JP2014034497A - Method for manufacturing optical element - Google Patents

Method for manufacturing optical element Download PDF

Info

Publication number
JP2014034497A
JP2014034497A JP2012177096A JP2012177096A JP2014034497A JP 2014034497 A JP2014034497 A JP 2014034497A JP 2012177096 A JP2012177096 A JP 2012177096A JP 2012177096 A JP2012177096 A JP 2012177096A JP 2014034497 A JP2014034497 A JP 2014034497A
Authority
JP
Japan
Prior art keywords
optical element
substrate
photomask
shape
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012177096A
Other languages
Japanese (ja)
Inventor
Norio Shibata
規夫 柴田
Masaaki Mochida
昌昭 持田
Minako Azumi
美菜子 安住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012177096A priority Critical patent/JP2014034497A/en
Priority to TW102128614A priority patent/TWI612375B/en
Priority to PCT/JP2013/071727 priority patent/WO2014025047A1/en
Priority to KR20157002079A priority patent/KR20150041621A/en
Publication of JP2014034497A publication Critical patent/JP2014034497A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid, on an occasion for manufacturing a photomask used for an exposure apparatus, predicaments affecting imaging performances of the exposure apparatus.SOLUTION: During a work for creating a substrate-for-photomask 9, the current shape of the substrate-for-photomask 9 is measured by computing the shape of a convex plane of a specified curvature constituting the upper plane 9b thereof or of a concave plane of a specified curvature constituting the lower plane 9c thereof. Next, the distribution of weights W mounted respectively on multiple load mounting regions A of the substrate-for-photomask 9 is determined based on the difference of the shape of the convex plane of the upper plane 9b or the concave plane of the lower plane 9c and the current shape. Subsequently, the substrate-for-photomask 9 is mounted on the upper side of the grinding plane of grinding means, and a work of creating the upper plane 9b or lower plane 9c of the substrate-for-photomask 9 is performed by relatively mobilizing the grinding plane against the substrate-for-photomask 9 in a state where weights W are being mounted on the regions A in compliance with the predetermined distribution of weights W. In a case where the substrate-for-photomask 9 thus processed is configured virtually horizontally in a state where the peripheral edge 9a thereof is being supported, the vicinity of the middle portion 9d thereof sags due to dead weight and embodies a flat surface.

Description

本発明は、露光装置に使用するフォトマスクなどの光学素子を製造する際に適用される光学素子の製造方法に関するものである。   The present invention relates to a method for manufacturing an optical element applied when manufacturing an optical element such as a photomask used in an exposure apparatus.

従来、この種のフォトマスクを製造する際には、フォトマスク用基板の両面が平面(平坦)になるように加工する(例えば、特許文献1参照)。そして、このフォトマスクを露光装置に使用するときには、フォトマスクの周縁部を支持して水平に配置する。   Conventionally, when manufacturing this type of photomask, both sides of the photomask substrate are processed to be flat (flat) (see, for example, Patent Document 1). When this photomask is used in an exposure apparatus, the peripheral portion of the photomask is supported and arranged horizontally.

特開2003−292346号公報JP 2003-292346 A

しかしながら、このようなフォトマスクでは、露光装置に水平に配置されたときに、自重によって中心部近傍が下垂して両面が曲面になる傾向がある。例えば、縦1220mm、横1400mm、厚さ13mmの長方形板状の石英ガラスからなるフォトマスクでは、最も下垂する中心部が約60μmたわむという計算例もある。そして、露光装置に配置されたフォトマスクがたわむと、露光装置の結像性能に影響を及ぼすという課題があった。   However, in such a photomask, when it is horizontally arranged in the exposure apparatus, there is a tendency that the vicinity of the center part hangs down due to its own weight and both surfaces become curved. For example, in a photomask made of quartz glass having a rectangular plate shape with a length of 1220 mm, a width of 1400 mm, and a thickness of 13 mm, there is a calculation example in which the most drooping center portion is bent by about 60 μm. Then, when the photomask arranged in the exposure apparatus bends, there is a problem in that it affects the imaging performance of the exposure apparatus.

本発明は、このような事情に鑑み、露光装置にフォトマスクが水平に配置されたとき、このフォトマスクの両面が平面になるようにすることで、露光装置の結像性能に影響を及ぼす事態を回避することが可能な光学素子の製造方法を提供することを目的とする。   In view of such circumstances, the present invention has a situation in which the imaging performance of an exposure apparatus is affected by making both sides of the photomask flat when the photomask is horizontally arranged in the exposure apparatus. It is an object of the present invention to provide a method for manufacturing an optical element that can avoid the above-described problem.

本発明に係る第1の光学素子の製造方法は、周縁部(9a)が支持された状態で略水平に配置されて使用される光学素子用基板(9)の両面(9b、9c)を創成加工して成形する光学素子(1)の製造方法であって、前記光学素子用基板は、前記周縁部が支持されたときに、自重によって中心部(9d)近傍が下垂して前記両面が平面になるように、前記創成加工により、前記周縁部が支持される前の状態で、一方の面(9b)が所定の凸面になるとともに、他方の面(9c)が所定の凹面になるように成形され、前記創成加工は、前記光学素子用基板の前記所定の凸面または前記所定の凹面の形状を算出する目標形状算出工程と、前記光学素子用基板の現在の形状を測定する形状測定工程と、前記目標形状算出工程で算出された前記光学素子用基板の前記所定の凸面または前記所定の凹面の形状と前記形状測定工程で測定された前記光学素子用基板の現在の形状との差に基づき、前記光学素子用基板の複数の載荷領域(A)に作用させる荷重(W)の分布を決定する荷重分布決定工程と、研磨手段(8)の研磨面(7a)の上側に前記光学素子用基板を載置し、前記荷重分布決定工程で決定された荷重の分布に従って前記載荷領域に荷重を作用させた状態で、前記光学素子用基板に対して前記研磨面を相対移動させることにより、当該光学素子用基板の前記一方の面または前記他方の面を創成加工する基板創成加工工程とを含む光学素子の製造方法としたことを特徴とする。   The first method for manufacturing an optical element according to the present invention creates both surfaces (9b, 9c) of an optical element substrate (9) to be used by being arranged substantially horizontally with the peripheral edge (9a) being supported. A method of manufacturing an optical element (1) to be processed and molded, wherein the optical element substrate has its center surface (9d) hanging down by its own weight when the peripheral edge portion is supported, and the both surfaces are flat. In such a manner that the one surface (9b) becomes a predetermined convex surface and the other surface (9c) becomes a predetermined concave surface before the peripheral edge is supported by the creation process. The forming process is molded, the target shape calculating step for calculating the shape of the predetermined convex surface or the predetermined concave surface of the optical element substrate, and the shape measuring step for measuring the current shape of the optical element substrate; , The optical calculated in the target shape calculating step Based on the difference between the shape of the predetermined convex surface or the predetermined concave surface of the child substrate and the current shape of the optical element substrate measured in the shape measurement step, a plurality of loading regions ( A load distribution determining step for determining the distribution of the load (W) acting on A), and placing the optical element substrate on the polishing surface (7a) of the polishing means (8). By moving the polishing surface relative to the optical element substrate in a state where a load is applied to the load region according to the determined load distribution, the one surface or the other surface of the optical element substrate is moved. And a substrate generating process for generating a surface of the optical element.

なお、ここでは、本発明をわかりやすく説明するため、実施の形態を表す図面の符号に対応づけて説明したが、本発明が実施の形態に限定されるものでないことは言及するまでもない。   Here, in order to explain the present invention in an easy-to-understand manner, the description has been made in association with the reference numerals of the drawings representing the embodiments. However, it goes without saying that the present invention is not limited to the embodiments.

本発明によれば、光学素子用基板がフォトマスク用基板である場合には、露光装置にフォトマスクが水平に配置されたとき、このフォトマスクの両面が平面になるため、露光装置の結像性能に影響を及ぼす事態を回避することが可能となる。   According to the present invention, when the optical element substrate is a photomask substrate, since both sides of the photomask are flat when the photomask is horizontally arranged in the exposure apparatus, the image of the exposure apparatus is formed. It is possible to avoid a situation that affects performance.

本発明の実施の形態1に係るフォトマスクを示す図であって、(a)はフォトマスクの斜視図、(b)はフォトマスクが垂直に立てられた状態の拡大側面図、(c)は露光装置にフォトマスクが水平に配置された状態の拡大側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the photomask which concerns on Embodiment 1 of this invention, Comprising: (a) is a perspective view of a photomask, (b) is an enlarged side view of the state in which the photomask was set up vertically, (c) is It is an enlarged side view of the state where the photomask is horizontally arranged in the exposure apparatus. 同実施の形態1に係るフォトマスクの製造方法の手順を示すフローチャートである。3 is a flowchart showing a procedure of a photomask manufacturing method according to the first embodiment. 同実施の形態1に係るフォトマスク用基板を示す図であって、(a)はフォトマスク用基板の平面図、(b)はフォトマスク用基板の載荷状態を示す正面図である。It is a figure which shows the substrate for photomasks which concerns on the same Embodiment 1, Comprising: (a) is a top view of the substrate for photomasks, (b) is a front view which shows the loading state of the substrate for photomasks. 同実施の形態1に係るフォトマスク用基板の1次創成加工の方法を示す図であって、(a)は片面研磨装置の平面図、(b)は片面研磨装置の正面図である。It is a figure which shows the method of the primary creation process of the photomask substrate which concerns on the same Embodiment 1, Comprising: (a) is a top view of a single-side polish apparatus, (b) is a front view of a single-side polish apparatus. 実施例1に係るフォトマスクの製造方法において、重りの分布を決定するためのソフトウェアの表示画面の一部を示す図である。FIG. 6 is a diagram illustrating a part of a software display screen for determining weight distribution in the photomask manufacturing method according to the first embodiment. 実施例1に係るフォトマスクの製造方法において、フォトマスク用基板の下面の形状の推移を示す模式図であって、(a)は加工前の図、(b)は1次創成加工後の一例を示す図、(c)は仕上げ研磨加工後の一例を示す図、(d)は仕上げ研磨加工後の別の例を示す図である。In the manufacturing method of the photomask which concerns on Example 1, it is a schematic diagram which shows transition of the shape of the lower surface of the board | substrate for photomasks, Comprising: (a) is a figure before a process, (b) is an example after a primary creation process. (C) is a figure which shows an example after final polishing, (d) is a figure which shows another example after final polishing. 実施例1に係るフォトマスクの製造方法において、フォトマスク用基板の上面の形状の推移を示す模式図であって、(a)は加工前の図、(b)は1次創成加工後の一例を示す図、(c)は仕上げ研磨加工後の一例を示す図、(d)は仕上げ研磨加工後の別の例を示す図である。In the manufacturing method of the photomask which concerns on Example 1, it is a schematic diagram which shows transition of the shape of the upper surface of the board | substrate for photomasks, Comprising: (a) is a figure before a process, (b) is an example after a primary creation process. (C) is a figure which shows an example after final polishing, (d) is a figure which shows another example after final polishing. 実施例1に係るフォトマスクの製造方法において、フォトマスク用基板の下面および上面の平面度の推移を示す折れ線グラフである。In the manufacturing method of the photomask which concerns on Example 1, it is a line graph which shows transition of the flatness of the lower surface and upper surface of a photomask substrate.

以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

図1乃至図4は、本発明の実施の形態1に係る図である。   1 to 4 are diagrams according to Embodiment 1 of the present invention.

この実施の形態1に係る光学素子は、図1に示すように、所定の大きさ(例えば、縦1220mm、横1400mm、厚さ13mm)の長方形板状の石英ガラスからなるフォトマスク1であり、図1(c)に示すように、露光装置2に周縁部1aが支持された状態で略水平に配置されて使用されるものである。   As shown in FIG. 1, the optical element according to the first embodiment is a photomask 1 made of rectangular plate-shaped quartz glass having a predetermined size (for example, length 1220 mm, width 1400 mm, thickness 13 mm), As shown in FIG. 1C, the exposure apparatus 2 is used by being arranged substantially horizontally with the peripheral edge 1a supported.

そして、このフォトマスク1は、図1(b)に示すように、垂直に立てられた状態では、自重がフォトマスク1の厚さ方向(つまり、水平方向)に作用しないため、上面1bが所定の曲率の凸面になるように成形されているとともに、下面1cが所定の曲率の凹面になるように成形されている。しかし、図1(c)に示すように、露光装置2に周縁部1aを支持されて水平に配置されると、自重がフォトマスク1の厚さ方向(つまり、垂直方向)に作用し、図1(c)に実線で示すように、上面1bおよび下面1cがいずれも平面になる。したがって、フォトマスク1では、露光装置2に水平に配置されたときに自重で上面1bおよび下面1cが曲面になる従来のフォトマスク1と異なり、露光装置2の結像性能に影響を及ぼす事態を回避することが可能となる。   Then, as shown in FIG. 1B, the photomask 1 has a predetermined upper surface 1b because its own weight does not act in the thickness direction (that is, the horizontal direction) of the photomask 1 when it is set up vertically. The lower surface 1c is shaped to be a concave surface having a predetermined curvature. However, as shown in FIG. 1C, when the peripheral portion 1a is supported by the exposure apparatus 2 and is arranged horizontally, its own weight acts in the thickness direction of the photomask 1 (that is, the vertical direction). As indicated by a solid line in 1 (c), the upper surface 1b and the lower surface 1c are both flat. Therefore, in the photomask 1, unlike the conventional photomask 1 in which the upper surface 1 b and the lower surface 1 c are curved due to their own weight when placed horizontally on the exposure apparatus 2, the imaging performance of the exposure apparatus 2 is affected. It can be avoided.

このようなフォトマスク1を製造する際には、フォトマスク1がその周縁部1aを支持されて水平に配置されたときに、フォトマスク1の自重によってフォトマスク1の中心部1d近傍が下垂して両面(上面1bおよび下面1c)が平面になるように、予め、下面1cが所定の曲率の凹面になるとともに、上面1bが所定の曲率の凸面になるように成形する。   When manufacturing such a photomask 1, when the photomask 1 is horizontally disposed with its peripheral edge 1 a supported, the vicinity of the center portion 1 d of the photomask 1 hangs down due to the weight of the photomask 1. In order to form both surfaces (upper surface 1b and lower surface 1c) as a flat surface, the lower surface 1c is previously formed as a concave surface with a predetermined curvature and the upper surface 1b is formed with a convex surface with a predetermined curvature.

それには、まず、図3に示すように、所定の大きさのフォトマスク用基板9を用意し、このフォトマスク用基板9の上面9bを縦横方向にそれぞれ6等分して格子状に区分して、フォトマスク用基板9上に36個の載荷領域A(A1、A2、A3)を形成する。そして、フォトマスク1が水平に配置されたときの自重によるたわみを見込んで、図2に示すフローチャートの手順(ステップS1〜S13)に従い、以下に述べるフォトマスク用基板9の創成加工により、周縁部9aが支持される前の状態で、下面9cが所定の曲率の凹面になるとともに、上面9bが所定の曲率の凸面になるように成形する。   For this purpose, first, as shown in FIG. 3, a photomask substrate 9 having a predetermined size is prepared, and the upper surface 9b of the photomask substrate 9 is divided into six equal parts in the vertical and horizontal directions and divided into a grid. Thus, 36 loading areas A (A1, A2, A3) are formed on the photomask substrate 9. Then, in anticipation of deflection due to its own weight when the photomask 1 is disposed horizontally, the peripheral portion is created by the creation process of the photomask substrate 9 described below according to the procedure (steps S1 to S13) of the flowchart shown in FIG. In a state before 9a is supported, the lower surface 9c is formed into a concave surface with a predetermined curvature, and the upper surface 9b is formed into a convex surface with a predetermined curvature.

すなわち、このフォトマスク用基板9の創成加工では、最初に、フォトマスク用基板9の下面9cに所定の曲率の凹面を形成する(ステップS1〜S6)。   That is, in the creation process of the photomask substrate 9, first, a concave surface having a predetermined curvature is formed on the lower surface 9c of the photomask substrate 9 (steps S1 to S6).

そのため、まず、下面目標形状算出工程で、露光装置の仕様やたわみ量に関する基板の特性を条件として、フォトマスク用基板9の下面9cの目標とする形状を算出する(ステップS1)。   Therefore, first, in the lower surface target shape calculation step, the target shape of the lower surface 9c of the photomask substrate 9 is calculated on the condition of the substrate characteristics relating to the specifications of the exposure apparatus and the deflection amount (step S1).

次いで、第1下面形状測定工程に移行し、フォトマスク用基板9を垂直に立てた状態で、平面度測定装置(図示せず)により、フォトマスク用基板9の下面9cの現在(つまり、フォトマスク用基板9の下面9cの加工前)の形状を測定する(ステップS2)。   Next, the process proceeds to the first bottom surface shape measuring step, and the current state (that is, photo) of the bottom surface 9c of the photomask substrate 9 is measured by a flatness measuring device (not shown) with the photomask substrate 9 standing vertically. The shape of the lower surface 9c of the mask substrate 9 is measured (step S2).

その後、下面荷重分布決定工程に移行し、フォトマスク用基板9の下面9cの目標とする形状と現在の形状との差に基づき、フォトマスク用基板9の各載荷領域Aに載せる所定の大きさおよび重さ(例えば、縦135mm、横155mm、厚さ20mm、重さ3.5kg)の長方形板状の黄銅からなる重り(錘)Wの分布を決定する(ステップS3)。   Thereafter, the process proceeds to a lower surface load distribution determining step, and a predetermined size to be placed on each loading area A of the photomask substrate 9 based on the difference between the target shape of the lower surface 9c of the photomask substrate 9 and the current shape. The distribution of weights (weights) W made of brass having a rectangular plate shape with a weight (for example, 135 mm in length, 155 mm in width, 20 mm in thickness, 3.5 kg in weight) is determined (step S3).

ここでは、フォトマスク用基板9の下面9cに凹面を形成するため、フォトマスク用基板9の周縁部9a近傍より中心部9d近傍の加工量を多くするべく、フォトマスク用基板9の周縁部9a近傍に比べて中心部9d近傍に多くの重りWが載って大きい荷重が作用するように、重りWの分布を決定する。例えば、図3に示すように、36個の載荷領域Aのうち、フォトマスク用基板9の周縁部9a近傍に対応する20個の載荷領域A1(図3(a)に淡く表示した部分)にそれぞれ2個の重りWが載り、フォトマスク用基板9の中心部9d近傍に対応する4個の載荷領域A2(図3(a)に濃く表示した部分)にそれぞれ4個の重りWが載り、残りの12個の載荷領域A3(図3(a)に中間の濃さで表示した部分)にそれぞれ3個の重りWが載るように重りWの分布を決定する。   Here, since the concave surface is formed on the lower surface 9 c of the photomask substrate 9, the peripheral portion 9 a of the photomask substrate 9 is increased in order to increase the processing amount in the vicinity of the central portion 9 d than in the vicinity of the peripheral portion 9 a of the photomask substrate 9. The distribution of the weights W is determined so that more weights W are placed near the center portion 9d than in the vicinity and a large load is applied. For example, as shown in FIG. 3, among the 36 loading areas A, 20 loading areas A1 corresponding to the vicinity of the peripheral edge 9a of the photomask substrate 9 (portions lightly displayed in FIG. 3A). Two weights W are respectively mounted, and four weights W are respectively mounted on four loading areas A2 (parts darkly shown in FIG. 3A) corresponding to the vicinity of the center portion 9d of the photomask substrate 9; The distribution of the weights W is determined so that the three weights W are placed on the remaining twelve loading areas A3 (portions indicated by intermediate darkness in FIG. 3A).

次いで、下面創成加工工程に移行し、図4に示すように、所定の片面研磨装置8を用いて、フォトマスク用基板9の下面9cに対して1次創成加工を行う(ステップS4)。   Next, the process proceeds to a lower surface creation process, and as shown in FIG. 4, primary creation is performed on the lower surface 9c of the photomask substrate 9 using a predetermined single-side polishing apparatus 8 (step S4).

すなわち、この片面研磨装置8は、図4に示すように、機体5を有しており、機体5には円盤状の下定盤7が所定の軸心CT1を中心として矢印M方向に回転駆動自在に取り付けられている。また、下定盤7の上側には、下定盤7より小径の円盤状のキャリア6が、下定盤7の軸心CT1から偏心した軸心CT2を中心として矢印N方向に回転駆動自在に載置されている。このキャリア6の中央部には、フォトマスク用基板9をガイドするための長方形のガイド孔6aが貫通して形成されている。なお、矢印M方向と矢印N方向とは、図4(a)に示すように、同じ方向(片面研磨装置8の上方から見て反時計方向)となっている。   That is, this single-side polishing apparatus 8 has a machine body 5 as shown in FIG. 4, and a disk-shaped lower surface plate 7 is rotatable on the machine body 5 in the direction of arrow M around a predetermined axis CT1. Is attached. On the upper side of the lower surface plate 7, a disk-shaped carrier 6 having a diameter smaller than that of the lower surface plate 7 is mounted so as to be rotatable in the direction of arrow N around the axis center CT 2 that is eccentric from the axis center CT 1 of the lower surface plate 7. ing. A rectangular guide hole 6 a for guiding the photomask substrate 9 is formed through the center of the carrier 6. The arrow M direction and the arrow N direction are the same direction (counterclockwise as viewed from above the single-side polishing apparatus 8), as shown in FIG.

そして、この片面研磨装置8を用いて、フォトマスク用基板9の下面9cに対して1次創成加工を行う際には、キャリア6のガイド孔6aにフォトマスク用基板9を設置することにより、下定盤7の研磨面7aの上側にフォトマスク用基板9を載置した後、ステップS3で決定された重りWの分布(つまり、フォトマスク用基板9の周縁部9a近傍に比べて中心部9d近傍に多くの重りWが載るような分布)に従ってフォトマスク用基板9の載荷領域Aに重りWを載せて荷重を作用させる。この状態で、下定盤7の研磨面7aとフォトマスク用基板9の下面9cとの間に研磨材(図示せず)を供給しつつ、下定盤7を軸心CT1を中心として矢印M方向に所定の回転速度で回転させるとともに、キャリア6をフォトマスク用基板9とともに軸心CT2を中心として矢印N方向にほぼ同一の回転速度で回転させる。すると、下定盤7の研磨面7aとフォトマスク用基板9の下面9cとの間に前記研磨材が介在した状態で、フォトマスク用基板9の下面9cに対して下定盤7の研磨面7aが相対移動し、フォトマスク用基板9の下面9cは前記研磨材によって均等に1次創成加工される。   Then, when primary generation processing is performed on the lower surface 9c of the photomask substrate 9 using the single-side polishing apparatus 8, by installing the photomask substrate 9 in the guide hole 6a of the carrier 6, After the photomask substrate 9 is placed above the polishing surface 7a of the lower surface plate 7, the distribution of the weight W determined in step S3 (that is, the central portion 9d compared to the vicinity of the peripheral portion 9a of the photomask substrate 9). The weight W is placed on the loading area A of the photomask substrate 9 according to a distribution in which many weights W are placed in the vicinity. In this state, while supplying an abrasive (not shown) between the polishing surface 7a of the lower surface plate 7 and the lower surface 9c of the photomask substrate 9, the lower surface plate 7 is moved in the direction of arrow M about the axis CT1. While rotating at a predetermined rotation speed, the carrier 6 is rotated together with the photomask substrate 9 in the direction of arrow N around the axis CT2 at substantially the same rotation speed. Then, the polishing surface 7a of the lower surface plate 7 is in relation to the lower surface 9c of the photomask substrate 9 with the abrasive interposed between the polishing surface 7a of the lower surface plate 7 and the lower surface 9c of the photomask substrate 9. The relative movement is performed, and the lower surface 9c of the photomask substrate 9 is subjected to primary generation processing evenly by the abrasive.

このとき、フォトマスク用基板9の載荷領域Aには、上述したとおり、フォトマスク用基板9の周縁部9a近傍に比べて中心部9d近傍に多くの重りWが載っているので、フォトマスク用基板9の下面9cは、フォトマスク用基板9の周縁部9aから中心部9dに向かうほど、この1次創成加工によって除去される量が多くなる。その結果、フォトマスク用基板9の下面9cに凹面が形成される。   At this time, in the loading area A of the photomask substrate 9, as described above, more weights W are placed in the vicinity of the central portion 9d than in the vicinity of the peripheral edge portion 9a of the photomask substrate 9. The lower surface 9c of the substrate 9 is removed by this primary creation process as the distance from the peripheral edge 9a to the center 9d of the photomask substrate 9 increases. As a result, a concave surface is formed on the lower surface 9 c of the photomask substrate 9.

その後、第2下面形状測定工程に移行し、ステップS2と同様、フォトマスク用基板9を垂直に立てた状態で、前記平面度測定装置により、フォトマスク用基板9の下面9cの現在(つまり、フォトマスク用基板9の下面9cの1次創成加工直後)の形状を測定する(ステップS5)。   Thereafter, the process proceeds to the second bottom surface shape measurement step, and in the same manner as step S2, the photomask substrate 9 is set upright, and the flatness measuring device is used to measure the current state of the bottom surface 9c of the photomask substrate 9 (that is, The shape of the lower surface 9c of the photomask substrate 9 is measured immediately after the primary creation process (step S5).

次いで、下面形状判定工程に移行し、フォトマスク用基板9の下面9cの目標とする形状と現在の形状との差を求め、この差が所定の許容範囲に入っているか否かを判定する(ステップS6)。   Next, the process proceeds to the lower surface shape determination step, where a difference between the target shape of the lower surface 9c of the photomask substrate 9 and the current shape is obtained, and it is determined whether or not this difference is within a predetermined allowable range ( Step S6).

その結果、この差が所定の許容範囲に入っていなければ、ステップS3〜S6の手順を繰り返す。そして、この差が所定の許容範囲に入れば、フォトマスク用基板9の下面9cに所定の目標値(例えば、30μm)の凹面が形成された状態となる。   As a result, if this difference is not within the predetermined allowable range, steps S3 to S6 are repeated. When this difference falls within a predetermined allowable range, a concave surface having a predetermined target value (for example, 30 μm) is formed on the lower surface 9c of the photomask substrate 9.

次に、フォトマスク用基板9の上面9bに所定の曲率の凸面を形成する(ステップS7〜S12)。   Next, a convex surface having a predetermined curvature is formed on the upper surface 9b of the photomask substrate 9 (steps S7 to S12).

そのため、まず、上面目標形状算出工程で、露光装置の仕様やたわみ量に関する基板の特性を条件として、フォトマスク用基板9の上面9bの目標とする形状を算出する(ステップS7)。   Therefore, first, in the upper surface target shape calculation step, the target shape of the upper surface 9b of the photomask substrate 9 is calculated on the condition of the substrate characteristics relating to the specifications of the exposure apparatus and the deflection amount (step S7).

次いで、第1上面形状測定工程に移行し、フォトマスク用基板9を垂直に立てた状態で、前記平面度測定装置により、フォトマスク用基板9の上面9bの現在(つまり、フォトマスク用基板9の上面9bの加工前)の形状を測定する(ステップS8)。   Next, the process proceeds to the first upper surface shape measurement step, and the photomask substrate 9 is set upright, and the flatness measuring device is used to measure the current upper surface 9b of the photomask substrate 9 (that is, the photomask substrate 9). The shape of the upper surface 9b before processing is measured (step S8).

その後、上面荷重分布決定工程に移行し、フォトマスク用基板9の上面9bの目標とする形状と現在の形状との差に基づき、フォトマスク用基板9の各載荷領域Aに載せる重りWの分布を決定する(ステップS9)。   Thereafter, the process proceeds to an upper surface load distribution determining step, and the distribution of the weight W placed on each loading area A of the photomask substrate 9 based on the difference between the target shape of the upper surface 9b of the photomask substrate 9 and the current shape. Is determined (step S9).

ここでは、フォトマスク用基板9の上面9bに凸面を形成するため、フォトマスク用基板9の中心部9d近傍より周縁部9a近傍の加工量を多くするべく、上述したステップS3とは逆に、フォトマスク用基板9の中心部9d近傍に比べて周縁部9a近傍に多くの重りWが載って大きい荷重が作用するように、重りWの分布を決定する。例えば、図3に示すように、36個の載荷領域Aのうち、フォトマスク用基板9の周縁部9a近傍に対応する20個の載荷領域A1(図3(a)に淡く表示した部分)にそれぞれ4個の重りWが載り、フォトマスク用基板9の中心部9d近傍に対応する4個の載荷領域A2(図3(a)に濃く表示した部分)にそれぞれ2個の重りWが載り、残りの12個の載荷領域A3(図3(a)に中間の濃さで表示した部分)にそれぞれ3個の重りWが載るように重りWの分布を決定する。   Here, in order to form a convex surface on the upper surface 9b of the photomask substrate 9, in order to increase the amount of processing in the vicinity of the peripheral portion 9a than in the vicinity of the central portion 9d of the photomask substrate 9, in contrast to step S3 described above, The distribution of the weight W is determined so that a larger load acts on the weight 9 in the vicinity of the peripheral portion 9a than in the vicinity of the center portion 9d of the photomask substrate 9. For example, as shown in FIG. 3, among the 36 loading areas A, 20 loading areas A1 corresponding to the vicinity of the peripheral edge 9a of the photomask substrate 9 (portions lightly displayed in FIG. 3A). Four weights W are respectively mounted, and two weights W are respectively mounted on four loading areas A2 (parts darkly shown in FIG. 3A) corresponding to the vicinity of the center portion 9d of the photomask substrate 9. The distribution of the weights W is determined so that the three weights W are placed on the remaining twelve loading areas A3 (portions indicated by intermediate darkness in FIG. 3A).

次いで、上面創成加工工程に移行し、フォトマスク用基板9を上下反転させて上面9bを片面研磨装置8の下定盤7の研磨面7aに接触させた状態で、上述したステップS4と同様の手順により、片面研磨装置8を用いて、フォトマスク用基板9の上面9bに対して1次創成加工を行う(ステップS10)。   Next, the process proceeds to the upper surface generation processing step, and the same procedure as step S4 described above is performed with the photomask substrate 9 turned upside down and the upper surface 9b in contact with the polishing surface 7a of the lower surface plate 7 of the single-side polishing apparatus 8. Thus, primary generation processing is performed on the upper surface 9b of the photomask substrate 9 using the single-side polishing apparatus 8 (step S10).

このとき、フォトマスク用基板9の載荷領域Aには、上述したとおり、フォトマスク用基板9の中心部9d近傍に比べて周縁部9a近傍に多くの重りWが載っているので、フォトマスク用基板9の上面9bは、フォトマスク用基板9の中心部9dから周縁部9aに向かうほど、この1次創成加工によって除去される量が多くなる。その結果、フォトマスク用基板9の上面9bに凸面が形成される。   At this time, in the loading area A of the photomask substrate 9, as described above, more weights W are placed in the vicinity of the peripheral portion 9a than in the vicinity of the center portion 9d of the photomask substrate 9. The amount of the upper surface 9b of the substrate 9 removed by the primary creation process increases as the distance from the central portion 9d of the photomask substrate 9 toward the peripheral portion 9a increases. As a result, a convex surface is formed on the upper surface 9 b of the photomask substrate 9.

その後、第2上面形状測定工程に移行し、ステップS8と同様、フォトマスク用基板9を垂直に立てた状態で、前記平面度測定装置により、フォトマスク用基板9の上面9bの現在(つまり、フォトマスク用基板9の上面9bの1次創成加工直後)の形状を測定する(ステップS11)。   Thereafter, the process proceeds to the second upper surface shape measurement step, and in the same manner as in step S8, the photomask substrate 9 is set up vertically, and the flatness measuring device is used to measure the current upper surface 9b of the photomask substrate 9 (that is, The shape of the upper surface 9b of the photomask substrate 9 is measured (immediately after the primary creation process) (step S11).

次いで、上面形状判定工程に移行し、フォトマスク用基板9の上面9bの目標とする形状と現在の形状との差を求め、この差が所定の許容範囲に入っているか否かを判定する(ステップS12)。   Next, the process proceeds to an upper surface shape determination step, where a difference between the target shape of the upper surface 9b of the photomask substrate 9 and the current shape is obtained, and it is determined whether or not this difference is within a predetermined allowable range ( Step S12).

その結果、この差が所定の許容範囲に入っていなければ、ステップS9〜S12の手順を繰り返す。そして、この差が所定の許容範囲に入れば、フォトマスク用基板9の上面9bに所定の目標値(例えば、30μm)の凸面が形成された状態となる。   As a result, if this difference is not within the predetermined allowable range, steps S9 to S12 are repeated. If this difference falls within a predetermined allowable range, a convex surface having a predetermined target value (for example, 30 μm) is formed on the upper surface 9b of the photomask substrate 9.

最後に、基板仕上げ工程に移行し、所定の両面研磨装置(図示せず)を用いて、フォトマスク用基板9の上下両面(上面9bおよび下面9c)を仕上げ研磨加工した後、このフォトマスク用基板9を洗浄する(ステップS13)。   Finally, the process proceeds to the substrate finishing step, and the upper and lower surfaces (upper surface 9b and lower surface 9c) of the photomask substrate 9 are finish-polished using a predetermined double-side polishing apparatus (not shown), and then the photomask The substrate 9 is cleaned (step S13).

ここで、フォトマスク用基板9の創成加工が終了し、フォトマスク1が完成する。
[発明のその他の実施の形態]
Here, the creation process of the photomask substrate 9 is completed, and the photomask 1 is completed.
[Other Embodiments of the Invention]

なお、上述した実施の形態1では、フォトマスク用基板9上に36個の載荷領域Aを形成する場合について説明したが、載荷領域Aの個数は36個に限るわけではない。   In the first embodiment described above, the case where 36 loading areas A are formed on the photomask substrate 9 has been described, but the number of loading areas A is not limited to 36.

また、上述した実施の形態1では、所定の大きさの重りWを用いる場合について説明したが、重りWの大きさを小さくすると、載荷領域Aの個数を増やすことができる。その結果、重りWの分布をきめ細かく決定することにより、フォトマスク用基板9の平面度を一層向上させることが可能となる。   In the above-described first embodiment, the case where the weight W having a predetermined size is used has been described. However, if the weight W is reduced, the number of the loading areas A can be increased. As a result, the flatness of the photomask substrate 9 can be further improved by finely determining the distribution of the weights W.

また、上述した実施の形態1では、長方形板状の黄銅からなる重りWを用いる場合について説明したが、重りWの形状や材質は特に限定されるわけではない。例えば、各載荷領域Aに応じた容器(図示せず)を用意して、この容器に重りWとして粉体や液体などを入れるようにしても構わない。   Moreover, although Embodiment 1 mentioned above demonstrated the case where the weight W which consists of rectangular plate-shaped brass was used, the shape and material of the weight W are not necessarily limited. For example, a container (not shown) corresponding to each loading area A may be prepared, and powder, liquid, or the like may be put in the container as a weight W.

また、上述した実施の形態1では、フォトマスク用基板9の下面9cおよび上面9bを凹凸面に仕上げる場合について説明した。しかし、凹凸面に仕上げるだけではなく、片面研磨装置8の下定盤7の平面度を超える高精度な平面度(例えば、10μm未満)の高精度研磨も可能になる。   Further, in the above-described first embodiment, the case where the lower surface 9c and the upper surface 9b of the photomask substrate 9 are finished to have an uneven surface has been described. However, in addition to finishing the uneven surface, high-accuracy polishing with high-precision flatness exceeding the flatness of the lower surface plate 7 of the single-side polishing device 8 (for example, less than 10 μm) is also possible.

また、上述した実施の形態1では、下面創成加工工程(ステップS4)および上面創成加工工程(ステップS10)において、片面研磨装置8を用いてフォトマスク用基板9に1次創成加工を行う場合について説明した。しかし、片面研磨装置8以外の研磨手段(例えば、ラッピング装置など)を代用することも勿論できる。   Further, in the first embodiment described above, a case where primary generation processing is performed on the photomask substrate 9 using the single-side polishing apparatus 8 in the lower surface generation processing step (step S4) and the upper surface generation processing step (step S10). explained. However, it is of course possible to substitute polishing means other than the single-side polishing apparatus 8 (for example, a lapping apparatus).

さらに、上述した実施の形態1では、光学素子がフォトマスク1である場合について説明した。しかし、周縁部1aが支持された状態で略水平に配置されたときにたわむものである限り、フォトマスク1以外の光学素子(例えば、半導体用レチクルマスク、放射線用波面形成光学素子、投影・照明系レンズ用ディストーション補正光学素子など)に本発明を同様に適用することも可能である。   Furthermore, in the first embodiment described above, the case where the optical element is the photomask 1 has been described. However, an optical element other than the photomask 1 (for example, a reticle mask for semiconductor, a wavefront forming optical element for radiation, a projection / illumination system, etc.) as long as the peripheral edge 1a is bent substantially horizontally while being supported. The present invention can be similarly applied to a lens distortion correction optical element or the like.

以下、本発明の実施例について説明する。なお、本発明は実施例に限定されるものではない。
<実施例1>
Examples of the present invention will be described below. In addition, this invention is not limited to an Example.
<Example 1>

図5乃至図8は、本発明の実施例1に係る図である。   5 to 8 are diagrams according to Embodiment 1 of the present invention.

縦1220mm、横1400mm、厚さ13mmの長方形板状の石英ガラスからなるフォトマスク用基板9を用意し、上述した実施の形態1の手順に従い、フォトマスク1を製造した。   A photomask substrate 9 made of quartz glass having a rectangular plate shape with a length of 1220 mm, a width of 1400 mm, and a thickness of 13 mm was prepared, and the photomask 1 was manufactured according to the procedure of the first embodiment described above.

このとき、下面荷重分布決定工程(ステップS3)および上面荷重分布決定工程(ステップS9)においては、重りWの分布の決定を支援するソフトウェアSを用いた。このソフトウェアSは、図5に示すように、フォトマスク用基板9の下面9cおよび上面9bの目標とする形状と現在の形状との差を入力データとして取り込み、その差に基づく平面度のデータを色の違いで第1の表示エリアD1に表示する。そして、この入力データに基づき、フォトマスク用基板9の各載荷領域Aに載せる重りWの個数を算出した後、出力データとして、載荷領域Aごとに重りWの個数を色の違いで第2の表示エリアD2に表示する。なお、こうして表示された出力データは、必要であれば、作業者の判断により、手作業で変更することもできる。   At this time, in the lower surface load distribution determining step (step S3) and the upper surface load distribution determining step (step S9), software S that supports the determination of the weight W distribution was used. As shown in FIG. 5, the software S takes in the difference between the target shape of the lower surface 9c and the upper surface 9b of the photomask substrate 9 and the current shape as input data, and flatness data based on the difference is obtained. Displayed in the first display area D1 due to the difference in color. Then, after calculating the number of weights W placed on each loading area A of the photomask substrate 9 based on this input data, the output data includes the second number of weights W for each loading area A in a different color. Displayed in the display area D2. The output data displayed in this way can be changed manually by the operator's judgment if necessary.

なお、フォトマスク用基板9の下面9cおよび上面9bの目標値は、いずれも30μmとした。そのため、フォトマスク用基板9の1次創成加工は、下面9c、上面9bとも8回ずつ行うこととなった。また、フォトマスク用基板9の仕上げ研磨加工は、下面9c、上面9bとも7回ずつ行った。   The target values for the lower surface 9c and the upper surface 9b of the photomask substrate 9 were both 30 μm. Therefore, the primary creation of the photomask substrate 9 is performed 8 times for each of the lower surface 9c and the upper surface 9b. Further, the final polishing of the photomask substrate 9 was performed seven times for each of the lower surface 9c and the upper surface 9b.

このようなフォトマスク1の製造において、フォトマスク用基板9の下面9cおよび上面9bの平面度の推移を調べた。   In manufacturing the photomask 1, the transition of the flatness of the lower surface 9c and the upper surface 9b of the photomask substrate 9 was examined.

その結果、フォトマスク用基板9の下面9cについては、図6に示すように、1次創成加工および仕上げ研磨加工が進むに伴って所定の曲率の凹面に近づくことが確認された。すなわち、加工前の状態では、図6(a)に示すように、所定の曲率の凹面に対応する同心円状の配色から乖離した配色がソフトウェアSの第1の表示エリアD1に表示されたのに対して、1次創成加工後および仕上げ研磨加工後の状態では、図6(b)〜(d)に示すように、所定の曲率の凹面に対応する同心円状の配色に近い配色がソフトウェアSの第1の表示エリアD1に表示された。   As a result, as shown in FIG. 6, it was confirmed that the lower surface 9c of the photomask substrate 9 approaches a concave surface having a predetermined curvature as the primary creation process and the finish polishing process proceed. That is, in the state before processing, although the color scheme deviated from the concentric color scheme corresponding to the concave surface of the predetermined curvature is displayed in the first display area D1 of the software S as shown in FIG. On the other hand, in the state after the primary creation process and the finish polishing process, as shown in FIGS. 6B to 6D, a color scheme close to the concentric color scheme corresponding to the concave surface having a predetermined curvature is obtained by the software S. Displayed in the first display area D1.

また、フォトマスク用基板9の上面9bについては、図7に示すように、1次創成加工および仕上げ研磨加工が進むに伴って所定の曲率の凸面に近づくことが確認された。すなわち、加工前の状態では、図7(a)に示すように、所定の曲率の凸面に対応する同心円状の配色から乖離した配色がソフトウェアSの第1の表示エリアD1に表示されたのに対して、1次創成加工後および仕上げ研磨加工後の状態では、図7(b)〜(d)に示すように、所定の曲率の凸面に対応する同心円状の配色に近い配色がソフトウェアSの第1の表示エリアD1に表示された。   Further, as shown in FIG. 7, it was confirmed that the upper surface 9b of the photomask substrate 9 approaches a convex surface having a predetermined curvature as the primary creation process and the finish polishing process proceed. That is, in the state before processing, although the color scheme deviated from the concentric color scheme corresponding to the convex surface having a predetermined curvature is displayed in the first display area D1 of the software S as shown in FIG. On the other hand, in the state after the primary creation process and the finish polishing process, as shown in FIGS. 7B to 7D, a color scheme close to the concentric color scheme corresponding to the convex surface having a predetermined curvature is obtained from the software S. Displayed in the first display area D1.

このフォトマスク用基板9の下面9cおよび上面9bの平面度の推移を細かく示したのが、図8の折れ線グラフである。この折れ線グラフにおいて、横軸は時間(加工の回数)を表し、縦軸は平面度(単位:μm)を表す。この折れ線グラフから明らかなように、フォトマスク用基板9では、下面9c、上面9bとも、1次創成加工を繰り返すうちに、平面度が目標値の30μmに近づき、仕上げ研磨加工により、その目標値がほぼ維持される傾向が認められた。
<変形例>
The line graph of FIG. 8 shows finely the transition of the flatness of the lower surface 9c and the upper surface 9b of the photomask substrate 9. In this line graph, the horizontal axis represents time (the number of machining operations), and the vertical axis represents flatness (unit: μm). As is apparent from the line graph, in the photomask substrate 9, the flatness approaches the target value of 30 μm as the lower surface 9 c and the upper surface 9 b are repeatedly subjected to the primary creation process, and the target value is obtained by finish polishing. Was observed to be maintained.
<Modification>

なお、上述した実施例1では、フォトマスク1を製造する際に、下面荷重分布決定工程(ステップS3)および上面荷重分布決定工程(ステップS9)において、第1の表示エリアD1に平面度のデータを表示する場合について説明した。しかし、この第1の表示エリアD1には、平面度のデータをそのまま表示する代わりに、例えば、下面形状判定工程(ステップS6)および上面形状判定工程(ステップS12)で設定する目標値からそのデータを減じた値を表示してもよい。このようにすれば、実際には凹凸面に仕上げているにもかかわらず、ソフトウェアS上では平坦に仕上げる通常の研磨と同じように表示されるため、凹凸面に仕上げるからといって、作業者が混乱して作業に迷いが生じる事態を回避することが可能となる。   In the first embodiment described above, when the photomask 1 is manufactured, the flatness data is stored in the first display area D1 in the lower surface load distribution determining step (step S3) and the upper surface load distribution determining step (step S9). The case of displaying is described. However, instead of displaying the flatness data as it is in the first display area D1, for example, the data from the target values set in the lower surface shape determining step (step S6) and the upper surface shape determining step (step S12). A value obtained by subtracting may be displayed. In this way, although it is actually finished with an uneven surface, it is displayed on the software S in the same way as normal polishing for flat finishing. It is possible to avoid the situation where the work is confused and the work is lost.

本発明は、露光装置に使用するフォトマスクなどの光学素子を製造する際に広く適用することができる。   The present invention can be widely applied when manufacturing an optical element such as a photomask used in an exposure apparatus.

1……フォトマスク(光学素子)
1a……周縁部
1b……上面
1c……下面
1d……中心部
2……露光装置
5……機体
6……キャリア
6a……ガイド孔
7……下定盤
7a……研磨面
8……片面研磨装置(研磨手段)
9……フォトマスク用基板(光学素子用基板)
9a……周縁部
9b……上面
9c……下面
9d……中心部
A……載荷領域
W……重り(荷重)
1 ... Photomask (optical element)
DESCRIPTION OF SYMBOLS 1a ... Peripheral part 1b ... Upper surface 1c ... Lower surface 1d ... Center part 2 ... Exposure apparatus 5 ... Machine body 6 ... Carrier 6a ... Guide hole 7 ... Lower surface plate 7a ... Polishing surface 8 ... One side Polishing device (polishing means)
9 …… Photomask substrate (Optical element substrate)
9a: Peripheral part 9b: Upper surface 9c: Lower surface 9d: Center part A: Loading area W: Weight (load)

Claims (5)

周縁部が支持された状態で略水平に配置されて使用される光学素子用基板の両面を創成加工して成形する光学素子の製造方法であって、
前記光学素子用基板は、前記周縁部が支持されたときに、自重によって中心部近傍が下垂して前記両面が平面になるように、前記創成加工により、前記周縁部が支持される前の状態で、一方の面が所定の凸面になるとともに、他方の面が所定の凹面になるように成形され、
前記創成加工は、
前記光学素子用基板の前記所定の凸面または前記所定の凹面の形状を算出する目標形状算出工程と、
前記光学素子用基板の現在の形状を測定する形状測定工程と、
前記目標形状算出工程で算出された前記光学素子用基板の前記所定の凸面または前記所定の凹面の形状と前記形状測定工程で測定された前記光学素子用基板の現在の形状との差に基づき、前記光学素子用基板の複数の載荷領域に作用させる荷重の分布を決定する荷重分布決定工程と、
研磨手段の研磨面の上側に前記光学素子用基板を載置し、前記荷重分布決定工程で決定された荷重の分布に従って前記載荷領域に荷重を作用させた状態で、前記光学素子用基板に対して前記研磨面を相対移動させることにより、当該光学素子用基板の前記一方の面または前記他方の面を創成加工する基板創成加工工程と
を含むことを特徴とする光学素子の製造方法。
A method of manufacturing an optical element that creates and molds both surfaces of a substrate for an optical element that is used while being arranged substantially horizontally with a peripheral edge supported,
The optical element substrate is in a state before the peripheral portion is supported by the creation processing so that when the peripheral portion is supported, the vicinity of the central portion hangs down by its own weight and the both surfaces become flat. Then, one surface becomes a predetermined convex surface and the other surface is formed so as to be a predetermined concave surface,
The creation process is
A target shape calculating step for calculating the shape of the predetermined convex surface or the predetermined concave surface of the optical element substrate;
A shape measuring step for measuring a current shape of the optical element substrate;
Based on the difference between the shape of the predetermined convex surface or the predetermined concave surface of the optical element substrate calculated in the target shape calculation step and the current shape of the optical element substrate measured in the shape measurement step, A load distribution determining step for determining a distribution of loads to be applied to a plurality of loading regions of the optical element substrate;
The optical element substrate is placed on the upper side of the polishing surface of the polishing means, and a load is applied to the load region according to the load distribution determined in the load distribution determination step, with respect to the optical element substrate. And a substrate creating process step of creating the one surface or the other surface of the optical element substrate by relatively moving the polishing surface.
周縁部が支持された状態で略水平に配置されて使用される光学素子用基板の両面を創成加工して成形する光学素子の製造方法であって、
前記光学素子用基板は、前記周縁部が支持されたときに、自重によって中心部近傍が下垂して前記両面が平面になるように、前記創成加工により、前記周縁部が支持される前の状態で、一方の面が所定の曲率の凸面になるとともに、他方の面が所定の曲率の凹面になるように成形され、
前記創成加工は、
前記光学素子用基板の前記所定の曲率の凸面または前記所定の曲率の凹面の形状を算出する目標形状算出工程と、
前記光学素子用基板の現在の形状を測定する形状測定工程と、
前記目標形状算出工程で算出された前記光学素子用基板の前記所定の曲率の凸面または前記所定の曲率の凹面の形状と前記形状測定工程で測定された前記光学素子用基板の現在の形状との差に基づき、前記光学素子用基板の複数の載荷領域に作用させる荷重の分布を決定する荷重分布決定工程と、
研磨手段の研磨面の上側に前記光学素子用基板を載置し、前記荷重分布決定工程で決定された荷重の分布に従って前記載荷領域に荷重を作用させた状態で、前記光学素子用基板に対して前記研磨面を相対移動させることにより、当該光学素子用基板の前記一方の面または前記他方の面を創成加工する基板創成加工工程と
を含むことを特徴とする光学素子の製造方法。
A method of manufacturing an optical element that creates and molds both surfaces of a substrate for an optical element that is used while being arranged substantially horizontally with a peripheral edge supported,
The optical element substrate is in a state before the peripheral portion is supported by the creation processing so that when the peripheral portion is supported, the vicinity of the central portion hangs down by its own weight and the both surfaces become flat. Then, one surface is a convex surface having a predetermined curvature and the other surface is formed to be a concave surface having a predetermined curvature,
The creation process is
A target shape calculating step for calculating the shape of the convex surface of the predetermined curvature or the concave surface of the predetermined curvature of the optical element substrate;
A shape measuring step for measuring a current shape of the optical element substrate;
The shape of the convex surface of the predetermined curvature or the concave surface of the predetermined curvature calculated in the target shape calculation step and the current shape of the optical element substrate measured in the shape measurement step A load distribution determining step for determining a distribution of a load to be applied to a plurality of loading regions of the optical element substrate based on the difference;
The optical element substrate is placed on the upper side of the polishing surface of the polishing means, and a load is applied to the load region according to the load distribution determined in the load distribution determination step, with respect to the optical element substrate. And a substrate creating process step of creating the one surface or the other surface of the optical element substrate by relatively moving the polishing surface.
前記基板創成加工工程において、前記載荷領域に作用する荷重の大きさが前記光学素子用基板の中心部と周縁部とで増減するように、前記載荷領域に荷重を作用させることを特徴とする請求項1または2に記載の光学素子の製造方法。   The load is applied to the load area so that the magnitude of the load acting on the load area increases and decreases between a central portion and a peripheral edge of the optical element substrate in the substrate generation processing step. Item 3. A method for producing an optical element according to Item 1 or 2. 前記基板創成加工工程において、前記載荷領域に重りを載せることにより、当該載荷領域に荷重を作用させた状態で、前記光学素子用基板の下面を創成加工することを特徴とする請求項1乃至3のいずれかに記載の光学素子の製造方法。   4. The substrate creation processing step of creating a bottom surface of the optical element substrate in a state where a load is applied to the loading region by placing a weight on the loading region. The manufacturing method of the optical element in any one of. 前記光学素子用基板がフォトマスク用基板であることを特徴とする請求項1乃至4のいずれかに記載の光学素子の製造方法。   5. The method for manufacturing an optical element according to claim 1, wherein the optical element substrate is a photomask substrate.
JP2012177096A 2012-08-09 2012-08-09 Method for manufacturing optical element Pending JP2014034497A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012177096A JP2014034497A (en) 2012-08-09 2012-08-09 Method for manufacturing optical element
TW102128614A TWI612375B (en) 2012-08-09 2013-08-09 Optical element manufacturing method, and exposure method using the same
PCT/JP2013/071727 WO2014025047A1 (en) 2012-08-09 2013-08-09 Method for manufacturing optical element and exposure method using optical element
KR20157002079A KR20150041621A (en) 2012-08-09 2013-08-09 Method for manufacturing optical element and exposure method using optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177096A JP2014034497A (en) 2012-08-09 2012-08-09 Method for manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2014034497A true JP2014034497A (en) 2014-02-24

Family

ID=50068263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177096A Pending JP2014034497A (en) 2012-08-09 2012-08-09 Method for manufacturing optical element

Country Status (4)

Country Link
JP (1) JP2014034497A (en)
KR (1) KR20150041621A (en)
TW (1) TWI612375B (en)
WO (1) WO2014025047A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029735A (en) * 2002-03-29 2004-01-29 Hoya Corp Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method
JP2009508143A (en) * 2005-09-12 2009-02-26 旭硝子株式会社 Photomask, photomask manufacturing method, and photomask processing apparatus
JP2010204264A (en) * 2009-03-02 2010-09-16 Dainippon Printing Co Ltd Method for manufacturing photomask having patterns on both surfaces thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975321B2 (en) * 2001-04-20 2007-09-12 信越化学工業株式会社 Silica glass substrate for photomask and method for planarizing silica glass substrate for photomask
JP3572053B2 (en) * 2001-05-31 2004-09-29 株式会社東芝 Method of manufacturing exposure mask, method of generating mask substrate information, method of manufacturing semiconductor device, and server
JP3916627B2 (en) * 2001-09-28 2007-05-16 Hoya株式会社 Mask blank, method for manufacturing the same, and method for manufacturing the mask
US6885436B1 (en) * 2002-09-13 2005-04-26 Lsi Logic Corporation Optical error minimization in a semiconductor manufacturing apparatus
JP4029828B2 (en) * 2003-11-18 2008-01-09 凸版印刷株式会社 Method for manufacturing double-sided mask blank and method for manufacturing double-sided mask
JP4697735B2 (en) * 2005-11-21 2011-06-08 Hoya株式会社 Mask blank, mask blank manufacturing method, and mask manufacturing method
US20080125014A1 (en) * 2006-11-29 2008-05-29 William Rogers Rosch Sub-aperture deterministric finishing of high aspect ratio glass products
JP5683930B2 (en) * 2010-01-29 2015-03-11 Hoya株式会社 Mask blank substrate, mask blank, transfer mask, and semiconductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029735A (en) * 2002-03-29 2004-01-29 Hoya Corp Substrate for electronic device, mask blank using the same, mask for transfer, method for producing these, polishing apparatus and polishing method
JP2009508143A (en) * 2005-09-12 2009-02-26 旭硝子株式会社 Photomask, photomask manufacturing method, and photomask processing apparatus
JP2010204264A (en) * 2009-03-02 2010-09-16 Dainippon Printing Co Ltd Method for manufacturing photomask having patterns on both surfaces thereof

Also Published As

Publication number Publication date
WO2014025047A1 (en) 2014-02-13
TWI612375B (en) 2018-01-21
TW201413372A (en) 2014-04-01
KR20150041621A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
TWI276188B (en) Wafer shape evaluating method and device producing method, wafer and wafer selecting method
US7704645B2 (en) Method of generating writing pattern data of mask and method of writing mask
JP5896884B2 (en) Double-side polishing method
CN1196031C (en) Method for error reduction in lithography
JP5714672B2 (en) Mask blank substrate, mask blank, exposure mask, semiconductor device manufacturing method, and mask blank substrate manufacturing method
CN107436539A (en) The manufacture method of exposure device and article
JP2014229802A (en) Lithography apparatus, lithography method, lithography system, and method of manufacturing article
JP5376987B2 (en) Reticle manufacturing method and surface shape measuring apparatus
KR20080049016A (en) Substrate-processing apparatus, substrate-processing method, substrate-processing program, and computer-readable recording medium recorded with such program
JP4340859B2 (en) Photomask blank substrate selection method
US8428763B2 (en) Management apparatus, exposure method, and method of manufacturing device
CN105892227A (en) Photomask manufacturing method lithography apparatus photomask inspecting method photomask inspecting apparatus and display device manufacturing method
JP2014034497A (en) Method for manufacturing optical element
CN110568726A (en) Exposure focusing compensation method
JP2007199434A (en) Exposure method of proximity system, mask substrate used therefor, and fabricating method for same mask substrate
TWI705293B (en) Method of manufacturing a photomask, lithography device, method of manufacturing a display device, method of inspecting a photomask substrate, and a device for inspecting a photomask substrate
JP4657591B2 (en) Photomask blank substrate selection method
TWI722386B (en) Determination method, exposure method, exposure device, article manufacturing method, and storage medium
CN102736402B (en) Substrate for photomask, photomask, method for manufacturing photomask and method for transfering pattern
JP2011175279A (en) Method for manufacturing substrate for mask blank, mask blank, photomask and semiconductor device
JP2000260840A (en) Method and device for measuring semiconductor substrate
JP2010511203A (en) Sub-aperture definitive ultra-precision finishing of high aspect ratio glass products
JP6196173B2 (en) Substrate processing system, substrate processing method, program, and computer storage medium
CN109782548A (en) Lithographic equipment, photolithography method, determining method, storage medium and article manufacturing method
CN108388085B (en) OLED exposure machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621