defect 2 is the same as this. If there are more than three concave defects 1 having a width w of 60 nm or more in the range of 142 mm × 142 mm, not only the flatness of the polished surface is deteriorated, but also when a reflective multilayer film is formed on the surface, This is not preferable because of the uneven defect.

火炎加水分解法で製造されたTiOを7質量%含有する合成石英ガラスのインゴットを、縦153.0mm×横153.0mm×厚さ6.75mmの板状に内周刃スライサーを用いて切断し、60枚の合成石英ガラスの板材試料(以下、「試料基材」という)を作成した。次いで、これらを市販のNC面取り機で#120のダイアモンド砥石を用い、縦、横の外形寸法が152mmで面取り幅が0.2〜0.4mmになるよう面取り加工を実施した。 A synthetic quartz glass ingot containing 7% by mass of TiO 2 produced by a flame hydrolysis method is cut into a plate shape of 153.0 mm in length, 153.0 mm in width, and 6.75 mm in thickness using an inner peripheral blade slicer. 60 plate samples of synthetic quartz glass (hereinafter referred to as “sample base material”) were prepared. These were then chamfered using a commercially available NC chamfering machine using a # 120 diamond grindstone so that the vertical and horizontal outer dimensions were 152 mm and the chamfering width was 0.2 to 0.4 mm.

この試料基材を、次の方法により予備研磨した。すなわち、先ず試料基材を、スピードファム社製20B両面ラップ機を使用し、研磨材として実質的にSiCからなるGC#400(フジミインコーポレーテッド社製)を濾過水に18〜20質量%懸濁させたスラリーを用いて、厚さが6.63mmになるまでその主表面を研磨加工した。   This sample substrate was pre-polished by the following method. That is, first, using a 20B double-sided lapping machine manufactured by Speed Fem Co., as a sample base material, GC # 400 (manufactured by Fujimi Incorporated) substantially consisting of SiC as an abrasive is suspended in filtered water by 18 to 20% by mass. Using the slurry, the main surface was polished until the thickness reached 6.63 mm.

さらに、別の20B両面ラップ機を使用し、研磨材としてAlが主成分のFO#1000(フジミインコーポレーテッド社製)を18〜20質量%懸濁させたスラリーを用いて、前記試料基材を厚さが6.51mmになるまで研磨した。その後、酸化セリウムを主体としたスラリーとバフを用いて、該試料基材の外周を30μm研磨して端面を表面粗さ(Ra)0.05μmに鏡面加工した。 Furthermore, using another 20B double-sided lapping machine, the sample was prepared by using a slurry in which 18 to 20% by mass of FO # 1000 (produced by Fujimi Incorporated) whose main component is Al 2 O 3 as an abrasive was suspended. The substrate was polished until the thickness was 6.51 mm. Then, the outer periphery of the sample substrate was polished by 30 μm using a slurry and buff mainly composed of cerium oxide, and the end surface was mirror-finished to a surface roughness (Ra) of 0.05 μm.

次に、これらの試料基材を一次ポリッシュとしてスピードファム社製20B両面ポリッシュ機を使用し、研磨布としてLP66(ローデス社製商品名)、研磨材としてミレーク801A(三井金属社製商品名)を10〜12質量%懸濁させたスラリーを用いて、両面で50μm研磨した。   Next, these sample base materials are used as a primary polish, and a SpeedBam 20B double-side polish machine is used, LP66 (trade name made by Rhodes) as an abrasive cloth, and Mille 801A (trade name made by Mitsui Kinzoku Co., Ltd.) as an abrasive. The slurry was suspended at 10 to 12% by mass and polished on both sides by 50 μm.

さらに、二次ポリッシュとして20B両面ポリッシュ機を使用し、研磨布としてシーガル7355(東レコーテックス社製商品名)、研磨材は前述のミレーク801Aを用いて、両面で10μm研磨した後、簡易な洗浄を実施した。この予備研磨された試料基材の(Rms)は約0.8nmであった。   Further, a 20B double-side polish machine is used as the secondary polish, Seagull 7355 (trade name, manufactured by Toray Cortex Co., Ltd.) is used as the polishing cloth, and the abrasive is polished 10 μm on both sides using the above-mentioned Mille 801A, and then simple cleaning is performed. Carried out. The (Rms) of this pre-polished sample substrate was about 0.8 nm.

次いで、予備研磨した60枚の試料基材を20枚づつの3グループに分けて最終研磨を実施した。すなわち、第一グループは従来の平均一次粒子径を有するコロイダルシリカと水とを含有する研磨スラリーを用いた。第二グループは、第一グループと同じコロイダルシリカと水とを含有する研磨スラリーに硝酸を添加しpHを所定値に調整した研磨スラリーを用いた。第三グループは、本発明による平均一次粒子径のコロイダルシリカと水とを含有する研磨スラリーに硝酸を添加して第二グループと同じpHに調整した研磨スラリーを用いた。各グループの研磨スラリーの調合方法を表1に示す。また、各グループの研磨スラリーの調合方法以外の仕上げ研磨条件は、すべて同一で以下のとおりである。
(研磨条件)
研磨試験機 :浜井産業社製 両面24B研磨機
研磨パッド :カネボウ社製 ベラトリックスK7512
研磨定盤回転数:35rpm
研磨時間 :50分
研磨荷重 :80g/cm
希釈水 :純水(比抵抗値4.2MΩ・cm、0.2μm以上異物濾過)
スラリー流量 :10l/min
Next, 60 samples of the pre-polished sample base material were divided into 3 groups of 20 sheets, and final polishing was performed. That is, the first group used a conventional polishing slurry containing colloidal silica having an average primary particle size and water. The second group used a polishing slurry in which nitric acid was added to a polishing slurry containing the same colloidal silica and water as in the first group to adjust the pH to a predetermined value. The third group used a polishing slurry in which nitric acid was added to a polishing slurry containing colloidal silica having an average primary particle size and water according to the present invention to adjust the pH to the same as that of the second group. Table 1 shows the method for preparing the polishing slurry of each group. Further, the finish polishing conditions other than the method for preparing the polishing slurry of each group are the same and are as follows.
(Polishing conditions)
Polishing tester: Double-sided 24B polishing machine polishing pad manufactured by Hamai Sangyo Co., Ltd .: Bellatrix K7512 manufactured by Kanebo
Polishing platen rotation speed: 35rpm
Polishing time: 50 minutes Polishing load: 80 g / cm 2
Dilution water: Pure water (specific resistance value 4.2 MΩ · cm, foreign matter filtration of 0.2 μm or more)
Slurry flow rate: 10 l / min

Figure 0005090633
Figure 0005090633

上記条件で試料基材を最終研磨したあと、第一槽目が硫酸と過酸化水素水の90℃の溶液、第二槽目がすすぎ用の温純水、第三槽目が中性界面活性剤溶液による洗浄槽、これ以降を超純水によるすすぎ槽とIPAによる乾燥槽で構成した多段式自動洗浄機で洗浄した。この洗浄した試料基材をレーザーテック社製のフォトマスク用表面欠点検査機で検査し、142mm×142mm内の幅60nm以上の欠点数の計数と欠点の凹凸判定を行った。なお、各欠点はそれぞれ60〜150nmの欠点と150nm超の欠点に分けて計数した。   After final polishing of the sample substrate under the above conditions, the first tank is a 90 ° C. solution of sulfuric acid and hydrogen peroxide, the second tank is warm pure water for rinsing, and the third tank is a neutral surfactant solution. The washing tank was washed with a multistage automatic washing machine composed of a rinse tank with ultrapure water and a drying tank with IPA. The cleaned sample substrate was inspected with a surface defect inspection machine for photomasks manufactured by Lasertec, and the number of defects having a width of 60 nm or more within 142 mm × 142 mm was determined and the unevenness of the defects was determined. Each defect was counted by dividing it into a defect of 60 to 150 nm and a defect of more than 150 nm.

さらに、セイコーインスツルメンツ社製原子間力顕微鏡SP13800Nにより、該基板の表面粗さを計測した。この原子間力顕微鏡による表面粗さの計測は、各試料基材について任意の1ケ所、10μm×10μmの範囲を測定することによって行った。これらの測定結果を表2に示す。   Further, the surface roughness of the substrate was measured with an atomic force microscope SP13800N manufactured by Seiko Instruments Inc. The measurement of the surface roughness by this atomic force microscope was performed by measuring an arbitrary one place for each sample substrate at a range of 10 μm × 10 μm. These measurement results are shown in Table 2.

Figure 0005090633
Figure 0005090633

表2から明らかのように、コロイダルシリカの平均一次粒子径が62〜80nmで、pHの調整を行わない研磨スラリーで研磨した第一グループの試料基材は、60nm以上の凹状欠点および凸状欠点の個数が非常に多く、かつ表面粗さRmsは平均値が0.1296nmであった。一方、上記の第一グループの研磨スラリーのpHを2に調整して研磨した第二グループの試料基材は、60nm以上の凹状欠点の減少はそれほど大きく認められなかったが、凸状欠点は著しく減少している。しかし、表面粗さRmsの平均値はコロイダルシリカの平均一次粒子径が同じであるため第一グループと実質同一であった。   As is apparent from Table 2, the sample base material of the first group polished with a polishing slurry having an average primary particle diameter of colloidal silica of 62 to 80 nm and without adjusting the pH has a concave defect and a convex defect of 60 nm or more. The surface roughness Rms has an average value of 0.1296 nm. On the other hand, in the second group of sample substrates polished by adjusting the pH of the first group polishing slurry to 2, the decrease in the concave defects of 60 nm or more was not so large, but the convex defects were remarkable. is decreasing. However, the average value of the surface roughness Rms was substantially the same as that of the first group because the average primary particle diameter of the colloidal silica was the same.

これに対し、本発明の研磨方法で研磨した第三グループの試料基材は、コロイダルシリカの平均一次粒子径が10〜20nm未満で、pHを2に調整した研磨スラリーを用いているので、第二グループの試料基材では実現できなかった凹状欠点が著しく減少しているとともに、表面粗さRmsの平均値も顕著に小さくなっている。   On the other hand, the third group of sample substrates polished by the polishing method of the present invention uses a polishing slurry having an average primary particle diameter of colloidal silica of less than 10 to 20 nm and a pH adjusted to 2. Concave defects that could not be realized with the two groups of sample bases are significantly reduced, and the average value of the surface roughness Rms is also significantly reduced.

本発明は、ガラス基板を表面粗さが極めて小さい高品質の表面に研磨できるので、45nm以降の世代の半導体製造用露光装置の光学系部品として用いられる反射型マスクやミラーなどのガラス基板の研磨に好適する。   Since the present invention can polish a glass substrate to a high-quality surface with extremely small surface roughness, polishing of a glass substrate such as a reflective mask or mirror used as an optical component of an exposure apparatus for semiconductor production of generations of 45 nm and later. Suitable for.

研磨されたガラス基板の拡大部分平面図。The enlarged partial top view of the grind | polished glass substrate. 図1のA−A部における表面粗さを示す説明図。Explanatory drawing which shows the surface roughness in the AA part of FIG.

符号の説明Explanation of symbols

1:凹状欠点
2:凸状欠点
3:ガラス基板
1: Concave defect 2: Convex defect 3: Glass substrate

Claims (4)

EUV光を使用する半導体製造用露光装置の光学系に用いる反射型マスク用のSiOを主成分とするガラス基板を、研磨スラリーを用いて研磨するガラス基板の研磨方法であって、前記研磨スラリーは、コロイダルシリカと水と酸とを含み、前記コロイダルシリカは、平均一次粒子径が5nm以上20nm未満であり、かつ前記研磨スラリー中の前記コロイダルシリカの含有量は10〜30質量%であり、さらに前記研磨スラリーのpHは1〜3の範囲となるように調整されており、当該研磨スラリーを用いて前記ガラス基板の表面を、原子間力顕微鏡で測定した表面粗さRmsが0.10nm以下になるように研磨することを特徴とするガラス基板の研磨方法。 A glass substrate polishing method for polishing a glass substrate mainly composed of SiO 2 for a reflective mask used in an optical system of a semiconductor manufacturing exposure apparatus using EUV light using a polishing slurry, the polishing slurry Contains colloidal silica, water and acid, the colloidal silica has an average primary particle diameter of 5 nm or more and less than 20 nm, and the content of the colloidal silica in the polishing slurry is 10 to 30% by mass, Further, the pH of the polishing slurry is adjusted to be in the range of 1 to 3, and the surface roughness Rms of the surface of the glass substrate measured with an atomic force microscope using the polishing slurry is 0.10 nm. A method for polishing a glass substrate, comprising polishing so as to be as follows. 幅が60nm以上の凹状欠点を142mm×142mmの範囲内で3個以下にする請求項1に記載のガラス基板の研磨方法。   The method for polishing a glass substrate according to claim 1, wherein the number of concave defects having a width of 60 nm or more is 3 or less within a range of 142 mm × 142 mm. 前記研磨スラリーで研磨した後のガラス基板を、硫酸と過酸化水素水の熱溶液で洗浄し、さらに中性界面活性剤溶液で洗浄する請求項1または2に記載のガラス基板の研磨方法。   The glass substrate polishing method according to claim 1 or 2, wherein the glass substrate after being polished with the polishing slurry is washed with a hot solution of sulfuric acid and hydrogen peroxide, and further washed with a neutral surfactant solution. ガラス基板の表面をあらかじめ予備研磨し、その後に前記研磨スラリーで仕上げ研磨する請求項1〜3のいずれか1項に記載のガラス基板の研磨方法。   The method for polishing a glass substrate according to any one of claims 1 to 3, wherein the surface of the glass substrate is preliminarily polished, and then finish polishing is performed with the polishing slurry.
JP2005166040A 2004-06-22 2005-06-06 Glass substrate polishing method Active JP5090633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166040A JP5090633B2 (en) 2004-06-22 2005-06-06 Glass substrate polishing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004184148 2004-06-22
JP2004184148 2004-06-22
JP2005166040A JP5090633B2 (en) 2004-06-22 2005-06-06 Glass substrate polishing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011138695A Division JP2011240483A (en) 2004-06-22 2011-06-22 Polishing method for glass substrate, and glass substrate

Publications (2)

Publication Number Publication Date
JP2006035413A JP2006035413A (en) 2006-02-09
JP5090633B2 true JP5090633B2 (en) 2012-12-05

Family

ID=35900934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166040A Active JP5090633B2 (en) 2004-06-22 2005-06-06 Glass substrate polishing method

Country Status (1)

Country Link
JP (1) JP5090633B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332249B2 (en) * 2007-06-05 2013-11-06 旭硝子株式会社 Glass substrate polishing method
JP2008307631A (en) * 2007-06-13 2008-12-25 Asahi Glass Co Ltd Method of polishing glass substrate
JP5013986B2 (en) * 2007-06-22 2012-08-29 花王株式会社 Manufacturing method of glass substrate
JP5455143B2 (en) * 2007-12-29 2014-03-26 Hoya株式会社 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
JP5177087B2 (en) * 2009-07-09 2013-04-03 旭硝子株式会社 Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium
WO2012093516A1 (en) * 2011-01-07 2012-07-12 旭硝子株式会社 Glass substrate for information recording medium, manufacturing method for same and magnetic recording medium
JP5979872B2 (en) * 2011-01-31 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
JP5979871B2 (en) * 2011-03-09 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
JP5733046B2 (en) * 2011-06-16 2015-06-10 旭硝子株式会社 Polishing slurry, method for preparing the same, and method for polishing glass substrate for photomask
TWI607277B (en) 2012-03-28 2017-12-01 Hoya Corp Photomask substrate substrate, substrate with multilayer reflection film, transmission type photomask substrate, reflection type photomask substrate, transmission type photomask, reflection type photomask, and method for manufacturing semiconductor device
JP5538637B2 (en) 2012-03-30 2014-07-02 Hoya株式会社 Mask blank substrate, substrate with multilayer reflective film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and method for manufacturing semiconductor device
US10481488B2 (en) 2012-12-27 2019-11-19 Hoya Corporation Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
SG10201605473TA (en) 2012-12-28 2016-09-29 Hoya Corp Substrate for mask blank, substrate with multilayer reflective film, reflective mask blank, reflective mask, method of manufacturing for substrate for mask blank, method of manufacturing for substrate with multilayer reflective film, and method of manufacturing semiconductor device
JP2013214095A (en) * 2013-07-03 2013-10-17 Hoya Corp Method for producing substrate for mask blank, method for producing substrate with multilayer reflective film, method for producing reflective mask blank, and method for producing reflective mask
US20160266482A1 (en) * 2015-03-10 2016-09-15 Asahi Glass Company, Limited Glass substrate for mask blank
JP7003178B2 (en) * 2020-04-21 2022-01-20 Hoya株式会社 Manufacturing method of disk-shaped glass substrate, manufacturing method of thin glass substrate, manufacturing method of light guide plate and disk-shaped glass substrate
JP2022180055A (en) 2021-05-24 2022-12-06 信越化学工業株式会社 Polishing composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2607856C (en) * 2000-05-12 2009-10-20 Nissan Chemical Industries, Ltd. Polishing composition
JP2002063062A (en) * 2000-08-15 2002-02-28 Nec Eng Ltd Distributed system for managing/sharing file
JP4713064B2 (en) * 2002-06-05 2011-06-29 Hoya株式会社 Manufacturing method of glass substrate for information recording medium and glass substrate for information recording medium manufactured by the manufacturing method
JP3764734B2 (en) * 2002-07-17 2006-04-12 Hoya株式会社 Manufacturing method of mask blanks
JP3966840B2 (en) * 2002-08-19 2007-08-29 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask
JP2005066781A (en) * 2003-08-26 2005-03-17 Hoya Corp Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask
JP2005138197A (en) * 2003-11-04 2005-06-02 Fujimi Inc Polishing composition and polishing method

Also Published As

Publication number Publication date
JP2006035413A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP5090633B2 (en) Glass substrate polishing method
JP4858154B2 (en) A method for polishing a glass substrate for mask blanks.
JP2011240483A (en) Polishing method for glass substrate, and glass substrate
JP5332249B2 (en) Glass substrate polishing method
JP5725015B2 (en) Manufacturing method of substrate for EUV lithography optical member
US7732101B2 (en) Method of producing a glass substrate for a mask blank by polishing with an alkaline polishing liquid that contains colloidal silica abrasive grains
TWI375981B (en) Low-expansion glass substrate for a reflective mask and reflective mask
JP2005333124A (en) Low expansion glass substrate for reflection type mask and reflection type mask
JP3966840B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask
JP4792146B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
KR20140027314A (en) Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and method for making these
JP6904234B2 (en) Mask blank substrate and mask blank
JP2016113356A (en) Method for finish-working the surface of pre-polished glass substrate surface
JP2008307631A (en) Method of polishing glass substrate
JP4526547B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, EUV reflective mask blank manufacturing method, transfer mask manufacturing method, EUV reflective mask manufacturing method, and semiconductor device manufacturing method
JP2005066781A (en) Manufacturing method for glass substrate for electronic device, manufacturing method for mask blank, and manufacturing method for transfer mask
KR101167869B1 (en) Polishing method for glass substrate, and glass substrate
JP5362771B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
JP5687939B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2008116571A (en) Method of manufacturing substrate for mask blank and method of manufacturing mask blank, and method of manufacturing transfer mask
JP4437501B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask
JP5488211B2 (en) Method of manufacturing substrate, substrate, method of manufacturing laminate, and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110629

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250