JP2004028792A - 非接触断面形状測定方法および測定装置 - Google Patents

非接触断面形状測定方法および測定装置 Download PDF

Info

Publication number
JP2004028792A
JP2004028792A JP2002185531A JP2002185531A JP2004028792A JP 2004028792 A JP2004028792 A JP 2004028792A JP 2002185531 A JP2002185531 A JP 2002185531A JP 2002185531 A JP2002185531 A JP 2002185531A JP 2004028792 A JP2004028792 A JP 2004028792A
Authority
JP
Japan
Prior art keywords
measurement point
point
measurement
distance
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185531A
Other languages
English (en)
Inventor
Satoru Kamiyoshi
神吉 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2002185531A priority Critical patent/JP2004028792A/ja
Publication of JP2004028792A publication Critical patent/JP2004028792A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】曲がりが大きい鏡面体被測定物を悪環境下において、安価に測定できる測定方法および装置を提供する。
【解決手段】レーザ三角測量方式の変位計1と、被測定物5からの反射光が入射するスクリーン4と、スクリーン4上の入射位置を測定する撮像装置(集光レンズ3と光検出器2とから構成される)とを備え、被測定物の乱反射部分については変位計1で距離を測定して被測定物の表面の形状を求め、この形状を延長して被測定物の鏡面部分の最初の測定点の距離を求める。鏡面部分の測定点については、測定距離と、スクリーン4上の入射位置とから測定点における入射角を求め、測定点における接線の角度(傾き)を算出する。このような接線の傾きの算出を連続して行うことにより、被測定物の表面の断面形状を算出する。
【選択図】   図2

Description

【0001】
【発明の属する技術分野】
本発明は、鏡面体被測定物の表面の断面形状を非接触で測定する方法および装置に関し、特に、温度変化等の悪環境下において鏡面体被測定物の表面の断面形状を測定する方法および装置に関する。
【0002】
【従来の技術】
非接触で被測定物の表面の断面形状(profile)を測定する方法として、従来、非接触変位計によって被測定物までの距離を連続的に測定するという方法が一般的に用いられている。非接触変位計の種類としては、超音波方式,渦電流方式,静電容量方式,レーザを用いた三角測量方式,レーザフォーカス方式等がある。
【0003】
一例としてレーザ三角測量方式の変位計の構成を説明する。図1に示されるように、レーザ三角測量方式の変位計1は、レーザ光源11と、被測定物に照射された光を撮像するCCDまたはPSD等の位置検出素子13と、レーザ光源11を駆動するレーザ駆動回路12と、位置検出素子13からの出力信号を増幅する増幅回路14とを備える。
【0004】
【発明が解決しようとする課題】
このように非接触変位計には多くの種類が存在するが、例えば自動車のウィンドシールドガラスのように曲がりが大きい鏡面体を、悪環境下(温度変化等)で測定する場合には、適したものがない。
【0005】
以下に、このような測定を行う場合の不具合について、一般的な変位計の方式ごとに説明する。
【0006】
・超音波方式の場合、変位計と被測定物との間に温度差が存在すると正確な測定ができない。
・渦電流方式の場合、対象となる被測定物が金属に限られてしまう。
・静電容量方式の場合、測定レンジが非常に狭いため、変位計と被測定物間の距離を制御する必要があり、装置が高価になってしまう。
・レーザ三角測量方式(乱反射測定タイプ)の場合、鏡面体の被測定物においては乱反射成分がほとんど存在しないため、測定が不可能である。
・レーザ三角測量方式(正反射測定タイプ)の場合、角度特性、距離特性が非常に悪いため、変位計と被測定物との間の距離および角度を制御する必要があり、装置が高価になってしまう。
・レーザフォーカス方式の場合、角度特性、距離特性が非常に悪いため、変位計と被測定物との間の距離および角度を制御する必要があり、装置が高価になってしまう。
【0007】
本発明の目的は、曲がりが大きい鏡面体被測定物を悪環境下(温度変化等)において、安価に測定できる測定方法および測定装置を提供することである。
【0008】
【課題を解決するための手段】
本発明の一態様においては、まず、被測定物(被測定断面)の測定開始位置は鏡面体ではなく、それ以外は鏡面体とする。レーザ三角測量方式の変位計を用いて測定開始点までの距離を測定する。測定開始点は鏡面体ではないので、この方式の変位計が使用可能である。
【0009】
鏡面体部分は、レーザの反射光をスクリーンに投影(入射)し、その入射位置を測定することで被測定断面(被測定物)の測定点の接線角度を計算する。スクリーン上での入射位置は被測定断面(被測定物)の表面の角度と、被測定断面(測定点)までの距離によって変化するが、測定ピッチを細かくし、かつ距離を都度再計算することで正確な接線角度を求める。
【0010】
測定ピッチを細かくして接線角度を連続的に測定すると、表面の断面形状にほぼ等しい形状を得ることができる。
【0011】
本発明においては、被測定物の表面を一定方向に連続して測定する。そして、被測定物を走査方向に沿って切断したと仮定した場合の表面の断面形状を測定することができる。
【0012】
具体的には、本発明の測定方法は、乱反射部分を一部に含む反射表面を備える物体の表面を、乱反射成分を測定するレーザ三角測量方式の変位計を用いて所定ピッチで走査して、前記物体の表面の断面形状を測定する方法であって、(a)前記変位計を用いて、前記乱反射部分の距離を測定して前記乱反射部分の表面断面形状を求め、(b)前記乱反射部分の表面断面形状を延長して、前記反射表面の最初の測定点の距離を求め、(c)前記反射表面の最初の測定点の距離から、前記反射表面の最初の測定点へ入射した光の入射角を算出して、前記反射表面の最初の測定点における接線角度を求め、(d)前記反射表面の最初の測定点における接線角度と、前記反射表面の最初の測定点の距離と、測定点間のピッチとから、前記反射表面の第2の測定点の距離を求め、(e)前記反射表面の第2の測定点の距離から、前記反射表面の第2の測定点へ入射した光の入射角を算出して、前記反射表面の第2の測定点における接線角度を求め、(f)前記反射表面の最初の測定点の接線角度と前記反射表面の第2の測定点の接線角度とに基づいて、それぞれの測定点における接線を算出し、前記それぞれの測定点における接線を順次結んで前記反射表面の断面形状を求める。
【0013】
また、本発明の測定装置は、乱反射部分を一部に含む反射表面を備える物体の表面を、所定ピッチで走査して、前記物体の表面の断面形状を測定する測定装置であって、乱反射成分を測定するレーザ三角測量方式の変位計と、前記反射表面の測定点へ入射した光の反射光が入射するスクリーンと、前記スクリーンにおける前記反射光の入射位置を測定する撮像装置と、前記測定装置を制御し、前記変位計および前記撮像装置からの出力を処理する演算制御手段とを備え、前記演算制御手段は、(a’)前記変位計を用いて、前記乱反射部分の距離を測定して前記乱反射部分の表面断面形状を求め、(b’)前記乱反射部分の表面断面形状を所定のピッチ延長して、前記反射表面の最初の測定点に近似する第1近似点の座標を算出し、前記第1近似点の距離を求め、(c’)前記第1近似点の距離と、前記反射表面の最初の測定点からの反射光が前記スクリーンに入射する入射位置とに基づいて、前記反射表面の最初の測定点へ入射した光の入射角を算出し、前記反射表面の最初の測定点における接線角度を求め、(d’)前記反射表面の最初の測定点における接線角度と、前記第1近似点の距離と、測定点間のピッチとから、前記反射表面の第2の測定点の距離を求め、(e’)前記反射表面の第2の測定点の距離と、前記反射表面の第2の測定点からの反射光が前記スクリーンに入射する入射位置とに基づいて、前記反射表面の第2の測定点へ入射した光の入射角を算出し、前記反射表面の第2の測定点における接線角度を求め、(f’)前記反射表面の最初の測定点の接線角度と前記反射表面の第2の測定点の接線角度とに基づいて、それぞれの測定点における接線を算出し、前記それぞれの測定点における接線を順次結んで前記反射表面の断面形状を求める。
【0014】
このような構成とすることにより、乱反射測定タイプのレーザ三角測量方式の変位計を用いて、反射表面を備える被測定物の表面断面形状を測定することが可能となる。
【0015】
また、本明細書における手段は、ハードウェア、ソフトウェアまたはハードウェアおよびソフトウェアの組み合わせにより実現可能である。ハードウェアおよびソフトウェアの組み合わせによる実行は、例えば、所定のプログラムを有するコンピュータ・システムを含む測定装置が該当する。
【0016】
そして、1つの手段が有する機能が2つ以上のハードウェア、ソフトウェアまたはハードウェアおよびソフトウェアの組み合わせにより実現されても、2つ以上の手段の機能が1つのハードウェア、ソフトウェアまたはハードウェアおよびソフトウェアの組み合わせにより実現されてもよい。
【0017】
本発明における被測定物は、乱反射部分を一部に含む反射表面を備える物体である。乱反射部分の位置は特に限定されず、例えば物体表面の端部であってもよく、中央部分であってもよい。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0019】
(測定装置の構成)
本発明の実施の形態に係る測定装置の構成を説明する。図2は、本発明の実施の形態に係る測定装置の概略構成を示す正面図であり、図3は、図2の測定装置を図2中のSの方向からみた側面図であり、図4は、本発明の実施の形態に係る演算制御手段の構成を示すブロック図である。
【0020】
図2に示すように、本発明の実施の形態に係る測定装置10は、レーザ三角測量方式の変位計(以下「変位計」と呼ぶ)1と、被測定物5からの反射光が入射するためのスクリーン4と、反射光の入射位置を測定するための撮像装置とを備える。
【0021】
レーザ三角測量方式の変位計1は、図1に示した従来の変位計と同様のものを用いることができる。また、本実施の形態においては、乱反射測定タイプの変位計を用いることが好ましい。さらに、本実施の形態において、変位計1は、測定点を通る垂直線上に位置させるようにすると好ましい。より好ましくは、変位計1のレーザ光の出射口20の中心が測定点を通る垂直線上に位置するようにする。
【0022】
スクリーン4の平面形状は特に限定されないが、矩形形状が好適である。
【0023】
撮像装置は、集光レンズ3と光検出器2とを備える。光検出器2は、2次元CCDカメラまたは2次元PSD等によって実現される。撮像装置は、スクリーン4上の反射光の入射位置を測定して出力する。
【0024】
また、測定装置10は、演算制御手段としてのコンピュータ6を備える。コンピュータ6は、測定装置10を制御し、測定結果を処理する。図4に示されるように、コンピュータ6には、変位計1からの出力と、光検出器2からの出力と、測定開始信号7と、移動パルス信号8とが入力される。
【0025】
さらに、測定装置10は、図示しない移動手段を備える。移動手段は、被測定物5または測定装置10のどちらか一方、もしくは双方を走査方向に沿って一定方向に移動させる。移動手段は、好ましくは、被測定物5および/または測定装置10を、水平方向または垂直方向に移動させる。なお、本実施の形態においては、移動手段は、被測定物5を図3中に示した進行方向に水平に移動させる。
【0026】
また、被測定物5もしくは測定装置10の移動は、図示しない光学器械等によって検出され、移動パルス信号8としてコンピュータ6に送られる。また、この移動パルス信号8は、移動手段から直接コンピュータ6へ送られるようにしてもよい。そして、コンピュータ6は、受信した移動パルス信号から被測定物5と測定装置10との間の相対的な移動ピッチを演算する。
【0027】
なお、移動手段は、コンピュータ6に制御されて被測定物5を所定のピッチで移動させてもよく、コンピュータ6とは異なる制御手段によって制御されてもよい。
【0028】
(変位計とスクリーンの位置)
次に、図5を参照して、変位計とスクリーンとの位置関係について説明する。図5は、図3のA−A方向矢視図である。まず、平面視における位置関係について説明する。図5に示されるように、スクリーン4の水平面内に、仮想の基準線Rを設定する。この基準線Rは、スクリーン4の中心線としてもよい。
【0029】
そして、この基準線Rと、変位計1のレーザ光の出射口20の中心(光軸)とを、被測定物5の走査方向に直交する直線上に並んで配置する。このようにして、図5に示されるように、変位計1とスクリーン4との位置関係が設定される。なお、測定装置10が走査方向に移動する場合にも、この位置関係が維持され、常に出射口20の中心と基準線Rとが走査方向に直行する直線上に位置するようにすると好適である。
【0030】
ここで、変位計1から被測定物5へ入射された光が被測定物5の鏡面部分で正反射し、当該反射光がスクリーン4上に入射する位置を入射位置30とする。本明細書においては、この入射位置30(好ましくは入射位置30の中心点)と基準線Rとの距離をXnとして表す。なお、走査方向に直行する直線方向(図中のy軸方向)における位置関係については、被測定物5を経る変位計1からの光が入射する範囲にスクリーン4が配置される。
【0031】
次に、高さ方向の位置関係について説明する。スクリーン4は、変位計1と同一平面内に位置するように設けられる。これは、変位計1によって得られる測定点の距離を、スクリーン4と測定点との距離として用いるためである。
【0032】
具体的には、被測定物の距離を測定する際の変位計1側の基準点と、スクリーン4とを同一平面内に配置する。このようにして、変位計1とスクリーン4との位置関係が設定される。
【0033】
例えば、スクリーン4と変位計1とを、被測定物5の相対的な移動方向と平行な同一平面内に配置するのが好ましい。具体的には、被測定物5を水平方向に移動させて垂直方向から測定する場合には、スクリーン4と変位計1とを被測定物5の移動方向と平行な同一水平面内に配置するのが好ましい。一方、被測定物5を垂直方向に移動させて水平方向から測定する場合には、スクリーン4と変位計1とを被測定物5の移動方向と平行な同一垂直面内に配置するのが好ましい。
【0034】
次に、図6を参照して、本発明の測定対象について説明する。図6は、被測定物の断面を示す断面図である。図6に示されるように、本発明においては、被測定物5の表面100の断面形状(profile)を測定する。
【0035】
すなわち、被測定物5を走査方向に沿って切断したと仮定した場合に得られる垂直切断面と表面との交差でつくられる輪郭が測定対象となる。
【0036】
(測定方法)
次に、本発明の実施の形態に係る測定方法を説明する。図7は、本発明の第1の実施の形態に係る測定方法を説明する概念図である。
【0037】
まず、本発明においては、被測定物5の表面は、乱反射部分(図7中のA領域)と鏡面部分(図7中のB領域)とを有する。鏡面部分は、光を正反射させる部分である。また、測定を行う際には、上述した乱反射部分上に測定開始点を設定し、測定点を、この測定開始点から鏡面部分へ所定のピッチで移動させ、複数の測定点を順次測定していく。具体的には、測定点P0、P1、P2、P3、P4…Pnを順次走査することとなる。
【0038】
ここで、例えば自動車用ウィンドシールドガラスの場合、乱反射部分は、周辺のマスキングプリント部分から構成され、鏡面部分は、ガラス部分から構成される。
【0039】
(測定開始点の測定)
まず、乱反射部分上の測定開始点P0を測定する。測定点P0は、表面が乱反射するので、変位計1で被測定物までの距離を測定する。具体的には、測定装置10(特に変位計1)を測定点P0上に位置させ、変位計1によって測定を行い、測定結果をコンピュータ6に入力して測定点P0における被測定表面までの距離(座標)を算出する。
【0040】
次に、被測定物5を図中の進行方向に所定のピッチ分移動させる。そして、測定点P0と同様に、測定点P1を変位計1で測定する。測定点P1も乱反射部分上の点であるので、同様に変位計1によって測定を行い、測定結果をコンピュータ6に入力して測定点P1における被測定表面までの距離(座標)を算出する。
【0041】
次に、P0−P1のベクトルを求める。これは、上記で求められたP0座標およびP1座標を結ぶことで、コンピュータ6によって計算することができる。
【0042】
(鏡面部分の測定)
次に、被測定物5を所定ピッチ移動させて、鏡面部分上の測定点P2を測定する。ここで、P2は、被測定物5の鏡面部分上の最初の測定点である。まず、P0−P1のベクトルを延長した線上の点をP2’とし、P2’までの距離を算出する。例えば、P2’は、P0−P1のベクトルを延長した直線と測定点P2を通る垂直線との交点として算出される。なお、P2は、被測定物の乱反射部分上の2以上の連続する測定点の直後の隣り合う測定点であって、鏡面部分上の測定点と表現してもよい。
【0043】
被測定物5は曲がっているが、P2’はP0−P1ベクトルを直線的に延長して求められているだけなので、厳密にはP2とP2’とは異なる。しかしながら、測定ピッチを細かくすれば許容できる誤差内に抑えることが可能である。
【0044】
なお、乱反射部分上の測定点(P0,P1等)を求め、これらが3点以上あれば、これらの座標に基づいて2次曲線を算出し、この2次曲線上の点としてP2’を求めるようにしてもよい。
【0045】
次に、変位計1のレーザ光源11から測定点P2へ光を入射させる。測定点P2は鏡面部分にあり、光を正反射するので、反射光がスクリーン4に入射する。このスクリーン4上の入射位置を2次元CCDカメラまたは2次元PSDで測定すれば図7中のX2を求めることができる。コンピュータ6は、撮像装置からの出力に基づいてX2を計算する。
【0046】
ここで、スクリーン4(測定装置10)から測定点Pnまでの距離をLnとし、スクリーン4の基準線Rから入射位置までの距離をXnとすると、被測定物上での反射角度θnは次式で計算できる。ここで、反射角度θnは、測定点での入射角と反射角との和である。
【0047】
θn=tan−1(Xn/Ln)
【0048】
スクリーン4からP2’までの距離L2は既に求まっているので、コンピュータ6は、上記のX2とL2とを用いてθ2を算出する。
【0049】
ここで、被測定物に照射されたレーザ光であって、被測定物に対する入射光が測定点における法線となす角度を法線角度と称する。これは、測定点における入射角ととらえてもよい。θnは法線角度の2倍である。法線角度と接線角度は等しいため、P2での被測定物の接線角度はθ2/2である。
【0050】
なお、接線角度とは、測定点における被測定物の接線が水平面となす角度を意味する。これは、接線の傾きととらえてもよい。
【0051】
(測定点P3の測定)
次に、被測定物5を所定ピッチ移動させて、測定点P3を測定する。ここで、P3は、被測定物5の鏡面部分上の2番目の測定点である。まず、スクリーン4からP3までの距離を求める。図8に示されるように、P3を測定点P2での接線の延長線上の点と仮定し、測定点P2とP3との図中のy軸方向の距離をEとし、移動ピッチをDとすると、Eは、次式で計算できる。図8は、測定点の距離を求める原理を説明する図である。
【0052】
E=D×tan(θ2/2)
【0053】
スクリーン4からP3までの距離L3は、L2とEとの和によって求められるので、次式で計算できる。
【0054】
L3=L2+E=L2+D×tan(θ2/2)
【0055】
コンピュータ6は、例えば上記の式に基づいて距離L3を計算する。
【0056】
次に、測定点P3における接線角度を求める。P3も鏡面部分上の点であるので、P2と同様にしてX3を求め、L3およびX3に基づいて接線角度θ3/2を計算する。以下同様にして鏡面部分上の複数の測定点(P4,P5,…Pn)について測定と計算とを続ける。
【0057】
このようにして、細かいピッチで測定を繰り返し、それぞれの測定点における接線角度を計算する。そして、求められたそれぞれの接線を順次結ぶことによって被測定物の表面の断面形状を算出することができる。
【0058】
本実施の形態を用いて実際の測定を行った結果を示す。図9は、鏡面体被測定物の測定結果を示す図であり、図10は、鏡面体被測定物の実形状を示す図であり、図11は、測定結果と実形状との対比を示す図である。
【0059】
図9〜11に示されるように、本実施の形態を用いて測定を行った結果、高精度で鏡面体被測定物の表面の断面形状を求めることができた。
【0060】
次に、図12〜14を参照して、上記の測定方法をコンピュータ6の動作の観点から具体的に説明する。図12〜14は、第1の実施の形態の測定方法を説明するフローチャートである。まず、測定開始信号がコンピュータ6へ入力される。コンピュータ6は、最初の測定点P0が乱反射部分であるか否か判断する(ステップ101)。
【0061】
具体的には、測定点が乱反射部分である場合には、測定点からの反射光がレーザ三角測量方式の変位計1の位置検出素子13へ入射する。したがって、位置検出素子13が反射光を検出した場合には測定点P0は乱反射部分であると判断し、そうでない場合には、測定点P0は鏡面部分であると判断する。
【0062】
本実施の形態においては、測定点P0は乱反射部分上の点であるので、次に、コンピュータ6は、測定点P0の距離を測定し、これをRAM等のメモリに記憶する(ステップ102)。具体的には、変位計1によって測定された距離のデータがコンピュータ6へ入力されこれを記憶する。また、コンピュータ6は、P0の座標を求めるようにしてもよい。
【0063】
次に、測定点P1を測定する。まず、コンピュータ6は、測定点を走査方向に移動し、入力された移動パルス信号からP0−P1間の移動ピッチを求めメモリに記憶する(ステップ103)。次に、ステップ101と同様にして測定点P1が乱反射部分であるか否か判断する(ステップ104)。
【0064】
本実施の形態においては、測定点P1は乱反射部分上の点であるので、次に、コンピュータ6は、ステップ102と同様にして測定点P1の距離を測定し、これをメモリに記憶する(ステップ105)。
【0065】
次に、コンピュータ6は、乱反射部分を所定数連続して測定したか否か判断する(ステップ106)。具体的には、乱反射部分を連続して測定する測定回数の基準がROM等に設定されている。コンピュータ6は、位置検出素子13が反射光を連続して検出した場合に、その検出回数をこの基準と比較することによって所定数連続して測定したか否か判断する。
【0066】
所定数連続して測定した場合には、次に、コンピュータ6は、乱反射部分上の複数の測定点の座標に基づいて乱反射部分の表面断面形状を演算する(ステップ107)。具体的には、乱反射部分上の測定点が2点の場合には、得られた2つの座標からベクトルを算出し直線形状を得る。一方、乱反射部分上の測定点が3点以上であれば、2次曲線を算出し曲線形状を得る。
【0067】
次に、測定点P2を測定する。まず、コンピュータ6は、測定点を移動し、入力された移動パルス信号からP1−P2間の移動ピッチを求めメモリに記憶する(ステップ108)。次に、ステップ101と同様にして測定点P2が乱反射部分であるか否か判断する(ステップ109)。
【0068】
本実施の形態においては、測定点P2は鏡面部分上の点であるので、次に、コンピュータ6は、ステップ107で得られた乱反射部分の表面断面形状を延長して、仮想の測定点P2’の座標を算出し、このP2’の距離をP2の距離L2としてメモリに記憶する(ステップ110)。
【0069】
次に、コンピュータ6は、X2を求めてメモリに記憶する(ステップ111)。具体的には、コンピュータ6は、光検出器2からの出力に基づいてX2を計算する。そして、コンピュータ6は、θ2を算出し、P2における接線角度(θ2/2)を算出してメモリに記憶する(ステップ112)。
【0070】
次に、測定点P3を測定する。まず、コンピュータ6は、測定点を移動し、入力された移動パルス信号からP2−P3間の移動ピッチを求めメモリに記憶する(ステップ113)。次に、ステップ101と同様にして測定点P3が乱反射部分であるか否か判断する(ステップ114)。
【0071】
本実施の形態においては、測定点P3は鏡面部分上の点であるので、次に、コンピュータ6は、L2と、ステップ112で得られたP2における接線角度と、メモリに記憶したP2−P3間の移動ピッチとからP3の距離L3を算出してメモリに記憶する(ステップ115)。
【0072】
次に、コンピュータ6は、ステップ111と同様にX3を求めてメモリに記憶する(ステップ116)。そして、コンピュータ6は、θ3を算出し、P3における接線角度(θ3/2)を算出してメモリに記憶する(ステップ117)。
【0073】
コンピュータ6は、以後の測定点について、測定点P3と同様の測定を繰り返し、それぞれの接線角度(θn/2)を算出してメモリに記憶する。そして、最後の測定点の測定が終了すると、コンピュータ6は、記憶した接線角度からそれぞれの測定点の接線を求め、それぞれの接線を順次結んで被測定物の走査方向の表面断面形状を演算する(ステップ118)。
【0074】
(第2の実施の形態)
次に、第2の実施の形態について図15を参照して説明する。ここで、図15は、本発明の第2の実施の形態に係る測定方法を説明する概念図である。上記第1の実施の形態においては、乱反射部分上に測定開始点を設定する例について説明したが、第2の実施の形態においては、測定開始部は乱反射部分ではなく、測定途中に乱反射部分があるワークを測定する場合について説明する。
【0075】
本実施の形態においても、測定点P0、P1、P2、P3…Pnを順次走査していく。しかしながら、本実施の形態においては、測定開始点P0が乱反射部分ではなく鏡面部分である。したがって、第1の実施の形態の方法によりX0は測定可能であるが、L0は未知であるためθ0は計算不可能である。この場合には、X0をRAM等で構成されるメモリに記憶しておく。次に、被測定物5を所定ピッチ移動させ、鏡面部分の測定点P1を測定する。P1についても、P0と同様に、X1をメモリに記憶しておく。そして、P0−P1間の移動ピッチをメモリに記憶しておく。
【0076】
次に、被測定物5を所定ピッチ移動させ、測定点P2を測定し、同様にして測定点P3を測定する。連続した2つの測定点であるP2およびP3が乱反射部分上の点であるとすると、変位計1によってP2座標とP3座標とを求めることができるので、上記第1の実施の形態におけるP0−P1ベクトルと同様にしてP3−P2のベクトルを求めることができる。
【0077】
そして、P1−P2間の移動ピッチに対応して、P3−P2のベクトルを走査方向とは逆方向に延長することにより、P3−P2ベクトルの延長線上に、仮想P1座標である座標P1’を求めることができる。ここで、P1は、被測定物の乱反射部分上の2以上の連続する測定点の直前の隣り合う測定点であって、鏡面部分上の測定点と表現してもよい。また、被測定物の乱反射部分上の2以上の連続する測定点をPn,Pn+1(,Pn+2…)とすると、Pn−1として表すことができる。
【0078】
座標P1’が求まると、近似値として測定点P1の距離L1が得られる。X1が既に記憶されているので、上記第1の実施の形態と同様に、L1とX1とを用いて次式によりθ1を計算することができる。
【0079】
θ1=tan−1(X1/L1)
【0080】
また、θ1から測定点P1での被測定物5の接線角度(θ1/2)を求めることができるので、測定点P1での接線の延長線上の点として仮想P0座標である座標P0’を計算することができる。ここで、P0は、Pn−2として表すことができる。
【0081】
P0についても、P1と同様にして、L0,θ0,および測定点P0での被測定物5の接線角度(θ0/2)を求めることができる。しかしながら、この例においては、P0は測定開始点であるので、計算を終了する。一方、P0が測定開始点でない場合には、さらに遡って隣り合う測定点Pn−3について同様の計算を行う。
【0082】
このようにして、測定途中または測定終了部に乱反射部分がある場合には、乱反射部分上の2つの連続する測定点から、走査方向と逆方向に向かって鏡面部分の各測定点の接線角度を順次計算する。そして、求められたそれぞれの接線を順次結ぶことによって被測定物の表面の断面形状を算出することができる。
【0083】
なお、測定途中に乱反射部分がある場合には、乱反射部分以後の鏡面部分については、上記第1の実施の形態の測定方法を用いて測定を行うようにする。
【0084】
このようにして、測定開始点は乱反射部分でなくとも、測定途中あるいは測定終了部に少なくとも連続する2つの乱反射部分があれば、さかのぼって計算することが可能である。
【0085】
次に、図16〜18を参照して、上記の測定方法をコンピュータ6の動作の観点から具体的に説明する。図16〜18は、第2の実施の形態の測定方法を説明するフローチャートである。まず、測定開始信号がコンピュータ6へ入力される。コンピュータ6は、第1の実施の形態のステップ101と同様に最初の測定点P0が乱反射部分であるか否か判断する(ステップ201)。
【0086】
本実施の形態においては、測定点P0は鏡面部分上の点であるので、次に、コンピュータ6は、X0を求めてメモリに記憶する(ステップ202)。
【0087】
次に、測定点P1を測定する。まず、コンピュータ6は、測定点を移動し、入力された移動パルス信号からP0−P1間の移動ピッチを求めメモリに記憶する(ステップ203)。次に、ステップ201と同様にして測定点P1が乱反射部分であるか否か判断する(ステップ204)。
【0088】
本実施の形態においては、測定点P1は鏡面部分上の点であるので、次に、コンピュータ6は、X1を求めてメモリに記憶する(ステップ205)。
【0089】
次に、測定点P2を測定する。コンピュータ6は、測定点を移動し、入力された移動パルス信号からP1−P2間の移動ピッチを求めメモリに記憶する(ステップ206)。次に、ステップ201と同様にして測定点P2が乱反射部分であるか否か判断する(ステップ207)。
【0090】
本実施の形態においては、測定点P2は乱反射部分上の点であるので、次に、コンピュータ6は、測定点P2の距離を変位計1で測定し、これをメモリに記憶する(ステップ208)。
【0091】
次に、測定点P3を測定する。コンピュータ6は、測定点を移動し、入力された移動パルス信号からP2−P3間の移動ピッチを求めメモリに記憶する(ステップ209)。次に、ステップ201と同様にして測定点P3が乱反射部分であるか否か判断する(ステップ210)。
【0092】
本実施の形態においては、測定点P3は乱反射部分上の点であるので、次に、コンピュータ6は、測定点P3の距離を変位計1で測定し、これをメモリに記憶する(ステップ211)。
【0093】
次に、コンピュータ6は、乱反射部分を所定数連続して測定したか否か判断する(ステップ212)。そして、所定数連続して測定した場合には、次に、コンピュータ6は、乱反射部分上の複数の測定点の座標に基づいて乱反射部分の表面断面形状を演算する(ステップ213)。
【0094】
次に、コンピュータ6は、ステップ213で得られた乱反射部分の表面断面形状を走査方向に遡って延長し、乱反射部分の直前の測定点P1に対する仮想の測定点P1’の座標を算出し、このP1’の距離をP1の距離L1としてメモリに記憶する(ステップ214)。
【0095】
そして、コンピュータ6は、記憶されたX1とL1とに基づいてθ1を算出し、P1における接線角度(θ1/2)を算出してメモリに記憶する(ステップ215)。
【0096】
次に、コンピュータ6は、ステップ215で得られた接線を遡って延長し、測定点P0に対する仮想の測定点P0’座標を算出し、このP0’の座標をP0の座標としてメモリに記憶する(ステップ216)。
【0097】
測定点P1と同様にしてP0の接線角度を求めることができるが、本実施の形態では、測定点P0は、測定開始点であるので、コンピュータ6は、接線角度の算出を終了し、記憶した接線角度からそれぞれの測定点の接線を求め、それぞれの接線を順次結んで被測定物の走査方向の表面断面形状を演算する。なお、乱反射部分については、変位計1により測定された断面形状を用いる。
【0098】
(第3の実施の形態)
第2の実施の形態においては、被測定物の端部から一方向へ走査し、測定途中に乱反射部分がある例を示した。第3の実施の形態は、乱反射部分が鏡面部分に挟まれている場合に、乱反射部分を中心として一直線上を離反する二方向(それぞれの鏡面部分方向)へ順次走査する。図19は、本発明の第3の実施の形態に係る測定方法を説明する概念図である。
【0099】
図19に示されるように、第3の実施の形態においては、測定開始点を乱反射部分(図中のA領域)に設定する。そして、最初に乱反射部分を測定し、乱反射部分の表面断面形状を演算する。
【0100】
次に、得られた乱反射部分の表面断面形状を延長し、図中のT方向、あるいはU方向のいずれか一方向へ進んで測定を行う。その後、残りの方向へ進んで測定を行う。なお、具体的な測定方法については、上記第1の実施の形態において説明した方法を用いる。
【0101】
(第4の実施の形態)
次に、図20〜22を参照して第4の実施の形態を説明する。図20および21は、被測定物の形状と正反射光の反射方向との関係を示す正面図であり、図22は、本発明の第4の実施の形態に係る測定装置の構成を説明する正面図である。
【0102】
上述した実施の形態は、正面から見たときに被測定物が曲がっていることが前提である(図20を参照)。すなわち、被測定物の表面形状が走査方向に直行する方向に曲がっているか、または傾いている。そして、変位計1から被測定物5へ出射された光が走査方向に直行する方向へ反射角α(α>0)で反射する。この場合、走査方向に直行する直線上にあるスクリーン4は、被測定物5からのこの反射光が入射する範囲に配置される。したがって、正面から見て被測定物の表面形状が水平に近い場合には正反射光が返ってこないため測定できない(図21を参照)。その場合には、図22のように別途レーザ光源9を用意する。
【0103】
具体的には、このレーザ光源9からの光が、水平な被測定表面の測定点において、一定以上の入射角を有し、反射光がスクリーン4に入射する位置にレーザ光源9を設ける。なお、レーザ光源9の位置は、上述した変位計1とスクリーン4との位置関係と同様に、レーザ光源9の光軸と、出射口20の中心と基準線Rとが走査方向に直行する直線上に位置するように配置されることが好ましい。
【0104】
上記の実施の形態においては、自動車用ガラスを例として用いて本発明を説明した。しかしながら、本発明はこれに限られるものではない。本発明は、例えば建築用ガラス等の他の鏡面体に広く適用が可能である。また、このような他の鏡面体への適用も本発明の範囲に含まれる。
【0105】
【発明の効果】
以上説明したように、本発明によれば、曲がりの大きな鏡面体の表面の断面形状を、被測定物および周囲環境の温度に左右されることなく測定することができる。例えば、自動車用ガラスの表面の断面形状を、(加熱プロセスを経るような)成形直後に測定することが可能となる。
【0106】
また、本発明においては、測定装置と被測定物との距離、角度許容差が大きいので、従来の正反射型三角測量方式やレーザフォーカス方式で必要とされたセンサ位置制御機構やティーチングを不要とすることができ、安価かつ簡単な操作で測定を行うことができる。
【図面の簡単な説明】
【図1】従来のレーザ三角測量方式の変位計の構成を説明する図である。
【図2】本発明の実施の形態に係る測定装置の概略構成を示す正面図である。
【図3】図2の測定装置を図2中のSの方向からみた側面図である。
【図4】本発明の実施の形態に係る演算制御手段の構成を示すブロック図である。
【図5】図3のA−A方向矢視図である。
【図6】被測定物の断面を示す断面図である。
【図7】本発明の第1の実施の形態に係る測定方法を説明する概念図である。
【図8】測定点の距離を求める原理を説明する図である。
【図9】鏡面体被測定物の測定結果を示す図である。
【図10】鏡面体被測定物の実形状を示す図である。
【図11】測定結果と実形状との対比を示す図である。
【図12】第1の実施の形態の測定方法を説明するフローチャートである。
【図13】第1の実施の形態の測定方法を説明するフローチャートである。
【図14】第1の実施の形態の測定方法を説明するフローチャートである。
【図15】本発明の第2の実施の形態に係る測定方法を説明する概念図である。
【図16】第2の実施の形態の測定方法を説明するフローチャートである。
【図17】第2の実施の形態の測定方法を説明するフローチャートである。
【図18】第2の実施の形態の測定方法を説明するフローチャートである。
【図19】本発明の第3の実施の形態に係る測定方法を説明する概念図である。
【図20】被測定物の形状と正反射光の反射方向との関係を示す正面図である。
【図21】被測定物の形状と正反射光の反射方向との関係を示す正面図である。
【図22】本発明の第4の実施の形態に係る測定装置の構成を説明する正面図である。
【符号の説明】
1 レーザ三角測量方式の変位計
2 光検出器
3 集光レンズ
4 スクリーン
5 被測定物
6 コンピュータ
7 測定開始信号
8 移動パルス信号
9 レーザ光源
10 測定装置
11 レーザ光源
12 レーザ駆動回路
13 位置検出素子
14 増幅回路
20 出射口
30 入射位置
100 被測定物の表面

Claims (4)

  1. 乱反射部分を一部に含む反射表面を備える物体の表面を、乱反射成分を測定するレーザ三角測量方式の変位計を用いて所定ピッチで走査して、前記物体の表面の断面形状を測定する方法であって、
    (a)前記変位計を用いて、前記乱反射部分の距離を測定して前記乱反射部分の表面断面形状を求め、
    (b)前記乱反射部分の表面断面形状を延長して、前記反射表面の最初の測定点の距離を求め、
    (c)前記反射表面の最初の測定点の距離から、前記反射表面の最初の測定点へ入射した光の入射角を算出して、前記反射表面の最初の測定点における接線角度を求め、
    (d)前記反射表面の最初の測定点における接線角度と、前記反射表面の最初の測定点の距離と、測定点間のピッチとから、前記反射表面の第2の測定点の距離を求め、
    (e)前記反射表面の第2の測定点の距離から、前記反射表面の第2の測定点へ入射した光の入射角を算出して、前記反射表面の第2の測定点における接線角度を求め、
    (f)前記反射表面の最初の測定点の接線角度と前記反射表面の第2の測定点の接線角度とに基づいて、それぞれの測定点における接線を算出し、前記それぞれの測定点における接線を順次結んで前記反射表面の断面形状を求める測定方法。
  2. 乱反射部分を一部に含む反射表面を備える物体の表面を、所定ピッチで走査して、前記物体の表面の断面形状を測定する測定装置であって、
    乱反射成分を測定するレーザ三角測量方式の変位計と、
    前記反射表面の測定点へ入射した光の反射光が入射するスクリーンと、
    前記スクリーンにおける前記反射光の入射位置を測定する撮像装置と、
    前記測定装置を制御し、前記変位計および前記撮像装置からの出力を処理する演算制御手段とを備え、
    前記演算制御手段は、
    (a’)前記変位計を用いて、前記乱反射部分の距離を測定して前記乱反射部分の表面断面形状を求め、
    (b’)前記乱反射部分の表面断面形状を所定のピッチ延長して、前記反射表面の最初の測定点に近似する第1近似点の座標を算出し、前記第1近似点の距離を求め、
    (c’)前記第1近似点の距離と、前記反射表面の最初の測定点からの反射光が前記スクリーンに入射する入射位置とに基づいて、前記反射表面の最初の測定点へ入射した光の入射角を算出し、前記反射表面の最初の測定点における接線角度を求め、
    (d’)前記反射表面の最初の測定点における接線角度と、前記第1近似点の距離と、測定点間のピッチとから、前記反射表面の第2の測定点の距離を求め、(e’)前記反射表面の第2の測定点の距離と、前記反射表面の第2の測定点からの反射光が前記スクリーンに入射する入射位置とに基づいて、前記反射表面の第2の測定点へ入射した光の入射角を算出し、前記反射表面の第2の測定点における接線角度を求め、
    (f’)前記反射表面の最初の測定点の接線角度と前記反射表面の第2の測定点の接線角度とに基づいて、それぞれの測定点における接線を算出し、前記それぞれの測定点における接線を順次結んで前記反射表面の断面形状を求める測定装置。
  3. 乱反射部分を一部に含む反射表面を備える物体の表面を、所定ピッチで走査して、前記物体の表面の断面形状を測定する測定装置であって、
    乱反射成分を測定するレーザ三角測量方式の変位計と、
    前記反射表面の測定点へ入射した光の反射光が入射するスクリーンと、
    前記スクリーンにおける前記反射光の入射位置を測定する撮像装置と、
    前記測定装置を制御し、前記変位計および前記撮像装置からの出力を処理する演算制御手段とを備え、
    前記演算制御手段は、
    (g’)測定開始点から前記乱反射部分までの間に存在する前記反射表面の各測定点について、前記各測定点からの反射光が前記スクリーンに入射する入射位置をそれぞれメモリに記憶し、
    (h’)前記変位計を用いて、前記乱反射部分の距離を測定して前記乱反射部分の表面断面形状を求め、
    (i’)前記乱反射部分の表面断面形状を、走査方向を遡って所定のピッチ延長して、既に走査済みの測定点であって、前記乱反射部分の直前の前記反射表面の最初の測定点に近似する第1近似点の座標を算出し、前記第1近似点の距離を求め、
    (j’)前記第1近似点の距離と、記憶されている前記反射表面の最初の測定点からの反射光が前記スクリーンに入射する入射位置とに基づいて、前記反射表面の最初の測定点へ入射した光の入射角を算出し、前記反射表面の最初の測定点における接線角度を求め、
    (k’)前記反射表面の最初の測定点における接線を、走査方向に遡って所定のピッチ延長して、既に走査済みの測定点であって、前記反射表面の第2の測定点に近似する第2近似点の座標を算出し、前記第2近似点の距離を求め、
    (l’)前記第2近似点の距離と、記憶されている前記反射表面の第2の測定点からの反射光が前記スクリーンに入射する入射位置とに基づいて、前記反射表面の第2の測定点へ入射した光の入射角を算出し、前記反射表面の第2の測定点における接線角度を求め、
    (m’)前記反射表面の最初の測定点の接線角度と前記反射表面の第2の測定点の接線角度とに基づいて、それぞれの測定点における接線を算出し、前記それぞれの測定点における接線を順次結んで前記反射表面の断面形状を求める測定装置。
  4. 第2のレーザ光源をさらに備え、
    前記第2のレーザ光源は、前記第2のレーザ光源から水平な測定面に入射する光の入射角が一定以上となり、その反射光が前記スクリーンに入射する位置に設けられる、請求項2または3に記載の測定装置。
JP2002185531A 2002-06-26 2002-06-26 非接触断面形状測定方法および測定装置 Pending JP2004028792A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185531A JP2004028792A (ja) 2002-06-26 2002-06-26 非接触断面形状測定方法および測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185531A JP2004028792A (ja) 2002-06-26 2002-06-26 非接触断面形状測定方法および測定装置

Publications (1)

Publication Number Publication Date
JP2004028792A true JP2004028792A (ja) 2004-01-29

Family

ID=31181134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185531A Pending JP2004028792A (ja) 2002-06-26 2002-06-26 非接触断面形状測定方法および測定装置

Country Status (1)

Country Link
JP (1) JP2004028792A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894819B1 (ko) 2007-10-10 2009-04-24 울산대학교 산학협력단 삼각형의 닮음 조건을 이용한 미세소자의 변형 측정 장치및 그 장치를 이용한 측정 방법
KR100924210B1 (ko) 2004-12-02 2009-10-29 우시오덴키 가부시키가이샤 필름 워크의 패턴 검사 장치
JP2013040971A (ja) * 2009-02-24 2013-02-28 Corning Inc 鏡面反射面の形状測定
EP2913631A1 (en) 2014-02-27 2015-09-02 Ricoh Company, Ltd. Test apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924210B1 (ko) 2004-12-02 2009-10-29 우시오덴키 가부시키가이샤 필름 워크의 패턴 검사 장치
KR100894819B1 (ko) 2007-10-10 2009-04-24 울산대학교 산학협력단 삼각형의 닮음 조건을 이용한 미세소자의 변형 측정 장치및 그 장치를 이용한 측정 방법
JP2013040971A (ja) * 2009-02-24 2013-02-28 Corning Inc 鏡面反射面の形状測定
EP2913631A1 (en) 2014-02-27 2015-09-02 Ricoh Company, Ltd. Test apparatus and method

Similar Documents

Publication Publication Date Title
JP3511450B2 (ja) 光学式測定装置の位置校正方法
EP0330429B1 (en) Method and apparatus for monitoring the surface profile of a workpiece
EP1739391B1 (en) Image obtaining apparatus
JP3197529B2 (ja) 車輪アライメント特性の非接触式測定方法とその測定装置
TWI420081B (zh) 測距系統及測距方法
JPH11257917A (ja) 反射型光式センサ
US6476914B1 (en) Process and device for ascertaining whether two successive shafts are in alignment
EP0843155A1 (en) Optical distance measuring equipment and method therefor
JPH09113223A (ja) 非接触距離姿勢測定方法及び装置
JP2004028792A (ja) 非接触断面形状測定方法および測定装置
JP2001235317A (ja) 光学球面曲率半径測定装置
CN110763162B (zh) 一种超精密线激光转角感测方法
JP5487920B2 (ja) 光学式3次元形状計測装置及び光学式3次元形状計測方法
JP4545580B2 (ja) 面内方向変位計
JP2001165629A (ja) 形状測定装置及び形状測定方法
JP3401979B2 (ja) 三角測量式測距装置及び障害物検知装置
JP3740373B2 (ja) 三次元測定装置
JP2002188918A (ja) 無人車位置計測方式
US11359910B2 (en) Inspection method, correction method, and inspection device
JP2000121340A (ja) 面傾斜角度測定機
TWI797039B (zh) 測量系統
JP2008180646A (ja) 形状測定装置および形状測定方法
JPH08304040A (ja) 3次元形状測定装置
JP2002340533A (ja) 3次元表面形状測定方法
JP2000018914A (ja) 光学式丸孔測定方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20040630

Free format text: JAPANESE INTERMEDIATE CODE: A7424