JP2004027758A - Base isolation support device - Google Patents

Base isolation support device Download PDF

Info

Publication number
JP2004027758A
JP2004027758A JP2002189209A JP2002189209A JP2004027758A JP 2004027758 A JP2004027758 A JP 2004027758A JP 2002189209 A JP2002189209 A JP 2002189209A JP 2002189209 A JP2002189209 A JP 2002189209A JP 2004027758 A JP2004027758 A JP 2004027758A
Authority
JP
Japan
Prior art keywords
seismic isolation
sides
pair
laminate
isolation bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189209A
Other languages
Japanese (ja)
Other versions
JP3931745B2 (en
Inventor
Akio Suzuki
鈴木 明雄
Sumio Kawaguchi
川口 澄夫
Masaki Mochimaru
持丸 昌己
Shuichi Osada
長田 修一
Mitsuru Miyazaki
宮崎 充
Shuhei Kaneko
金子 修平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2002189209A priority Critical patent/JP3931745B2/en
Publication of JP2004027758A publication Critical patent/JP2004027758A/en
Application granted granted Critical
Publication of JP3931745B2 publication Critical patent/JP3931745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation support device having excellent buckling-resistant performance even if it is compact, capable of being easily and inexpensively manufactured, and being suitable for buildings such as an office building, an apartment house, a house, and a warehouse. <P>SOLUTION: This base isolation support device 1 for buildings such as the apartment house, the house, and the warehouse is provided with a laminated body 4 formed by laminating a plurality of elastic layers 2 like octagonal plate made of natural or synthetic rubber and a plurality of rigid layers 3 like octagonal plate made of a steel plate alternately. The laminated body 4 is provided with an outer covered layer 5 arranged on an outer peripheral side of the elastic layer 2 and the rigid layer 3, surrounding the elastic layer 2 and the rigid layer 3, and formed integrally with the elastic layer 2 in addition to the elastic layers 2 and the rigid layers 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビル、集合住宅、戸建住宅、倉庫等の建物を支持すると共に、地震振動から免震する免震支承装置に関する。
【0002】
【発明が解決しようとする課題】
免震支承装置としては、ゴム層と鋼鈑層とが交互に積層されている積層体を具備したものが知られているが、免震すべき振動方向を特定できないビル、集合住宅、戸建住宅、倉庫等の建物用の免震支承装置では、免震特性に無方向性の円柱型の積層体が用いられる。
【0003】
ところで、円柱型の積層体では、水平方向の大きな変形においてその上面と下面との平面視における重なり合いの面積が小さい結果、耐座屈性能が劣ることになり、この耐座屈性能を向上させるためには、その径を大きくして大型にする必要があるが、ビル、集合住宅、戸建住宅、倉庫等の建物用の免震支承装置では、橋梁と比較してその設置空間が制限されるために、積層体の水平方向の大型化は困難である。
【0004】
また、円柱型の積層体では、その積層体を構成するゴム層及び鋼鈑層を得るために、素材としての矩形のゴム板及び鋼板から円形のゴム板及び鋼板を得るために、使用しない無駄となる部分が素材に多く生じて素材の利用率が極めて低く、したがって、円柱型の積層体を具備した免震装置は割高となる。
【0005】
加えて、積層体は、通常、金型内でゴム板を加硫させてゴム板及び鋼板を互いに固着させて製造されるが、積層体が円柱型であると、種々の大きさの積層体を製造するには各積層体に対応した金型を準備しなければならず、斯かる点からも円柱型の積層体を具備した免震装置は割高となる。
【0006】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、小型でも耐座屈性能に優れて、しかも、容易に且つ安価に製造できる、ビル、集合住宅、戸建住宅、倉庫等の建物用に好適な免震支承装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の第一の態様のビル、集合住宅、戸建住宅、倉庫等の建物用の免震支承装置は、弾性層と剛性層とが交互に積層されている積層体を具備しており、ここで、積層体は、平面視において実質的に多角形の外形を有している。
【0008】
第一の態様の免震装置によれば、積層体が平面視において多角形の外形を有しているために、円柱型の積層体と比較して、水平方向の大きな変形においてもその上面と下面との平面視における重なり合いの面積が大きい結果、小型でも優れた耐座屈性能を有することになり、加えて、素材としての矩形のゴム板及び鋼板等から無駄を少なくして弾性層と剛性層とのためのゴム板及び鋼板を得ることができる上に、積層体が多角柱であるために、円弧面を有しない金型でもって斯かる積層体をゴム板の加硫を介して製造できる結果、種々の大きさの積層体を容易に且つ安価に製造できる。
【0009】
本発明において、多角形は三角形以上を含むが、好ましくは本発明の第二の態様の免震装置のように、積層体は、平面視において実質的に正六角形の外形を有しており、より好ましくは本発明の第三の態様の免震装置のように、積層体は、平面視において実質的に内角の角度が互いに等しい八角形の外形を有している。
【0010】
第二又は第三の態様の免震装置によれば、積層体が平面視において実質的に正六角形又は内角の角度が互いに等しい八角形の外形を有しているため、換言すれば、積層体が実質的に正六角柱又は角部が互いに等しい角度をもった八角柱であるために、三角柱及び四角柱の積層体に比較して、免震効果の方向性が少なくなり、より好ましい免震効果を得ることができる。
【0011】
第三の態様の免震装置において、互いに平行な一対の辺は、この一対の辺に対して直交すると共に互いに平行な他の一対の辺間の距離をL1とすると、好ましくは本発明の第四の態様の免震装置のように、次式で表される長さLx1を有しており、
【数5】

Figure 2004027758
また、より好ましくは本発明の第五の態様の免震装置のように、次式で表される長さLx1を有している。
【数6】
Figure 2004027758
【0012】
また第四又は第五の態様の免震装置において、一対の辺に対して直交すると共に互いに平行な他の一対の辺は、この他の一対の辺に対して直交すると共に互いに平行な前記の一対の辺間の距離をL2とすると、好ましくは本発明の第六の態様の免震装置のように、次式で表される長さLx2を有しており、
【数7】
Figure 2004027758
また、より好ましくは本発明の第七の態様の免震装置のように、次式で表される長さLx2を有している。
【数8】
Figure 2004027758
【0013】
積層体が平面視において実質的に内角の角度が互いに等しい八角形の外形を有している場合において、免震効果の方向性を少なくするには、Lx1を
【数9】
Figure 2004027758
に等しく、またLx2を
【数10】
Figure 2004027758
に等しくすることが最も好ましいのであるが、Lx1を
【数11】
Figure 2004027758
よりも小さく、またLx2を
【数12】
Figure 2004027758
よりも小さくすると、弾性層及び剛性層のための素材において使用しない無駄となる部分が多く生じて素材の利用率が低くなって製造原価が割高となる。
【0014】
更に、Lx1をL1に等しくし、またLx2をL2に等しくすると、六角形又は四角形となり、免震効果の方向性の低減効果が少なくなるという八角形にした意義がなくなる。
【0015】
八角柱の積層体において弾性層及び剛性層の素材の利用率と免震効果の方向性の低減効果とに鑑みて、好ましいLx1及びLx2の範囲において、Lx1が
【数13】
Figure 2004027758
であって、Lx2が
【数14】
Figure 2004027758
である。
【0016】
本発明の第八の態様の免震装置では、一対の辺間の距離L2と他の一対の辺間の距離L1とは、互いに等しくなっており、斯かる免震装置によれば、全方位に関して免震効果を略均等に得ることができる。
【0017】
本発明において、弾性層及び剛性層の夫々は、積層体の平面視における外形と同一の外形を有していてもよいが、特に、剛性層は、好ましくは本発明の第九の態様の免震装置のように、平面視において、積層体の平面視における外形の内側において当該外形と実質的に相似な外形を有している。
【0018】
本発明の第十の態様の免震装置では、上記のいずれかの態様の免震装置において、積層体は、弾性層と剛性層とを取り囲んだ外被層を有しており、外被層を含んで積層体は、平面視において実質的に多角形の外形を有している。
【0019】
第十の態様の免震装置によれば、剛性層を外被層で保護できるために、剛性層を鋼板等の金属板で構成する場合には、剛性層の腐食等を防ぐことができる。
【0020】
本発明の第十一の態様の免震装置は、上記のいずれかの態様の免震装置において、弾性層と剛性層とを貫通した少なくとも一つの柱状孔に配された柱状の鉛を有している。
【0021】
第十一の態様の免震装置によれば、免震効果に加えて柱状の鉛によって減衰効果をも効果的に得ることができ、而して、地震等に起因して建物に伝達された水平振動を可及的に速やかに減衰させることができる。
【0022】
本発明の第十二の態様の免震装置は、上記の第一から第十のいずれかの態様の免震装置において、弾性層と剛性層とを貫通した複数の円柱状孔の夫々に配された円柱状の鉛を有している。
【0023】
第十二の態様の免震装置によれば、複数の円柱状の鉛を有しているために、複数の鉛でもって分散して地震等に起因して建物に伝達された水平振動を可及的に速やかに減衰させることができる結果、減衰効果をより効果的に得ることができる。
【0024】
第十二の態様の免震装置において、複数の円柱状孔の夫々は、本発明の第十三の態様の免震装置のように、その中心が積層体の平面視における多角形の外形を規定する辺の中央部と多角形の中心とを結ぶ線上に実質的に位置するように配されていても、本発明の第十四の態様の免震装置のように、その中心が積層体の平面視における多角形の外形の角部と多角形の中心とを結ぶ線上に実質的に位置するように配されていてもよい。
【0025】
第五及び第七の態様、特に第八の態様の免震装置においては、複数の円柱状孔の夫々は、好ましくは、その中心が積層体の平面視における多角形の外形を規定する辺のうちの一対の辺及び他の一対の辺に挟まれる他の二つの辺の夫々の中央部と多角形の中心とを結ぶ線上に実質的に位置するように配される。
【0026】
次に本発明及びその実施の形態を、図に示す例を参照して更に詳細に説明する。なお、本発明はこの例に何等限定されないのである。
【0027】
【発明の実施の形態】
図1及び図2において、本例のビル、集合住宅、戸建住宅、倉庫等の建物用の免震支承装置1は、天然又は合成ゴム等からなる複数の八角形の板状の弾性層2と鋼鈑等からなる複数の八角形の板状の剛性層3とが交互に積層されている積層体4を具備している。
【0028】
積層体4は、弾性層2及び剛性層3に加えて、弾性層2及び剛性層3の外周側に配されて弾性層2と剛性層3とを取り囲んでいると共に弾性層2に一体形成された外被層5を具備しており、天然又は合成ゴム等からなる外被層5を含んで特に図2に示すように平面視において実質的に多角形の外形、本例では、平面視において実質的に八個の角部6の内角の角度θが互いに等しい八角形の外形を有している。
【0029】
積層体4の平面視における八個の角部6の内角の角度θが実質的に全て互いに等しい図2に示す八角形の外形において、互いに平行な一対の辺21及び22は、この一対の辺21及び22に対して直交すると共に互いに平行な他の一対の辺23及び24間の距離をL1とすると、略0.7・L1に等しい長さLx1を有しており、一対の辺23及び24は、一対の辺23及び24に対して直交すると共に互いに平行な一対の辺21及び22間の距離をL2とすると、略0.7・L2に等しい長さLx2を有しており、本例では、長さLx1と長さLx2とは互いに等しくなっていると共に、距離L2と距離L1とは、互いに等しくなっており、また、一対の辺21及び22並びに一対の辺23及び24に挟まれる更に他の辺11、12、13及び14は、一対の辺21及び22並びに一対の辺23及び24の長さLx1及びLx2よりも短い長さを有している。辺11及び12は、互いに平行となっており、辺13及び14もまた、互いに平行となっている。
【0030】
弾性層2及び外被層5に加硫接着されている剛性層3は、平面視において、積層体4の平面視における外形の内側において当該外形と実質的に相似な外形、本例では平面視において八個の角部30の内角の角度θが実質的に互いに等しく且つ積層体4の平面視における外形よりも外被層5の厚み分tだけ小さい八角形の外形を有しており、最上位に配された厚肉の環状の補強板31と、最下位に配された厚肉の環状の補強板32と、補強板31と補強板32との間に配された複数枚の薄肉の環状の剛性板33とを具備しており、弾性層2は、鋼鈑等からなる補強板31、32及び剛性板33の間に配されている。
【0031】
以上の積層体4を具備した免震支承装置1は、積層体4の上面34及び下面35の補強板31及び32にボルト36等でもって取り付けられた取り付け板37及び38並びにアンカーボルト等を介して、取り付け板37側ではビル、集合住宅、戸建住宅、倉庫等の建物の上部構造物に、取り付け板38側では基礎に固着されて、上部構造物と基礎との間に配される。
【0032】
そして免震支承装置1は、地震により生じる基礎の水平方向Hの振動を積層体4の水平方向Hの剪断変形でもって上部構造物に伝達しないようにして上部構造物を免震支持する。
【0033】
免震支承装置1では、積層体4が平面視において多角形である八角形の外形を有しているために、円柱型の積層体と比較して、水平方向Hの変形においてその上面34と下面35との平面視における重なり合いの面積が大きい結果、小型でも優れた耐座屈性能を有することになり、加えて、素材としての矩形のゴム板及び鋼板等から無駄を少なくして弾性層2と剛性層3とのためのゴム板及び鋼板等を得ることができる上に、積層体4が多角柱である八角柱であるために、円弧面を有した金型を用いないでも斯かる積層体4をゴム板の加硫を介して製造できる結果、種々の大きさの積層体4を容易に且つ安価に製造できる上に、水平方向Hの振動に対しての免震効果の方向性が少なくなり、優れた免震効果を得ることができ、加えて、剛性層3を外被層5で保護できるために、剛性層3の腐食等を防ぐことができる。
【0034】
また免震支承装置1では、辺21及び22が略0.7・L1に等しい長さLx1を有しており、辺23及び24が略0.7・L2に等しい長さLx2を有しているために、弾性層2及び剛性層3のための素材に対する好ましい利用率と免震効果の方向性の好ましい低減効果とを得ることができる。
【0035】
ところで、上記の免震支承装置1では、弾性層2の水平方向Hの内部剪断歪でもって水平方向Hの振動の減衰を得ることができるが、これに加えて、図3及び図4に示すように、弾性層2と剛性層3とを貫通した一つの柱状孔、本例では円柱状孔41に配された円柱状の鉛42を振動エネルギ吸収体として具備して免震支承装置1を構成し、積層体4の水平方向Hの変形と共に鉛42もまた水平方向Hに変形されるようにして、鉛42の水平方向Hの変形でもっても上部構造物の水平方向Hの振動エネルギを吸収して上部構造物の振動の可及的速やかな減衰を得るようにしてもよい。
【0036】
図3及び図4に示す免震支承装置1では、積層体4は、弾性層2、剛性層3及び外被層5に加えて、弾性層2及び剛性層3の内周側に配されていると共に弾性層2に一体になった円筒状の内被層45を具備しており、円柱状孔41は、天然又は合成ゴム等からなる内被層45の内周面46と剛性層3の補強板31及び32の内周面47及び48とによって規定されている。
【0037】
斯かる図3及び図4に示す免震支承装置1でも、積層体4が平面視において八角形の外形を有しているために、図1及び図2に示す免震支承装置1と同様の効果を得ることができる上に、鉛42でもって上部構造物の水平方向Hの振動エネルギを吸収して上部構造物の振動の可及的速やかな減衰を得ることができる。
【0038】
また図3及び図4に示す免震支承装置1でも、図1及び図2に示す免震支承装置1と同様に、辺21及び22が略0.7・L1に等しい長さLx1を有し、辺23及び24が略0.7・L2に等しい長さLx2を有し、しかも、長さLx1と長さLx2とが互いに等しいために、図1及び図2に示す免震支承装置1と同様に、弾性層2及び剛性層3のための素材に対する好ましい利用率と免震効果の方向性の好ましい低減効果とを得ることができる。
【0039】
なお、図3及び図4に示すように、取り付け板37及び38と補強板31及び32とに夫々嵌合された剪断キー部材51及び52をも介して免震支承装置1を上部構造物及び基礎に固定してもよい。
【0040】
また、上記の免震支承装置1では、一つの円柱状孔41を有した積層体4を用いたが、これに代えて、複数個、例えば図5及び図6に示すように四個の円柱状孔41を有した積層体4を用い、斯かる弾性層2と剛性層3とを貫通した各円柱状孔41に振動エネルギ吸収体として配された鉛42を具備して免震支承装置1を構成してもよい。
【0041】
図5及び図6に示す免震支承装置1では、円柱状孔41の夫々は、その中心O1が積層体4の平面視における八角形の外形を規定する辺11、12、13及び14の夫々の中央部61と多角形の中心O2とを結ぶ線62上に実質的に位置するように配されている。
【0042】
図5及び図6に示す免震支承装置1でも、積層体4が平面視において八角形の外形を有しているために、先に述べた免震支承装置1と同様の効果を得ることができる上に、辺21及び22が略0.7・L1に等しい長さLx1を有し、辺23及び24が略0.7・L2に等しい長さLx2を有し、しかも、長さLx1と長さLx2とが互いに等しいために、先に述べた免震支承装置1と同様の効果を得ることができる上に、減衰効果をより効果的に得ることができる。
【0043】
なお、図5及び図6に示す免震支承装置1において、円柱状孔41の夫々を、その中心O1が積層体4の平面視における八角形の外形を規定すると共に長さLx1及びLx2を有した辺21、22、23及び24の夫々の中央部と多角形の中心O2とを結ぶ線上に実質的に位置するように配してもよい。
【0044】
上記の免震支承装置1では、積層体4が平面視において実質的に八角形の外形を有しているが、これに代えて、図7及び図8に示すように、積層体4が、平面視において実質的に正六角形の外形を有していてもよい。図7及び図8に示す免震支承装置1では、積層体4は、弾性層2と剛性層3とを貫通した六個の円柱状孔41を有しており、円柱状孔41の夫々は、その中心O1が積層体4の平面視における正六角形の外形の角部71と正六角形の中心O2とを結ぶ線72上に実質的に位置するように配されており、斯かる円柱状孔41の夫々に鉛42が配されている。
【0045】
図7及び図8に示す免震支承装置1では、図9に示すように、円柱状孔41の夫々を、その中心O1が積層体4の平面視における六角形の外形を規定すると共に互いに同じ長さを有した全ての辺73の夫々の中央部74と六角形の中心O2とを結ぶ線75上に実質的に位置するように配し、斯かる円柱状孔41の夫々に鉛42を配してもよい。
【0046】
図7から図9に示す免震支承装置1でも上記の免震支承装置1と同様の効果を得ることができる。
【0047】
【発明の効果】
本発明によれば、小型でも耐座屈性能に優れて、しかも、容易に且つ安価に製造できる、ビル、集合住宅、戸建住宅、倉庫等の建物用に好適な免震支承装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の好ましい例の断面説明図である。
【図2】図1に示す例の積層体の平面図である。
【図3】本発明の実施の形態の好ましい他の例の断面説明図である。
【図4】図3に示す例の積層体の平面図である。
【図5】本発明の実施の形態の好ましい更に他の例の断面説明図である。
【図6】図5に示す例の積層体の平面図である。
【図7】本発明の実施の形態の好ましい更に他の例の断面説明図である。
【図8】図7に示す例の積層体の平面図である。
【図9】図7に示す例の積層体の変形例の平面図である。
【符号の説明】
1 免震支承装置
2 弾性層
3 剛性層
4 積層体[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a seismic isolation bearing device that supports buildings such as buildings, apartment houses, detached houses, and warehouses, and that is isolated from earthquake vibration.
[0002]
[Problems to be solved by the invention]
As a seismic isolation bearing device, a device having a laminated body in which a rubber layer and a steel plate layer are alternately laminated is known, but it is not possible to specify a vibration direction to be seismically isolated. 2. Description of the Related Art In seismic isolation bearing devices for buildings such as houses and warehouses, columnar laminates having non-directional seismic isolation characteristics are used.
[0003]
By the way, in the columnar laminate, as a result of the small area of the overlap between the upper surface and the lower surface in plan view in a large deformation in the horizontal direction, the buckling resistance becomes poor, and in order to improve this buckling resistance, , It is necessary to increase the diameter to make it large, but the seismic isolation bearing device for buildings such as buildings, apartment houses, detached houses, warehouses, etc. limits the installation space compared to bridges Therefore, it is difficult to increase the size of the laminate in the horizontal direction.
[0004]
Further, in the case of a cylindrical laminate, in order to obtain a rubber layer and a steel plate layer constituting the laminate, a circular rubber plate and a steel plate are used as raw materials to obtain a circular rubber plate and a steel plate. Therefore, the utilization rate of the material is extremely low, and therefore, the seismic isolation device having the columnar laminate is expensive.
[0005]
In addition, the laminate is usually manufactured by vulcanizing a rubber plate in a mold and fixing the rubber plate and the steel plate to each other. However, when the laminate is a columnar type, the laminate has various sizes. In order to manufacture the device, a mold corresponding to each laminated body must be prepared, and from this point of view, the seismic isolation device having the columnar laminated body is expensive.
[0006]
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a building, an apartment, a detached house which is excellent in buckling resistance even in a small size, and can be easily and inexpensively manufactured. An object of the present invention is to provide a seismic isolation bearing device suitable for buildings such as houses and warehouses.
[0007]
[Means for Solving the Problems]
The building according to the first aspect of the present invention, an apartment house, a detached house, a seismic isolation bearing device for a building such as a warehouse includes a laminate in which elastic layers and rigid layers are alternately laminated, Here, the laminate has a substantially polygonal outer shape in plan view.
[0008]
According to the seismic isolation device of the first aspect, since the laminate has a polygonal outer shape in a plan view, compared to a columnar laminate, even in a large deformation in the horizontal direction, the upper surface thereof has As a result of the large area of the overlap with the lower surface in plan view, it has excellent buckling resistance even with a small size, and in addition, the elastic layer and rigidity are reduced by reducing waste from the rectangular rubber plate and steel plate as the material. It is possible to obtain a rubber plate and a steel plate for the layer and, because the laminate is a polygonal column, manufacture such a laminate by vulcanization of the rubber plate using a mold having no arc surface. As a result, laminates of various sizes can be easily and inexpensively manufactured.
[0009]
In the present invention, the polygon includes triangles or more, but preferably, as in the seismic isolation device of the second aspect of the present invention, the laminate has a substantially regular hexagonal outer shape in plan view, More preferably, as in the seismic isolation device according to the third aspect of the present invention, the laminate has an octagonal outer shape in which the angles of the inner angles are substantially equal to each other in plan view.
[0010]
According to the seismic isolation device of the second or third aspect, since the laminate has substantially the same hexagonal shape or an octagonal outer shape in which the angles of the internal angles are mutually equal in plan view, in other words, the laminate Is a regular hexagonal prism or an octagonal prism whose corners have the same angle as each other, so the directionality of the seismic isolation effect is reduced as compared to the laminate of the triangular prism and the square prism, and a more preferable seismic isolation effect Can be obtained.
[0011]
In the seismic isolation device according to the third aspect, the pair of sides parallel to each other is preferably orthogonal to the pair of sides and the distance between the other pair of sides parallel to each other is L1, preferably the distance of the present invention. Like the seismic isolation device of the fourth aspect, it has a length Lx1 represented by the following equation,
(Equation 5)
Figure 2004027758
Further, more preferably, as in the seismic isolation device of the fifth aspect of the present invention, it has a length Lx1 represented by the following equation.
(Equation 6)
Figure 2004027758
[0012]
Further, in the seismic isolation device of the fourth or fifth aspect, the other pair of sides that are orthogonal to the pair of sides and are parallel to each other are orthogonal to the other pair of sides and are parallel to each other. Assuming that the distance between the pair of sides is L2, it preferably has a length Lx2 represented by the following equation, as in the seismic isolation device according to the sixth aspect of the present invention.
(Equation 7)
Figure 2004027758
More preferably, as in the seismic isolation device according to the seventh aspect of the present invention, it has a length Lx2 represented by the following equation.
(Equation 8)
Figure 2004027758
[0013]
In order to reduce the direction of the seismic isolation effect when the laminate has an octagonal outer shape having substantially the same interior angle in plan view, Lx1 is given by:
Figure 2004027758
And Lx2 is given by
Figure 2004027758
It is most preferable to make Lx1 equal to
Figure 2004027758
And Lx2 is given by
Figure 2004027758
If it is smaller than the above, there are many wasteful portions that are not used in the material for the elastic layer and the rigid layer, so that the utilization rate of the material is reduced and the manufacturing cost is increased.
[0014]
Furthermore, if Lx1 is made equal to L1 and Lx2 is made equal to L2, the shape becomes hexagonal or square, and the octagonal meaning that the effect of reducing the directionality of the seismic isolation effect is reduced is lost.
[0015]
In consideration of the utilization rate of the material of the elastic layer and the rigid layer and the effect of reducing the directionality of the seismic isolation effect in the octagonal prism laminate, Lx1 is given by the following expression within the preferred range of Lx1 and Lx2.
Figure 2004027758
Where Lx2 is
Figure 2004027758
It is.
[0016]
In the seismic isolation device according to the eighth aspect of the present invention, the distance L2 between the pair of sides and the distance L1 between the other pair of sides are equal to each other. The seismic isolation effect can be obtained substantially equally.
[0017]
In the present invention, each of the elastic layer and the rigid layer may have the same outer shape as the outer shape of the laminate in a plan view. In particular, the rigid layer preferably has the same outer shape as that of the ninth aspect of the present invention. Like a vibration device, in a plan view, the laminate has an outer shape substantially similar to the outer shape inside the outer shape in a plan view.
[0018]
In a seismic isolation device according to a tenth aspect of the present invention, in the seismic isolation device according to any one of the above aspects, the laminate has an outer layer surrounding the elastic layer and the rigid layer, and the outer layer The laminate has a substantially polygonal outer shape in plan view.
[0019]
According to the seismic isolation device of the tenth aspect, since the rigid layer can be protected by the covering layer, corrosion of the rigid layer can be prevented when the rigid layer is formed of a metal plate such as a steel plate.
[0020]
The seismic isolation device of the eleventh aspect of the present invention, in the seismic isolation device of any of the above aspects, has a columnar lead disposed in at least one columnar hole penetrating the elastic layer and the rigid layer. ing.
[0021]
According to the seismic isolation device of the eleventh aspect, in addition to the seismic isolation effect, the columnar lead can also effectively obtain the damping effect, and thus, is transmitted to the building due to an earthquake or the like. Horizontal vibration can be attenuated as quickly as possible.
[0022]
A seismic isolation device according to a twelfth aspect of the present invention is the seismic isolation device according to any one of the first to tenth aspects, wherein the seismic isolation device is provided in each of the plurality of cylindrical holes penetrating the elastic layer and the rigid layer. It has a columnar lead.
[0023]
According to the seismic isolation device of the twelfth aspect, since it has a plurality of columnar leads, horizontal vibration transmitted to the building due to an earthquake or the like dispersed by the plurality of leads is possible. As a result, the damping effect can be obtained more effectively.
[0024]
In the seismic isolation device of the twelfth aspect, each of the plurality of columnar holes has a polygonal outer shape in plan view of the laminate at the center, as in the seismic isolation device of the thirteenth aspect of the present invention. Even if it is arranged so as to be located substantially on the line connecting the center of the defined side and the center of the polygon, the center of the laminate is the same as the seismic isolation device of the fourteenth aspect of the present invention. May be arranged so as to be substantially located on a line connecting the corner of the outer shape of the polygon and the center of the polygon in plan view.
[0025]
In the seismic isolation device of the fifth and seventh aspects, particularly the eighth aspect, each of the plurality of cylindrical holes preferably has a center whose side defines a polygonal outer shape in plan view of the laminate. It is arranged so as to be substantially located on a line connecting the center of each polygon and the center of each of the other two sides sandwiched between the pair of sides and the other pair of sides.
[0026]
Next, the present invention and its embodiments will be described in more detail with reference to examples shown in the drawings. The present invention is not limited to this example.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
In FIGS. 1 and 2, a seismic isolation bearing device 1 for buildings such as buildings, apartment houses, detached houses, warehouses, etc. of this embodiment includes a plurality of octagonal plate-like elastic layers 2 made of natural or synthetic rubber or the like. And a plurality of octagonal plate-shaped rigid layers 3 made of a steel plate or the like are alternately laminated.
[0028]
The laminate 4 is arranged on the outer peripheral side of the elastic layer 2 and the rigid layer 3 in addition to the elastic layer 2 and the rigid layer 3, surrounds the elastic layer 2 and the rigid layer 3, and is integrally formed with the elastic layer 2. In particular, as shown in FIG. 2, a substantially polygonal outer shape in plan view, including the cover layer 5 made of natural or synthetic rubber, in this example, in plan view Substantially, the eight corners 6 have an octagonal outer shape in which the angles θ of the inner angles are equal to each other.
[0029]
In the octagonal outer shape shown in FIG. 2 in which the angles θ of the inner angles of the eight corner portions 6 in the plan view of the stacked body 4 are all substantially equal to each other, a pair of sides 21 and 22 parallel to each other is Assuming that the distance between another pair of sides 23 and 24 orthogonal to and parallel to 21 and 22 is L1, the length Lx1 is substantially equal to 0.7 · L1. 24 has a length Lx2 substantially equal to 0.7 · L2, where L2 is the distance between the pair of sides 21 and 22 that are orthogonal to the pair of sides 23 and 24 and that are parallel to each other. In the example, the length Lx1 and the length Lx2 are equal to each other, the distance L2 and the distance L1 are equal to each other, and are sandwiched between a pair of sides 21 and 22 and a pair of sides 23 and 24. Still other sides 11, 12, 13 Beauty 14 has a length shorter than the length Lx1 and Lx2 of the pair of sides 21 and 22 and a pair of sides 23 and 24. Sides 11 and 12 are parallel to each other, and sides 13 and 14 are also parallel to each other.
[0030]
The rigid layer 3 which is vulcanized and bonded to the elastic layer 2 and the jacket layer 5 has an outer shape substantially similar to the outer shape of the laminated body 4 in plan view, in plan view, in this example, in plan view. In this case, the angles θ of the inner angles of the eight corner portions 30 are substantially equal to each other and have an octagonal outer shape that is smaller than the outer shape of the laminate 4 in a plan view by the thickness t of the jacket layer 5. A thick annular reinforcing plate 31 arranged at a higher position, a thick annular reinforcing plate 32 arranged at a lowermost position, and a plurality of thin-walled thin reinforcing plates arranged between the reinforcing plate 31 and the reinforcing plate 32. The elastic layer 2 is disposed between the rigid plates 33 and the reinforcing plates 31 and 32 made of a steel plate or the like.
[0031]
The seismic isolation bearing device 1 having the above-described laminated body 4 is mounted on the reinforcing plates 31 and 32 on the upper surface 34 and the lower surface 35 of the laminated body 4 with mounting plates 37 and 38 attached with bolts 36 and the like, and anchor bolts and the like. On the mounting plate 37 side, it is fixed to the upper structure of a building such as a building, an apartment house, a detached house, a warehouse, etc., and on the mounting plate 38 side, it is fixed to a foundation and arranged between the upper structure and the foundation.
[0032]
Then, the seismic isolation bearing device 1 seismically supports the upper structure by preventing the vibration in the horizontal direction H of the foundation caused by the earthquake from being transmitted to the upper structure by shearing deformation of the laminate 4 in the horizontal direction H.
[0033]
In the seismic isolation bearing device 1, since the laminate 4 has an octagonal outer shape that is polygonal in a plan view, the upper surface 34 of the laminate 4 is deformed in the horizontal direction H as compared with the columnar laminate. As a result of the large area of the overlap with the lower surface 35 in a plan view, excellent buckling resistance is achieved even in a small size, and in addition, the elastic layer 2 can be reduced by reducing waste from a rectangular rubber plate, a steel plate or the like as a material. In addition to obtaining a rubber plate, a steel plate, and the like for the rigid layer 3 and the laminate 4, since the laminate 4 is an octagonal prism that is a polygonal prism, such a laminate can be obtained without using a mold having an arc surface. As a result of being able to manufacture the body 4 through vulcanization of a rubber plate, it is possible to easily and inexpensively manufacture the laminates 4 of various sizes, and furthermore, the direction of the seismic isolation effect with respect to the vibration in the horizontal direction H is improved. Less and can get an excellent seismic isolation effect, plus a rigid layer In order to be protected by the jacket layer 5, it is possible to prevent corrosion of the rigid layer 3.
[0034]
Further, in the seismic isolation bearing device 1, the sides 21 and 22 have a length Lx1 equal to approximately 0.7 · L1, and the sides 23 and 24 have a length Lx2 equal to approximately 0.7 · L2. Therefore, it is possible to obtain a favorable utilization rate of the material for the elastic layer 2 and the rigid layer 3 and a favorable effect of reducing the directionality of the seismic isolation effect.
[0035]
By the way, in the seismic isolation bearing device 1 described above, the damping of the vibration in the horizontal direction H can be obtained by the internal shear strain of the elastic layer 2 in the horizontal direction H. In addition, FIGS. As described above, the seismic isolation bearing device 1 is provided with one columnar hole penetrating the elastic layer 2 and the rigid layer 3, in this example, a columnar lead 42 disposed in a columnar hole 41 as a vibration energy absorber. The lead 42 is also deformed in the horizontal direction H together with the deformation of the laminated body 4 in the horizontal direction H, so that even when the lead 42 is deformed in the horizontal direction H, the vibration energy of the upper structure in the horizontal direction H is reduced. Absorption may be used to obtain the quickest possible damping of the vibration of the superstructure.
[0036]
In the seismic isolation bearing device 1 shown in FIGS. 3 and 4, the laminated body 4 is disposed on the inner peripheral side of the elastic layer 2 and the rigid layer 3 in addition to the elastic layer 2, the rigid layer 3 and the outer layer 5. And a cylindrical inner cover layer 45 integrated with the elastic layer 2. The cylindrical hole 41 is formed between the inner peripheral surface 46 of the inner cover layer 45 made of natural or synthetic rubber or the like and the rigid layer 3. It is defined by the inner peripheral surfaces 47 and 48 of the reinforcing plates 31 and 32.
[0037]
Also in such a seismic isolation bearing device 1 shown in FIGS. 3 and 4, since the laminated body 4 has an octagonal outer shape in plan view, the same as the seismic isolation bearing device 1 shown in FIGS. 1 and 2. In addition to obtaining the effect, the lead 42 absorbs the vibration energy of the upper structure in the horizontal direction H, so that the vibration of the upper structure can be damped as quickly as possible.
[0038]
Also, in the seismic isolation bearing device 1 shown in FIGS. 3 and 4, similarly to the seismic isolation bearing device 1 shown in FIGS. 1 and 2, the sides 21 and 22 have a length Lx1 substantially equal to 0.7 · L1. , Sides 23 and 24 have a length Lx2 substantially equal to 0.7 · L2, and furthermore, the length Lx1 and the length Lx2 are equal to each other, so that the seismic isolation bearing device 1 shown in FIGS. Similarly, it is possible to obtain a favorable utilization rate of the material for the elastic layer 2 and the rigid layer 3 and a favorable reduction effect of the directionality of the seismic isolation effect.
[0039]
As shown in FIGS. 3 and 4, the seismic isolation bearing device 1 is connected to the upper structure and the shearing members 51 and 52 via the shear key members 51 and 52 fitted to the mounting plates 37 and 38 and the reinforcing plates 31 and 32, respectively. It may be fixed to the foundation.
[0040]
Further, in the seismic isolation bearing device 1 described above, the laminated body 4 having one columnar hole 41 is used, but a plurality of, for example, four circles as shown in FIGS. A seismic isolation bearing device 1 using a laminated body 4 having a columnar hole 41 and including a lead 42 disposed as a vibration energy absorber in each cylindrical hole 41 penetrating the elastic layer 2 and the rigid layer 3. May be configured.
[0041]
In the seismic isolation bearing device 1 shown in FIGS. 5 and 6, each of the cylindrical holes 41 has sides 11, 12, 13, and 14 whose center O1 defines the octagonal outer shape of the laminate 4 in plan view. Are arranged substantially on a line 62 connecting the central portion 61 of the polygon and the center O2 of the polygon.
[0042]
Also in the seismic isolation bearing device 1 shown in FIGS. 5 and 6, since the laminated body 4 has an octagonal outer shape in plan view, the same effect as the seismic isolation bearing device 1 described above can be obtained. In addition, sides 21 and 22 have a length Lx1 equal to approximately 0.7 · L1, sides 23 and 24 have a length Lx2 equal to approximately 0.7 · L2, and length Lx1 Since the lengths Lx2 are equal to each other, the same effect as that of the above-described seismic isolation bearing device 1 can be obtained, and the damping effect can be more effectively obtained.
[0043]
In the seismic isolation bearing device 1 shown in FIGS. 5 and 6, the center O1 of each of the cylindrical holes 41 defines the octagonal outer shape of the laminated body 4 in plan view and has lengths Lx1 and Lx2. The sides 21, 22, 23, and 24 may be arranged so as to be substantially located on a line connecting the center O2 of the polygon and the center of each of the sides 21, 22, 23, and 24.
[0044]
In the above-described seismic isolation bearing device 1, the laminated body 4 has a substantially octagonal outer shape in plan view, but instead, as shown in FIGS. It may have a substantially hexagonal outer shape in plan view. In the seismic isolation bearing device 1 shown in FIGS. 7 and 8, the laminated body 4 has six cylindrical holes 41 penetrating the elastic layer 2 and the rigid layer 3, and each of the cylindrical holes 41 is The center O1 is disposed so as to be substantially located on a line 72 connecting a corner portion 71 of a regular hexagonal outer shape and a center O2 of the regular hexagonal shape in plan view of the stacked body 4, and the cylindrical hole is formed. Leads 42 are arranged in each of the 41.
[0045]
In the seismic isolation bearing device 1 shown in FIGS. 7 and 8, as shown in FIG. 9, the center O1 of each of the cylindrical holes 41 defines the hexagonal outer shape of the stacked body 4 in a plan view and is the same as each other. The lead 42 is disposed in each of the cylindrical holes 41 so as to be substantially located on a line 75 connecting the central portion 74 of each of the sides 73 having a length and the center O2 of the hexagon. May be arranged.
[0046]
The same effects as those of the above-described seismic isolation bearing device 1 can be obtained with the seismic isolation bearing device 1 shown in FIGS.
[0047]
【The invention's effect】
According to the present invention, there is provided a seismic isolation bearing suitable for buildings such as buildings, apartment houses, detached houses, warehouses, etc., which is small, has excellent buckling resistance, and can be manufactured easily and at low cost. be able to.
[Brief description of the drawings]
FIG. 1 is an explanatory sectional view of a preferred example of an embodiment of the present invention.
FIG. 2 is a plan view of the laminated body of the example shown in FIG.
FIG. 3 is an explanatory sectional view of another preferred example of the embodiment of the present invention.
FIG. 4 is a plan view of the laminate of the example shown in FIG.
FIG. 5 is an explanatory cross-sectional view of still another preferred example of the embodiment of the present invention.
FIG. 6 is a plan view of the laminated body of the example shown in FIG.
FIG. 7 is an explanatory sectional view of still another preferred example of the embodiment of the present invention.
FIG. 8 is a plan view of the laminated body of the example shown in FIG.
FIG. 9 is a plan view of a modified example of the laminated body of the example shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seismic isolation bearing device 2 Elastic layer 3 Rigid layer 4 Laminate

Claims (14)

弾性層と剛性層とが交互に積層されている積層体を具備していると共に、ビル、集合住宅、戸建住宅、倉庫等の建物用の免震支承装置であって、積層体は、平面視において実質的に多角形の外形を有している免震支承装置。A seismic isolation bearing device for a building such as a building, an apartment house, a detached house, or a warehouse, comprising a laminate in which elastic layers and rigid layers are alternately laminated, wherein the laminate has a flat surface. A seismic isolation bearing device having a substantially polygonal outer shape when viewed. 積層体は、平面視において実質的に正六角形の外形を有している請求項1に記載の免震支承装置。The seismic isolation bearing device according to claim 1, wherein the laminate has a substantially regular hexagonal outer shape in plan view. 積層体は、平面視において実質的に内角の角度が互いに等しい八角形の外形を有している請求項1に記載の免震支承装置。2. The seismic isolation bearing according to claim 1, wherein the laminate has an octagonal outer shape having substantially the same inner angle in plan view. 3. 積層体の平面視における八角形の外形において、互いに平行な一対の辺は、この一対の辺に対して直交すると共に互いに平行な他の一対の辺間の距離をL1とすると、次式で表される長さLx1を有している請求項3に記載の免震支承装置。
Figure 2004027758
In the octagonal outer shape of the laminate in a plan view, a pair of sides parallel to each other is expressed by the following equation, where L1 is a distance between another pair of sides that are orthogonal to the pair of sides and parallel to each other. The seismic isolation bearing device according to claim 3, which has a length Lx1 to be set.
Figure 2004027758
積層体の平面視における八角形の外形において、互いに平行な一対の辺は、この一対の辺に対して直交すると共に互いに平行な他の一対の辺間の距離をL1とすると、次式で表される長さLx1を有している請求項3に記載の免震支承装置。
Figure 2004027758
In the octagonal outer shape of the laminate in a plan view, a pair of sides parallel to each other is expressed by the following equation, where L1 is a distance between another pair of sides that are orthogonal to the pair of sides and parallel to each other. The seismic isolation bearing device according to claim 3, which has a length Lx1 to be set.
Figure 2004027758
一対の辺に対して直交すると共に互いに平行な他の一対の辺は、この他の一対の辺に対して直交すると共に互いに平行な前記の一対の辺間の距離をL2とすると、次式で表される長さLx2を有している請求項4又は5に記載の免震支承装置。
Figure 2004027758
The other pair of sides that are perpendicular to the pair of sides and are parallel to each other are represented by the following equation, where L2 is the distance between the pair of sides that are perpendicular to and parallel to the other pair of sides. The seismic isolation bearing according to claim 4 or 5, having a length Lx2 represented.
Figure 2004027758
一対の辺に対して直交すると共に互いに平行な他の一対の辺は、この他の一対の辺に対して直交すると共に互いに平行な前記の一対の辺間の距離をL2とすると、次式で表される長さLx2を有している請求項4又は5に記載の免震支承装置。
Figure 2004027758
The other pair of sides that are perpendicular to the pair of sides and are parallel to each other are represented by the following equation, where L2 is the distance between the pair of sides that are perpendicular to and parallel to the other pair of sides. The seismic isolation bearing according to claim 4 or 5, having a length Lx2 represented.
Figure 2004027758
一対の辺間の距離L2と他の一対の辺間の距離L1とは、互いに等しくなっている請求項6又は7に記載の免震支承装置。The seismic isolation bearing device according to claim 6 or 7, wherein a distance L2 between the pair of sides and a distance L1 between the other pair of sides are equal to each other. 剛性層は、平面視において、積層体の平面視における外形の内側において当該外形と実質的に相似な外形を有している請求項1から8のいずれか一項に記載の免震支承装置。The seismic isolation bearing device according to any one of claims 1 to 8, wherein the rigid layer has an outer shape substantially similar to the outer shape inside the outer shape of the laminate in a plan view. 積層体は、弾性層と剛性層とを取り囲んだ外被層を有しており、外被層を含んで積層体は、平面視において実質的に多角形の外形を有している請求項1から9のいずれか一項に記載の免震支承装置。The laminate has a jacket layer surrounding the elastic layer and the rigid layer, and the laminate including the jacket layer has a substantially polygonal outer shape in plan view. 10. The base isolation bearing device according to any one of items 1 to 9. 弾性層と剛性層とを貫通した少なくとも一つの柱状孔に配された柱状の鉛を有している請求項1から10のいずれか一項に記載の免震支承装置。The seismic isolation bearing device according to any one of claims 1 to 10, further comprising columnar lead arranged in at least one columnar hole penetrating the elastic layer and the rigid layer. 弾性層と剛性層とを貫通した複数の円柱状孔の夫々に配された円柱状の鉛を有している請求項1から10のいずれか一項に記載の免震支承装置。The seismic isolation bearing device according to any one of claims 1 to 10, further comprising a columnar lead disposed in each of the plurality of columnar holes penetrating the elastic layer and the rigid layer. 複数の円柱状孔の夫々は、その中心が積層体の平面視における多角形の外形を規定する辺の中央部と多角形の中心とを結ぶ線上に実質的に位置するように配されている請求項12に記載の免震支承装置。Each of the plurality of cylindrical holes is disposed such that the center thereof is substantially located on a line connecting the center of the side defining the outer shape of the polygon in plan view of the laminate and the center of the polygon. The seismic isolation bearing device according to claim 12. 複数の円柱状孔の夫々は、その中心が積層体の平面視における多角形の外形の角部と多角形の中心とを結ぶ線上に実質的に位置するように配されている請求項12又は13に記載の免震支承装置。Each of the plurality of cylindrical holes is arranged such that the center thereof is substantially located on a line connecting a corner of the polygonal outer shape and the center of the polygon in plan view of the laminate. 14. The seismic isolation bearing device according to 13.
JP2002189209A 2002-06-28 2002-06-28 Seismic isolation device Expired - Lifetime JP3931745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189209A JP3931745B2 (en) 2002-06-28 2002-06-28 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189209A JP3931745B2 (en) 2002-06-28 2002-06-28 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2004027758A true JP2004027758A (en) 2004-01-29
JP3931745B2 JP3931745B2 (en) 2007-06-20

Family

ID=31183695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189209A Expired - Lifetime JP3931745B2 (en) 2002-06-28 2002-06-28 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3931745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205465A (en) * 2015-04-17 2016-12-08 株式会社ブリヂストン Seismic isolator
CN113789880A (en) * 2021-09-13 2021-12-14 温州益德建设有限公司 Structure is built to antidetonation room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205465A (en) * 2015-04-17 2016-12-08 株式会社ブリヂストン Seismic isolator
CN113789880A (en) * 2021-09-13 2021-12-14 温州益德建设有限公司 Structure is built to antidetonation room
CN113789880B (en) * 2021-09-13 2022-09-20 温州益德建设有限公司 Structure is built to antidetonation room

Also Published As

Publication number Publication date
JP3931745B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JPH038907A (en) Response control device
JP3931745B2 (en) Seismic isolation device
JP4941601B2 (en) Seismic isolation device
TW201738434A (en) Seismic isolation bearing for bridge and bridge using the same
JP4736715B2 (en) Seismic isolation device
JP4971510B2 (en) Seismic isolation device
JP7394682B2 (en) Seismic isolation device
JP5136622B2 (en) Laminated rubber body with lead plug
JP2006070945A (en) Compound vibration-isolating support system
JP2004232380A (en) Base isolation device
JPH033723Y2 (en)
JP6818503B2 (en) building
JP7390208B2 (en) Seismic isolation device
JP2006250300A (en) Laminated rubber body with incorporated lead plug
JP7473380B2 (en) Seismic isolation device
JP7404138B2 (en) Seismic isolation device
JPH0234368Y2 (en)
TWI258523B (en) Spherical damper capable of damping and absorbing vibration energy
JP5639379B2 (en) Elastic sliding bearing structure
JP7286904B2 (en) building
JP5270739B2 (en) Seismic isolation structure for floor slabs
JP2004156750A (en) Base isolation structure and its arrangement method
TWM636764U (en) Supporting energy dissipation structure
JPH10184078A (en) Vibration isolation device
JP2005282207A (en) Earthquake resistant pad for detached house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3931745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term