JP2004028317A - Linear motion mechanism - Google Patents

Linear motion mechanism Download PDF

Info

Publication number
JP2004028317A
JP2004028317A JP2002189851A JP2002189851A JP2004028317A JP 2004028317 A JP2004028317 A JP 2004028317A JP 2002189851 A JP2002189851 A JP 2002189851A JP 2002189851 A JP2002189851 A JP 2002189851A JP 2004028317 A JP2004028317 A JP 2004028317A
Authority
JP
Japan
Prior art keywords
retainer
shaft
steel ball
window
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002189851A
Other languages
Japanese (ja)
Inventor
Mitsuru Yamazaki
山崎 充
Daisuke Watanabe
渡辺 大助
Mikio Nomura
野村 幹男
Mamoru Nakayama
中山 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Bearing Co Ltd
Sumiju Techno Center Co Ltd
Original Assignee
Nippon Bearing Co Ltd
Sumiju Techno Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Bearing Co Ltd, Sumiju Techno Center Co Ltd filed Critical Nippon Bearing Co Ltd
Priority to JP2002189851A priority Critical patent/JP2004028317A/en
Publication of JP2004028317A publication Critical patent/JP2004028317A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/068Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motion mechanism to be used for a member for manufacturing a semiconductor manufacturing device wherein a retainer fitted to the inner peripheral surface of an outer cylinder moving along a shaft holds a plurality of steel balls and these steel balls are brought in contact with a shaft for rotation to reduce the friction to be generated with the motion and wherein even if a flash is generated with metal injection molding in a window part formed in the retainer to expose the held steel balls toward the shaft side, discrimination is facilitated to expand tolerance for occurrence of flash. <P>SOLUTION: A current taper shape of a tip is cut by a cross section of an edge of a window part 13 formed in the retainer 7 to form a bluff-like part 15. Thickness of this bluff-like part 15 is formed larger than the thickness of the flash 17 to be usually generated. for example, several times of 6 % of the diameter of the steel ball or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、半導体製造装置や搬送装置などを製作する際の部材として用いられる直線運動機構に関し、詳しくは直線運動機構を構成し摩擦を減ずる鋼球を保持するリテーナーと呼ばれる部品の形状に関する。
【0002】
【従来の技術】
従来、半導体製造装置や搬送装置などを製作する際の部材として、直線運動を反復して行う動作のために直線運動機構と呼ばれるものが用いられる。この直線運動機構は、シャフトに沿って運動する外筒体の内周面に取り付けられるリテーナーが、複数個の鋼球を保持し、これらの鋼球がシャフトと接触して回転することで、運動にともなう摩擦が軽減される。
【0003】
この直線運動体には、複数の種類があり、鋼球がシャフトの長手方向に形成された溝の中を走行することで、直線運動だけでなくシャフト周りのトルクも負荷できるもの、鋼球の保持形態に平面(鋼球が接触するシャフトの位置に接する平面)上の方向性を無くすることで、直線運動だけでなくシャフト周りの運動も可能にしたもの、直線運動だけに重点をおいて設計されたもの、外筒体の外形が円柱状のもの、直方体状のもの、などがある。
いずれの種類も、鋼球がシャフト側へ露出するために、リテーナーには窓部が形成される。
【0004】
複数の窓部の形成などでリテーナーは複雑な形状を有するものになり、一般には、金属射出成形によって製造される。すなわち、材料の金属の粉体を練り込んだペーストを、金型内部に射出成形により注入し、金型を開いて成形体を取り出し、焼結する。
【0005】
【発明が解決しようとする課題】
しかしながら、多数のリテーナーを製造するためには、金型を多数回、開閉しなければならず、この回数を表すショット数が多くなるにつれ、金型には摩耗が生じバリの発生がある。またショット数が少なくても、リテーナーの種類や形状によっては、バリの発生が避けられないこともある。
【0006】
このようなバリは、特に精密な寸法が要求される窓部に発生すると、リテーナーの性能に影響を与えてしまうので、除去しなければならない。ところが従来は、この窓部の縁の断面形状は、先端が鋭いテーパー形状であるエッジ形状になっていたので、バリが発生しても、窓部の縁との区別が付き難かった。
【0007】
例えば図5(A)(B)に示すように、シャフト101の外周側に配置され鋼球102を保持するリテーナー103に形成された窓部105は、縁の断面形状が、先端が鋭いテーパー形状となっており、最先端の厚さt1は鋼球径の1%未満であった。同図(C)に示すように、この先端にバリ107が発生すると、バリ107の厚さt2は鋼球径の0〜数%であり、窓部105の縁とバリ107の区別が付き難かった。
【0008】
また、大きなバリ107が発生すると直ぐに、鋼球102の露出が足りなくなったり、バリによって鋼球の動きが妨げられたりして、リテーナー103の性能を満たさなくなってしまうものであった。
この発明は、以上の課題を解決するためになされたもので、リテーナーの窓部の縁にバリが発生しても、バリの区別が容易で除去し易く、リテーナーの性能を満たす許容量を大きくすることができる直線運動機構を提供することを目的とする。
【0009】
【課題を解決するための手段】
以上の課題を解決するために、第一の発明は、直線運動をガイドするシャフトと、このシャフトに沿って運動する外筒体と、この外筒体の内周面に取り付けられ金属射出成形されるリテーナーと、このリテーナーによって保持されて前記シャフトと接触して回転する鋼球と、この鋼球の保持を鋼球の列がエンドレスに移動可能に行うループ状の溝と、このループ状の溝のうち二つのコーナー部分と一方の直線部分に形成され鋼球が前記シャフト側へ露出するための窓部と、この窓部のうち前記二つのコーナー部分およびこれら各コーナー部分に連続する直線部分の一部における縁の断面形状で、先端のテーパー形状がカットされて形成された崖状部分と、前記リテーナーを金属射出成形する際に、前記窓部の縁に通常発生するバリの厚さよりも十分に大きい前記崖状部分の厚さと、を有することを特徴とする直線運動機構である。
また、第二発明は、さらに、前記崖状部分の厚さは、前記鋼球の径の6%の数倍以上とすることを特徴とする直線運動機構である。
【0010】
【発明の実施の形態】
この発明の実施の形態を、図1〜図4に示す。
図2(A)に示すように、この実施形態の直線運動機構1は、円形断面のシャフト3に沿って、円柱状の外形を有する外筒体5が直線運動するものである。シャフト3周りの回転運動も可能であるが、主に直線運動だけに重点をおいて設計されたものである。
【0011】
図2(B)(C)に示すように、外筒体5の内周面の断面形状は、リテーナー7の外形断面形状と同様に、正方形の角部を大きく丸めた非円形となっており、これにより両者5、7の周方向の位置決めがなされ、また、図示しない他の手段で軸方向の位置決めがなされて、外筒体5に対するリテーナー7の取付がなされる。
【0012】
リテーナー7の外周面には、複数の鋼球9が一列に並んで回転しながらエンドレス状態で移動できる溝11すなわち鋼球無限循環路が、ループ状に形成される。このループ状の溝11は、リテーナー7の周方向に等間隔に4つ形成される。
【0013】
各ループ状の溝11は、陸上競技のトラックやサーキットのように、二つの直線部分11A、11Bを、二つのコーナー部分11C、11Dがつないだ形になっている。そして、一方の直線部分11Bと、この直線部分の両端に連続するコーナー部分11C、11Dには、並んだ状態の各鋼球9の下の一部がシャフト3側へ露出するため窓部13が、形成され、負荷を受ける負荷部となる。この露出した鋼球9はシャフト3に接触して回転し、シャフト3との摩擦を軽減する。他の直線部分11Aは無負荷部となる。
【0014】
なお、図2(B)の溝11に、特にバリの発生しやすい部位を斜線で示す。この部位は、窓部のうち二つのコーナー部分、およびこれら各コーナー部分に連続する直線部分の一部である。
【0015】
図1(A)(B)に示すように、リテーナー7に形成された窓部13は、縁の断面形状において、先端のテーパー形状(従来例の図5参照)をカットされて崖状部分15が形成される。これにより窓部13の縁の周囲に、環状で、垂直に近い面としての崖状部分15が存在することになる。
【0016】
図1(C)に示すように、カットされた厚さTは、バリ17の厚さtに比べて十分に大きいものとする。この大きさは、崖状部分15の厚さTが、リテーナー7を金属射出成形する際に窓部13の縁に通常発生するバリ17の厚さtよりも十分に大きいものとし、好ましくはバリ17の厚さtの数倍以上とする。すなわち、少なくとも2倍以上あればバリの区別が可能であり、できれば3倍以上、望ましくは4倍以上で、大きいほど区別が容易となる。
【0017】
図3に示すように、リテーナー7を製造するために金型を開閉するショット数が多くなるにつれ、金型の摩耗により、窓部13の縁に発生するバリ17は大きく成長する。このとき、例えば、リテーナー7の材料はステンレスの粉末が用いられ、金型を締める力は250〜500kN、射出充填圧力は50〜150MPaである。
【0018】
そして、金型が廃棄されるショット数100、000付近になると、バリ17は鋼球径の6%近くになる。そこで、崖状部分15の厚さTを、鋼球径の6%を越えるものとすることで、金型が摩耗しバリ17が大きく成長する時期になっても、崖状部分15とバリの区別が容易になる。この区別を明確にするためには、厚さTを鋼球径の6%の数倍以上にすることが望ましい。
【0019】
(実施形態の作用効果)
図1(C)(D)に示すように、カットすることで形成された崖状部分15の厚さTが、発生するバリ17の厚さtよりも十分に大きいものとすることで、バリ17の区別が容易となる。よってバリを除去し易くなる。
【0020】
図4に示すように、また、窓部13の縁をカットすることで、窓幅(窓部の幅のこと、以下同じ)を大きくでき、したがってバリ17が発生してもリテーナー7の機能を満たすことができるため許容量を大きくできる。
【0021】
すなわち一般に、窓幅が鋼球径の50%以下になると、鋼球の露出が足りなくなり、また鋼球9の動きが妨げられて摩擦軽減の機能(ベアリング機能)を果たさなくなる。また、92.5%以上になると、鋼球9との摩耗により窓部13の縁が削れ、鋼球9が落ちてしまう可能性が出る。
【0022】
従来(旧形状)は、窓部13の縁がエッジ形状(図5参照)であり、このため窓幅が鋼球径の70%しかなかった(バリが発生しない状態で)ので、バリ17が鋼球径9の10%以上発生すると(窓部の両側で合計20%以上発生する)、実質上の窓幅は50%以下になる。したがってショット数が多くなりバリが成長するようになると、直ぐにベアリング機能を果たさなくなる。
【0023】
これに対し、この実施形態(新形状)では、窓部13の縁をカットすることで、窓幅を85%にできたので、バリ17が鋼球径の17%に成長しても(窓部13の両側で合計34%)、実質上の窓幅は50%以上になり、ベアリング機能を果たす。このことは、バリ17の除去作業でも、完全にはバリ17が除去できないので、仮に除去が不完全でも許容される許容量が大きくなったことを意味する

【0024】
(他の実施形態)
以上の実施形態においては、ループ状の溝11は、リテーナー7の周方向に等間隔に4つ形成されるものであったが、他の実施形態においては、不等間隔に形成されるものや、3つ形成されるもの、あるいは5つ以上形成されるものであっても構わない。
【0025】
また、以上の実施形態においては、直線運動機構1は、直線運動だけに重点をおいて設計されたものであり、外筒体5の外形は円柱状のものであったが、他の実施形態においては、鋼球がシャフトの長手方向に形成された溝の中を走行してシャフト周りのトルクも負荷できるもの、鋼球の保持形態に方向性を無くすることで、シャフト周りの運動も可能にしたもの、外筒体の外形が直方体状のもの、などであってもかまわない。
【0026】
【発明の効果】
以上説明したように、第一、または第二の発明によれば、リテーナーが鋼球を保持する窓部の縁の断面形状で、先端がカットされた崖状部分とすることで、この崖状部分にバリが発生しても、バリの区別が容易で、よって除去し易くなる。
【0027】
また、カットされた分だけ、鋼球の露出は十分であり、ある程度のバリが発生しても鋼球の動きを妨げることが無く、リテーナーの性能を満たすことになるので、バリの許容量を大きくすることができる。
【図面の簡単な説明】
【図1】(A)は、この発明の一実施形態に係る直線運動機構の要部を示す横断面拡大図(B)は、(A)のバリが発生しない状態でのB部拡大図
(C)は、(A)のバリが発生した状態でのC部拡大図である。
【図2】(A)は、この発明の一実施形態に係る直線運動機構の全体斜視図
(B)は、(A)の直線運動機構を構成するリテーナーのみを実線で示す拡大側面図
(C)は、(B)のC−C横断面図である。
【図3】図2(B)のリテーナーを金属射出成形で製造するために金型を開閉するショット数と、窓部の縁に発生するバリの成長との関係を示すグラフを示す図である。
【図4】リテーナーの窓幅が、バリ発生量(ショット数にともなって成長する)によって小さくなっていく様子を説明するグラフを示す図である。
【図5】
(A)は、従来例の直線運動機構の要部を示す横断面拡大図
(B)は、(A)のバリが発生しない状態でのB部拡大図
(C)は、(A)のバリが発生した状態でのC部拡大図である。
【符号の説明】
1 直線運動機構
3 シャフト
5 外筒体
7 リテーナー
9 鋼球
11 ループ状の溝
11A、B 直線部分
11C、D コーナー部分
13 窓部
15 崖状部分
T 崖状部分の厚さ
17 バリ
t バリの厚さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a linear motion mechanism used as a member when manufacturing a semiconductor manufacturing apparatus, a transport apparatus, and the like, and more particularly, to a shape of a part called a retainer that constitutes a linear motion mechanism and holds a steel ball that reduces friction.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a member called a linear motion mechanism for an operation of repeatedly performing a linear motion is used as a member when manufacturing a semiconductor manufacturing device, a transport device, or the like. In this linear motion mechanism, a retainer attached to the inner peripheral surface of an outer cylinder that moves along a shaft holds a plurality of steel balls, and the steel balls rotate in contact with the shaft. The friction associated with it is reduced.
[0003]
There are a plurality of types of linear motion bodies, and a steel ball travels in a groove formed in the longitudinal direction of the shaft, so that not only linear motion but also torque around the shaft can be loaded. By eliminating the directivity of the holding form on the plane (plane in contact with the position of the shaft where the steel ball contacts), not only linear movement but also movement around the shaft is possible, with emphasis on linear movement only There are a designed one, an outer cylindrical body having a columnar shape, a rectangular parallelepiped shape, and the like.
In any case, since the steel ball is exposed to the shaft side, a window is formed in the retainer.
[0004]
The retainer has a complicated shape due to the formation of a plurality of windows and the like, and is generally manufactured by metal injection molding. That is, the paste into which the metal powder of the material is kneaded is injected into the mold by injection molding, the mold is opened, the molded body is taken out, and sintered.
[0005]
[Problems to be solved by the invention]
However, in order to manufacture a large number of retainers, the mold must be opened and closed many times, and as the number of shots indicating the number of times increases, the mold is worn and burrs occur. Also, even if the number of shots is small, burrs may be unavoidable depending on the type and shape of the retainer.
[0006]
Such burrs must be removed because they affect the performance of the retainer, particularly when they occur in windows where precise dimensions are required. However, conventionally, the cross-sectional shape of the edge of the window portion has an edge shape having a sharp tapered tip, so that even if burrs are generated, it is difficult to distinguish the edge from the edge of the window portion.
[0007]
For example, as shown in FIGS. 5A and 5B, a window 105 formed in a retainer 103 which is disposed on the outer peripheral side of the shaft 101 and holds the steel ball 102 has a tapered edge having a sharp cross section. And the most advanced thickness t1 was less than 1% of the steel ball diameter. As shown in FIG. 4C, when the burr 107 is generated at the tip, the thickness t2 of the burr 107 is 0 to several percent of the steel ball diameter, and it is difficult to distinguish the edge of the window 105 from the burr 107. Was.
[0008]
Immediately after the generation of the large burr 107, the exposure of the steel ball 102 becomes insufficient or the movement of the steel ball is hindered by the burr, so that the performance of the retainer 103 is not satisfied.
The present invention has been made in order to solve the above problems, and even if burrs are generated on the edge of the window portion of the retainer, the burrs can be easily distinguished and removed, and the allowable amount satisfying the performance of the retainer is increased. It is an object of the present invention to provide a linear motion mechanism that can perform the motion.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a first invention is directed to a shaft that guides a linear motion, an outer cylinder that moves along the shaft, and a metal injection molding attached to the inner peripheral surface of the outer cylinder. A steel ball held by the retainer and rotating in contact with the shaft; a loop-shaped groove for holding the steel ball so that a row of steel balls can move endlessly; and a loop-shaped groove. A window portion formed at two corner portions and one straight portion for exposing the steel ball to the shaft side, and a straight portion continuous with the two corner portions and each of these corner portions of the window portion. The cross-sectional shape of the edge in a part, the cliff-shaped portion formed by cutting the tapered tip, and the thickness of the burr that usually occurs at the edge of the window when the retainer is subjected to metal injection molding. The thickness of the sufficiently large the Gakejo moiety is a linear movement mechanism, characterized in that it comprises a.
Further, the second invention is a linear motion mechanism, characterized in that the thickness of the cliff portion is several times or more of 6% of the diameter of the steel ball.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention is shown in FIGS.
As shown in FIG. 2A, in the linear motion mechanism 1 of this embodiment, an outer cylinder 5 having a columnar outer shape linearly moves along a shaft 3 having a circular cross section. Rotational movement around the shaft 3 is also possible, but it is designed mainly with emphasis on linear movement only.
[0011]
As shown in FIGS. 2B and 2C, the cross-sectional shape of the inner peripheral surface of the outer cylinder 5 is a non-circular shape in which the corners of the square are largely rounded, similarly to the outer cross-sectional shape of the retainer 7. Thus, the positioning of the retainers 7 with respect to the outer cylinder 5 is performed by positioning the both 5 and 7 in the circumferential direction, and by performing positioning in the axial direction by other means (not shown).
[0012]
On the outer peripheral surface of the retainer 7, a groove 11 in which a plurality of steel balls 9 can move in an endless state while rotating in a line, that is, a steel ball infinite circulation path is formed in a loop shape. The four grooves 11 are formed at regular intervals in the circumferential direction of the retainer 7.
[0013]
Each loop-shaped groove 11 has a shape in which two straight portions 11A and 11B are connected to two corner portions 11C and 11D, like a track and a track for athletics. The window portion 13 is formed on one straight portion 11B and on the corner portions 11C and 11D continuous with both ends of the straight portion, since a portion under each of the steel balls 9 arranged in a line is exposed to the shaft 3 side. , Formed and become a load part to receive a load. The exposed steel balls 9 rotate in contact with the shaft 3 to reduce friction with the shaft 3. The other straight portion 11A is a no-load portion.
[0014]
In the groove 11 of FIG. 2B, a portion where burrs are particularly likely to occur is indicated by oblique lines. This portion is a part of two corner portions of the window portion and a straight line portion continuing to each of these corner portions.
[0015]
As shown in FIGS. 1 (A) and 1 (B), the window 13 formed in the retainer 7 has a tapered portion 15 (see FIG. 5 of the conventional example) cut at the tip in the cross-sectional shape of the edge. Is formed. As a result, a cliff-like portion 15 is present around the edge of the window portion 13 as an annular, nearly vertical surface.
[0016]
As shown in FIG. 1C, it is assumed that the cut thickness T is sufficiently larger than the thickness t of the burr 17. This size is set so that the thickness T of the cliff-like portion 15 is sufficiently larger than the thickness t of the burr 17 which usually occurs at the edge of the window portion 13 when the retainer 7 is subjected to metal injection molding. It is set to be several times or more the thickness t of the seventeenth embodiment. That is, the burrs can be distinguished if they are at least two times or more, and if possible three times or more, preferably four times or more.
[0017]
As shown in FIG. 3, as the number of shots for opening and closing the mold for manufacturing the retainer 7 increases, the burrs 17 generated on the edge of the window 13 grow larger due to wear of the mold. At this time, for example, stainless steel powder is used as the material of the retainer 7, the mold clamping force is 250 to 500 kN, and the injection filling pressure is 50 to 150 MPa.
[0018]
When the number of shots at which the mold is discarded reaches around 100,000, the burr 17 becomes close to 6% of the steel ball diameter. Therefore, by setting the thickness T of the cliff portion 15 to be more than 6% of the diameter of the steel ball, even when the mold is worn and the burr 17 grows large, the cliff portion 15 and the burr are not formed. The distinction becomes easy. In order to make this distinction clear, it is desirable that the thickness T be several times or more of 6% of the steel ball diameter.
[0019]
(Operation and Effect of Embodiment)
As shown in FIGS. 1 (C) and 1 (D), the thickness T of the cliff-shaped portion 15 formed by cutting is sufficiently larger than the thickness t of the burr 17 to be generated. 17 becomes easy. Therefore, burrs can be easily removed.
[0020]
As shown in FIG. 4, by cutting the edge of the window 13, the width of the window (the width of the window, the same applies hereinafter) can be increased. Since it can be satisfied, the allowable amount can be increased.
[0021]
That is, generally, when the window width becomes 50% or less of the steel ball diameter, the exposure of the steel ball becomes insufficient, and the movement of the steel ball 9 is hindered, so that the function of reducing friction (bearing function) cannot be performed. Further, when it becomes 92.5% or more, the edge of the window portion 13 is shaved due to abrasion with the steel ball 9, and the steel ball 9 may fall.
[0022]
In the conventional (old shape), the edge of the window 13 has an edge shape (see FIG. 5), and the window width is only 70% of the steel ball diameter (in a state where no burr occurs). When 10% or more of the steel ball diameter 9 is generated (20% or more in total on both sides of the window), the substantial window width becomes 50% or less. Therefore, when the number of shots increases and burrs grow, the bearing function is not immediately fulfilled.
[0023]
On the other hand, in this embodiment (new shape), by cutting the edge of the window portion 13, the window width can be made 85%, so that even if the burr 17 grows to 17% of the steel ball diameter (window (A total of 34% on both sides of the part 13), the effective window width is 50% or more, and performs a bearing function. This means that even when the burrs 17 are removed, the burrs 17 cannot be completely removed, so that the allowable amount allowed even if the removal is incomplete is increased.
[0024]
(Other embodiments)
In the above embodiment, four loop-shaped grooves 11 are formed at regular intervals in the circumferential direction of the retainer 7, but in other embodiments, the grooves are formed at irregular intervals. Alternatively, three or more than five may be formed.
[0025]
In the above embodiment, the linear motion mechanism 1 is designed with emphasis on linear motion only, and the outer shape of the outer cylinder 5 is cylindrical. In the, the steel ball can travel in the groove formed in the longitudinal direction of the shaft and load the torque around the shaft, but the movement around the shaft is also possible by eliminating the direction of the holding form of the steel ball The outer cylinder may have a rectangular parallelepiped outer shape.
[0026]
【The invention's effect】
As described above, according to the first or second aspect of the present invention, the retainer is formed into a cliff-shaped portion having a cross-sectional shape of an edge of a window portion holding a steel ball and having a tip cut. Even if burrs are generated in the portion, the burrs can be easily distinguished and thus easily removed.
[0027]
In addition, the exposed steel ball is enough for the cut, and even if a certain amount of burr occurs, it does not hinder the movement of the steel ball and satisfies the performance of the retainer. Can be larger.
[Brief description of the drawings]
FIG. 1A is an enlarged cross-sectional view showing a main part of a linear motion mechanism according to an embodiment of the present invention, and FIG. 1B is an enlarged view of a portion B in FIG. (C) is an enlarged view of a portion C in a state where burrs of (A) are generated.
FIG. 2A is an overall perspective view of a linear motion mechanism according to an embodiment of the present invention, and FIG. 2B is an enlarged side view showing only a retainer constituting the linear motion mechanism of FIG. () Is a CC cross-sectional view of (B).
FIG. 3 is a graph showing a relationship between the number of shots for opening and closing a mold for manufacturing the retainer of FIG. 2 (B) by metal injection molding and the growth of burrs generated at the edge of a window. .
FIG. 4 is a graph illustrating a state in which the window width of the retainer is reduced according to the amount of burr generated (grows with the number of shots).
FIG. 5
(A) is an enlarged cross-sectional view showing a main part of a conventional linear motion mechanism, (B) is an enlarged view of (B) in a state where no burr is generated in (A), and (C) is a burr of (A). FIG. 6 is an enlarged view of a portion C in a state where the occurrence of the occurs.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Linear motion mechanism 3 Shaft 5 Outer cylinder 7 Retainer 9 Steel ball 11 Looped groove 11A, B Linear part 11C, D Corner part 13 Window part 15 Cliff-shaped part T Cliff-shaped part thickness 17 Burr-thickness Sa

Claims (2)

直線運動をガイドするシャフトと、このシャフトに沿って運動する外筒体と、この外筒体の内周面に取り付けられ金属射出成形されるリテーナーと、このリテーナーによって保持されて前記シャフトと接触して回転する鋼球と、この鋼球の保持を鋼球の列がエンドレスに移動可能に行うループ状の溝と、このループ状の溝のうち二つのコーナー部分と一方の直線部分に形成され鋼球が前記シャフト側へ露出するための窓部と、この窓部のうち前記二つのコーナー部分およびこれら各コーナー部分に連続する直線部分の一部における縁の断面形状で、先端のテーパー形状がカットされて形成された崖状部分と、前記リテーナーを金属射出成形する際に、前記窓部の縁に通常発生するバリの厚さよりも十分に大きい前記崖状部分の厚さと、を有することを特徴とする直線運動機構。A shaft that guides linear motion, an outer cylinder that moves along the shaft, a retainer that is attached to the inner peripheral surface of the outer cylinder and that is formed by metal injection molding, and that is held by the retainer and contacts the shaft. A steel ball that rotates in a row, a loop-shaped groove for holding the steel ball so that the row of steel balls can move endlessly, and a steel groove formed in two corner portions and one straight portion of the loop-shaped groove. The tapered shape at the tip is cut off at the window for the sphere to be exposed to the shaft side, and at the cross-sectional shape of the edges of the two corners and a part of the straight line continuous to each of these corners of the window. A cliff portion formed as a result, and a thickness of the cliff portion that is sufficiently larger than a thickness of a burr that normally occurs at an edge of the window portion when the retainer is subjected to metal injection molding. Linear movement mechanism, characterized in that. 前記崖状部分の厚さは、前記鋼球の径の6%の数倍以上とすることを特徴とする請求項1に記載の直線運動機構。The linear motion mechanism according to claim 1, wherein the thickness of the cliff-shaped portion is set to be several times or more of 6% of the diameter of the steel ball.
JP2002189851A 2002-06-28 2002-06-28 Linear motion mechanism Pending JP2004028317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189851A JP2004028317A (en) 2002-06-28 2002-06-28 Linear motion mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189851A JP2004028317A (en) 2002-06-28 2002-06-28 Linear motion mechanism

Publications (1)

Publication Number Publication Date
JP2004028317A true JP2004028317A (en) 2004-01-29

Family

ID=31184154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189851A Pending JP2004028317A (en) 2002-06-28 2002-06-28 Linear motion mechanism

Country Status (1)

Country Link
JP (1) JP2004028317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642739B1 (en) 2005-03-07 2006-11-03 삼익정공(주) A manufacturing method of machine parts for linear motion and parts manufactured by the above method
KR100670027B1 (en) 2005-05-31 2007-01-16 삼익정공(주) A manufacturing method of single body ball retainer for linear bushing and retainer manufactured by the above method
WO2013137488A1 (en) * 2012-03-14 2013-09-19 トーホーテック株式会社 Titanium-based powder for paste and production method for said titanium-based powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642739B1 (en) 2005-03-07 2006-11-03 삼익정공(주) A manufacturing method of machine parts for linear motion and parts manufactured by the above method
KR100670027B1 (en) 2005-05-31 2007-01-16 삼익정공(주) A manufacturing method of single body ball retainer for linear bushing and retainer manufactured by the above method
WO2013137488A1 (en) * 2012-03-14 2013-09-19 トーホーテック株式会社 Titanium-based powder for paste and production method for said titanium-based powder
JPWO2013137488A1 (en) * 2012-03-14 2015-08-03 トーホーテック株式会社 Titanium powder for paste and method for producing the same

Similar Documents

Publication Publication Date Title
TWI330697B (en) Rolling element accommodating belt for linear guide apparatus, linear guide apparatus and metallic mold for manufacturing rolling element accommodating belt
JP2004028192A (en) Circulating component, movement guiding device using circulating component, and ball screw
JP5429567B2 (en) Resin cage for angular contact ball bearings
JP2000065053A (en) Linear rolling guide device
JP2004028317A (en) Linear motion mechanism
JP4692407B2 (en) Rolling body accommodation belt for linear motion guide device, linear motion guide device, and die for manufacturing rolling body accommodation belt
JP2005240878A (en) Ball screw
JP2009119264A (en) Mold for forming golf ball and golf ball manufactured using the same
US6361309B1 (en) Injection molding tool for producing a rolling bearing cage for a linear bearing
JP2000145790A (en) Needle roller with retainer
JP2012067838A (en) Attachment for temporary shaft of linear guide device
JP5364331B2 (en) Golf ball molding die and golf ball manufactured using the same
WO2021070432A1 (en) Manufacturing method for resin retainer having two annular sections
JP2003120681A (en) Method for manufacturing resin ball retainer for bearing
JP4233164B2 (en) Rolling body connected body
JP3532663B2 (en) Resin cage for thrust bearing
JPS63172617A (en) Casting or injection molding tool for manufacturing snap cage for deep groove ball bearing and snap cage manufactured by said tool
JP6834760B2 (en) Angular contact ball bearing
JP2004068861A (en) Rolling bearing manufacturing method and rolling bearing
JP2583655Y2 (en) Synthetic resin cage
JPH10172202A (en) Pinch roller and pinch roller bearing
JP2004197831A (en) Rolling bearing
JP2008202753A (en) Resin made retainer for bearing and its manufacturing method
JP5157849B2 (en) Manufacturing method of seal
JP4797827B2 (en) Rolling body accommodation belt for linear motion guide device, linear motion guide device, and die for manufacturing rolling body accommodation belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061128